JP2001345121A - Nonaqueous electrolyte secondary battery and method of manufacturing it - Google Patents

Nonaqueous electrolyte secondary battery and method of manufacturing it

Info

Publication number
JP2001345121A
JP2001345121A JP2001089499A JP2001089499A JP2001345121A JP 2001345121 A JP2001345121 A JP 2001345121A JP 2001089499 A JP2001089499 A JP 2001089499A JP 2001089499 A JP2001089499 A JP 2001089499A JP 2001345121 A JP2001345121 A JP 2001345121A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
electrode
oligomer
secondary battery
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001089499A
Other languages
Japanese (ja)
Inventor
Kiyomi Kouzuki
きよみ 神月
Tsumoru Ohata
積 大畠
Hideyuki Ueda
英之 植田
Toru Oshima
透 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001089499A priority Critical patent/JP2001345121A/en
Publication of JP2001345121A publication Critical patent/JP2001345121A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a nonaqueous electrolyte secondary battery using a gelled polymer solid electrolyte, with high charging/ discharging cycle characteristics, high productivity, and high production yield. SOLUTION: In the method of manufacturing a nonaqueous electrolyte secondary battery having an electrode group formed by integratedly winding a positive electrode and a negative electrode through a separator, a pregel solution comprising a polymerizable compound of an oligomer having high molecular weight and the nonaqueous electrolyte is impregnated into the electrode group, the electrode group and the pregel solution are closely contacted by applying pressure, the electrode group containing the pregel solution is put into an outer case, the outer case is sealed under a reduced pressure atmosphere, and then the pregel solution is polymerized and cured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゲル状高分子固体
電解質を有する非水電解質二次電池とその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a gel polymer solid electrolyte and a method for producing the same.

【0002】[0002]

【従来の技術】従来、リチウムイオン二次電池の電解質
として非水系の電解液が使用されているが、このような
液体の電解質にかえて高分子固体電解質を用いた電池の
開発が盛んである。高分子固体電解質を用いた電池にお
いては、電解質が液体でないため、漏液の心配がなく電
池を小型化しやすいという特徴を有している。しかし、
固体電解質は液体電解質に比べイオン伝導性に劣り、活
物質に対する接触性が悪いため十分な電池性能を得られ
ないという課題がある。そこで近年このような課題を解
決する手段として、液体電解質をポリマーに保液したタ
イプのゲル状高分子固体電解質が開発され実用化されつ
つある。ゲル状高分子固体電解質はポリマーの網目構造
内に液体電解質が保持されてゲル状となったものであ
り、従来の固体電解質に比べ液体電解質を含むのでイオ
ン伝導性、活物質との接触性がよく、さらに液体電解質
と比べ漏液も生じにくいという特徴を有している。
2. Description of the Related Art Conventionally, non-aqueous electrolytes have been used as electrolytes for lithium ion secondary batteries, but batteries using polymer solid electrolytes instead of such liquid electrolytes have been actively developed. . A battery using a polymer solid electrolyte has a feature that the electrolyte is not liquid, so that there is no fear of liquid leakage and the battery can be easily miniaturized. But,
The solid electrolyte has a problem that it has poor ionic conductivity as compared with the liquid electrolyte and has poor contact with the active material, so that sufficient battery performance cannot be obtained. Therefore, in recent years, as a means for solving such a problem, a gel polymer solid electrolyte of a type in which a liquid electrolyte is retained in a polymer has been developed and put into practical use. A gel polymer solid electrolyte is a gel in which a liquid electrolyte is held in a polymer network structure, and contains a liquid electrolyte as compared with a conventional solid electrolyte, so that ion conductivity and contact with an active material are improved. In addition, it has a feature that liquid leakage hardly occurs as compared with a liquid electrolyte.

【0003】ゲル状高分子固体電解質電池は、一般に下
記のような方法で作製されている。
A gel polymer solid electrolyte battery is generally manufactured by the following method.

【0004】リチウム塩を含む電解液とオリゴマーと呼
ばれる、重合後にポリマーとなる有機高分子化合物と重
合性化合物とからなるプレゲル溶液を正極または負極の
表面に塗布する。まず先に、加熱または紫外線を照射す
ることにより、プレゲル溶液中のオリゴマーと重合性化
合物を重合・硬化して電極表面にゲル状高分子固体電解
質膜を形成し、その後、正極と負極を対向するように貼
り合わせるか、まず先に貼り合わせた後に重合・硬化し
てゲル状高分子固体電解質を正・負極間に介在した発電
体とする。その後外装体に収納する。
[0004] A pregel solution comprising an electrolytic solution containing a lithium salt and an organic high molecular compound which becomes a polymer after polymerization, called an oligomer, and a polymerizable compound is applied to the surface of the positive electrode or the negative electrode. First, by heating or irradiating ultraviolet rays, the oligomer and the polymerizable compound in the pregel solution are polymerized and cured to form a gel polymer solid electrolyte membrane on the electrode surface, and then the positive electrode and the negative electrode face each other. In this case, the power generator is firstly bonded and then polymerized and cured to form a gelled polymer solid electrolyte between the positive and negative electrodes. Then, it is stored in an exterior body.

【0005】しかしながら、上記の従来の方法では生産
性および歩留まりが悪く、また放電容量やサイクル特性
が十分でないという課題を有している。具体的には製造
工程中に一定の圧力が加わった際にゲル状高分子固体電
解質が破壊されて、電池内部ショートが発生する。機械
的強度を上げるため非水電解液に対する有機高分子固体
電解質の濃度やゲル状高分子固体電解質層の厚みを増す
とイオン伝導性が悪くなり放電容量やサイクル特性が悪
くなる。
[0005] However, the above-mentioned conventional methods have problems that productivity and yield are poor, and that discharge capacity and cycle characteristics are not sufficient. Specifically, when a certain pressure is applied during the manufacturing process, the gel polymer solid electrolyte is broken, and a short circuit inside the battery occurs. If the concentration of the organic polymer solid electrolyte with respect to the non-aqueous electrolyte or the thickness of the gel polymer solid electrolyte layer is increased in order to increase the mechanical strength, the ion conductivity becomes poor, and the discharge capacity and cycle characteristics become poor.

【0006】そこで、多孔質膜を正極と負極の間に介在
させる方法が提案されているが、この場合、十分なイオ
ン伝導性を得るためには多孔質膜にゲル状高分子固体電
解質を保持させる必要があり工程数が増える。また、多
孔質膜の細孔や凹凸のある電極表面にプレゲル溶液を塗
布して浸透させるのは困難であり、さらに製造工程中の
外部環境因子(例えば湿度、酸素濃度等)を受けやす
く、これも電池特性が十分得られない要因となってい
る。
Therefore, a method of interposing a porous film between the positive electrode and the negative electrode has been proposed. In this case, in order to obtain sufficient ion conductivity, a gel-like polymer solid electrolyte is held on the porous film. And the number of steps increases. In addition, it is difficult to apply a pre-gel solution to the porous electrode surface having pores or irregularities and to penetrate the electrode, and it is susceptible to external environmental factors (such as humidity and oxygen concentration) during the manufacturing process. This is also a cause of insufficient battery characteristics.

【0007】特開平11−210438号公報や特開平
11−283673号公報には外装体内に収納した発電
体にプレゲル溶液を注液し外装体を加熱し重合する方法
が提案されている。しかしながら外装体に収容された発
電体に注液し、加熱重合する構成ではプレゲル溶液の粘
性が大きな影響を及ぼす。粘性が高いと正極活物質、負
極活物質、セパレータへの浸透性が悪化し、不均一なゲ
ル状高分子固体電解質膜となり十分な放電容量が得られ
ない。粘性を低くするためにオリゴマーの分子量を小さ
くすることが有効であるが、するとオリゴマーを重合・
硬化してできたポリマーの機械的強度が小さくなり、充
放電サイクル特性の良い電池を得ることが困難になる。
また電解液に対する濃度を上げると注液性、浸透性が悪
くなり、下げるとプレゲルの重合・硬化後に相分離した
電解液の存在が懸念される。このように上記従来の方法
では生産性および歩留まりが悪く、また放電容量やサイ
クル特性が十分でないという課題を有している。
JP-A-11-210438 and JP-A-11-283673 propose a method in which a pregel solution is injected into a power generator housed in an exterior body, and the exterior body is heated and polymerized. However, the viscosity of the pregel solution has a great effect on the configuration in which the liquid is injected into the power generator housed in the outer package and is heated and polymerized. If the viscosity is high, the permeability to the positive electrode active material, the negative electrode active material, and the separator deteriorates, resulting in a non-uniform gel-like polymer solid electrolyte membrane, and a sufficient discharge capacity cannot be obtained. It is effective to reduce the molecular weight of the oligomer in order to lower the viscosity, but then the oligomer is polymerized.
The mechanical strength of the cured polymer is reduced, and it is difficult to obtain a battery having good charge / discharge cycle characteristics.
When the concentration with respect to the electrolytic solution is increased, the injectability and permeability deteriorate, and when the concentration is decreased, the presence of the electrolytic solution which is phase-separated after polymerization and curing of the pregel is concerned. As described above, the conventional method has problems that productivity and yield are poor, and discharge capacity and cycle characteristics are not sufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明はこのような従
来の課題を解決するものであり、ゲル状高分子固体電解
質を用いた高性能で生産歩留まりの良い非水電解質二次
電池を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves such a conventional problem and provides a non-aqueous electrolyte secondary battery using a gel polymer solid electrolyte and having a high production yield and a high production yield. The purpose is to do so.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに本発明の非水電解質二次電池は、セパレータを介し
て正極と負極を積層又は捲回して一体化した極板群を有
する非水電解質二次電池において、セパレータと正極と
の間およびセパレータと負極との間にポリマーに非水電
解液を保持させてなるゲル状高分子固体電解質をリチウ
ムイオン伝導媒体として有し、かつ、前記ポリマーは数
平均分子量が20万以上のオリゴマーを重合・硬化した
ものとするものである。このように、正極と負極の間に
固体電解質とは別にセパレータを介在させ、かつ、高分
子量のオリゴマーを用いることにより、ゲル状高分子固
体電解質に一定の圧力が加わってもセパレータおよび機
械的強度に優れるポリマーが介在するので電池内部ショ
ートを防止することができ、充放電サイクル特性が良
い。また、高分子量のオリゴマーは、電解液に対するオ
リゴマーの濃度を小さくしても重合・硬化後に相分離し
た電解液の存在がなく十分な機械的強度を得ることがで
きる。
Means for Solving the Problems In order to solve the above problems, a nonaqueous electrolyte secondary battery of the present invention has a nonaqueous electrolyte having a group of electrode plates in which a positive electrode and a negative electrode are laminated or wound with a separator interposed therebetween. In a water electrolyte secondary battery, having a gel polymer solid electrolyte made by holding a non-aqueous electrolyte in a polymer between the separator and the positive electrode and between the separator and the negative electrode as a lithium ion conductive medium, and The polymer is obtained by polymerizing and curing an oligomer having a number average molecular weight of 200,000 or more. As described above, the separator is interposed between the positive electrode and the negative electrode in addition to the solid electrolyte, and by using a high molecular weight oligomer, the separator and the mechanical strength can be maintained even when a certain pressure is applied to the gel polymer solid electrolyte. Since a polymer having excellent heat resistance is interposed, a short circuit inside the battery can be prevented, and the charge / discharge cycle characteristics are good. In addition, even when the concentration of the oligomer with respect to the electrolytic solution is reduced, the high molecular weight oligomer does not have the electrolytic solution that is phase-separated after polymerization and curing, so that sufficient mechanical strength can be obtained.

【0010】また、本発明のセパレータを介して正極と
負極を積層又は捲回して一体化した極板群を有する非水
電解質二次電池の製造方法は、一体化した極板群にオリ
ゴマーと非水電解液と重合性化合物からなるプレゲル溶
液を含浸浸透させる工程と、さらに外圧をかけて前記極
板群と前記プレゲル溶液を密着化させる工程と、前記プ
レゲル溶液を含む極板群を外装体に挿入し減圧雰囲気下
で密封した後にオリゴマーと重合性化合物を重合・硬化
し、ポリマーとすると同時にゲル状高分子電解質を形成
する工程とを備えるものである。まず、一体化した極板
群にプレゲル溶液を含浸・浸透させる工程を備え、高分
子量のオリゴマーを、セパレータと正極及び負極の活物
質層に充分プレゲル溶液を浸透させる。また、プレゲル
溶液を含む極板群に外圧をかけて密着性を上げてから重
合硬化するので、正極及び負極の活物質層とゲル状高分
子固体電解質との界面部分における接触抵抗が小さく、
イオン伝導性が良い。また、本発明はプレゲル溶液を含
む極板群を外装体に収納し、重合硬化する前に減圧雰囲
気下で密封するので酸素遮断雰囲気となり、確実に重合
硬化反応が促進できる。
Further, the method of manufacturing a non-aqueous electrolyte secondary battery having an electrode group in which a positive electrode and a negative electrode are laminated or wound via a separator according to the present invention is provided. A step of impregnating and impregnating a pregel solution comprising a water electrolyte and a polymerizable compound, a step of further applying external pressure to bring the electrode group and the pregel solution into close contact with each other, and attaching the electrode group containing the pregel solution to an exterior body. After the insertion and sealing under a reduced pressure atmosphere, the oligomer and the polymerizable compound are polymerized and cured to form a polymer and simultaneously form a gel polymer electrolyte. First, a step of impregnating and infiltrating a pregel solution into the integrated electrode plate group is provided, and a high molecular weight oligomer is sufficiently penetrated into the separator and the active material layers of the positive electrode and the negative electrode. In addition, since the electrode group containing the pregel solution is subjected to external pressure to increase the adhesion and then polymerized and cured, the contact resistance at the interface between the active material layers of the positive electrode and the negative electrode and the gel polymer solid electrolyte is small,
Good ion conductivity. Further, according to the present invention, the electrode plate group containing the pregel solution is housed in the outer package and sealed under a reduced pressure atmosphere before the polymerization and curing, so that an oxygen shielding atmosphere is provided, and the polymerization and curing reaction can be surely promoted.

【0011】特に、オリゴマーの数平均分子量が20万
以上であるとよい。
In particular, the number average molecular weight of the oligomer is preferably 200,000 or more.

【0012】したがって、本発明により生産性および歩
留まりが良く、しかも高容量でサイクル特性の良い非水
電解質二次電池を提供できる。
Therefore, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having good productivity and yield, high capacity and good cycle characteristics.

【0013】[0013]

【発明の実施の形態】本発明の非水電解質二次電池は、
セパレータを介して正極と負極を積層又は正極と負極を
積層又は捲回して一体化した極板群と、セパレータと正
極との間およびセパレータと負極との間にポリマーに非
水電解液を保持させてなるゲル状高分子固体電解質をリ
チウムイオン伝導媒体として有し、かつ、ポリマーとし
て数平均分子量が20万以上のオリゴマーを重合・硬化
したものを用いるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous electrolyte secondary battery of the present invention
A positive electrode and a negative electrode are laminated via a separator, and a positive electrode and a negative electrode are laminated or wound and integrated, and an electrode plate group, and a polymer is used to hold a non-aqueous electrolyte between the separator and the positive electrode and between the separator and the negative electrode. And a polymer obtained by polymerizing and curing an oligomer having a number average molecular weight of 200,000 or more as a polymer.

【0014】特に、前記オリゴマーは、500万以下で
あることが好ましい。
Particularly, the amount of the oligomer is preferably 5,000,000 or less.

【0015】セパレータとしては、例えば、ポリプロピ
レン、ポリエチレンのようなポリオレフィン系ポリマー
を使用することができる。正極及び負極は、リチウムイ
オンを電気化学的かつ可逆的に吸蔵・放出できる正極材
料や負極材料に導電剤、結着剤等を含む合剤層を集電体
の表面に塗着して作製できる。極板群は、例えば、シー
ト状の正極、セパレータ、負極を重ねて積層するか、又
は重ねたものを楕円状や円形状に捲回することにより作
製できる。正極材料としては、好ましくは、LixCo
2、LixNiO2、LixMnO2等または、これらに
他の金属を固溶させたもの等のリチウム含有遷移金属酸
化物を使用する。負極材料としては、好ましくは、天然
黒鉛、人造黒鉛、非晶質炭素、無定形炭素、SnやSi
を構成元素とする金属間化合物や合金又は酸化物、リチ
ウムとコバルトとの複合窒化物等を使用する。
As the separator, for example, a polyolefin-based polymer such as polypropylene or polyethylene can be used. The positive electrode and the negative electrode can be manufactured by applying a mixture layer containing a conductive agent, a binder, and the like to the surface of the current collector on a positive electrode material or a negative electrode material capable of electrochemically and reversibly absorbing and releasing lithium ions. . The electrode plate group can be produced, for example, by stacking and stacking a sheet-shaped positive electrode, a separator, and a negative electrode, or by winding the stacked one in an elliptical or circular shape. As the positive electrode material, preferably, Li x Co
Lithium-containing transition metal oxides such as O 2 , Li x NiO 2 , Li x MnO 2, or those obtained by dissolving other metals in these are used. As the negative electrode material, preferably, natural graphite, artificial graphite, amorphous carbon, amorphous carbon, Sn or Si
An intermetallic compound, alloy or oxide having lithium as a constituent element, a composite nitride of lithium and cobalt, or the like is used.

【0016】ゲル状固体電解質は、セパレータと正極と
の間およびセパレータと負極との間に存在し、非水電解
液を保持させるポリマーに保持させたものである。この
ゲル化の方法については後述する。
The gel-like solid electrolyte is present between the separator and the positive electrode and between the separator and the negative electrode, and is held by a polymer that holds the non-aqueous electrolyte. The gelling method will be described later.

【0017】非水電解液を保持させるポリマー及びそれ
を形成するためのオリゴマーとしては、例えば、ポリエ
チレンオキサイド、ポリプロピレンオキサイド、ポリホ
スファゼン、ポリアジリジン、ポリエチレンスルフィ
ド、ポリビニルアルコール、ポリフッ化ビニリデン、ポ
リヘキサフルオロプロピレン、ポリアクロニトリル、ポ
リアクリルメタクリレートやこれらの誘導体、混合物、
複合体などを使用することができる。特に、ポリエチレ
ンオキサイド、ポリプロピレンオキサイドやこの誘導体
等が好ましい。
Examples of the polymer for holding the non-aqueous electrolyte and the oligomer for forming the same include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene. , Polyacrylonitrile, polyacryl methacrylate and their derivatives, mixtures,
Complexes and the like can be used. Particularly, polyethylene oxide, polypropylene oxide and derivatives thereof are preferable.

【0018】このオリゴマーは、数平均分子量が20万
以上であることが必要である。20万より小さいと、電
池内で形成されたポリマーの機械的強度が劣り、電池内
部ショートの防止及び充放電サイクル特性の向上という
本発明の効果が得られないからである。また、数平均分
子量は500万以下であることが好ましいと思われる。
500万より大きいと、プレゲル溶液の粘性が増大し、
極板群やセパレーターの細孔中に含浸浸透させることが
困難になるからである。
This oligomer needs to have a number average molecular weight of 200,000 or more. If the molecular weight is smaller than 200,000, the mechanical strength of the polymer formed in the battery is inferior, and the effects of the present invention such as prevention of short circuit inside the battery and improvement of charge / discharge cycle characteristics cannot be obtained. Also, it seems that the number average molecular weight is preferably 5,000,000 or less.
If it is larger than 5 million, the viscosity of the pregel solution increases,
This is because it becomes difficult to impregnate and permeate the pores of the electrode plate group and the separator.

【0019】非水電解液は、通常、非水電解質二次電池
に用いているものを使用することができる。好ましく
は、エチレンカーボネート、プロピレンカーボネート、
ビニレンカーボネート等の環状カーボネート類と、ジメ
チルカーボネート、ジエチルカーボネート、エチルメチ
ルカーボネート等の鎖状カーボネート類との混合有機溶
媒に支持電解質としてのLiPF6やLiBF4等を溶解
したものが挙げられる。
As the non-aqueous electrolyte, those which are usually used for non-aqueous electrolyte secondary batteries can be used. Preferably, ethylene carbonate, propylene carbonate,
Examples thereof include those obtained by dissolving LiPF 6 or LiBF 4 as a supporting electrolyte in a mixed organic solvent of a cyclic carbonate such as vinylene carbonate and a chain carbonate such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.

【0020】前記オリゴマーと前記非水電解質の重量比
は1:99〜10:90であることが望ましい。オリゴ
マーが少なすぎるとゲル化せずに遊離した非水電解液が
多くなり、ポリマーを用いる電池の利点がなくなるから
であり、逆に多すぎるとリチウムイオン伝導性が低下す
るからである。
The weight ratio of the oligomer to the non-aqueous electrolyte is desirably 1:99 to 10:90. If the amount of the oligomer is too small, the amount of the nonaqueous electrolyte released without gelation increases, and the advantage of the battery using the polymer is lost. Conversely, if the amount is too large, the lithium ion conductivity decreases.

【0021】また、上記非水電解質二次電池は以下の工
程を有する製造方法により作製することができる。 セパレータを介して正極と負極を積層又は捲回して一
体化した極板群に数平均分子量が大きいオリゴマーと非
水電解液と重合性化合物からなるプレゲル溶液を含浸浸
透させる工程と、 さらに外圧をかけて極板群とプレゲル溶液を密着化さ
せる工程と、 プレゲル溶液を含む極板群を外装体に挿入し減圧雰囲
気下で密封した後にオリゴマーと重合性化合物を重合・
硬化と、ポリマーとすると同時にゲル状高分子電解質を
形成する工程、である。
The above non-aqueous electrolyte secondary battery can be manufactured by a manufacturing method having the following steps. A step of impregnating and penetrating a pregel solution comprising an oligomer having a high number average molecular weight, a non-aqueous electrolyte and a polymerizable compound into an electrode group obtained by laminating or winding a positive electrode and a negative electrode via a separator, and further applying external pressure The step of bringing the electrode group and the pregel solution into close contact with each other, and inserting the electrode group containing the pregel solution into the outer package, sealing the mixture under reduced pressure, and then polymerizing the oligomer and the polymerizable compound.
This is a step of curing and simultaneously forming a polymer as well as a gel polymer electrolyte.

【0022】の工程の極板群は真円筒形である必要は
なく、その断面が楕円である長円筒形や長方形等の角柱
状の形状であっても構わない。数平均分子量が大きいオ
リゴマーや非水電解液は先述したものを使用することが
できる。また、重合性化合物としては、t−ヘキシルパ
ーオキシピパレート、t−ブチルパーオキシノデカノエ
ート等の有機過酸化物を用いることができる。プレゲル
溶液の含浸浸透させる方法としては、プレゲル溶液を入
れた容器に極板群を浸す方法、プレゲル溶液を極板群中
に加圧注入方法が挙げられる。オリゴマーの分子量は2
0万以上であると本発明による効果が大きいが、500
万を超えると含浸・浸透が困難になってくる。
The electrode group in the step (1) does not need to be a true cylindrical shape, and may be a prismatic shape such as a long cylinder or a rectangle having an elliptical cross section. As the oligomer and the non-aqueous electrolyte having a large number average molecular weight, those described above can be used. Further, as the polymerizable compound, an organic peroxide such as t-hexylperoxypiparate, t-butylperoxynodecanoate or the like can be used. Examples of the method of impregnating and permeating the pregel solution include a method of immersing the electrode group in a container containing the pregel solution, and a method of pressurizing and injecting the pregel solution into the electrode group. The molecular weight of the oligomer is 2
When the molecular weight is more than 100,000, the effect of the present invention is large,
If it exceeds 10,000, impregnation / penetration becomes difficult.

【0023】の工程の外圧をかける方法としてはシリ
ンダー、ローラ等を用いて圧力を加える方法が挙げられ
る。これによりプレゲル溶液の浸透性が良くなり、極板
群とプレゲル溶液の密着性が良くなる結果、後の工程で
できたゲル状高分子固体電解質と極板との接触抵抗が小
さく、イオン伝導性が良い。
As a method of applying an external pressure in the step, there is a method of applying a pressure using a cylinder, a roller or the like. As a result, the permeability of the pregel solution is improved, and the adhesion between the electrode group and the pregel solution is improved. As a result, the contact resistance between the gelled polymer solid electrolyte formed in a later step and the electrode plate is reduced, and the ion conductivity is improved. Is good.

【0024】の工程の減圧雰囲気下で密封するのは、
次の理由からである。すなわち、重合・硬化の際に大気
中であると酸素の存在によりプレゲル溶液中の重合性化
合物がラジカル反応を起こし、十分な架橋が行えないた
め、通常不活性ガス雰囲気か酸素遮断雰囲気で行うこと
が必須である。電池の密封(封口工程)を減圧雰囲気下
で行うと、酸素遮断雰囲気になることと、脱気ができる
ので、重合・硬化の製造工程に設備として不活性ガス雰
囲気を導入しなくとも良くなるし、充分な架橋が行え
る。さらに脱気できているので気泡を含まないゲル状固
体高分子膜ができる。また、重合、硬化させる方法とし
て、加熱、電子線照射、紫外線照射等が挙げられる。
The sealing under the reduced pressure atmosphere in the step of
For the following reasons. In other words, the presence of oxygen during polymerization / curing causes a radical reaction of the polymerizable compound in the pregel solution due to the presence of oxygen, and sufficient crosslinking cannot be performed. Is required. If the battery is sealed (sealing step) under a reduced pressure atmosphere, it becomes an oxygen-blocking atmosphere and can be degassed, so that it is not necessary to introduce an inert gas atmosphere as equipment in the polymerization / curing manufacturing process. And sufficient crosslinking can be performed. Further, since degassing is performed, a gel-like solid polymer film containing no air bubbles is formed. In addition, as a method of polymerization and curing, heating, electron beam irradiation, ultraviolet irradiation and the like can be mentioned.

【0025】[0025]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0026】(実験1)図1は本発明の第1の実施例に
おける電池外観図であり、図2は本発明の第1の実施例
における構造断面を示すものである。図2において、1
は正極集電体、2は負極集電体、3はゲル状高分子固体
電解質を含むセパレータであり、4はラミネート外装体
である。5は正極活物質層、6は負極活物質層である。
7は正極リード板、8は負極リード板である。
(Experiment 1) FIG. 1 is an external view of a battery according to a first embodiment of the present invention, and FIG. 2 is a sectional view showing a structure according to the first embodiment of the present invention. In FIG. 2, 1
Denotes a positive electrode current collector, 2 denotes a negative electrode current collector, 3 denotes a separator containing a gel polymer solid electrolyte, and 4 denotes a laminate outer package. 5 is a positive electrode active material layer, and 6 is a negative electrode active material layer.
7 is a positive electrode lead plate, and 8 is a negative electrode lead plate.

【0027】上記の構造の電池を、以下に詳しく説明す
る。
The battery having the above structure will be described in detail below.

【0028】まず、正極活物質としてLiCoO2と導
電剤(アセチレンブラック)と結着剤(PVDF)とを
90:7:3の重量比でN−メチル−2ピロリドン溶液
と混練し、ダイコーターを用いて集電体であるアルミ箔
上(20μm)に塗工し正極原反とした。その後乾燥
し、ロールプレス機を用いて圧延を行った後、所定の寸
法に切り出し集電体であるアルミ箔の一端に正極リード
板(アルミ製)を溶接した。このとき活物質層の片面の
厚みは60μmであり電極面積は36cm2であった。
First, LiCoO 2 as a positive electrode active material, a conductive agent (acetylene black) and a binder (PVDF) are kneaded with a N-methyl-2-pyrrolidone solution in a weight ratio of 90: 7: 3, and a die coater is used. It was applied on an aluminum foil (20 μm) as a current collector to obtain a positive electrode raw material. Thereafter, the roll was dried and rolled using a roll press, cut out to a predetermined size, and a positive electrode lead plate (made of aluminum) was welded to one end of an aluminum foil as a current collector. At this time, the thickness of one side of the active material layer was 60 μm, and the electrode area was 36 cm 2 .

【0029】次に、負極活物質として天然黒鉛と結着剤
(PVDF)を97:3の重量比でN−メチル−2ピロ
リドン溶液を混練し、集電体である銅箔上(10μm)
にダイコーターを用いて塗工し負極原反とした。その後
乾燥し、ロールプレス機を用いて圧延を行った後、所定
の寸法に切り出し集電体である銅箔の一端に負極リード
板(銅製)を溶接した。このとき活物質層の片面厚みは
76μmであり電極面積は66cm2であった。
Next, an N-methyl-2-pyrrolidone solution was kneaded with natural graphite and a binder (PVDF) as a negative electrode active material in a weight ratio of 97: 3, and the mixture was coated on a copper foil (10 μm) as a current collector.
Was coated using a die coater to obtain a negative electrode raw material. Thereafter, the roll was dried and rolled using a roll press, cut out to a predetermined size, and a negative electrode lead plate (made of copper) was welded to one end of a copper foil as a current collector. At this time, the thickness of one side of the active material layer was 76 μm, and the electrode area was 66 cm 2 .

【0030】上記の正極と負極をポリエチレン製(10
μm)のセパレータを介して対向するように捲回し、一
体化した極板群を作製した。このようにして得られた極
板群をプレゲル溶液中に浸積し真空圧1.3×10−3
Paの減圧雰囲気下で含浸した後に、プレゲル溶液を含
む極板群をシリンダーにて5kgf/cm2の圧力でプ
レスし密着させた。次にラミネート外装体の凹部に正極
リード板、負極リード板の一部が突出するように挿入
し、突出させたリード側部と長手方向の両端をシール
(熱溶着)した。その後、突出さたリード部に対向する
もう一方を真空圧1.3×10−3Paの減圧雰囲気下
でシールし密封した。その後80℃1時間で加熱して重
合・硬化した。
The positive electrode and the negative electrode were made of polyethylene (10
μm) to form an integrated electrode plate group. The electrode group thus obtained was immersed in a pregel solution, and the vacuum pressure was 1.3 × 10 −3.
After impregnation under a reduced pressure atmosphere of Pa, the electrode plate group containing the pregel solution was pressed with a cylinder at a pressure of 5 kgf / cm 2 and brought into close contact. Next, the positive electrode lead plate and the negative electrode lead plate were inserted into the concave portions of the laminate exterior body so as to protrude, and the protruding lead side portions and both ends in the longitudinal direction were sealed (heat-welded). Thereafter, the other side facing the protruding lead portion was sealed and sealed under a reduced pressure atmosphere of a vacuum pressure of 1.3 × 10 −3 Pa. Thereafter, the mixture was heated at 80 ° C. for 1 hour to be polymerized and cured.

【0031】上記のプレゲル溶液にはエチレンカーボネ
ート(EC)とエチルメチルカーボネート(EMC)を
1:3の体積比で混合した有機溶媒中に支持電解質とし
てLiBF4を1.2mol/lの濃度になるように調
整した電解液にポリエチレンオキシド(分子量1000
〜200万のものを使用)を97:3の重量比で混合し
た後、重合性化合物(t−ヘキシルパーオキシピパレー
ト)を上記混合溶液に対して0.3重量部%添加したも
のを用いた。以上のようにして非水電解質二次電池を作
製した。電池の理論容量は100mAhとした。尚、ポ
リエチレンオキシドは分子量が1000、1万、20
万、50万、100万、200万のものを使用し、それ
ぞれの電池を電池A〜Fとした。
The pregel solution has a concentration of LiBF 4 of 1.2 mol / l as a supporting electrolyte in an organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 1: 3. Polyethylene oxide (molecular weight 1000)
2002,000,000) in a weight ratio of 97: 3, and then a polymerizable compound (t-hexylperoxypiparate) was added in an amount of 0.3% by weight based on the mixed solution. Was. A non-aqueous electrolyte secondary battery was manufactured as described above. The theoretical capacity of the battery was 100 mAh. In addition, polyethylene oxide has a molecular weight of 1,000, 10,000, and 20.
The batteries of 10,000, 500,000, 1,000,000 and 2,000,000 were used, and the batteries were designated as batteries A to F, respectively.

【0032】(実験2)次に、オリゴマーと非水電解液
の重量比の割合についての関係を検討するため、ポリエ
チレンオキシドの分子量を100万とし、非水電解液と
ポリエチレンオキシドとの重量比を99.5〜85:
0.5〜15と変化させ、実験1と同様に非水電解質電
池を作製し、電池G〜Lとした。
(Experiment 2) Next, in order to examine the relationship between the weight ratio of the oligomer and the non-aqueous electrolyte, the molecular weight of polyethylene oxide was set to 1,000,000, and the weight ratio of the non-aqueous electrolyte to the polyethylene oxide was calculated. 99.5-85:
Non-aqueous electrolyte batteries were prepared in the same manner as in Experiment 1, except that the batteries were changed to 0.5 to 15, and batteries GL were obtained.

【0033】(実験3)まず、実験1と同様に一体化し
た極板群を作製した。このようにして得られた極板群を
外装体に収容した後、プレゲル溶液としてエチレンカー
ボネート(EC)とエチルメチルカーボネート(EM
C)を1:3の体積比で混合した有機溶媒中に支持電解
質としてLiBF4を1.2mol/lの濃度になるよ
うに調整した電解液にポリエチレンオキシド(分子量1
00万)を90:10の重量比で混合した後、重合性化
合物(t−ヘキシルパーオキシピパレート)を上記混合
溶液に対して0.5重量部%添加したものを用いた。そ
の後、実験1と同様に注液し密封し重合・硬化して非水
電解質二次電池を作製した。これを電池Mとした。
(Experiment 3) First, an integrated electrode group was produced in the same manner as in Experiment 1. After accommodating the thus obtained electrode plate group in an outer package, ethylene carbonate (EC) and ethyl methyl carbonate (EM) were used as a pregel solution.
C) as a supporting electrolyte in an organic solvent mixed with a volume ratio of 1: 3, LiBF 4 adjusted to a concentration of 1.2 mol / l, and polyethylene oxide (molecular weight 1).
) Were mixed at a weight ratio of 90:10, and then a polymerizable compound (t-hexylperoxypiparate) was added in an amount of 0.5 part by weight based on the mixed solution. Thereafter, in the same manner as in Experiment 1, the solution was injected, sealed, polymerized and cured to produce a non-aqueous electrolyte secondary battery. This was designated as Battery M.

【0034】上記で作製した電池A〜Mの各電池につい
て、以下に示す方法にて評価し、(表1)又は(表2)
に評価結果を示す。
Each of the batteries A to M produced above was evaluated by the following method, and was evaluated as shown in Table 1 or Table 2.
Shows the evaluation results.

【0035】(1)ゲル状高分子固体電解質の電解液保
持性 重合・硬化後の電池を分解し、相分離した電解液の存在
有無を目視観察した。評価は電解液のもれ出ているもの
を不良とし、不良率を求めた。
(1) Electrolyte Retentivity of Gel Polymer Solid Electrolyte The battery after polymerization and curing was disassembled, and the presence or absence of a phase-separated electrolyte was visually observed. In the evaluation, the leakage of the electrolyte was regarded as defective, and the defective rate was determined.

【0036】(2)極板群中のゲル状高分子固体電解質
の均一性 重合・硬化後の一体化した極板群を分解し、極板、セパ
レータのゲル状高分子固体電解質膜を目視観察した。評
価はセパレータに不透明な部分があるものを不良とし、
不良率を求めた。
(2) Uniformity of the gelled polymer solid electrolyte in the electrode plate group The integrated electrode plate group after polymerization and curing is disassembled, and the gelled polymer solid electrolyte membrane of the electrode plate and the separator is visually observed. did. In the evaluation, those with opaque parts in the separator were regarded as defective,
The defect rate was determined.

【0037】(3)サイクル特性 作製した各電池について、室温(25℃)にて0.7C
の定電流、4.2V定電圧で充電を行った後、1C定電
流で3Vまで放電を行うサイクル試験において1サイク
ル目の放電容量(以下、初期放電容量という)と100
サイクル目の放電容量を測定した。評価は、電極単位面
積あたりの放電容量値と初期放電容量に対する100サ
イクル目の放電容量比率を求めた。
(3) Cycle Characteristics For each of the manufactured batteries, 0.7 C at room temperature (25 ° C.) was used.
In a cycle test in which the battery is charged at a constant current of 4.2 V and a constant voltage of 4.2 V and then discharged to 3 V at a constant current of 1 C, the discharge capacity at the first cycle (hereinafter referred to as the initial discharge capacity) is 100
The discharge capacity at the cycle was measured. In the evaluation, the discharge capacity value per unit area of the electrode and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity were obtained.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】(表1)および(表2)に示した評価結果
から次のことがわかる。
The following can be understood from the evaluation results shown in Tables 1 and 2.

【0041】まず、比較例の電池Mは、外装体に収納し
た極板群に注液すると浸透性が悪いため、ゲル状高分子
固体電解質膜の均一性不良率が増える。また、有機高分
子固体電解質の分子量について検討すると、比較例の電
池A及び電池Bは、分子量が小さいので粘性が低く、外
装体に収納した極板群に注液しても浸透性が良く膜の均
一性不良率が少ないが、相分離した電解液が存在してお
り、さらに初期放電容量は大きいがサイクル容量の劣化
が激しい。実施例の電池C〜Fは、有機高分子固体電解
質の分子量が大きいので、電解液に対する有機高分子固
体電解質の濃度を下げても相分離した電解液の存在がな
い。粘性は電池A及び電池Bより高いが極板群をプレゲ
ル溶液中で含浸しており、さらに外圧をかけて密着化し
ているのでゲル状高分子固体電解質膜の均一性不良がな
い。初期放電容量は電池A及び電池Bの電池より少ない
が充放電サイクル劣化の少ない電池を得ることができ
る。
First, in the battery M of the comparative example, when liquid is injected into the electrode group housed in the outer package, the permeability is poor, and the uniformity defective rate of the gel polymer solid electrolyte membrane increases. Further, when examining the molecular weight of the organic polymer solid electrolyte, the batteries A and B of the comparative examples have low viscosity because of their small molecular weight, and have good permeability even when injected into the electrode group housed in the outer package. Although the percentage of poor uniformity was low, the phase-separated electrolytic solution was present, and the initial discharge capacity was large, but the cycle capacity was significantly deteriorated. In the batteries C to F of the examples, since the molecular weight of the organic polymer solid electrolyte is large, even if the concentration of the organic polymer solid electrolyte with respect to the electrolyte is reduced, there is no phase-separated electrolyte. Although the viscosity is higher than that of the battery A and the battery B, the electrode group is impregnated in the pregel solution, and furthermore, an external pressure is applied so as to be in close contact with each other. Although the initial discharge capacity is smaller than those of the batteries A and B, a battery with less charge / discharge cycle deterioration can be obtained.

【0042】また、電解液に対するオリゴマーの濃度を
検討においては、オリゴマーの濃度を上げると、相分離
している電解液の存在は低減されるが、粘性が高く、ゲ
ル状高分子固体電解質膜の均一性不良率が増える。この
ことは充放電反応が不均一になるともいいかえられる。
一方、オリゴマーの濃度を下げると、相分離した電解液
の存在が確認される。
In examining the concentration of the oligomer in the electrolytic solution, when the concentration of the oligomer is increased, the presence of the phase-separated electrolytic solution is reduced, but the viscosity is high, and the gel-like polymer solid electrolyte membrane has a high viscosity. The rate of defective uniformity increases. It can be said that the charge / discharge reaction becomes non-uniform.
On the other hand, when the concentration of the oligomer is reduced, the presence of a phase-separated electrolyte solution is confirmed.

【0043】[0043]

【発明の効果】以上の結果から明らかなように本発明は
分子量の大きいオリゴマーを用いているので電解液に対
するオリゴマーの濃度を下げても相分離した電解液の存
在がなく、一体化した極板群にプレゲル溶液を含浸さ
せ、さらに外圧をかけて極板群とプレゲル溶液とを密着
化させるので、セパレータおよび活物質層への均一なゲ
ル状固体高分子電解質の浸透性が得られる。また重合・
硬化する前にプレゲル溶液を含む極板群を減圧雰囲気下
で密封することで酸素遮断雰囲気になり確実に重合硬化
反応を促進することができる。このように本発明は生産
性、生産歩留まりが良く、優れたサイクル特性を実現で
きるものである。
As is apparent from the above results, the present invention uses an oligomer having a large molecular weight, so that even if the concentration of the oligomer in the electrolyte is reduced, there is no electrolyte separated from the electrolyte and the integrated electrode plate is used. The group is impregnated with the pregel solution, and furthermore, an external pressure is applied to make the electrode group and the pregel solution adhere to each other, so that a uniform gel-like solid polymer electrolyte can penetrate into the separator and the active material layer. In addition, polymerization
By sealing the electrode group containing the pregel solution under a reduced-pressure atmosphere before curing, an oxygen-blocking atmosphere is provided, and the polymerization curing reaction can be surely promoted. As described above, the present invention has good productivity and production yield, and can realize excellent cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における非水電解質二次電池の
外観図
FIG. 1 is an external view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】図1のA−A’線における構成を示す断面構造
FIG. 2 is a sectional structural view showing a configuration taken along line AA ′ of FIG. 1;

【符号の説明】[Explanation of symbols]

1 正極集電体 2 負極集電体 3 ゲル状高分子固体電解質膜を含むセパレータ 4 ラミネート外装体 5 正極活物質 6 負極活物質 7 正極リード板 8 負極リード板 REFERENCE SIGNS LIST 1 positive electrode current collector 2 negative electrode current collector 3 separator including gelled polymer solid electrolyte membrane 4 laminate outer package 5 positive electrode active material 6 negative electrode active material 7 positive electrode lead plate 8 negative electrode lead plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 英之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 大島 透 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AJ11 AJ14 AJ15 AK03 AL07 AM00 AM03 AM05 AM07 AM16 BJ02 BJ04 BJ12 BJ14 CJ03 CJ06 CJ07 CJ11 CJ23 CJ28 HJ01 HJ11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideyuki Ueda 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Toru 1006 Okadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial F Terms (reference) 5H029 AJ03 AJ05 AJ11 AJ14 AJ15 AK03 AL07 AM00 AM03 AM05 AM07 AM16 BJ02 BJ04 BJ12 BJ14 CJ03 CJ06 CJ07 CJ11 CJ23 CJ28 HJ01 HJ11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セパレータを介して正極と負極を積層又
は捲回して一体化した極板群を有する非水電解質二次電
池において、前記セパレータと前記正極との間および前
記セパレータと前記負極との間にポリマーに非水電解液
を保持させてなるゲル状高分子固体電解質をリチウムイ
オン伝導媒体として有し、かつ、前記ポリマーは数平均
分子量が20万以上であるオリゴマーを重合・硬化した
ものであることを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery having an electrode group in which a positive electrode and a negative electrode are laminated or wound with a separator interposed therebetween, wherein a non-aqueous electrolyte between the separator and the positive electrode and between the separator and the negative electrode It has a gelled polymer solid electrolyte in which a non-aqueous electrolyte is held between polymers as a lithium ion conductive medium, and the polymer is obtained by polymerizing and curing an oligomer having a number average molecular weight of 200,000 or more. A non-aqueous electrolyte secondary battery, comprising:
【請求項2】 前記ポリマーと前記非水電解質の重量比
が1:99〜10:90であることを特徴とする請求項
1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the weight ratio of the polymer to the non-aqueous electrolyte is 1:99 to 10:90.
【請求項3】 セパレータを介して正極と負極を積層又
は捲回して一体化した極板群を有する非水電解質二次電
池の製造方法において、一体化した極板群にオリゴマー
と非水電解液と重合性化合物からなるプレゲル溶液を含
浸浸透させる工程と、さらに外圧をかけて前記極板群と
前記プレゲル溶液を密着化させる工程と、前記プレゲル
溶液を含む極板群を外装体に挿入し減圧雰囲気下で密封
した後にオリゴマーと重合性化合物を重合・硬化し、ポ
リマーとすると同時にゲル状高分子固体電解質を形成す
る工程と、を備えたことを特徴とする非水電解質二次電
池の製造方法。
3. A method for producing a non-aqueous electrolyte secondary battery having an electrode group in which a positive electrode and a negative electrode are laminated or wound via a separator, wherein the integrated electrode group includes an oligomer and a non-aqueous electrolyte. And a step of impregnating and permeating a pregel solution comprising a polymerizable compound, and a step of further applying external pressure to bring the electrode group and the pregel solution into close contact with each other, and inserting the electrode group containing the pregel solution into an exterior body and reducing the pressure. A process for polymerizing and curing the oligomer and the polymerizable compound after sealing in an atmosphere to form a polymer and a gel polymer solid electrolyte at the same time as a polymer, the method comprising the steps of: .
【請求項4】 前記オリゴマーの数平均分子量が20万
以上であることを特徴とする請求項3記載の非水電解質
二次電池の製造方法。
4. The method for producing a non-aqueous electrolyte secondary battery according to claim 3, wherein the number average molecular weight of the oligomer is 200,000 or more.
【請求項5】 前記オリゴマーと前記非水電解質の重量
比が1:99〜10:90であることを特徴とする請求
項3記載の非水電解質二次電池の製造方法。
5. The method according to claim 3, wherein the weight ratio of the oligomer to the non-aqueous electrolyte is 1:99 to 10:90.
JP2001089499A 2000-03-31 2001-03-27 Nonaqueous electrolyte secondary battery and method of manufacturing it Pending JP2001345121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001089499A JP2001345121A (en) 2000-03-31 2001-03-27 Nonaqueous electrolyte secondary battery and method of manufacturing it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-97320 2000-03-31
JP2000097320 2000-03-31
JP2001089499A JP2001345121A (en) 2000-03-31 2001-03-27 Nonaqueous electrolyte secondary battery and method of manufacturing it

Publications (1)

Publication Number Publication Date
JP2001345121A true JP2001345121A (en) 2001-12-14

Family

ID=26589105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089499A Pending JP2001345121A (en) 2000-03-31 2001-03-27 Nonaqueous electrolyte secondary battery and method of manufacturing it

Country Status (1)

Country Link
JP (1) JP2001345121A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029082A (en) * 2009-07-28 2011-02-10 Toyota Motor Corp Solid battery and manufacturing method therefor
JP2014149970A (en) * 2013-01-31 2014-08-21 Sekisui Chem Co Ltd Gel coating machine and device for manufacturing lithium ion secondary battery
WO2018159950A1 (en) * 2017-03-03 2018-09-07 주식회사 엘지화학 Lithium secondary battery
KR20190060522A (en) * 2017-11-24 2019-06-03 주식회사 엘지화학 Method for preparing lithium secondary battery comprising gel polymer electrolyte

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029082A (en) * 2009-07-28 2011-02-10 Toyota Motor Corp Solid battery and manufacturing method therefor
JP2014149970A (en) * 2013-01-31 2014-08-21 Sekisui Chem Co Ltd Gel coating machine and device for manufacturing lithium ion secondary battery
WO2018159950A1 (en) * 2017-03-03 2018-09-07 주식회사 엘지화학 Lithium secondary battery
US11935999B2 (en) 2017-03-03 2024-03-19 Lg Energy Solution, Ltd. Lithium secondary battery
KR20190060522A (en) * 2017-11-24 2019-06-03 주식회사 엘지화학 Method for preparing lithium secondary battery comprising gel polymer electrolyte
KR102425558B1 (en) 2017-11-24 2022-07-26 주식회사 엘지에너지솔루션 Method for preparing lithium secondary battery comprising gel polymer electrolyte

Similar Documents

Publication Publication Date Title
JP3722797B2 (en) Electrolyte-containing granular electrode for lithium storage battery
KR100833808B1 (en) Polymer electrolyte battery and method of producing same
EP1401037B1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
EP0851522B1 (en) Method of fabricating a lithium ion secondary battery
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
KR100547085B1 (en) Manufacturing method of polymer porous separator and lithium ion polymer battery
WO2000041263A1 (en) Thin battery and method of manufacturing
JP3904935B2 (en) Method for producing lithium polymer secondary battery
JP2001266941A (en) Manufacturing method of gel electrolyte battery
JP4507345B2 (en) Method for producing lithium polymer secondary battery
JP4945054B2 (en) Lithium polymer secondary battery and manufacturing method thereof
JP4188668B2 (en) Lithium polymer secondary battery, manufacturing method thereof and manufacturing apparatus thereof
JP4197804B2 (en) Method for manufacturing lithium secondary battery
JP2001035535A (en) Nonaqueous secondary battery and manufacture thereof
JP2012142099A (en) Secondary battery and manufacturing method thereof
JP2001345121A (en) Nonaqueous electrolyte secondary battery and method of manufacturing it
JP2001110449A (en) Ion conductive sheet
KR100364965B1 (en) Method for manufacturing electrode of lithium polymer battery and lithium polymer battery using the electrode made by the method
JP5560870B2 (en) Separator, electrochemical device, and separator manufacturing method
JP2002025618A (en) Method for manufacturing lithium polymer secondary battery
JP2002231196A (en) Method of manufacturing thin battery
JP2007227301A (en) Lithium polymer battery
KR20030005254A (en) A multi-layered polymer electrolyte and lithium secondary battery comprising the same
JP2001210370A (en) Manufacturing method of gel electrolyte battery
JP2004079310A (en) Manufacturing method for polymer lithium secondary battery