JP2002015764A - Battery, battery electrode forming method and electrode forming device - Google Patents

Battery, battery electrode forming method and electrode forming device

Info

Publication number
JP2002015764A
JP2002015764A JP2000195776A JP2000195776A JP2002015764A JP 2002015764 A JP2002015764 A JP 2002015764A JP 2000195776 A JP2000195776 A JP 2000195776A JP 2000195776 A JP2000195776 A JP 2000195776A JP 2002015764 A JP2002015764 A JP 2002015764A
Authority
JP
Japan
Prior art keywords
electrode
groove
battery
active material
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000195776A
Other languages
Japanese (ja)
Other versions
JP3745594B2 (en
Inventor
Shigeru Aihara
茂 相原
Hiroaki Urushibata
広明 漆畑
Hisashi Shioda
久 塩田
Atsushi Arakane
淳 荒金
Takashi Nishimura
隆 西村
Junichi Hosokawa
純一 細川
Seiji Yoshioka
省二 吉岡
Makiko Kichise
万希子 吉瀬
Akira Shiragami
昭 白神
Daigo Takemura
大吾 竹村
Hironori Kuriki
宏徳 栗木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000195776A priority Critical patent/JP3745594B2/en
Publication of JP2002015764A publication Critical patent/JP2002015764A/en
Application granted granted Critical
Publication of JP3745594B2 publication Critical patent/JP3745594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode which has a shape of a groove that does not give a damage to the electrode, and a forming method of the electrode and a forming device of the battery and the electrode. SOLUTION: The battery comprises a generating element in which a positive electrode and a negative electrode are arranged interposing an electrolyte supporting layer, and has an electrode active material layer 2 on both faces of the current collector 3. In at least one of the electrodes 1, the sectional shape has a bottom face section 5 and a side face section 6, in which the angle formed by the bottom face section 5 and the side face section 6 is made an acute angle and forms a groove 4 of which one end at least extends to the edge of the electrode 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、正負の電極が交
互にセパレータ等の電解質を保持するための電解質保持
層を介して近接して配置された発電要素を備えた電池、
並びにこの電池の電極成形方法及び電極成形装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery comprising a power generating element in which positive and negative electrodes are alternately arranged close to each other via an electrolyte holding layer for holding an electrolyte such as a separator.
The present invention also relates to an electrode forming method and an electrode forming apparatus for the battery.

【0002】[0002]

【従来の技術】一般に、一次電池や二次電池などの化学
電池は、電解質の保持や絶縁膜の役割を担うセパレータ
等を介して正負の電極を近接させて配置した発電要素よ
りなっている。例えば、巻き型電池は、正負1枚ずつの
電極の間にセパレータを介して渦巻型に巻回させること
で円筒状の発電要素を形成している。また、積層型電池
は複数枚の正負の電極をセパレータを介して交互に積層
させることにより発電要素を形成している。形成された
発電要素をケースに収納し、外から圧迫することによっ
て正負電極それぞれとセパレータとの間の密着性を維持
して、位置ずれや抵抗上昇を防いでいる。また、上記発
電要素の正負電極とセパレータとの間を電解質保持性の
樹脂等で接合させて、外から圧迫しなくても密着性を維
持している電池もある。
2. Description of the Related Art In general, a chemical battery such as a primary battery or a secondary battery includes a power generating element in which positive and negative electrodes are arranged close to each other via a separator or the like which holds an electrolyte and plays a role of an insulating film. For example, a wound-type battery forms a cylindrical power generating element by spirally winding a positive electrode and a negative electrode one by one with a separator interposed therebetween. Further, in the stacked battery, a power generating element is formed by alternately stacking a plurality of positive and negative electrodes via a separator. The formed power generating element is housed in a case and pressed from the outside to maintain the adhesion between each of the positive and negative electrodes and the separator, thereby preventing displacement and resistance rise. There is also a battery in which the positive and negative electrodes of the power generating element and the separator are joined with an electrolyte-retaining resin or the like so as to maintain the adhesion without being pressed from the outside.

【0003】ところが、従来のように外的な圧迫もしく
は内的な接合により形成された発電要素を密着させてし
まうと、電極とセパレータとの間の隙間がほとんどなく
なるので、電解液を注入した場合に、発電要素内部への
電解液の浸透は、電極の側面からの浸透やセパレータか
らの浸透がほとんどになる。従って、発電要素全体に電
解液が浸み渡るのには、かなりの長時間を要していた。
However, if a power generating element formed by external compression or internal bonding is brought into close contact as in the prior art, there is almost no gap between the electrode and the separator. In addition, most of the permeation of the electrolyte into the inside of the power generation element is caused by permeation from the side surface of the electrode and permeation from the separator. Therefore, it took a considerably long time for the electrolyte to permeate the entire power generating element.

【0004】この問題を解決する方法として、国際公開
公報、WO9,848,466に電極表面に溝を設ける
ことが開示されている。これによれば電極の端部に至る
溝を形成することにより、電解液の注液浸透速度および
内部に発生するガス抜き速度、接着用の溶剤蒸発速度を
速くすることが可能になると開示されている。
As a method for solving this problem, International Publication No. WO9,848,466 discloses providing a groove on the electrode surface. According to this, it is disclosed that by forming a groove reaching the end of the electrode, it becomes possible to increase the infiltration rate of the electrolyte solution, the degassing rate generated inside, and the evaporation rate of the solvent for bonding. I have.

【0005】[0005]

【発明が解決しようとする課題】電極に溝を形成する場
合、例えば、断面形状がくさび形や丸形などの形状にな
っている溝においては、圧縮により溝を形成する際に、
溝部分が損傷したり、損傷が激しいときは切断したりす
る恐れがあった。
When a groove is formed in an electrode, for example, in a groove having a cross-sectional shape such as a wedge shape or a round shape, when a groove is formed by compression,
There was a possibility that the groove portion was damaged, or if the damage was severe, it was cut.

【0006】また、溝底面部と側面部を有する溝断面形
状において溝底面部と側面部とのなす角度が直角もしく
は鋭角になると、成形用突起により圧縮して溝加工を行
う際に、溝周辺部の破損が生じやすく、この破損による
破片が金型や溝加工後の電極に付着して不良品を発生さ
せ、歩留まりを低下させる原因になっていた。
Further, when the angle formed between the groove bottom surface and the side surface in the groove cross-sectional shape having the groove bottom surface and the side surface becomes a right angle or an acute angle, when the groove is formed by being compressed by the molding projection, the periphery of the groove is formed. The portion is easily damaged, and the fragments due to the damage adhere to the mold and the electrode after the groove processing to generate a defective product, which causes a reduction in yield.

【0007】また、集電板の両面に活物質層を形成した
電極においては、その電極の両面に溝を形成する場合に
変形を起こしやすく、また溝形成後の厚み調整用圧延プ
レスを通した後において、溝の変形が残る、あるいは溝
の深さが浅くなるなどの問題が生じる可能性があった。
In an electrode having an active material layer formed on both surfaces of a current collector plate, deformation is likely to occur when grooves are formed on both surfaces of the electrode, and the electrode is passed through a thickness adjusting rolling press after the grooves are formed. Later, there is a possibility that a problem such as the deformation of the groove remains or the depth of the groove becomes shallow.

【0008】この発明は、上記のような問題点を解決す
るためになされたものであり、電解液の注液速度やガス
抜き速度、溶剤の乾燥速度を速めるための溝形成が、よ
り確実に、かつ電極を破損させることなくできるように
して、歩留まりを向上させることを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the formation of grooves for increasing the rate of injecting the electrolyte, the rate of degassing, and the rate of drying the solvent can be performed more reliably. It is another object of the present invention to improve the yield by making it possible to do so without damaging the electrodes.

【0009】[0009]

【課題を解決するための手段】本発明に係る第1の電池
は、集電板の両面に電極活物質層を有する正及び負の電
極が電解質保持層を介して配置された発電要素を備えた
電池において、少なくとも正負いずれか一方の電極の両
電極活物質層に、少なくとも一端が電極の端部に至る複
数の溝が形成され、該溝の断面形状が側面部と底面部を
有し、該底面部と側面部とのなす角度が鈍角であるもの
である。
A first battery according to the present invention comprises a power generating element in which positive and negative electrodes having electrode active material layers on both surfaces of a current collector are arranged via an electrolyte holding layer. In the battery, at least one of the two active electrode layers of the positive electrode and the negative electrode, at least one end is formed with a plurality of grooves reaching the end of the electrode, the cross-sectional shape of the groove has a side portion and a bottom portion, The angle between the bottom surface and the side surface is an obtuse angle.

【0010】本発明に係る第2の電池は、上記第1の電
池において、両電極活物質層の溝の底面部が、重なり合
うように形成されているものである。
A second battery according to the present invention is a battery according to the first battery, wherein the bottom surfaces of the grooves of both electrode active material layers are formed so as to overlap with each other.

【0011】本発明に係る第3の電池は、上記第1の電
池において、両電極活物質層の溝の底面部が、略対向す
る位置に形成され、上記両電極活物質層の溝の断面形状
における底面部幅が異なっているものである。
[0011] A third battery according to the present invention is the first battery, wherein the bottom surfaces of the grooves of both electrode active material layers are formed at substantially opposing positions, and the cross section of the groove of both electrode active material layers is provided. The width of the bottom portion in the shape is different.

【0012】本発明に係る第4の電池は、上記第1の電
池において、溝が形成された電極の厚さをt1、この電
極の集電板の厚さをt2、上記溝部の電極の厚さをt3
上記電極の活物質層のポロシティをP、活上記物質層の
圧縮による横方向への伸び率をr1、上記集電板の圧縮
による横方向への伸び率をr2としたときに、上記溝の
形状が、下記式(1)を満たすものである。 t3=(t1−t2)×(1−P)×(1−r1) +t2×(1−r2) 式(1)
A fourth battery according to the present invention is the battery according to the first battery, wherein the thickness of the electrode in which the groove is formed is t 1 , the thickness of the current collector plate of the electrode is t 2 , T 3 ,
When the porosity of the active material layer of the electrode is P, the lateral elongation by compression of the active material layer is r 1 , and the lateral elongation by compression of the current collector plate is r 2 , The shape of the groove satisfies the following expression (1). t 3 = (t 1 −t 2 ) × (1−P) × (1−r 1 ) + t 2 × (1−r 2 ) Equation (1)

【0013】本発明に係る第5の電池は、上記第1の電
池において、底面部と側面部とのなす角度が90度より
大きく170度以下であるものである。
A fifth battery according to the present invention is the battery according to the first battery, wherein the angle between the bottom surface and the side surface is greater than 90 degrees and 170 degrees or less.

【0014】本発明に係る第6の電池は、上記第1の電
池において、溝の断面形状における底面部幅が、0.1
mm以上、1.0mm以下であるものである。
According to a sixth battery of the present invention, in the first battery, the width of the bottom surface in the cross-sectional shape of the groove is 0.1%.
mm or more and 1.0 mm or less.

【0015】本発明に係る第7の電池は、上記第2の電
池において、重なり合う溝の断面形状における底面部の
幅の比率が1倍以上、3倍以下であるものである。
A seventh battery according to the present invention is the above-described second battery, wherein the ratio of the width of the bottom portion in the cross-sectional shape of the overlapping groove is at least 1 and at most 3 times.

【0016】本発明に係る第8の電池は、上記第1の電
池において、隣り合う溝同士の間隔が20mm以下であ
るものである。
An eighth battery according to the present invention is the above-mentioned first battery, wherein the distance between adjacent grooves is 20 mm or less.

【0017】本発明に係る第9の電池は、上記第1の電
池において、電極活物質層の表面積に対する溝の面積の
比率が20%以下であるものである。
A ninth battery according to the present invention is the battery according to the first battery, wherein the ratio of the groove area to the surface area of the electrode active material layer is 20% or less.

【0018】本発明に係る第10の電池は、上記第1の
電池において、正の電極と電解質保持層、負の電極と電
解質保持層の少なくともいずれかが、接着層で固着され
ているものである。
A tenth battery according to the present invention is the above first battery, wherein at least one of the positive electrode and the electrolyte holding layer and the negative electrode and the electrolyte holding layer are fixed by an adhesive layer. is there.

【0019】本発明に係る第1の電極成形方法は、集電
板の両面に電極活物質層を有する正及び負の電極が、電
解質保持層を介して配置された発電要素を備えた電池の
電極成形方法において、上記電極の両電極活物質層に、
上部に平面部と、この平面部となす角度が鈍角に形成さ
れた側面部とからなる突起部が形成された金型を上記電
極活物質層の両側から押し当てて溝を形成するものであ
る。
The first electrode forming method according to the present invention is directed to a method of forming a battery having a power generating element in which positive and negative electrodes having electrode active material layers on both surfaces of a current collector are arranged via an electrolyte holding layer. In the electrode forming method, both electrode active material layers of the electrode,
A groove is formed by pressing a mold having a projection formed of a flat portion on an upper portion and a side portion formed at an obtuse angle with the flat portion from both sides of the electrode active material layer. .

【0020】本発明に係る第2の電極成形方法は、上記
第1の電極成形方法において、溝を形成する電極の厚さ
をt1、この電極の集電板の厚さをt2、上記溝部の電極
の厚さをt3、上記電極の活物質層のポロシティをP、
上記電極活物質層の圧縮による横方向への伸び率を
1、上記集電板の圧縮による横方向への伸び率をr2
したときに、上記溝の形状が、下記式(1)を満たすよ
うに突起部の高さを形成するものである。 t3=(t1−t2)×(1−P)×(1−r1) +t2×(1−r2) 式(1)
According to a second electrode forming method according to the present invention, in the first electrode forming method, the thickness of the electrode forming the groove is t 1 , the thickness of the current collector plate of the electrode is t 2 , The thickness of the electrode in the groove is t 3 , the porosity of the active material layer of the electrode is P,
When the elongation rate in the horizontal direction due to the compression of the electrode active material layer is r 1 and the elongation rate in the horizontal direction due to the compression of the current collector plate is r 2 , the shape of the groove is expressed by the following formula (1). The height of the protrusion is formed so as to satisfy the above. t 3 = (t 1 −t 2 ) × (1−P) × (1−r 1 ) + t 2 × (1−r 2 ) Equation (1)

【0021】本発明に係る第3の電極成形方法は、上記
第1の電極成形方法において、電極活物質層の表面積に
対する突起部の平面部の面積の比率を20%以下とする
ものである。
According to a third electrode forming method of the present invention, in the first electrode forming method, the ratio of the area of the flat portion of the projection to the surface area of the electrode active material layer is set to 20% or less.

【0022】本発明に係る第1の電極成形装置は、集電
板の両面に電極活物質層を有する正及び負の電極が、電
解質保持層を介して配置された発電要素を備えた電池の
電極成形装置において、上記電極を挟んで配置され、上
部に平面部と、この平面部となす角度が鈍角に形成され
た側面部とからなる突起部が形成された2つの金型、及
びこの金型を上記電極の両側から押し当てて上記電極活
物質層を圧縮する金形駆動部を備えたものである。
A first electrode forming apparatus according to the present invention is directed to a battery provided with a power generating element in which positive and negative electrodes having electrode active material layers on both surfaces of a current collector are arranged via an electrolyte holding layer. In the electrode forming apparatus, two dies are disposed with the electrode interposed therebetween, and two molds each having a projection formed by a flat portion and a side portion formed at an obtuse angle with the flat portion are formed on the upper portion, and the metal mold. The mold is provided with a mold driving unit that presses the mold from both sides of the electrode to compress the electrode active material layer.

【0023】本発明に係る第2の電極成形装置は、上記
第1の電極成形装置において、2つの金型の突起部の平
面部が、重なり合うように配置されているものである。
In a second electrode forming apparatus according to the present invention, in the first electrode forming apparatus, the flat portions of the projections of the two dies are arranged so as to overlap with each other.

【0024】本発明に係る第3の電極成形装置は、上記
第2の電極成形装置において、重なり合う突起部の断面
形状における平面部の幅の比率が1倍以上、3倍以下で
あるものである。
According to a third electrode forming apparatus of the present invention, in the above second electrode forming apparatus, the ratio of the width of the flat portion in the cross-sectional shape of the overlapping projection is 1 to 3 times. .

【0025】本発明に係る第4の電極成形装置は、上記
第1の電極成形装置において、2つの金型の突起部の平
面部は、略対向するように配置され、断面形状における
平面部の幅が異なっているものである。
In a fourth electrode forming apparatus according to the present invention, in the first electrode forming apparatus, the flat portions of the projections of the two dies are arranged so as to substantially face each other, and They differ in width.

【0026】本発明に係る第5の電極成形装置は、上記
第1の電極成形装置において、突起部の平面部と側面部
とのなす角度が90度より大きく170度以下であるも
のである。
According to a fifth electrode forming apparatus of the present invention, in the first electrode forming apparatus, the angle formed between the flat portion and the side portion of the projection is greater than 90 degrees and 170 degrees or less.

【0027】本発明に係る第6の電極成形装置は、上記
第1の電極成形装置において、突起部の断面形状におけ
る平面部の幅が、0.1mm以上、1.0mm以下であ
るものである。
According to a sixth electrode forming apparatus of the present invention, in the first electrode forming apparatus, the width of the flat portion in the cross-sectional shape of the projection is 0.1 mm or more and 1.0 mm or less. .

【0028】本発明に係る第7の電極成形装置は、上記
第1の電極成形装置において、隣り合う突起同士の間隔
が20mm以下であるものである。
According to a seventh electrode forming apparatus of the present invention, in the first electrode forming apparatus, an interval between adjacent projections is 20 mm or less.

【0029】[0029]

【発明の実施の形態】本発明の実施の形態について、現
在携帯機器用を中心として開発が盛んに行われているリ
チウムイオン電池を中心に説明をするが、発明がこれに
限定されるものではない。また、発明の対象となるのは
正極もしくは負極のいずれでもよく、本実施の形態にお
いて、正極、負極いずれの極を用いた例を示したものに
おいても、他方の極について適用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described focusing on lithium ion batteries which are currently being actively developed mainly for portable devices, but the invention is not limited to these. Absent. In addition, an object of the invention may be either a positive electrode or a negative electrode, and the present embodiment can be applied to the other electrode in the example using either the positive electrode or the negative electrode.

【0030】図1は、本発明の一実施の形態を示す断面
図であり、溝加工を施した電極の形状を示す断面図であ
る。図において、1は正極、2は正極活物質層、3は正
極集電体、4は正極1の正極活物質層2に形成された溝
で、少なくとも一端が正極1の端部まで形成され、形成
された溝4の底面部5と側面部6とのなす角度αは鈍角
になっているものである。
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, and is a cross-sectional view showing a shape of a grooved electrode. In the figure, 1 is a positive electrode, 2 is a positive electrode active material layer, 3 is a positive electrode current collector, 4 is a groove formed in the positive electrode active material layer 2 of the positive electrode 1, at least one end of which is formed up to the end of the positive electrode 1, The angle α formed between the bottom surface portion 5 and the side surface portion 6 of the formed groove 4 is an obtuse angle.

【0031】このような溝4の形成は、正極1や正極集
電板3に損傷を与えにくく、また、溝4の形成後におい
ても溝4の形状を維持し易いため、電解液の浸透速度や
発生ガスのガス抜き速度、接着剤の溶剤の乾燥速度を速
くすることができる。
The formation of the groove 4 does not easily damage the positive electrode 1 and the positive electrode current collector plate 3 and easily maintains the shape of the groove 4 even after the formation of the groove 4. And the speed of degassing the generated gas and the speed of drying the solvent of the adhesive can be increased.

【0032】溝4の断面形状としては底面部5と側面部
6とを有しており、且つこの底面部5と側面部6のなす
角度αが鈍角であれば、特に制限はない。このとき正極
1の平坦部(上の面)と溝4の底面部5とは必ずしも平
行である必要もなく、また、溝4の断面形状は直線のみ
で構成されている必要はなく、丸みを帯びているなどの
形状でもよい。
The sectional shape of the groove 4 is not particularly limited as long as it has a bottom surface 5 and a side surface 6 and the angle α formed between the bottom surface 5 and the side surface 6 is obtuse. At this time, the flat portion (upper surface) of the positive electrode 1 and the bottom portion 5 of the groove 4 do not necessarily have to be parallel to each other, and the cross-sectional shape of the groove 4 does not need to be constituted only by a straight line, but is rounded. It may have a shape such as taking on.

【0033】溝4の底面部5の長さは長ければ注液性や
乾燥性を良くできるが、長すぎると電池特性を悪化させ
ることがあるので、好ましくは1.0mm以下がよい。
しかし、短すぎると上下の溝4の位置がずれやすくなる
ため、好ましくは0.1mm以上がよい。
If the length of the bottom portion 5 of the groove 4 is long, the liquid injection property and the drying property can be improved, but if it is too long, the battery characteristics may be deteriorated. Therefore, it is preferably 1.0 mm or less.
However, if the length is too short, the positions of the upper and lower grooves 4 are likely to shift, so that it is preferably 0.1 mm or more.

【0034】上下の溝4の底面部5の幅wは同一でもよ
いし、どちらかの幅wを長くしてもよい。好ましくは、
上下の溝4の位置がずれを生じないようにするために、
一方の底面部5の幅wに対して他方の底面部5の幅wを
1倍以上、3倍以下とするのがよい。このとき、図2の
断面図に示すように、上下一方の面の底面部5の幅wを
狭くし、他方の面の底面部5の幅wを広くしてもよい
し、ランダムにいずれか一方の面の底面部5の幅wを狭
くし、他方の面の底面部5の幅wを広くしても特に問題
はない。また、図3の断面図に示すように、1つ面内の
底面部5の幅wを交互に広くすると注液や乾燥の効率が
よくなる。
The width w of the bottom portion 5 of the upper and lower grooves 4 may be the same, or one of the widths w may be longer. Preferably,
To prevent the position of the upper and lower grooves 4 from shifting,
It is preferable that the width w of the other bottom surface portion 5 is at least 1 times and not more than 3 times the width w of the one bottom surface portion 5. At this time, as shown in the cross-sectional view of FIG. 2, the width w of the bottom surface portion 5 on one of the upper and lower surfaces may be reduced, and the width w of the bottom surface portion 5 on the other surface may be increased, or any of the widths may be randomly selected. There is no particular problem even if the width w of the bottom portion 5 on one surface is reduced and the width w of the bottom portion 5 on the other surface is increased. Further, as shown in the cross-sectional view of FIG. 3, if the width w of the bottom surface portion 5 in one plane is alternately increased, the efficiency of liquid injection and drying is improved.

【0035】また、溝4の深さ方向の形状としては、電
極に損傷を与えなければ、ある程度の深さが良いが、図
4の断面図に示すように、正極1の厚さをt1、正極集
電板3の厚さをt2、溝4部の正極1の厚さをt3、正極
1(活物質層2)のポロシティP、活物質層2の圧縮に
よる横方向への伸び率をr1、集電板3の圧縮による横
方向への伸び率をr2としたときに、下記式(1)を満
たすような形状であれば、電極及び集電板にほとんど損
傷を与えることなく加工を行うことができるので好まし
い。従って、突起状金型を用いたプレス加工などの圧縮
によって溝形成を行う場合、突起状金型の突起高さは、
この式(1)に則るように決定すればよい。 t3=(t1−t2)×(1−P)×(1−r1) +t2×(1−r2) 式(1)
Further, as the depth direction of the shape of the groove 4, if damage to the electrodes, but a good degree of depth, as shown in the sectional view of FIG. 4, the thickness of the positive electrode 1 t 1 The thickness of the positive electrode current collector plate 3 is t 2 , the thickness of the positive electrode 1 in the groove 4 is t 3 , the porosity P of the positive electrode 1 (active material layer 2), and the lateral expansion due to the compression of the active material layer 2. When the ratio is r 1 and the elongation in the lateral direction due to the compression of the current collector 3 is r 2 , if the shape satisfies the following expression (1), the electrode and the current collector are almost damaged. This is preferable because the processing can be performed without any processing. Therefore, when forming a groove by compression such as press working using a projecting mold, the projecting height of the projecting mold is
What is necessary is just to determine according to this formula (1). t 3 = (t 1 −t 2 ) × (1−P) × (1−r 1 ) + t 2 × (1−r 2 ) Equation (1)

【0036】また、各溝4は少なくとも一端が正極1の
端部に至るものであれば、必ずしも直線状である必要は
なく、また、図5乃至図7の平面図に示すように、複数
本を平行線状、格子状、斜め格子状に形成することも可
能である(図において、実線部が溝を示している)。溝
4の正極1表面に占める面積割合は多ければ注液性や乾
燥性を良くできるが、多すぎると電池特性を悪化させる
ことがあるので、好ましくは20%以下がよい。
The grooves 4 do not necessarily have to be linear as long as at least one end reaches the end of the positive electrode 1. Further, as shown in the plan views of FIGS. May be formed in a parallel line shape, a lattice shape, or an oblique lattice shape (in the drawing, a solid line portion indicates a groove). If the area ratio of the groove 4 to the surface of the positive electrode 1 is large, the injectability and drying property can be improved, but if it is too large, the battery characteristics may be deteriorated.

【0037】次に、上記正極1の成形方法について説明
する。まず、正極1は、アルミニウム箔等の導電性金属
板等からなる正極集電板3の上下面に、リチウムコバル
ト複合酸化物等の正極活物質と導電剤と結着剤と溶剤か
らなる正極合剤ペーストをそれぞれ塗布し、乾燥させる
ことにより溶剤を揮発させて、正極活物質層2を形成す
る。
Next, a method of forming the positive electrode 1 will be described. First, the positive electrode 1 has a positive electrode active material such as a lithium-cobalt composite oxide, a conductive agent, a binder, and a solvent formed on the upper and lower surfaces of a positive electrode current collector 3 made of a conductive metal plate such as an aluminum foil. The positive electrode active material layer 2 is formed by applying the agent pastes and drying them to evaporate the solvent.

【0038】次に、正極活物質層2の両面に溝4を形成
する。溝4を形成する方法は、例えば、図8の側面図お
よび図9の平面図に示すような、突起部43を有する平
板状の金型41,42を上下させて加工する平板プレス
加工や、図10の側面図および図11の斜視図に示すよ
うな突起部53を有する2本のロール状金型51,52
間に正極1を通すことにより溝4を形成するロール状プ
レス方法を適用することができる。なお、図9および図
11において、実線部が突起部43,53を示してい
る。
Next, grooves 4 are formed on both surfaces of the positive electrode active material layer 2. The method of forming the groove 4 includes, for example, a flat plate pressing process in which flat molds 41 and 42 having a projection 43 are vertically moved as shown in a side view of FIG. 8 and a plan view of FIG. Two roll-shaped dies 51 and 52 having projections 53 as shown in the side view of FIG. 10 and the perspective view of FIG.
A roll-shaped pressing method in which the grooves 4 are formed by passing the positive electrode 1 between them can be applied. In FIGS. 9 and 11, solid lines indicate the protrusions 43 and 53.

【0039】平板状の金型41,42、あるいはロール
状金型51,52に設けられた突起部43,53は上面
が平面で、この平面部と側面部とのなす角度は鈍角にな
っている。
The projections 43 and 53 provided on the flat molds 41 and 42 or the roll molds 51 and 52 have a flat upper surface, and the angle between the flat surface and the side surface is obtuse. I have.

【0040】また、上下の平板状金型41,42もしく
はロール状金型51,52の両方に同形状の突起部4
3,53を形成させて、上下の突起部43,53が重な
り合うようにし、正極1の両面に同時に同位置に溝4を
形成させることにより、正極1や集電板3に損傷を与え
にくくし、また、溝4の形成後においても溝4の形状を
維持し易くする効果が大きくなる。
The projections 4 having the same shape are formed on both the upper and lower flat molds 41 and 42 or the roll molds 51 and 52.
3 and 53 are formed so that the upper and lower protrusions 43 and 53 overlap each other, and the grooves 4 are formed at the same position on both surfaces of the positive electrode 1 at the same time, so that the positive electrode 1 and the current collector plate 3 are hardly damaged. Further, the effect of making it easy to maintain the shape of the groove 4 even after the formation of the groove 4 is increased.

【0041】また、重なり合う突起部43,53の断面
形状における平面部の幅の比率が1倍以上、3倍以下と
することにより、両面に塗布された電極活物質層の両面
の対向した溝同士の位置ずれを少なくし、溝形状の変形
を少なくすることができる。
Further, by setting the ratio of the width of the plane portion in the cross-sectional shape of the overlapping projections 43 and 53 to be 1 time or more and 3 times or less, the opposed grooves on both surfaces of the electrode active material layer applied on both surfaces are formed. Can be reduced, and the deformation of the groove shape can be reduced.

【0042】また、上下2つの金型41,42または5
1,52の突起部43または53の平面部が、略対向す
るように配置し、断面形状における平面部の幅を上下で
異なるようにすることによって、上下対向するように形
成された溝の位置ずれが生じても互いに重なり合いやす
くなり、正極1や集電体3へのダメージを少なくするこ
とができる。
The upper and lower two dies 41, 42 or 5
Positions of the grooves formed so as to be vertically opposed by arranging the planar portions of the projections 43 or 53 so as to be substantially opposed to each other, and making the width of the planar portion in the cross-sectional shape different vertically. Even if the displacement occurs, they are likely to overlap each other, and damage to the positive electrode 1 and the current collector 3 can be reduced.

【0043】また、突起部43,53の平面部と側面部
とのなす角度を90度より大きく170度以下とするこ
とによって、溝形成時に溝周辺の脱落等を抑えることが
でき、量産性を向上させることができる。
By setting the angle between the plane portions and the side portions of the projections 43 and 53 to be greater than 90 degrees and 170 degrees or less, it is possible to prevent the periphery of the groove from dropping off at the time of forming the groove and to improve mass productivity. Can be improved.

【0044】また、突起部43,53の断面形状におけ
る平面部の幅を、0.1mm以上、1.0mm以下とす
ることによって、電池の放電特性を維持しながら、電解
液の注液速度および乾燥速度を速めることができる。
By setting the width of the flat portion in the cross-sectional shape of the projections 43 and 53 to 0.1 mm or more and 1.0 mm or less, it is possible to maintain the discharge characteristics of the battery while maintaining the discharge rate of the electrolyte and the The drying speed can be increased.

【0045】また、隣り合う突起43,53同士の間隔
を20mm以下とすることによって、正極1の乾燥速度
および電解液の注液速度を速めることができる。
By setting the interval between the adjacent projections 43 and 53 to 20 mm or less, the drying speed of the positive electrode 1 and the injection speed of the electrolyte can be increased.

【0046】溝4を形成した後、最終的に目標の厚みに
プレスを行い、正極1表面を平滑にすると共に厚み調整
も同時に行う。
After the grooves 4 are formed, finally, pressing is performed to a target thickness to smooth the surface of the positive electrode 1 and simultaneously adjust the thickness.

【0047】次に、上記溝4を形成した正極1を用いた
リチウムイオン電池の製造方法について説明する。ま
ず、銅箔等の金属集電板等からなる負極集電板に、グラ
ファイト等のリチウムイオンを吸蔵・放出可能なホスト
物質と結着剤とを有する負極合剤を塗布し、負極を形成
する。
Next, a method for manufacturing a lithium ion battery using the positive electrode 1 in which the groove 4 is formed will be described. First, a negative electrode mixture having a host material capable of occluding and releasing lithium ions such as graphite and a binder is applied to a negative electrode current collector made of a metal current collector such as a copper foil to form a negative electrode. .

【0048】次に、負極および溝4を形成した正極1そ
れぞれを方形に切断し、図12の斜視図および図13の
断面図に示すように、セパレータ7、正極1、セパレー
タ7、負極8を交互に配して重ね合わせることによっ
て、積層型の発電要素9を形成する。
Next, each of the negative electrode and the positive electrode 1 having the groove 4 formed therein is cut into a rectangle, and the separator 7, the positive electrode 1, the separator 7, and the negative electrode 8 are cut as shown in the perspective view of FIG. The stacked power generating elements 9 are formed by alternately arranging and overlapping.

【0049】図13に示したように、正極1が必ず負極
8と対向していなければならない場合、正極1を負極8
よりも少し小さいサイズに形成すると共に、積層の上下
端にそれぞれ負極8を配置するようにしている。そし
て、セパレータ7は、絶縁を確実にするために、負極8
より少し大きいサイズに形成すると共に、積層の上下端
に配置した負極8の上下にも配置するようにしている。
さらに、正極1と負極8とセパレータ7は、それぞれ隣
接する対向面同士が固着されて発電要素9を一体化して
いる。
As shown in FIG. 13, when the positive electrode 1 must always face the negative electrode 8, the positive electrode 1 is
It is formed in a slightly smaller size, and the negative electrodes 8 are arranged at the upper and lower ends of the laminate, respectively. The separator 7 is provided with a negative electrode 8 for ensuring insulation.
It is formed to have a slightly larger size, and is also arranged above and below the negative electrode 8 arranged at the upper and lower ends of the laminate.
Further, the positive electrode 1, the negative electrode 8, and the separator 7 have their opposing surfaces fixed to each other to integrate the power generating element 9.

【0050】セパレータ7は、例えば、ポリエチレンや
ポリプロピレンなどの微多孔性樹脂フイルム等の方形の
シートであり、上記のように正極1よりもサイズが少し
大きくなっている。
The separator 7 is a rectangular sheet made of, for example, a microporous resin film such as polyethylene or polypropylene, and is slightly larger in size than the positive electrode 1 as described above.

【0051】また、上記微多孔性樹脂フイルムに代え
て、アルミナ、シリカ、二酸化チタン、あるいは窒化ア
ルミニウム等の金属酸化物、金属窒化物等の微粒子等か
らなる多孔質体を用いてもよい。
In place of the microporous resin film, a porous body made of fine particles such as a metal oxide such as alumina, silica, titanium dioxide, or aluminum nitride, or a metal nitride may be used.

【0052】また、各正極1とセパレータ7間および各
負極8とセパレータ7間は接着剤等両者を固着させる溶
液等で固着してもよい。
Further, the space between each positive electrode 1 and the separator 7 and the space between each negative electrode 8 and the separator 7 may be fixed by a solution such as an adhesive for fixing both.

【0053】この接着剤等としては例えばポリフッ化ビ
ニリデンやポリビニールアルコールなどの接着性樹脂溶
液やその樹脂溶液にアルミナやシリカ、二酸化チタン、
窒化アルミニウム等の金属酸化物、金属窒化物等のフィ
ラーを添加、分散させた溶液を用いても良い。
As the adhesive or the like, for example, an adhesive resin solution such as polyvinylidene fluoride or polyvinyl alcohol or a resin solution containing alumina, silica, titanium dioxide,
A solution in which a filler such as a metal oxide such as aluminum nitride or a metal nitride is added and dispersed may be used.

【0054】次に、上記のようにして、作製された積層
型の発電要素9は、図14の斜視図に示すように、バリ
ア性を有するアルミラミネートシート10で覆い、ま
ず、アルミラミネートシート10の一辺を残して周囲を
封口する。この際、発電要素9の各正極1と各負極8に
それぞれリード11を予め接続しておき、リード11は
アルミラミネートシート10を重ね合わせた間から先端
部を突出させた状態で確実に封口する。
Next, as shown in the perspective view of FIG. 14, the laminated power generating element 9 manufactured as described above is covered with an aluminum laminate sheet 10 having a barrier property. Seal the surroundings except for one side. At this time, a lead 11 is connected to each of the positive electrode 1 and each of the negative electrodes 8 of the power generating element 9 in advance, and the lead 11 is securely sealed in a state where the leading end protrudes from the space where the aluminum laminate sheets 10 are overlapped. .

【0055】次に、アルミラミネートシート10をチャ
ンバー内に収容する等して真空引きすることにより、発
電要素9の内部から空気を引き抜き、アルミラミネート
シート10内に非水電解液を注入する。そして、リード
11を介して予備充電を行うことにより正極1と負極8
間にガスを発生させてから、再度真空引きして、このガ
スを引き抜き、その後、アルミラミネートシート10の
残る1辺を完全に封口し内部を密封することによりリチ
ウムイオン電池を完成する。
Next, the aluminum laminate sheet 10 is evacuated by being housed in a chamber or the like, thereby extracting air from the inside of the power generation element 9 and injecting a non-aqueous electrolyte into the aluminum laminate sheet 10. Then, by performing pre-charging through the lead 11, the positive electrode 1 and the negative electrode 8
After a gas is generated in between, the vacuum is drawn again to remove the gas, and then the remaining one side of the aluminum laminate sheet 10 is completely sealed and the inside is sealed to complete the lithium ion battery.

【0056】本実施の形態のリチウムイオン電池は、正
極1と負極8とセパレータ7を固着して発電要素9を一
体化することにより、発電要素9をテープ等で止め付け
たり金属容器等に収納して圧迫しなくても、正極1と負
極8間の間隔距離が変化したり、これら電極1,8とセ
パレータ7の重なりがずれたりする恐れをなくすことが
できるので、このように柔軟なアルミラミネートシート
10内に収納することが可能となる。
In the lithium ion battery of the present embodiment, the positive electrode 1, the negative electrode 8 and the separator 7 are fixed and the power generating element 9 is integrated, so that the power generating element 9 is fixed with a tape or the like or housed in a metal container or the like. Even without pressing, the distance between the positive electrode 1 and the negative electrode 8 can be changed, and the overlap between the electrodes 1 and 8 and the separator 7 can be eliminated. It can be stored in the laminate sheet 10.

【0057】また、本実施の形態のリチウムイオン電池
は、最初の充電時にのみ正極1からガスが発生するの
で、アルミラミネートシート10を完全に封口する前に
予備充電を行ってガスを予め抜いておくことが必要にな
る。
Further, in the lithium ion battery of the present embodiment, gas is generated from the positive electrode 1 only at the time of the first charging. Therefore, before the aluminum laminate sheet 10 is completely sealed, the precharging is performed to remove the gas in advance. It is necessary to keep.

【0058】一般に、発電要素9の電極1,8とセパレ
ータ7との間が接着剤によって固着されている場合、非
水電解液を注入した際に、電極1,8とセパレータ7と
の間から非水電解液が発電要素9の内部に浸入すること
ができないし、また、セパレータ7は、微多孔性樹脂フ
イルム等を用いるので、不織布等に比べて非水電解液が
染み込みにくい。
Generally, when the gap between the electrodes 1 and 8 of the power generating element 9 and the separator 7 is fixed by an adhesive, when the non-aqueous electrolyte is injected, the gap between the electrodes 1 and 8 and the separator 7 is increased. The non-aqueous electrolyte cannot penetrate into the inside of the power generation element 9, and since the separator 7 uses a microporous resin film or the like, the non-aqueous electrolyte is less likely to permeate than a nonwoven fabric or the like.

【0059】しかし、本実施の形態においては、正極1
には複数本の溝4が形成されているので、非水電解液は
発電要素9の側面に開口する溝4を伝わって内部に入り
込み、溝4周囲の正極1の正極活物質層2の中やセパレ
ータ7中に迅速に浸透すると共に、セパレータ7を介し
て対向する負極の負極合剤層中にも迅速に浸透すること
ができる。
However, in this embodiment, the positive electrode 1
Is formed with a plurality of grooves 4, the non-aqueous electrolyte flows through the grooves 4 opened on the side surfaces of the power generating element 9 and enters the inside, and the non-aqueous electrolytic solution in the positive electrode active material layer 2 of the positive electrode 1 around the grooves 4 And quickly penetrates into the negative electrode mixture layer of the negative electrode facing the negative electrode through the separator 7.

【0060】また、非水電解液を注入する前の真空引き
の際や、予備充電後の真空引きの際にも、発電要素9の
内部の空気や予備充電で発生したガスをこの正極1の溝
4を通して迅速に引き抜くことができるようになる。
In addition, during the evacuation before injecting the non-aqueous electrolyte or during the evacuation after the pre-charging, the air inside the power generating element 9 and the gas generated by the pre-charging are used to form the positive electrode 1. It can be quickly pulled out through the groove 4.

【0061】さらに、正極1とセパレータ7とを接着剤
で接着し乾燥させる際にも、この接着剤の溶媒を溝4を
通して迅速に揮発させることができるようになる。
Further, even when the positive electrode 1 and the separator 7 are bonded with an adhesive and dried, the solvent of the adhesive can be quickly evaporated through the groove 4.

【0062】以上説明したように、本実施の形態のリチ
ウムイオン電池によれば、発電要素9内への非水電解液
の拡散速度が向上すると共に、発電要素9内からガス抜
きを迅速に行うことができるようになるので、非水電解
液の注入作業や真空引きの作業時間を短縮して生産性を
向上させることができる。
As described above, according to the lithium ion battery of the present embodiment, the diffusion rate of the non-aqueous electrolyte into the power generating element 9 is improved, and gas is quickly released from the power generating element 9. Therefore, it is possible to shorten the work time for injecting the non-aqueous electrolyte and the evacuation work, thereby improving the productivity.

【0063】また、非水電解液の拡散、ガス抜きや溶剤
の乾燥が迅速に行われることにより、電極1,8とセパ
レータ7とを固着して発電要素9を一体化しても、生産
性が低下するようなことがなくなる。また、固着して発
電要素9を一体化することにより、発電要素9を柔軟な
アルミラミネートシート10内に収納して、電池容器の
肉厚を薄く、軽量で安価なものとすることができる。
Further, since the diffusion of the non-aqueous electrolyte, degassing, and drying of the solvent are rapidly performed, the productivity is improved even if the electrodes 1, 8 and the separator 7 are fixed and the power generating element 9 is integrated. It does not decrease. In addition, by integrally fixing the power generation element 9 with the power generation element 9, the power generation element 9 can be housed in the flexible aluminum laminate sheet 10, and the thickness of the battery container can be reduced, and the battery container can be made lightweight and inexpensive.

【0064】なお、上記実施の形態は、正極1と負極8
とセパレータ7を固着する場合について説明したが、こ
れらが固着されない場合であっても、同様の効果が得ら
れる。
In the above embodiment, the positive electrode 1 and the negative electrode 8
Although the description has been given of the case where the and the separator 7 are fixed, the same effect can be obtained even when these are not fixed.

【0065】また、上記実施の形態では、発電要素9を
アルミラミネートシート10内に収納する場合について
説明したが、これに限らず、他の柔軟なシート状の電池
容器に収納しても良く、金属缶等からなる堅牢な電池容
器に収納しても良い。
In the above embodiment, the case where the power generating element 9 is stored in the aluminum laminate sheet 10 has been described. However, the present invention is not limited to this, and the power generating element 9 may be stored in another flexible sheet-like battery container. It may be stored in a robust battery container made of a metal can or the like.

【0066】また、上記実施の形態では、正極1にのみ
溝4を設けたが、正極1が必ず負極8と対向していなけ
ればならないというような事情がなければ、負極8にも
溝4を設けることができ、負極8にのみ溝4を設けるこ
とも可能となる。
In the above embodiment, the groove 4 is provided only in the positive electrode 1. However, if there is no situation that the positive electrode 1 must always face the negative electrode 8, the groove 4 is also provided in the negative electrode 8. The groove 4 can be provided only in the negative electrode 8.

【0067】また、上記実施の形態では、図13に示し
たような方形の正極1、負極8の間にセパレータ7を介
して重ねた積層型の発電要素9の例を説明したが、図1
5のような正極1と負極8の間にセパレータ7を介して
巻いた巻き型の発電要素9、その他正極と負極の間にセ
パレータを介して楕円状に巻いた楕円状の巻き型の発電
要素、正極と負極の間にセパレータを介して折り畳んだ
折り畳み型発電要素に適用して効果を発揮する。
In the above embodiment, the example of the laminated power generating element 9 in which the rectangular positive electrode 1 and the negative electrode 8 are stacked with the separator 7 interposed therebetween as shown in FIG. 13 has been described.
5, a wound power generating element 9 wound between a positive electrode 1 and a negative electrode 8 with a separator 7 interposed therebetween, and an elliptical wound power generating element wound in an elliptical manner between a positive electrode and a negative electrode with a separator interposed therebetween. The present invention is effective when applied to a foldable power generation element which is folded between a positive electrode and a negative electrode with a separator interposed therebetween.

【0068】また、上記実施の形態では、リチウムイオ
ン電池について説明したが、本発明は、これに限らず一
次電池や他の二次電池にも同様に実施することができ
る。そして、正極と負極とセパレータの構成も、これら
電池の種類等に応じて任意に変更することができる。
Further, in the above embodiment, the description has been given of the lithium ion battery. However, the present invention is not limited to this, and can be similarly applied to a primary battery or another secondary battery. The configurations of the positive electrode, the negative electrode, and the separator can be arbitrarily changed according to the type of the battery.

【0069】[0069]

【実施例】以下に、より具体的な実施例を示す。 実施例1.正極は、厚さ20μmのアルミニウム箔から
なる正極集電板の両面に、正極活物質としてリチウムコ
バルト複合酸化物(LiCoO2)を90重量部と導電
剤として人造黒鉛を6重量部と結着剤としてポリフッ化
ビニリデン(PVDF)を4重量部に溶剤としてN−メ
チルピロリドン(NMP)を適当量加えたものからなる
正極合剤ペーストをそれぞれ塗布し乾燥させることによ
り、正極活物質層を形成し、作製した。
EXAMPLES More specific examples will be described below. Embodiment 1 FIG. The positive electrode has 90 parts by weight of lithium-cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, 6 parts by weight of artificial graphite as a conductive agent, and a binder on both sides of a positive electrode current collector plate made of aluminum foil having a thickness of 20 μm. A positive electrode active material layer is formed by applying and drying a positive electrode mixture paste composed of 4 parts by weight of polyvinylidene fluoride (PVDF) and an appropriate amount of N-methylpyrrolidone (NMP) as a solvent, Produced.

【0070】この正極をロール加圧式溝加工機に通すこ
とにより溝形成を行った。この溝加工機は、直径250
mm、長さ400mmでステンレス製のロール表面に凸
状の突起を斜め格子状(90度交差)に形成し、このロ
ールを二本対向させて、そのロール間に正極を通すこと
で溝を加工することができる装置である。この溝加工機
のロールの突起の断面形状は、上ロールの突起上面の幅
が0.3mm、突起下面の幅が0.35mm、突起高さ
が30μmの断面形状が台形状で、突起の間隔が10m
mであり、下ロールの突起上面の幅が0.4mm、突起
下面の幅が0.45mm、突起高さが30μmの断面形
状が台形状で、突起の間隔が10mmである。このロー
ルで正極の両面に溝を形成したとき、正極の片面には溝
底面の幅が0.3mm、深さが30μmの溝が形成さ
れ、もう一方の面には溝底面の幅が0.4mm、深さが
30μmの長方形状の溝が形成され、全体の厚さが17
0μmの正極となった。
The grooves were formed by passing the positive electrode through a roll press type groove processing machine. This grooving machine has a diameter of 250
mm, 400 mm in length, a convex protrusion is formed on the surface of a stainless steel roll in a diagonal lattice shape (intersecting 90 degrees), two rolls are opposed to each other, and a positive electrode is passed between the rolls to form a groove. It is a device that can do. The cross-sectional shape of the protrusion of the roll of this grooving machine is such that the width of the upper surface of the upper roll is 0.3 mm, the width of the lower surface of the protrusion is 0.35 mm, and the height of the protrusion is 30 μm. Is 10m
m, the width of the upper surface of the protrusion of the lower roll is 0.4 mm, the width of the lower surface of the protrusion is 0.45 mm, the height of the protrusion is 30 μm, the cross-sectional shape is trapezoidal, and the distance between the protrusions is 10 mm. When grooves were formed on both sides of the positive electrode by this roll, a groove having a groove bottom width of 0.3 mm and a depth of 30 μm was formed on one side of the positive electrode, and a groove bottom width of 0.3 μm was formed on the other side. A rectangular groove having a thickness of 4 mm and a depth of 30 μm is formed, and the total thickness is 17
It became a positive electrode of 0 μm.

【0071】この溝形成後の正極に損傷等は見当たらな
く、断面観察を行うと、両面において溝形成の位置にず
れはなかった。この正極をロールプレス機にかけて、最
終厚さを160μmとした時、溝深さは25μmとなっ
た。この厚み調整のために行ったプレス後の正極に損傷
等は見当たらなく、断面観察を行うと、図16の断面図
に示すように、両面において形成された溝4の位置にず
れはなく、溝4の形状に変形はなかった。この正極1シ
ートを幅100mm、長さ150mmに切断して正極と
した。
No damage or the like was found on the positive electrode after the formation of the groove, and when the cross section was observed, there was no shift in the position of the groove formation on both surfaces. The groove depth was 25 μm when the positive electrode was subjected to a roll press to make the final thickness 160 μm. No damage or the like was found on the positive electrode after pressing performed for the thickness adjustment. When the cross-section was observed, there was no shift in the position of the groove 4 formed on both surfaces, as shown in the cross-sectional view of FIG. The shape of No. 4 was not deformed. This positive electrode 1 sheet was cut into a width of 100 mm and a length of 150 mm to obtain a positive electrode.

【0072】負極は、厚さ15μmの銅箔からなる負極
集電体の両面にグラファイト90重量部と、結着剤であ
るPVDF10重量部に溶剤としてNMPを適当量加え
たものとからなる負極合剤ペーストをそれぞれ塗布し、
乾燥させることにより負極合剤層を形成し、さらに、ロ
ールプレス機にかけて最終厚み160μmの負極シート
とした。この負極シートを幅105mm、長さ155m
mに切断して負極とした。
The negative electrode was prepared by adding 90 parts by weight of graphite on both sides of a negative electrode current collector made of a copper foil having a thickness of 15 μm and 10 parts by weight of PVDF as a binder and adding an appropriate amount of NMP as a solvent. Apply each agent paste,
By drying, a negative electrode mixture layer was formed, and further subjected to a roll press to obtain a negative electrode sheet having a final thickness of 160 μm. This negative electrode sheet is 105 mm wide and 155 m long.
m to give a negative electrode.

【0073】セパレータは厚さ25μmのポリエチレン
製微多孔性樹脂フイルムのシートを幅110mm、長さ
160mmに切断して用意した。
The separator was prepared by cutting a sheet of a 25 μm-thick polyethylene microporous resin film into a width of 110 mm and a length of 160 mm.

【0074】これら正極、負極とセパレータとを固着さ
せる接着剤として、PVDF樹脂をNMPに溶かした溶
液に平均粒径0.01μmのアルミナ粉末を分散させた
ペーストを作製した。
As an adhesive for fixing the positive electrode, the negative electrode and the separator, a paste was prepared by dispersing alumina powder having an average particle diameter of 0.01 μm in a solution of PVDF resin dissolved in NMP.

【0075】負極、セパレータ、正極、セパレータ、負
極の順に上記接着剤を塗布しながら積層し、80℃に設
定した真空乾燥機中で加圧しながら乾燥させて、積層型
発電要素とした。このときの乾燥終了の目安は正極集電
体と負極集電体との間の電気抵抗が100MΩに達した
時とした。この時の乾燥時間は40分であった。
A negative electrode, a separator, a positive electrode, a separator, and a negative electrode were laminated in this order while applying the above adhesive, and dried in a vacuum dryer set at 80 ° C. while applying pressure to obtain a laminated power generating element. The end of drying at this time was determined when the electric resistance between the positive electrode current collector and the negative electrode current collector reached 100 MΩ. The drying time at this time was 40 minutes.

【0076】上記作製した積層型発電要素の正極集電体
および負極集電体にリード端子をスポット溶接機で取り
付けた後、この積層型発電要素を、3辺を熱融着させて
袋状にした幅140mm、長さ200mmのアルミラミ
ネートシートの袋に入れて、真空チャンバ内で、6フッ
化リン酸リチウム(LiPF6)を1mol/l含むエ
チレンカーボネート(EC)とジエチルカーボネート
(DEC)の1:1溶液からなる電解液を適当量袋内に
注入し、これを真空に引いて電解液を真空含浸させた
後、予備充電を行い、発生したガスを引き抜いてから、
熱融着機で残る1辺を封口して積層型電池とした。
After the lead terminals were attached to the positive electrode current collector and the negative electrode current collector of the laminated power generating element produced above by a spot welding machine, the laminated power generating element was heat-fused on three sides into a bag shape. Of aluminum carbonate (EC) and diethyl carbonate (DEC) containing 1 mol / l of lithium hexafluorophosphate (LiPF 6 ) in a vacuum chamber. : An appropriate amount of an electrolyte solution consisting of a solution is poured into a bag, which is evacuated and impregnated with the electrolyte solution under vacuum, precharged, and the generated gas is withdrawn.
The remaining one side was sealed with a heat sealer to obtain a laminated battery.

【0077】この積層型発電要素に電解液を注液する速
度や、ガス抜き速度は特に問題にならなかった。
The rate at which the electrolyte was injected into the stacked power generating element and the rate at which the gas was released were not particularly problematic.

【0078】実施例2.直径250mm、長さ400m
mでステンレス製のロール表面に凸状の突起を平行に形
成した2本のロールを用いた。上ロールの突起断面形状
は、突起上面の幅が0.3mm、突起下面の幅が0.3
5mm、突起高さが30μmで、突起の間隔が10mm
であり、下ロールの突起断面形状は、突起上面の幅が
0.3mm、突起下面の幅が0.35mm、突起高さが
30μmの断面形状が長方形状で、突起の間隔が10m
mである。溝形成以外は、実施例1と同様にして積層型
電池を作製した。
Embodiment 2 FIG. Diameter 250mm, length 400m
Two rolls were used in which convex protrusions were formed in parallel on the surface of a stainless steel roll. The cross-sectional shape of the protrusion of the upper roll is such that the width of the protrusion upper surface is 0.3 mm and the width of the protrusion lower surface is 0.3 mm.
5mm, protrusion height 30μm, protrusion spacing 10mm
The cross-sectional shape of the lower roll is such that the width of the upper surface of the protrusion is 0.3 mm, the width of the lower surface of the protrusion is 0.35 mm, the height of the protrusion is 30 μm, the cross-sectional shape is rectangular, and the distance between the protrusions is 10 m.
m. A laminated battery was manufactured in the same manner as in Example 1 except for the formation of the groove.

【0079】このロールで正極の両面に溝を形成したと
き、正極の片方の面には溝底面の幅が0.3mm、深さ
が30μmの溝が形成され、もう一方の面には溝底面の
幅が0.3mm、深さが30μmの長方形状の溝が形成
され、全体厚さが170μmの正極となった。
When grooves were formed on both surfaces of the positive electrode with this roll, a groove having a groove bottom width of 0.3 mm and a depth of 30 μm was formed on one surface of the positive electrode, and a groove bottom surface was formed on the other surface. A rectangular groove having a width of 0.3 mm and a depth of 30 μm was formed, and a positive electrode having an overall thickness of 170 μm was obtained.

【0080】この溝形成後の正極に損傷等は見あたらな
かったが、断面観察を行うと、両面溝において、約0.
15mmの位置ずれが生じていた。上下の溝形状の幅が
同じであると、溝形成時に位置ずれを生じやすい。この
正極をロールプレスにかけて最終厚みを160μmとし
た結果、溝深さが25μmとなった。この厚み調整のた
めに行ったプレス後の正極に損傷等は見当たらなかった
が、断面観察を行うと、図17の断面図に示すように、
両面において溝形成の位置にずれがあるため、溝形状に
変形が生じていた。
No damage or the like was found on the positive electrode after the formation of the groove.
There was a displacement of 15 mm. If the widths of the upper and lower grooves are the same, misalignment is likely to occur when forming the grooves. This positive electrode was roll-pressed to a final thickness of 160 μm, resulting in a groove depth of 25 μm. No damage or the like was found on the positive electrode after pressing performed for the thickness adjustment, but when the cross-section was observed, as shown in the cross-sectional view of FIG.
Since there was a shift in the groove formation position on both surfaces, the groove shape was deformed.

【0081】この正極シートを用いて実施例1と同様
に、積層型発電要素を組み上げ、乾燥した。この時の乾
燥時間は45分であった。この積層型発電要素に電解液
を注液する速度や、ガス抜き速度は特に問題にならなか
った。溝形状に変形が生じたため、溝断面面積が減少し
て若干乾燥速度等が遅くなったが、問題はなかった。
Using this positive electrode sheet, a laminated power generating element was assembled and dried in the same manner as in Example 1. The drying time at this time was 45 minutes. The rate at which the electrolyte was injected into the stacked power generating element and the rate at which gas was released were not particularly problematic. Since the groove shape was deformed, the cross-sectional area of the groove was reduced and the drying speed and the like were slightly reduced, but there was no problem.

【0082】比較例1.実施例1と同様に凸状の突起を
斜め格子状(90度交差)に形成したロールを用いた。
上ロールの突起断面形状は、突起上面の幅が0mm、突
起下面の幅が0.3mm、突起高さが30μmの断面形
状がくさび状で、突起の間隔が10mmであり、下ロー
ルの突起断面形状は、突起上面の幅が0mm、突起下面
の幅が0.3mm、突起高さが30μmの断面形状がく
さび状で、突起の間隔が10mmである。溝形成以外は
実施例1と同様にして行った。
Comparative Example 1 In the same manner as in Example 1, a roll having convex protrusions formed in an oblique lattice shape (intersecting at 90 degrees) was used.
The cross-sectional shape of the protrusion of the upper roll is such that the width of the upper surface of the protrusion is 0 mm, the width of the lower surface of the protrusion is 0.3 mm, and the height of the protrusion is 30 μm. As for the shape, the width of the upper surface of the projection is 0 mm, the width of the lower surface of the projection is 0.3 mm, the height of the projection is 30 μm, the cross section is wedge-shaped, and the interval between the projections is 10 mm. Except for the formation of the groove, the same procedure as in Example 1 was performed.

【0083】このロールで正極の両面に溝を形成したと
き、正極は溝部で切断され、損傷が激しく、電池に仕上
げることはできなかった。
When grooves were formed on both sides of the positive electrode with this roll, the positive electrode was cut at the grooves, and was severely damaged, making it impossible to finish the battery.

【0084】比較例2.実施例1で用いた上下ロールの
ロールの突起高さを40μmに変更し、その他の突起形
状寸法は実施例1と同一にしたロールを用いて、溝形成
を行った。
Comparative Example 2 The protrusion height of the upper and lower rolls used in Example 1 was changed to 40 μm, and the groove was formed by using a roll having the same other protrusion shape dimensions as in Example 1.

【0085】このロールで正極の両面に溝を形成したと
き、正極の片方の面には溝底面の幅が0.3mm、深さ
が40μmの溝が形成され、もう一方の面には溝底面の
幅が0.4mm、深さが40μmの長方形状の溝が形成
され、全体厚さが170μmの正極となった。
When grooves were formed on both surfaces of the positive electrode with this roll, a groove having a groove bottom width of 0.3 mm and a depth of 40 μm was formed on one surface of the positive electrode, and a groove bottom surface was formed on the other surface. A rectangular groove having a width of 0.4 mm and a depth of 40 μm was formed, and a positive electrode having an overall thickness of 170 μm was obtained.

【0086】この溝形成後の正極には表面に凹凸が多く
見られ、断面観察を行うと、集電板が大きく変形し、損
傷を受けている様子が見受けられた。これは上下の溝形
成において、突起の高さが高すぎ、上記式(1)以上に
圧縮を行ったため、電極及び集電板にダメージを与えた
ものである。
After the formation of the groove, the positive electrode had many irregularities on the surface, and when the cross section was observed, it was observed that the current collector plate was greatly deformed and damaged. This is because the height of the protrusion was too high in the formation of the upper and lower grooves, and compression was performed to the above formula (1) or more, thereby damaging the electrode and the current collector.

【0087】実施例3.実施例1において用いた溝形成
用ロールの突起形状の幅および突起の間隔(ピッチ)を
変化させて溝形成を行った。溝形成以外は実施例1と同
様にして積層型電池を作製し、溝幅と乾燥時間および放
電容量との関係、溝の間隔と乾燥時間の関係および平面
内の溝面積比率と放電容量との関係を調べた。
Embodiment 3 FIG. The groove was formed by changing the width of the protrusion shape and the interval (pitch) of the protrusions of the groove forming roll used in Example 1. A laminated battery was prepared in the same manner as in Example 1 except for the formation of the groove, and the relationship between the groove width and the drying time and the discharge capacity, the relationship between the groove interval and the drying time, and the relationship between the groove area ratio in the plane and the discharge capacity. Investigated the relationship.

【0088】図18は、溝幅と乾燥時間および放電容量
との関係を示す図である。図18に示したように、溝幅
が狭くなると乾燥時間が長くなる傾向にあり、溝幅が
0.1mm以下になると乾燥時間が60分を越えるの
で、時間がかかり過ぎる。溝幅が広くなるほど放電容量
が低下する傾向にあり、溝幅が1.0mmを越えると放
電容量が80%より小さくなるので問題になる。また、
溝幅が0.1mm以下になると溝形成において位置ずれ
が生じやすく、溝形成が難しくなる。この結果から溝幅
は0.1mm以上、1.0mm以下が好ましいことがわ
かる。
FIG. 18 is a diagram showing the relationship between the groove width, the drying time, and the discharge capacity. As shown in FIG. 18, when the groove width is narrow, the drying time tends to be long. When the groove width is 0.1 mm or less, the drying time exceeds 60 minutes, so that it takes too much time. As the groove width increases, the discharge capacity tends to decrease. If the groove width exceeds 1.0 mm, the discharge capacity becomes smaller than 80%, which causes a problem. Also,
When the groove width is 0.1 mm or less, misalignment tends to occur in the groove formation, and the groove formation becomes difficult. This result indicates that the groove width is preferably 0.1 mm or more and 1.0 mm or less.

【0089】図19は、溝幅を0.3mmに固定した場
合の溝の間隔と乾燥時間の関係を示す図である。図19
に示したように、溝間隔が広くなると乾燥時間が長くな
る傾向にあり、溝間隔が20mmより大きくなると、乾
燥時間が60分を越えることがわかった。このため、溝
間隔は20mm以下が好ましい。
FIG. 19 is a diagram showing the relationship between the groove interval and the drying time when the groove width is fixed at 0.3 mm. FIG.
As shown in Table 2, it was found that the drying time tended to be longer when the groove interval was wide, and that the drying time exceeded 60 minutes when the groove interval was larger than 20 mm. Therefore, the groove interval is preferably 20 mm or less.

【0090】図20は、平面内の溝面積比率と放電容量
との関係を示す図である。図20に示したように、溝面
積比率が20%を越えると電池の放電容量が80%より
低下するので、溝の面内に占める面積比率は20%以下
が好ましい。
FIG. 20 is a diagram showing the relationship between the groove area ratio in the plane and the discharge capacity. As shown in FIG. 20, when the groove area ratio exceeds 20%, the discharge capacity of the battery falls below 80%. Therefore, the area ratio occupied in the plane of the groove is preferably 20% or less.

【0091】実施例4.実施例1と同様に凸状の突起を
斜め格子状(90度交差)に形成したロールを用いた。
上下ロールの突起断面形状は、突起高さが30μm、底
面部と側面部とのなす角度が145度、突起の間隔が1
0mmの断面形状が台形状であり、溝幅比率、すなわ
ち、上ロールの溝幅と、この上ロールの溝と対向する下
ロールの溝幅との比を1〜4まで変化させた上下ロール
を用いて溝形成を行った。具体的には、上ロールの溝幅
を0.3mm、下ロールの溝幅を0.3mmとした場
合、上ロールの溝幅を0.2mm、下ロールの溝幅を
0.4mmとした場合、上ロールの溝幅を0.15m
m、下ロールの溝幅を0.45mmとした場合、上ロー
ルの溝幅を0.12mm、下ロールの溝幅を0.48m
mとした場合に、溝断面積をほぼ一定にして、溝形成を
行った。
Embodiment 4 FIG. In the same manner as in Example 1, a roll having convex protrusions formed in an oblique lattice shape (intersecting at 90 degrees) was used.
The cross-sectional shape of the projections of the upper and lower rolls is such that the projection height is 30 μm, the angle between the bottom surface and the side surface is 145 degrees, and the interval between the projections is 1.
The cross-sectional shape of 0 mm is trapezoidal, and the groove width ratio, that is, the upper and lower rolls in which the ratio of the groove width of the upper roll to the groove width of the lower roll opposed to the groove of the upper roll is changed from 1 to 4. A groove was formed by using the above method. Specifically, when the groove width of the upper roll is 0.3 mm, the groove width of the lower roll is 0.3 mm, the groove width of the upper roll is 0.2 mm, and the groove width of the lower roll is 0.4 mm. , Groove width of upper roll 0.15m
m, when the groove width of the lower roll is 0.45 mm, the groove width of the upper roll is 0.12 mm, and the groove width of the lower roll is 0.48 m.
When m was set, the groove was formed with the groove cross-sectional area being substantially constant.

【0092】この溝形成後の溝形状は、一方のロールの
溝幅が大きくなるほど、溝幅が大きい方の溝の変形が大
きく、溝深さが浅くなる傾向があった。図21は、溝幅
比率と乾燥時間との関係を示す図であり、図21に示し
たように、溝幅の比率が1:3より大きくなると乾燥時
間が60分より長くなり、乾燥時間がかかりすぎること
がわかる。従って、溝幅の比率は1:3以下とするのが
好ましい。
In the groove shape after the formation of the groove, the larger the groove width of one roll, the greater the deformation of the groove with the larger groove width and the smaller the groove depth. FIG. 21 is a diagram showing the relationship between the groove width ratio and the drying time. As shown in FIG. 21, when the groove width ratio is larger than 1: 3, the drying time is longer than 60 minutes, and the drying time is longer. It turns out that it takes too much. Therefore, the ratio of the groove width is preferably set to 1: 3 or less.

【0093】比較例3.実施例2で用いた上ロールと下
ロールを用い、下ロールを溝幅方向に0.45mmずら
して溝形成を行った。
Comparative Example 3 Using the upper roll and the lower roll used in Example 2, grooves were formed by shifting the lower roll by 0.45 mm in the groove width direction.

【0094】このとき、正極の片方の面には溝底面幅が
0.3mm、深さが30μmの溝が形成され、もう一方
の面には溝底面幅が0.3mm、深さが30μmの長方
形状の溝が形成され、全体厚さ170μmの正極となっ
た。
At this time, a groove having a groove bottom width of 0.3 mm and a depth of 30 μm is formed on one surface of the positive electrode, and a groove bottom width of 0.3 mm and a depth of 30 μm is formed on the other surface. A rectangular groove was formed, and a positive electrode having a total thickness of 170 μm was obtained.

【0095】この溝形成後の正極表面に凹凸が現れ、所
々溝部で切断されているところが見られた。断面観察を
行うと、図22の断面図に示すように、両面において、
溝形成位置が約0.3mmずれ、上下の溝4が完全にず
れているため、集電体3に一部損傷が見受けられ、溝4
が上下で完全にずれてしまうと、正極1極として使用で
きないことがわかった。
After the formation of the grooves, irregularities appeared on the surface of the positive electrode, and some portions were cut at the grooves. When the cross-section is observed, as shown in the cross-sectional view of FIG.
Since the groove formation position is shifted by about 0.3 mm and the upper and lower grooves 4 are completely shifted, the current collector 3 is partially damaged,
It has been found that when completely deviated vertically, it cannot be used as one positive electrode.

【0096】実施例5.実施例1と同様に凸状の突起を
斜め格子状(90度交差)に形成したロールを用いた。
ロールの突起断面形状は、突起上面の幅を0.3mmに
固定し、突起上面部と側面部の角度を変化させて溝形成
を行い、突起上面部と側面部の角度(溝側面角度)と乾
燥速度との関係を調べた。
Embodiment 5 FIG. In the same manner as in Example 1, a roll having convex protrusions formed in an oblique lattice shape (intersecting at 90 degrees) was used.
As for the cross-sectional shape of the roll, the width of the upper surface of the protrusion is fixed to 0.3 mm, and the angle between the upper surface of the protrusion and the side surface is changed to form a groove. The relationship with the drying rate was investigated.

【0097】図23は、溝側面角度と乾燥速度との関係
を示す図であり、図に示されているように、150度以
上の角度になると乾燥時間が長くなる傾向にあり、17
0度を越えると急激に乾燥時間が長くなる。従って、溝
側面角度は170度以下とするのがよい。角度が170
度を越えると急激に乾燥時間が長くなる原因は、溝加工
の後の厚さ調整のためのプレス加工時に、溝が潰されて
しまい、溝断面積が小さくなっているためであることが
わかった。
FIG. 23 is a diagram showing the relationship between the groove side surface angle and the drying speed. As shown in FIG. 23, the drying time tends to become longer at an angle of 150 ° or more.
When the temperature exceeds 0 ° C., the drying time is rapidly increased. Therefore, the groove side surface angle is preferably 170 degrees or less. Angle 170
It is understood that the reason why the drying time is drastically increased when the temperature exceeds the degree is that the groove is crushed and the groove cross-sectional area is reduced at the time of press working for thickness adjustment after the groove processing. Was.

【0098】実施例6.実施例1で作製した正極シート
を幅50mm、長さ250mmに切断して正極とし、実
施例1で作製した負極シートを幅52mm、長さ300
mmに切断して、負極とした。
Embodiment 6 FIG. The positive electrode sheet prepared in Example 1 was cut into a width of 50 mm and a length of 250 mm to form a positive electrode. The negative electrode sheet prepared in Example 1 was cut into a width of 52 mm and a length of 300.
mm to obtain a negative electrode.

【0099】実施例1と同様のセパレータを幅54mm
長さ305mmに切断して、正極および負極の各表面に
実施例1と同様の接着剤を塗布しながら、セパレータ・
正極・セパレータ・負極と重ね、これを回巻して巻き型
電極体を作成した。この巻型電極体を80℃に設定した
真空乾燥機中で乾燥させて、巻き型発電要素とした。こ
のときの乾燥時間は40分であった。
The same separator as in Example 1 was used with a width of 54 mm.
While cutting to a length of 305 mm, the same adhesive as in Example 1 was applied to each surface of the positive electrode and the negative electrode,
A positive electrode, a separator, and a negative electrode were overlapped and wound to form a wound electrode body. The wound electrode body was dried in a vacuum dryer set at 80 ° C. to obtain a wound power generating element. The drying time at this time was 40 minutes.

【0100】上記作製した巻き型発電要素にリード端子
をスポット溶接機で取り付けた後、アルミニウム缶に入
れて、実施例1と同様の電解液を適当量注入し、真空に
引いて電解液を真空含浸させた後、予備充電を行い、発
生したガスを引き抜いてから、封口して円筒巻き型電池
とした。
After the lead terminal was attached to the above-prepared wound power generating element by a spot welder, the lead terminal was put in an aluminum can, an appropriate amount of the same electrolytic solution as in Example 1 was injected, and the electrolytic solution was evacuated to a vacuum. After impregnation, the battery was pre-charged, the generated gas was extracted, and then sealed to obtain a cylindrical wound battery.

【0101】この円筒巻き型発電要素に電解液を注液す
る速度や、ガス抜き速度は特に問題にならなかった。こ
の円筒巻き型電池の電池特性も従来と同様であった。
The speed at which the electrolyte was injected into the cylindrical winding type power generating element and the speed at which the gas was released were not particularly problematic. The battery characteristics of this cylindrically wound battery were the same as those of the prior art.

【0102】実施例7.実施例1で作製した正極シート
を幅50mm、長さ250mmに切断して正極とし、実
施例1で作製した負極シートを幅52mm、長さ300
mmに切断して、負極とした。
Embodiment 7 FIG. The positive electrode sheet prepared in Example 1 was cut into a width of 50 mm and a length of 250 mm to form a positive electrode. The negative electrode sheet prepared in Example 1 was cut into a width of 52 mm and a length of 300.
mm to obtain a negative electrode.

【0103】実施例1と同様のセパレータを幅54mm
長さ305mmに切断して、正極および負極の各表面に
実施例1と同様の接着剤を塗布しながら、セパレータ・
正極・セパレータ・負極と重ねて、楕円状に回巻して楕
円状巻き型電極体を作製し、この楕円状巻き型電極体を
80℃に設定した真空乾燥機中で加圧しながら乾燥させ
て、扁平状巻き型発電要素とした。このときの乾燥時間
は40分であった。
A separator similar to that of Example 1 was formed with a width of 54 mm.
While cutting to a length of 305 mm, the same adhesive as in Example 1 was applied to each surface of the positive electrode and the negative electrode,
The positive electrode, the separator, and the negative electrode are overlapped and wound in an elliptical shape to produce an elliptical wound electrode body, and the elliptical wound electrode body is dried while being pressed in a vacuum dryer set at 80 ° C. And a flat wound power generating element. The drying time at this time was 40 minutes.

【0104】上記作製した扁平状巻き型発電要素にリー
ド端子をスポット溶接機で取り付けた後、3辺を熱融着
させて袋状にしたアルミラミネートシートに入れて、実
施例1と同様の電解液を適当量注入し、これを真空に引
いて電解液を真空含浸させた後、予備充電を行い、発生
したガスを引き抜いてから、熱融着機で残る1辺を封口
して平板状巻き型電池とした。
A lead terminal was attached to the flat-wound power generating element produced above by a spot welder, and the three sides were heat-sealed and placed in a bag-shaped aluminum laminate sheet. After injecting an appropriate amount of the solution, evacuating the solution and impregnating the electrolyte with a vacuum, pre-charging, extracting the generated gas, sealing the remaining side with a heat fusion machine, and winding it flat Type battery.

【0105】上記扁平状巻き型発電要素に電解液を注液
する速度や、ガス抜き速度は特に問題にならなかった。
この平板巻き型電池の電池特性も従来と同様であった。
The rate at which the electrolyte was injected into the flat wound power generating element and the rate at which gas was released did not matter.
The battery characteristics of the flat-wound battery were the same as those of the conventional battery.

【0106】[0106]

【発明の効果】本発明に係る第1の電池によれば、集電
板の両面に電極活物質層を有する正及び負の電極が電解
質保持層を介して配置された発電要素を備えた電池にお
いて、少なくとも正負いずれか一方の電極の両電極活物
質層に、少なくとも一端が電極の端部に至る複数の溝が
形成され、該溝の断面形状が側面部と底面部を有し、該
底面部と側面部とのなす角度が鈍角であるものであるの
で、溝形成において電極や集電板に損傷を与えにくく、
また、溝形成後においても溝の形状を維持し易いため、
電解液の浸透速度や発生ガスのガス抜き速度、接着剤の
溶剤の乾燥速度を速くすることができる。
According to the first battery of the present invention, there is provided a battery having a power generating element in which positive and negative electrodes having electrode active material layers on both surfaces of a current collector are disposed via an electrolyte holding layer. A plurality of grooves each having at least one end reaching an end of the electrode are formed in both electrode active material layers of at least one of the positive and negative electrodes, and the cross-sectional shape of the groove has a side surface portion and a bottom surface portion; Since the angle between the portion and the side portion is an obtuse angle, it is difficult to damage the electrodes and the current collector plate in forming the groove,
Also, since the shape of the groove is easily maintained even after the groove is formed,
It is possible to increase the permeation speed of the electrolytic solution, the degassing speed of the generated gas, and the drying speed of the adhesive solvent.

【0107】本発明に係る第2の電池は、両電極活物質
層の溝の底面部が、重なり合うように形成されているも
のであるので、両面に塗布された電極活物質層の両面の
対向した溝同士の位置ずれが生じた場合に、電極や集電
体へのダメージを少なくすることができる。
In the second battery according to the present invention, since the bottom surfaces of the grooves of both electrode active material layers are formed so as to overlap each other, both surfaces of the electrode active material layer coated on both surfaces are opposed to each other. When the misalignment between the grooves occurs, damage to the electrodes and the current collector can be reduced.

【0108】本発明に係る第3の電池は、両電極活物質
層の溝の底面部が、略対向する位置に形成され、上記両
電極活物質層の溝の断面形状における底面部幅が異なっ
ているので、対向する溝の位置ずれが生じても互いに重
なり合いやすく、電極や集電体へのダメージを少なくす
ることができる。
In the third battery according to the present invention, the bottoms of the grooves of both electrode active material layers are formed at positions substantially opposite to each other, and the widths of the bottoms in the cross-sectional shapes of the grooves of both electrode active material layers are different. Therefore, even if the opposing grooves are displaced, they are likely to overlap each other, and damage to the electrodes and the current collector can be reduced.

【0109】本発明に係る第4の電池によれば、溝が形
成された電極の厚さをt1、この電極の集電板の厚さを
2、上記溝部の電極の厚さをt3、上記電極の活物質層
のポロシティをP、活上記物質層の圧縮による横方向へ
の伸び率をr1、上記集電板の圧縮による横方向への伸
び率をr2としたときに、上記溝の形状が、下記式
(1)を満たすものであるので、 t3=(t1−t2)×(1−P)×(1−r1) +t2×(1−r2) 式(1) 電極活物質層を圧縮して溝を形成しても集電板に過大な
圧力を与えず、集電板が大きく変形したり、損傷を受け
ることがなくなる。
According to the fourth battery of the present invention, the thickness of the grooved electrode is t 1 , the thickness of the current collector plate of the electrode is t 2 , and the thickness of the electrode in the groove is t. 3. When the porosity of the active material layer of the electrode is P, the lateral elongation by compression of the active material layer is r 1 , and the lateral elongation by compression of the current collector plate is r 2. , the shape of the groove, since it satisfies the following formula (1), t 3 = ( t 1 -t 2) × (1-P) × (1-r 1) + t 2 × (1-r 2 Formula (1) Even if the groove is formed by compressing the electrode active material layer, an excessive pressure is not applied to the current collector, so that the current collector is not greatly deformed or damaged.

【0110】本発明に係る第5の電池によれば、底面部
と側面部とのなす角度が90度より大きく170度以下
であるので、溝形成時に溝周辺の脱落等を抑えることが
でき、量産性を向上させることができる。
According to the fifth battery of the present invention, since the angle between the bottom surface and the side surface is greater than 90 degrees and 170 degrees or less, it is possible to prevent the periphery of the groove from falling off when the groove is formed. Mass productivity can be improved.

【0111】本発明に係る第6の電池によれば、溝の断
面形状における底面部の幅が、0.1mm以上、1.0
mm以下であるので、電池の放電特性を維持しながら、
電解液の注液速度および乾燥速度を速めることができ
る。
According to the sixth battery of the present invention, the width of the bottom surface in the cross-sectional shape of the groove is 0.1 mm or more and 1.0 mm or less.
mm or less, while maintaining the discharge characteristics of the battery,
The injection rate and drying rate of the electrolyte can be increased.

【0112】本発明に係る第7の電池によれば、重なり
合う溝の断面形状における底面部の幅の比率が1倍以
上、3倍以下であるので、両面に塗布された電極活物質
層の両面の対向した溝同士の位置ずれが少なくなり、溝
形状の変形を少なくすることができる。
According to the seventh battery of the present invention, since the ratio of the width of the bottom surface in the cross-sectional shape of the overlapping groove is not less than 1 and not more than 3 times, the both sides of the electrode active material layer applied on both sides are possible. The displacement between the opposed grooves is reduced, and the deformation of the groove shape can be reduced.

【0113】本発明に係る第8の電池によれば、隣り合
う溝同士の間隔が20mm以下であるので、電極の乾燥
速度および電解液の注液速度を速めることができる。
According to the eighth battery of the present invention, the interval between adjacent grooves is 20 mm or less, so that the electrode drying speed and the electrolyte injection speed can be increased.

【0114】本発明に係る第9の電池によれば、電極活
物質層の表面積に対する溝の面積の比率が20%以下で
あるので、電池の放電特性を維持し、かつ、電極の乾燥
速度および電解液の注液速度を速めることができる。
According to the ninth battery of the present invention, since the ratio of the area of the groove to the surface area of the electrode active material layer is 20% or less, the discharge characteristics of the battery are maintained, and the drying speed and the electrode The injection speed of the electrolyte can be increased.

【0115】本発明に係る第10の電池によれば、正の
電極と電解質保持層、負の電極と電解質保持層の少なく
ともいずれかが、接着層で固着されているものであるの
で、小型、軽量で量産性に優れた電池を供給することが
できる。
According to the tenth battery of the present invention, at least one of the positive electrode and the electrolyte holding layer and the negative electrode and the electrolyte holding layer are fixed by the adhesive layer. It is possible to supply a battery that is lightweight and has excellent mass productivity.

【0116】本発明に係る第1の電極成形方法によれ
ば、集電板の両面に電極活物質層を有する正及び負の電
極が、電解質保持層を介して配置された発電要素を備え
た電池の電極成形方法において、上記電極の両電極活物
質層に、上部に平面部と、この平面部となす角度が鈍角
に形成された側面部とからなる突起部が形成された金型
を上記電極活物質層の両側から押し当てて溝を形成する
ものであるので、溝形成において電極や集電板に損傷を
与えにくく、また、溝形成後においても溝の形状を維持
し易いため、電解液の浸透速度や発生ガスのガス抜き速
度、接着剤の溶剤の乾燥速度を速くすることができる。
According to the first electrode forming method according to the present invention, the power generation element is provided in which the positive and negative electrodes having the electrode active material layers on both sides of the current collector are arranged via the electrolyte holding layer. In the electrode forming method for a battery, the two-electrode active material layer of the electrode is provided with a mold having a flat portion formed on an upper portion and a protrusion formed by a side portion formed at an obtuse angle with the flat portion. Since the grooves are formed by pressing from both sides of the electrode active material layer, it is difficult to damage the electrodes and the current collector plate during the formation of the grooves, and it is easy to maintain the shape of the grooves even after the formation of the grooves. It is possible to increase the liquid permeation speed, the degassing speed of generated gas, and the drying speed of the adhesive solvent.

【0117】本発明に係る第2の電極成形方法によれ
ば、溝を形成する電極の厚さをt1、この電極の集電板
の厚さをt2、上記溝部の電極の厚さをt3、上記電極の
活物質層のポロシティをP、上記電極活物質層の圧縮に
よる横方向への伸び率をr1、上記集電板の圧縮による
横方向への伸び率をr2としたときに、上記溝の形状
が、下記式(1)を満たすように突起部の高さを形成す
るものであるので、 t3=(t1−t2)×(1−P)×(1−r1) +t2×(1−r2) 式(1) 電極活物質層を圧縮して溝を形成しても集電板に過大な
圧力を与えず、集電板が大きく変形したり、損傷を受け
ることがなくなる。
According to the second electrode forming method of the present invention, the thickness of the electrode forming the groove is t 1 , the thickness of the current collector plate of the electrode is t 2 , and the thickness of the electrode in the groove is the thickness of the electrode. t 3 , the porosity of the active material layer of the electrode is P, the elongation in the horizontal direction due to compression of the electrode active material layer is r 1 , and the elongation in the horizontal direction due to compression of the current collector is r 2 . In some cases, the height of the protrusion is formed so that the shape of the groove satisfies the following expression (1), so that t 3 = (t 1 −t 2 ) × (1-P) × (1 −r 1 ) + t 2 × (1−r 2 ) Equation (1) Even if the electrode active material layer is compressed to form a groove, the current collector is not excessively pressed, and the current collector is greatly deformed. , No damage.

【0118】本発明に係る第3の電極成形方法によれ
ば、電極活物質層の表面積に対する突起部の平面部の面
積の比率を20%以下とするものであるので、電池の放
電特性を維持し、かつ、電極の乾燥速度および電解液の
注液速度を速めることができる。
According to the third electrode forming method of the present invention, the ratio of the surface area of the projection to the surface area of the electrode active material layer is set to 20% or less, so that the discharge characteristics of the battery can be maintained. In addition, the electrode drying speed and the electrolyte injection speed can be increased.

【0119】本発明に係る第1の電極成形装置によれ
ば、集電板の両面に電極活物質層を有する正及び負の電
極が、電解質保持層を介して配置された発電要素を備え
た電池の電極成形装置において、上記電極を挟んで配置
され、上部に平面部と、この平面部となす角度が鈍角に
形成された側面部とからなる突起部が形成された2つの
金型、及びこの金型を上記電極の両側から押し当てて上
記電極活物質層を圧縮する金形駆動部を備えたものであ
るので、溝形成において電極や集電板に損傷を与えにく
く、また、溝形成後においても溝の形状を維持し易いた
め、電解液の浸透速度や発生ガスのガス抜き速度、接着
剤の溶剤の乾燥速度を速くすることができる。
According to the first electrode forming apparatus of the present invention, the power collecting element in which the positive and negative electrodes having the electrode active material layers on both sides of the current collector plate are arranged via the electrolyte holding layer is provided. In the electrode forming apparatus for a battery, two dies are disposed with the electrode interposed therebetween, and two molds each having a flat portion formed on an upper portion and a protrusion formed by a side portion formed at an obtuse angle with the flat portion, and Since the mold is provided with a mold driving unit that compresses the electrode active material layer by pressing the mold from both sides of the electrode, it is difficult to damage the electrode and the current collector plate in forming the groove, Since the shape of the groove can be easily maintained even afterward, the permeation speed of the electrolytic solution, the degassing speed of the generated gas, and the drying speed of the solvent of the adhesive can be increased.

【0120】本発明に係る第2の電極成形装置によれ
ば、2つの金型の突起部の平面部が、重なり合うように
配置されているので、対向した溝同士の位置ずれが生じ
た場合に、電極や集電体へのダメージを少なくすること
ができる。
According to the second electrode forming apparatus of the present invention, the flat portions of the projections of the two dies are arranged so as to overlap each other. Thus, damage to electrodes and current collectors can be reduced.

【0121】本発明に係る第3の電極成形装置によれ
ば、重なり合う突起部の断面形状における平面部幅の比
率が1倍以上、3倍以下であるので、両面に塗布された
電極活物質層の両面の対向した溝同士の位置ずれが少な
くなり、溝形状の変形を少なくすることができる。
According to the third electrode forming apparatus of the present invention, the ratio of the width of the plane portion in the cross-sectional shape of the overlapping projections is not less than 1 times and not more than 3 times. In this case, the displacement between the opposed grooves on both sides of the groove can be reduced, and the deformation of the groove shape can be reduced.

【0122】本発明に係る第4の電極成形装置によれ
ば、2つの金型の突起部の平面部は、略対向するように
配置され、断面形状における平面部幅が異なっているも
のであるので、対向する溝の位置ずれが生じても互いに
重なり合いやすく、電極や集電体へのダメージを少なく
することができる。
According to the fourth electrode forming apparatus of the present invention, the flat portions of the projections of the two dies are arranged so as to be substantially opposed to each other, and the width of the flat portion in the cross-sectional shape is different. Therefore, even if the misalignment of the opposing grooves occurs, the grooves easily overlap each other, and damage to the electrodes and the current collector can be reduced.

【0123】本発明に係る第5の電極成形装置によれ
ば、突起部の平面部と側面部とのなす角度が90度より
大きく170度以下であるので、溝形成時に溝周辺の脱
落等を抑えることができ、量産性を向上させることがで
きる。
According to the fifth electrode forming apparatus of the present invention, the angle between the flat portion and the side portion of the projection is greater than 90 degrees and 170 degrees or less, so that the periphery of the groove may not fall off when the groove is formed. It can be suppressed, and mass productivity can be improved.

【0124】本発明に係る第6の電極成形装置によれ
ば、突起部の断面形状における平面部の幅が、0.1m
m以上、1.0mm以下であるので、電池の放電特性を
維持しながら、電解液の注液速度および乾燥速度を速め
ることができる。
According to the sixth electrode forming apparatus of the present invention, the width of the flat portion in the cross-sectional shape of the projection is 0.1 m.
m or more and 1.0 mm or less, it is possible to increase the rate of injecting and drying the electrolyte while maintaining the discharge characteristics of the battery.

【0125】本発明に係る第7の電極成形装置によれ
ば、隣り合う突起同士の間隔が20mm以下であるの
で、電極の乾燥速度および電解液の注液速度を速めるこ
とができる。
According to the seventh electrode forming apparatus of the present invention, the interval between adjacent projections is 20 mm or less, so that the electrode drying speed and the electrolyte injection speed can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態を示すものであって、
溝加工を施した電極の形状を示す断面図である。
FIG. 1 shows an embodiment of the present invention,
It is sectional drawing which shows the shape of the electrode which performed groove processing.

【図2】 本発明の一実施の形態を示すものであって、
溝加工を施した電極の形状を示す断面図である。
FIG. 2 shows an embodiment of the present invention,
It is sectional drawing which shows the shape of the electrode which performed groove processing.

【図3】 本発明の一実施の形態を示すものであって、
溝加工を施した電極の形状を示す断面図である。
FIG. 3 shows an embodiment of the present invention,
It is sectional drawing which shows the shape of the electrode which performed groove processing.

【図4】 本発明の一実施の形態を示すものであって、
溝加工を施した電極の断面寸法を説明する断面図であ
る。
FIG. 4 shows an embodiment of the present invention,
It is sectional drawing explaining the cross-sectional dimension of the electrode which performed groove processing.

【図5】 本発明の一実施の形態を示すものであって、
溝加工を施した電極の溝パターンを示す平面図である。
FIG. 5 shows an embodiment of the present invention,
It is a top view which shows the groove pattern of the electrode which performed groove processing.

【図6】 本発明の一実施の形態を示すものであって、
溝加工を施した電極の溝パターンを示す平面図である。
FIG. 6 shows an embodiment of the present invention,
It is a top view which shows the groove pattern of the electrode which performed groove processing.

【図7】 本発明の一実施の形態を示すものであって、
溝加工を施した電極の溝パターンを示す平面図である。
FIG. 7 shows an embodiment of the present invention,
It is a top view which shows the groove pattern of the electrode which performed groove processing.

【図8】 本発明の一実施の形態を示すものであって、
平板プレスによる溝加工を模式的に示す側面図である。
FIG. 8 shows an embodiment of the present invention,
It is a side view which shows groove processing by a flat plate press typically.

【図9】 本発明の一実施の形態を示すものであって、
平板プレスによる溝加工の金型表面を示す平面図であ
る。
FIG. 9 shows an embodiment of the present invention,
It is a top view which shows the die surface of the groove processing by a flat plate press.

【図10】 本発明の一実施の形態を示すものであっ
て、ロール状プレス機による溝加工を模式的に示す側面
図である。
FIG. 10, showing an embodiment of the present invention, is a side view schematically illustrating groove processing by a roll-shaped press.

【図11】 本発明の一実施の形態を示すものであっ
て、ロール状プレス機による溝加工のロール金型表面を
示す斜視図である。
FIG. 11, showing an embodiment of the present invention, is a perspective view illustrating a surface of a roll die for groove processing by a roll press.

【図12】 本発明の一実施の形態を示すものであっ
て、非水電解質二次電池の電極とセパレータを示す分解
斜視図である。
FIG. 12, showing an embodiment of the present invention, is an exploded perspective view showing an electrode and a separator of a nonaqueous electrolyte secondary battery.

【図13】 本発明の一実施の形態を示すものであっ
て、積層型非水電解質二次電池の構造を示す縦断面図で
ある。
FIG. 13, showing an embodiment of the present invention, is a longitudinal sectional view illustrating a structure of a laminated nonaqueous electrolyte secondary battery.

【図14】 本発明の一実施の形態を示すものであっ
て、発電要素をアルミラニネートシートで封口した非水
電解質二次電池を示す斜視図である。
FIG. 14, showing an embodiment of the present invention, is a perspective view illustrating a non-aqueous electrolyte secondary battery in which a power generation element is sealed with an aluminum laninate sheet.

【図15】 本発明の一実施の形態を示すものであっ
て、巻き型非水電解質二次電池の発電要素の構造を示す
縦断面図である。
FIG. 15, showing an embodiment of the present invention, is a longitudinal sectional view illustrating a structure of a power generating element of a wound nonaqueous electrolyte secondary battery.

【図16】 本発明の実施例1を示すものであって、溝
加工を施した電極の溝形状を示す断面図である。
FIG. 16 shows the first embodiment of the present invention, and is a cross-sectional view showing a groove shape of a grooved electrode.

【図17】 本発明の実施例2を示すものであって、溝
加工を施した電極の溝形状を示す断面図である。
FIG. 17 shows the second embodiment of the present invention, and is a cross-sectional view showing a groove shape of a grooved electrode.

【図18】 本発明の実施例3を示すものであって、溝
の幅と乾燥時間および放電容量の関係を示す図である。
FIG. 18 illustrates Example 3 of the present invention, and is a diagram illustrating a relationship between a groove width, a drying time, and a discharge capacity.

【図19】 本発明の実施例3を示すものであって、溝
間隔と乾燥時間の関係を示す図である。
FIG. 19, showing Example 3 of the present invention, is a diagram illustrating a relationship between a groove interval and a drying time.

【図20】 本発明の実施例3を示すものであって、溝
面積比率と放電容量の関係を示す図である。
FIG. 20 illustrates Example 3 of the present invention, and is a diagram illustrating a relationship between a groove area ratio and a discharge capacity.

【図21】 本発明の実施例4を示すものであって、上
下の溝幅の比率と放電容量の関係を示す図である。
FIG. 21 illustrates Example 4 of the present invention, and is a diagram illustrating the relationship between the ratio of the upper and lower groove widths and the discharge capacity.

【図22】 本発明の実施例5を示すものであって、溝
加工を施した電極の形状を示す断面図である。
FIG. 22 shows the fifth embodiment of the present invention, and is a cross-sectional view showing the shape of a grooved electrode.

【図23】 本発明の実施例6を示すものであって、溝
側面角度と乾燥時間との関係を示す図である。
FIG. 23, showing Example 6 of the present invention, is a diagram illustrating the relationship between the groove side surface angle and the drying time.

【符号の説明】[Explanation of symbols]

1 正極、2 正極活物質層、3 正極集電板、4
溝、5 底面部、6 側面部、7 セパレータ、8 負
極、9 積層型の発電要素、10 アルミラミネートシ
ート、11 端子、12 外装缶、41 平板型上金
型、42 平板型下金型、43,53 突起部、51
ロール状上金型、52 ロール状下金型。
1 positive electrode, 2 positive electrode active material layer, 3 positive electrode current collector plate, 4
Groove, 5 bottom part, 6 side parts, 7 separator, 8 negative electrode, 9 laminated power generation element, 10 aluminum laminated sheet, 11 terminals, 12 outer can, 41 flat upper mold, 42 flat lower mold, 43 , 53 Projection, 51
Roll-shaped upper mold, 52 roll-shaped lower mold.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩田 久 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 荒金 淳 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 西村 隆 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 細川 純一 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 吉岡 省二 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 吉瀬 万希子 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 白神 昭 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 竹村 大吾 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 栗木 宏徳 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5H024 AA01 AA02 BB05 BB18 BB19 BB20 CC02 CC04 CC12 DD15 HH00 HH01 HH13 HH15 5H028 AA06 BB03 BB04 BB05 BB15 BB17 BB19 CC07 CC08 HH00 HH01 HH05 5H029 AJ14 AK03 AL07 AM03 AM05 AM07 BJ02 BJ04 BJ12 BJ14 CJ03 CJ06 CJ25 CJ28 CJ30 DJ07 DJ14 HJ00 HJ04 HJ09 HJ12 5H050 AA19 BA05 BA06 BA15 BA17 CA08 CB08 FA02 FA05 FA10 FA15 GA03 GA08 GA27 GA29 GA30 HA00 HA04 HA09 HA12 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisashi Shioda 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Atsushi Arakane 2-3-2 Marunouchi 3-chome, Chiyoda-ku, Tokyo Rishi Electric Co., Ltd. (72) Inventor Takashi Nishimura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Junichi Hosokawa 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric (72) Inventor Shoji Yoshioka 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Makiko Yoshise 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Co., Ltd. Inside the company (72) Inventor Akira Shirakami 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Daigo Takemura Maru, Chiyoda-ku, Tokyo 2-3-2 Uchi, Mitsubishi Electric Co., Ltd. (72) Hironori Kuriki, 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term 5H024 AA01 AA02 BB05 BB18 BB19 BB20 CC02 CC04 CC12 DD15 HH00 HH01 HH13 HH15 5H028 AA06 BB03 BB04 BB05 BB15 BB17 BB19 CC07 CC08 HH00 HH01 HH05 5H029 AJ14 AK03 AL07 AM03 AM05 AM07 BJ02 BJ04 BJ12 BJ14 CJ03 CJ06 HJ01 HJ05 H08 FA02 FA05 FA10 FA15 GA03 GA08 GA27 GA29 GA30 HA00 HA04 HA09 HA12

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 集電板の両面に電極活物質層を有する正
及び負の電極が電解質保持層を介して配置された発電要
素を備えた電池において、少なくとも正負いずれか一方
の電極の両電極活物質層に、少なくとも一端が電極の端
部に至る複数の溝が形成され、該溝の断面形状が側面部
と底面部を有し、該底面部と側面部とのなす角度が鈍角
であることを特徴とする電池。
1. A battery provided with a power generating element in which positive and negative electrodes having electrode active material layers on both sides of a current collector are disposed via an electrolyte holding layer, at least one of the positive and negative electrodes. In the active material layer, a plurality of grooves having at least one end reaching the end of the electrode are formed, and the cross-sectional shape of the groove has a side surface and a bottom surface, and an angle formed by the bottom surface and the side surface is obtuse. A battery comprising:
【請求項2】 両電極活物質層の溝の底面部が、重なり
合うように形成されていることを特徴とする請求項1記
載の電池。
2. The battery according to claim 1, wherein the bottom surfaces of the grooves of both electrode active material layers are formed so as to overlap with each other.
【請求項3】 両電極活物質層の溝の底面部が、略対向
する位置に形成され、上記両電極活物質層の溝の断面形
状における底面部幅が異なっていることを特徴とする請
求項1記載の電池。
3. A method according to claim 1, wherein the bottom surfaces of the grooves of both electrode active material layers are formed at substantially opposing positions, and the widths of the bottom surfaces in the cross-sectional shapes of the grooves of both electrode active material layers are different. Item 7. The battery according to Item 1.
【請求項4】 溝が形成された電極の厚さをt1、この
電極の集電板の厚さをt2、上記溝部の電極の厚さを
3、上記電極の電極活物質層のポロシティをP、上記
電極活物質層の圧縮による横方向への伸び率をr1、上
記集電板の圧縮による横方向への伸び率をr2としたと
きに、上記溝の形状が、下記式(1)を満たすことを特
徴とする請求項1記載の電池。 t3=(t1−t2)×(1−P)×(1−r1) +t2×(1−r2) 式(1)
4. The thickness of the electrode in which the groove is formed is t 1 , the thickness of the current collector plate of the electrode is t 2 , the thickness of the electrode in the groove is t 3 , and the thickness of the electrode active material layer of the electrode is When the porosity is P, the lateral elongation by compression of the electrode active material layer is r 1 , and the lateral elongation by compression of the current collector plate is r 2 , the shape of the groove is as follows: 2. The battery according to claim 1, wherein the battery satisfies Expression (1). t 3 = (t 1 −t 2 ) × (1−P) × (1−r 1 ) + t 2 × (1−r 2 ) Equation (1)
【請求項5】 底面部と側面部とのなす角度が90度よ
り大きく170度以下であることを特徴とする請求項1
記載の電池。
5. The method according to claim 1, wherein the angle between the bottom surface and the side surface is greater than 90 degrees and equal to or less than 170 degrees.
The battery as described.
【請求項6】 溝の断面形状における底面部幅が、0.
1mm以上、1.0mm以下であることを特徴とする請
求項1記載の電池。
6. The width of the bottom surface in the cross-sectional shape of the groove is 0.
The battery according to claim 1, wherein the length is 1 mm or more and 1.0 mm or less.
【請求項7】 重なり合う溝の断面形状における底面部
の幅の比率が1倍以上、3倍以下であることを特徴とす
る請求項2記載の電池。
7. The battery according to claim 2, wherein the ratio of the width of the bottom surface in the cross-sectional shape of the overlapping groove is not less than 1 and not more than 3 times.
【請求項8】 隣り合う溝同士の間隔が20mm以下で
あることを特徴とする請求項1記載の電池。
8. The battery according to claim 1, wherein an interval between adjacent grooves is 20 mm or less.
【請求項9】 電極活物質層の表面積に対する溝の面積
の比率が20%以下であることを特徴とする請求項1記
載の電池。
9. The battery according to claim 1, wherein the ratio of the area of the groove to the surface area of the electrode active material layer is 20% or less.
【請求項10】 正の電極と電解質保持層、負の電極と
電解質保持層の少なくともいずれかが、接着層で固着さ
れていることを特徴とする請求項1記載の電池。
10. The battery according to claim 1, wherein at least one of the positive electrode and the electrolyte holding layer and / or the negative electrode and the electrolyte holding layer are fixed by an adhesive layer.
【請求項11】 集電板の両面に電極活物質層を有する
正及び負の電極が、電解質保持層を介して配置された発
電要素を備えた電池の電極成形方法において、上記電極
の両電極活物質層に、上部に平面部と、この平面部とな
す角度が鈍角に形成された側面部とからなる突起部が形
成された金型を上記電極活物質層の両側から押し当てて
溝を形成することを特徴とする電極成形方法。
11. A method of forming an electrode of a battery comprising a power generating element in which positive and negative electrodes having electrode active material layers on both surfaces of a current collector plate are disposed via an electrolyte holding layer, wherein both electrodes of said electrode are formed. On the active material layer, a mold having a projection formed of a flat portion at the top and a side portion formed at an obtuse angle with the flat portion is pressed from both sides of the electrode active material layer to form a groove. A method for forming an electrode, comprising: forming an electrode;
【請求項12】 溝を形成する電極の厚さをt1、この
電極の集電板の厚さをt2、上記溝部の電極の厚さを
3、上記電極の活物質層のポロシティをP、上記電極
活物質層の圧縮による横方向への伸び率をr1、上記集
電板の圧縮による横方向への伸び率をr2としたとき
に、上記溝の形状が、下記式(1)を満たすように突起
部の高さを形成することを特徴とする請求項11記載の
電極成形方法。 t3=(t1−t2)×(1−P)×(1−r1) +t2×(1−r2) 式(1)
12. The thickness of the electrode forming the groove is t 1 , the thickness of the current collector plate of the electrode is t 2 , the thickness of the electrode in the groove is t 3 , and the porosity of the active material layer of the electrode is t 1 . P, when the elongation in the lateral direction due to the compression of the electrode active material layer is r 1 and the elongation in the lateral direction due to the compression of the current collector plate is r 2 , the shape of the groove is represented by the following formula ( The method of forming an electrode according to claim 11, wherein the height of the protrusion is formed so as to satisfy 1). t 3 = (t 1 −t 2 ) × (1−P) × (1−r 1 ) + t 2 × (1−r 2 ) Equation (1)
【請求項13】 電極活物質層の表面積に対する突起部
の平面部の面積の比率を20%以下とすることを特徴と
する請求項11記載の電極形成方法。
13. The method for forming an electrode according to claim 11, wherein the ratio of the area of the flat portion of the projection to the surface area of the electrode active material layer is 20% or less.
【請求項14】 集電板の両面に電極活物質層を有する
正及び負の電極が、電解質保持層を介して配置された発
電要素を備えた電池の電極成形装置において、上記電極
を挟んで配置され、上部に平面部と、この平面部となす
角度が鈍角に形成された側面部とからなる突起部が形成
された2つの金型、及びこの金型を上記電極の両側から
押し当てて上記電極活物質層を圧縮する金形駆動部を備
えたことを特徴とする電極成形装置。
14. An electrode forming apparatus for a battery including a power generation element having a positive electrode and a negative electrode having electrode active material layers on both surfaces of a current collector plate with an electrolyte holding layer interposed therebetween. Two molds are arranged and formed with a projection formed of a flat portion on the top and a side portion formed at an obtuse angle with the flat portion, and the mold is pressed from both sides of the electrode. An electrode forming apparatus, comprising: a mold driving unit for compressing the electrode active material layer.
【請求項15】 2つの金型の突起部の平面部が、重な
り合うように配置されていることを特徴とする請求項1
4記載の電極形成装置。
15. The method according to claim 1, wherein the flat portions of the protrusions of the two molds are arranged so as to overlap with each other.
5. The electrode forming apparatus according to 4.
【請求項16】 重なり合う突起部の断面形状における
平面部の幅の比率が1倍以上、3倍以下であることを特
徴とする請求項15記載の電極成形装置。
16. The electrode forming apparatus according to claim 15, wherein the ratio of the width of the flat portion in the cross-sectional shape of the overlapping projection is not less than 1 and not more than 3 times.
【請求項17】 2つの金型の突起部の平面部は、略対
向するように配置され、断面形状における平面部の幅が
異なっていることを特徴とする請求項14記載の電極成
形装置。
17. The electrode forming apparatus according to claim 14, wherein the flat portions of the projecting portions of the two molds are arranged so as to substantially face each other, and the widths of the flat portions in the cross-sectional shape are different.
【請求項18】 突起部の平面部と側面部とのなす角度
が90度より大きく170度以下であることを特徴とす
る請求項14記載の電極形成装置。
18. The electrode forming apparatus according to claim 14, wherein the angle between the flat portion and the side portion of the projection is greater than 90 degrees and 170 degrees or less.
【請求項19】 突起部の断面形状における平面部の幅
が、0.1mm以上、1.0mm以下であることを特徴
とする請求項14記載の電極形成装置。
19. The electrode forming apparatus according to claim 14, wherein the width of the plane portion in the cross-sectional shape of the projection is 0.1 mm or more and 1.0 mm or less.
【請求項20】 隣り合う突起同士の間隔が20mm以
下であることを特徴とする請求項14記載の電極成形装
置。
20. The electrode forming apparatus according to claim 14, wherein an interval between adjacent projections is 20 mm or less.
JP2000195776A 2000-06-29 2000-06-29 Battery and electrode forming apparatus for the battery Expired - Fee Related JP3745594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195776A JP3745594B2 (en) 2000-06-29 2000-06-29 Battery and electrode forming apparatus for the battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195776A JP3745594B2 (en) 2000-06-29 2000-06-29 Battery and electrode forming apparatus for the battery

Publications (2)

Publication Number Publication Date
JP2002015764A true JP2002015764A (en) 2002-01-18
JP3745594B2 JP3745594B2 (en) 2006-02-15

Family

ID=18694378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195776A Expired - Fee Related JP3745594B2 (en) 2000-06-29 2000-06-29 Battery and electrode forming apparatus for the battery

Country Status (1)

Country Link
JP (1) JP3745594B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088404A1 (en) * 2002-04-12 2003-10-23 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2004153259A (en) * 2002-10-09 2004-05-27 Asahi Glass Co Ltd Electric double-layer capacitor and method of manufacturing the same
KR100696826B1 (en) * 2005-05-18 2007-03-19 삼성에스디아이 주식회사 Electrode Plate and Li Secondary Battery with the same
WO2008124227A1 (en) * 2007-04-05 2008-10-16 3M Innovative Properties Company Electrodes with raised patterns
JP2009158440A (en) * 2007-12-28 2009-07-16 Nec Corp Thin battery
US7806943B2 (en) 2007-07-17 2010-10-05 Panasonic Corporation Secondary battery and method for producing the same
US7960050B2 (en) 2006-10-30 2011-06-14 Panasonic Corporation Secondary cell and its manufacturing method
JP2011146431A (en) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp Positive electrode for electric power storage device, method of manufacturing the same, and electric power storage device cell
WO2011162090A1 (en) * 2010-06-21 2011-12-29 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery
WO2012139553A3 (en) * 2011-04-14 2012-12-20 Karlsruher Institut für Technologie On improvements in electrolyte batteries
JP2013008523A (en) * 2011-06-23 2013-01-10 Hitachi Vehicle Energy Ltd Electrode for battery and method for manufacturing the same
JP2013033746A (en) * 2012-10-02 2013-02-14 Nissan Motor Co Ltd Electrode for battery and manufacturing method thereof
WO2015033511A1 (en) * 2013-09-09 2015-03-12 トヨタ自動車株式会社 Apparatus for producing electrode and method for producing electrode
KR20150069883A (en) * 2013-12-16 2015-06-24 주식회사 엘지화학 Jelly-roll Having Active Material Layer With Different Loading Amounts
JP2015537337A (en) * 2013-01-16 2015-12-24 エルジー・ケム・リミテッド Electrode assembly manufacturing equipment
KR20160007397A (en) * 2014-07-11 2016-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and electronic device including the same
KR101736545B1 (en) 2014-10-31 2017-05-16 주식회사 엘지화학 Electrode assembly
CN107591569A (en) * 2017-10-10 2018-01-16 合肥国轩高科动力能源有限公司 A kind of method for improving cylinder lithium titanate battery wetting property
WO2018180791A1 (en) * 2017-03-29 2018-10-04 株式会社 安永 Mold
CN108963181A (en) * 2017-05-18 2018-12-07 通用汽车环球科技运作有限责任公司 The pressing process of patterned surface is formed on battery electrode
CN110739435A (en) * 2014-05-27 2020-01-31 苹果公司 Thin film battery structure with inclined battery side wall
CN114944471A (en) * 2021-02-17 2022-08-26 泰星能源解决方案有限公司 Method for manufacturing secondary battery
EP4057374A2 (en) 2021-03-12 2022-09-14 Prime Planet Energy & Solutions, Inc. Electrode for non-aqueous electrolyte solution secondary battery, method of producing electrode and non-aqueous electrolyte solution secondary battery including electrode
CN115084441A (en) * 2021-03-12 2022-09-20 泰星能源解决方案有限公司 Method for manufacturing electrode for secondary battery, electrode, and secondary battery provided with electrode
EP4053931A3 (en) * 2021-03-01 2022-10-19 Prime Planet Energy & Solutions, Inc. Secondary battery electrode and method for producing the electrode
EP4210123A3 (en) * 2022-01-05 2023-10-18 Toyota Jidosha Kabushiki Kaisha Electrode and secondary battery
JP7376032B2 (en) 2020-10-19 2023-11-08 エルジー エナジー ソリューション リミテッド Method for manufacturing an electrode assembly and electrochemical device including the electrode assembly
JP7414758B2 (en) 2021-03-12 2024-01-16 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery electrode and secondary battery equipped with the same

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530081B2 (en) 2002-04-12 2013-09-10 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery including positive electrode active material layers having parallel grooves
WO2003088404A1 (en) * 2002-04-12 2003-10-23 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2004153259A (en) * 2002-10-09 2004-05-27 Asahi Glass Co Ltd Electric double-layer capacitor and method of manufacturing the same
KR100696826B1 (en) * 2005-05-18 2007-03-19 삼성에스디아이 주식회사 Electrode Plate and Li Secondary Battery with the same
US7960050B2 (en) 2006-10-30 2011-06-14 Panasonic Corporation Secondary cell and its manufacturing method
WO2008124227A1 (en) * 2007-04-05 2008-10-16 3M Innovative Properties Company Electrodes with raised patterns
US7806943B2 (en) 2007-07-17 2010-10-05 Panasonic Corporation Secondary battery and method for producing the same
JP2009158440A (en) * 2007-12-28 2009-07-16 Nec Corp Thin battery
JP2011146431A (en) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp Positive electrode for electric power storage device, method of manufacturing the same, and electric power storage device cell
CN102947988A (en) * 2010-06-21 2013-02-27 Nec能源元器件株式会社 Nonaqueous electrolyte secondary battery
JPWO2011162090A1 (en) * 2010-06-21 2013-08-19 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery
WO2011162090A1 (en) * 2010-06-21 2011-12-29 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery
JP5561803B2 (en) * 2010-06-21 2014-07-30 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery
WO2012139553A3 (en) * 2011-04-14 2012-12-20 Karlsruher Institut für Technologie On improvements in electrolyte batteries
US9337462B2 (en) 2011-04-14 2016-05-10 Karlsruher Institut Fur Technologie (Kit) Electrolyte batteries
JP2013008523A (en) * 2011-06-23 2013-01-10 Hitachi Vehicle Energy Ltd Electrode for battery and method for manufacturing the same
JP2013033746A (en) * 2012-10-02 2013-02-14 Nissan Motor Co Ltd Electrode for battery and manufacturing method thereof
JP2015537337A (en) * 2013-01-16 2015-12-24 エルジー・ケム・リミテッド Electrode assembly manufacturing equipment
US9768439B2 (en) 2013-01-16 2017-09-19 Lg Chem, Ltd. Apparatus for preparing electrode assembly
JP2015053204A (en) * 2013-09-09 2015-03-19 トヨタ自動車株式会社 Electrode manufacturing device and electrode manufacturing method
WO2015033511A1 (en) * 2013-09-09 2015-03-12 トヨタ自動車株式会社 Apparatus for producing electrode and method for producing electrode
KR20150069883A (en) * 2013-12-16 2015-06-24 주식회사 엘지화학 Jelly-roll Having Active Material Layer With Different Loading Amounts
KR101636451B1 (en) * 2013-12-16 2016-07-05 주식회사 엘지화학 Jelly-roll Having Active Material Layer With Different Loading Amounts
CN110739435A (en) * 2014-05-27 2020-01-31 苹果公司 Thin film battery structure with inclined battery side wall
CN110739435B (en) * 2014-05-27 2022-05-10 苹果公司 Thin film battery structure with inclined battery side wall
KR20160007397A (en) * 2014-07-11 2016-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and electronic device including the same
JP2016066594A (en) * 2014-07-11 2016-04-28 株式会社半導体エネルギー研究所 Secondary battery, and electronic device including secondary battery
KR102424338B1 (en) * 2014-07-11 2022-07-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and electronic device including the same
KR101736545B1 (en) 2014-10-31 2017-05-16 주식회사 엘지화학 Electrode assembly
CN110476276A (en) * 2017-03-29 2019-11-19 株式会社安永 Mold
JP2018170143A (en) * 2017-03-29 2018-11-01 株式会社安永 Metal mold
WO2018180791A1 (en) * 2017-03-29 2018-10-04 株式会社 安永 Mold
CN108963181A (en) * 2017-05-18 2018-12-07 通用汽车环球科技运作有限责任公司 The pressing process of patterned surface is formed on battery electrode
CN107591569A (en) * 2017-10-10 2018-01-16 合肥国轩高科动力能源有限公司 A kind of method for improving cylinder lithium titanate battery wetting property
JP7376032B2 (en) 2020-10-19 2023-11-08 エルジー エナジー ソリューション リミテッド Method for manufacturing an electrode assembly and electrochemical device including the electrode assembly
CN114944471A (en) * 2021-02-17 2022-08-26 泰星能源解决方案有限公司 Method for manufacturing secondary battery
JP2022125780A (en) * 2021-02-17 2022-08-29 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing secondary battery
CN114944471B (en) * 2021-02-17 2024-03-01 泰星能源解决方案有限公司 Method for manufacturing secondary battery
JP7385610B2 (en) 2021-02-17 2023-11-22 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method for secondary batteries
EP4053931A3 (en) * 2021-03-01 2022-10-19 Prime Planet Energy & Solutions, Inc. Secondary battery electrode and method for producing the electrode
EP4057374A3 (en) * 2021-03-12 2022-09-21 Prime Planet Energy & Solutions, Inc. Electrode for non-aqueous electrolyte solution secondary battery, method of producing electrode and non-aqueous electrolyte solution secondary battery including electrode
JP2022139879A (en) * 2021-03-12 2022-09-26 プライムプラネットエナジー&ソリューションズ株式会社 Method of manufacturing secondary battery electrode, electrode, and secondary battery comprising the electrode
JP7320010B2 (en) 2021-03-12 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 METHOD FOR MANUFACTURING ELECTRODE FOR SECONDARY BATTERY, ELECTRODE AND SECONDARY BATTERY HAVING SAME
CN115084441B (en) * 2021-03-12 2023-10-31 泰星能源解决方案有限公司 Method for manufacturing electrode for secondary battery, electrode, and secondary battery provided with electrode
KR20220128302A (en) 2021-03-12 2022-09-20 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Electrode for non-aqueous electrolyte solution secondary battery, method of producing electrode and non-aqueous electrolyte solution secondary battery including electrode
CN115084441A (en) * 2021-03-12 2022-09-20 泰星能源解决方案有限公司 Method for manufacturing electrode for secondary battery, electrode, and secondary battery provided with electrode
JP7414758B2 (en) 2021-03-12 2024-01-16 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery electrode and secondary battery equipped with the same
EP4057374A2 (en) 2021-03-12 2022-09-14 Prime Planet Energy & Solutions, Inc. Electrode for non-aqueous electrolyte solution secondary battery, method of producing electrode and non-aqueous electrolyte solution secondary battery including electrode
EP4210123A3 (en) * 2022-01-05 2023-10-18 Toyota Jidosha Kabushiki Kaisha Electrode and secondary battery

Also Published As

Publication number Publication date
JP3745594B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
JP2002015764A (en) Battery, battery electrode forming method and electrode forming device
JP4018387B2 (en) Superposition electrochemical cell and manufacturing method thereof
JP5114036B2 (en) Manufacturing method of stacked battery
JP6572204B2 (en) Secondary battery and manufacturing method thereof
JP4140311B2 (en) Method for manufacturing case for power storage element
CN101617433B (en) Electrochemical element and method for production thereof
US7820337B2 (en) Electrochemical device
JP4402134B2 (en) Multilayer secondary battery and manufacturing method thereof
JP3745593B2 (en) Battery and manufacturing method thereof
US20090208832A1 (en) Lamination Configurations for Battery Applications Using PVDF Highly Porous Film
KR20230107896A (en) Separator for nonaqueous electrolyte cell, nonaqueous electrolyte cell, and method for manufacturing nonaqueous electrolyte cell
WO2015019514A1 (en) Secondary battery and method for manufacturing same
JP6351930B2 (en) Method for producing multilayer membrane electrode assembly
WO2018079817A1 (en) Electrode for electrochemical device, electrochemical device, and method for producing same
JP2014022116A (en) Electrode plate for secondary battery, and method for manufacturing electrode plate for secondary battery
JP6539080B2 (en) Method of manufacturing secondary battery
CN103490089A (en) Electrode subassembly, preparation method thereof and lithium secondary battery
KR101663351B1 (en) Cell for electrochemical device and preparation method thereof
WO2017154312A1 (en) Manufacturing method for electrochemical device electrode and electrochemical device
JP5025936B2 (en) Method for producing electrode-porous sheet composite for electronic component
JP4359809B2 (en) Storage element module and manufacturing method thereof
KR101154883B1 (en) Method for Production of Electrode Assembly with Improved Electrolyte Wetting Property
JP2001229971A (en) Nonaqueous electrolyte secondary battery
JP2000268813A (en) Battery, electrode structure of capacitor, and manufacture of electrode
JP2004207253A (en) Non-aqueous electrolyte rechargeable battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees