JP2014148567A - Resin composition and near-infrared ray cut filter - Google Patents

Resin composition and near-infrared ray cut filter Download PDF

Info

Publication number
JP2014148567A
JP2014148567A JP2013016608A JP2013016608A JP2014148567A JP 2014148567 A JP2014148567 A JP 2014148567A JP 2013016608 A JP2013016608 A JP 2013016608A JP 2013016608 A JP2013016608 A JP 2013016608A JP 2014148567 A JP2014148567 A JP 2014148567A
Authority
JP
Japan
Prior art keywords
resin
resin composition
formula
cut filter
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013016608A
Other languages
Japanese (ja)
Inventor
Kazuki NIIMI
一樹 新見
Ryotaro Morita
陵太郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2013016608A priority Critical patent/JP2014148567A/en
Publication of JP2014148567A publication Critical patent/JP2014148567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition prepared using a squarylium compound with less absorption in a visible range (400-500 nm), and also provide a near-infrared ray cut filter prepared using the resin composition, particularly a near-infrared ray cut filter for an image pickup device such as CCD and CMOS.SOLUTION: A resin composition is composed of a squarylium compound represented by the formula (1) and a resin, wherein groups Arand Arrepresent a substituent comprising a condensed ring of a nitrogen-containing five-membered ring having a substituent such as a benzyl group at a nitrogen atom and benzene or naphthalene.

Description

本発明はスクアリリウム化合物を含有する樹脂組成物、及びこれらを用いた近赤外線フィルタ(光学フィルタ)に関する。   The present invention relates to a resin composition containing a squarylium compound, and a near infrared filter (optical filter) using the same.

デジタルカメラなどに使用されているCCDやCMOS等の撮像素子は、可視域〜1100nm付近の近赤外域に渡る分光感度を有しており、これに対して人間の目は400nm〜700nm付近の波長の光を感じることができる。よって撮像素子と人間の目では分光感度に大きな差があるため、撮像素子の前面に近赤外域を吸収する近赤外線カットフィルタを備えて、人間の目の視感度に補正することが必要であることが知られている。   Image sensors such as CCDs and CMOSs used in digital cameras have a spectral sensitivity over the near infrared region from the visible region to near 1100 nm, whereas the human eye has a wavelength around 400 nm to 700 nm. Can feel the light. Therefore, since there is a large difference in spectral sensitivity between the image sensor and the human eye, it is necessary to provide a near-infrared cut filter that absorbs the near-infrared region in front of the image sensor to correct the visual sensitivity of the human eye. It is known.

撮像素子に用いられる近赤外線カットフィルタには、特許文献1の記載にあるようにリン酸塩系ガラスにCuOを添加したガラスフィルタが知られている。しかしながらこの近赤外吸収能を有するガラスは、非常に高価である。また、ガラスであるために加工性に問題があり、光学特性の設計の自由度も狭い。さらに、それゆえ、新たな近赤外吸収能を組み込んだフィルタおよび組成物(熱硬化或いは光硬化性組成物を含んでも良い)の開発が望まれていた。   As a near-infrared cut filter used for an image sensor, a glass filter in which CuO is added to phosphate glass is known as described in Patent Document 1. However, the glass having the near infrared absorption ability is very expensive. Moreover, since it is glass, there exists a problem in workability, and the freedom degree of design of an optical characteristic is also narrow. In addition, therefore, the development of filters and compositions (which may include thermoset or photocurable compositions) incorporating new near infrared absorption capabilities has been desired.

近赤外吸収能を有する有機色素として、特許文献2〜4のものが知られており、中でも、対イオンが六フッ化アンチモン酸イオンであるシアニン色素やジイモニウム色素が主に使用されていたが、アンチモンを含む化合物は劇物に該当する為、近年、重金属等の使用が規制を受ける産業分野、特に電気材料分野では重金属を含まない化合物が望まれていた。特許文献4には重金属を含有しない化合物が記載されているが、これらは塗工等に使用する溶媒に対する溶解性が不十分である。この点を改善した、加工性の良い化合物が特許文献5に記載されているが、可視域に吸収を持っており、さらに可視光透過率の良い色素化合物の開発が強く望まれている。   Although the thing of patent documents 2-4 is known as an organic pigment | dye which has near-infrared absorptivity, Although the cyanine pigment | dye and diimonium pigment | dye whose counter ion is a hexafluoroantimonate ion were mainly used especially. Since antimony-containing compounds fall under the category of deleterious substances, compounds that do not contain heavy metals have been desired in recent years, particularly in the industrial field where the use of heavy metals and the like is regulated, particularly in the field of electrical materials. Patent Document 4 describes compounds that do not contain heavy metals, but these compounds have insufficient solubility in solvents used for coating and the like. A compound with improved processability and good processability is described in Patent Document 5, but there is a strong demand for development of a dye compound having absorption in the visible region and having good visible light transmittance.

これらの問題を解決するために、特許文献5の記載にもあるように、650nm〜750nmの領域を吸収する色素、及び該色素を含有することを特徴とする近赤外線吸収組成物が提案されているが、まだ十分であるとは言えない。   In order to solve these problems, as described in Patent Document 5, a dye that absorbs a region of 650 nm to 750 nm, and a near-infrared absorbing composition characterized by containing the dye have been proposed. But it's not enough.

一方で可視光透過率の良い色素化合物として、非特許文献1の記載にあるようなスクアリリウム化合物が挙げられるが、近赤外線カットフィルタに用いるには最大吸収波長が短く、十分であるとは言えない。   On the other hand, a squarylium compound as described in Non-Patent Document 1 is an example of a dye compound having a good visible light transmittance. However, the maximum absorption wavelength is short for use in a near-infrared cut filter and cannot be said to be sufficient. .

このような背景から近年、可視光吸収が少ない近赤外線吸収化合物や該化合物を用いた樹脂組成物、及び近赤外線カットフィルタ、特に400nm〜500nmの吸収がより少なく650nm〜750nmの領域に吸収のあるCCDやCMOSなどの撮像素子用の近赤外線吸収色素、及び該色素を用いた近赤外線カットフィルタの開発が強く求められている。   From such a background, in recent years, a near-infrared absorbing compound with little visible light absorption, a resin composition using the compound, and a near-infrared cut filter, particularly absorption at 400 nm to 500 nm is less and absorption is in the region of 650 nm to 750 nm. There is a strong demand for the development of near-infrared absorbing dyes for image sensors such as CCD and CMOS, and near-infrared cut filters using the dyes.

特開昭62−128943号公報JP 62-128943 A 特開2000−81511号公報JP 2000-81511 A 特公平5−37119号公報Japanese Patent Publication No. 5-37119 特許第3045404号公報Japanese Patent No. 3045404 特開2006−343631号公報JP 2006-343631 A JOEM HANDBOOK 2 ABSORPTION SPECTRA OF DYES FOR DIODE LASERS p.51JOEHANDBOOK 2 ABSORPTION SPECTRA OF DYES FOR DIODE LASTERS p. 51

本発明は可視域、特に400nm〜500nmに吸収の少ないスクアリリウム化合物を用いた樹脂組成物、及び可視域吸収の少ない近赤外線カットフィルタの提供を目的とする。   An object of the present invention is to provide a resin composition using a squarylium compound with little absorption in the visible region, particularly 400 nm to 500 nm, and a near-infrared cut filter with little visible region absorption.

本発明者等は上記課題を解決するべく、鋭意検討の結果、下記の式(1)で表される特定のスクアリリウム化合物の樹脂組成物及び近赤外線カットフィルタが前記課題を解決するものであることを見出し、本発明を完成させた。   As a result of intensive studies, the present inventors have solved the above-mentioned problems by a resin composition of a specific squarylium compound represented by the following formula (1) and a near-infrared cut filter. The present invention was completed.

即ち、本発明は、
(1)下記の式(1)で表される化合物と樹脂から成ることを特徴とする樹脂組成物、

Figure 2014148567
(式中、基Ar、Arはそれぞれ独立に下記の式(2)〜(4)のいずれかの置換基を表す。ただし、Ar、Arが共に(2)の場合は除く)
Figure 2014148567
(式(2)〜(4)中、基Aは独立に下記の式(5)〜(8)のいずれかの置換基を表す。)
Figure 2014148567
(式(5)中、nは0〜3の整数を表す。)
Figure 2014148567
Figure 2014148567
Figure 2014148567
(式(8)中、mは0〜3の整数を表す。)
(2)式(1)において、基Ar、Arが共に式(3)である化合物を含有することを特徴とする(1)に記載の樹脂組成物、
(3)式(3)において、基Aが式(5)である化合物を含有することを特徴とする(1)または(2)に記載の樹脂組成物、
(4)(3)に記載の樹脂組成物を用いた近赤外線カットフィルタ、
(5)(4)に記載の近赤外線カットフィルタを用いた撮像素子、
に関する。 That is, the present invention
(1) A resin composition comprising a compound represented by the following formula (1) and a resin:
Figure 2014148567
(In the formula, groups Ar 1 and Ar 2 each independently represent a substituent of any one of the following formulas (2) to (4), except when both Ar 1 and Ar 2 are (2)).
Figure 2014148567
(In the formulas (2) to (4), the group A independently represents any substituent of the following formulas (5) to (8).)
Figure 2014148567
(In formula (5), n represents an integer of 0 to 3)
Figure 2014148567
Figure 2014148567
Figure 2014148567
(In formula (8), m represents an integer of 0 to 3.)
(2) The resin composition according to (1), wherein in the formula (1), the groups Ar 1 and Ar 2 both contain a compound represented by the formula (3),
(3) The resin composition according to (1) or (2), wherein in the formula (3), the group A contains a compound represented by the formula (5),
(4) A near-infrared cut filter using the resin composition according to (3),
(5) An image sensor using the near-infrared cut filter according to (4),
About.

本発明により、可視域、特に400nm〜500nmに吸収の少ないスクアリリウム化合物の樹脂組成物、及びそれらを用いた可視域吸収の少ない近赤外線カットフィルタ、特にはCCDやCMOSなどの撮像素子用の近赤外線カットフィルタを提供することができた。   INDUSTRIAL APPLICABILITY According to the present invention, a squarylium compound resin composition that absorbs less in the visible region, particularly 400 nm to 500 nm, and a near-infrared cut filter that uses the visible region that absorbs less visible region, particularly near-infrared rays for image sensors such as CCD and CMOS. A cut filter could be provided.

本発明を詳細に説明する。
式(1)中、基Ar、Arは式(2)〜(4)を表し、好ましくは式(3)である。
The present invention will be described in detail.
In formula (1), the groups Ar 1 and Ar 2 represent formulas (2) to (4), preferably formula (3).

式(5)中、nは0〜3の整数を表し、好ましくは0〜1、より好ましくは1である。また、式(8)中、mは0〜3の整数を表し、好ましくは3である。   In formula (5), n represents an integer of 0 to 3, preferably 0 to 1, and more preferably 1. Moreover, in Formula (8), m represents the integer of 0-3, Preferably it is 3.

前記の基Ar、Ar、A、n、mのうち、好ましいものを組み合せた化合物はより好ましく、より好ましいものを組み合せた化合物はさらに好ましい。好ましいものと、より好ましいものとの組み合わせ等についても同様である。 Of the groups Ar 1 , Ar 2 , A, n, and m, a compound in which preferable ones are combined is more preferable, and a compound in which more preferable ones are combined is more preferable. The same applies to combinations of preferable and more preferable ones.

上記の式(1)で表されるスクアリリウム化合物は種々の方法で製造されるが、例えば、基ArとArが同一かどうかによらず、Dyes and Pigments Volume 95,Issue 3,2012,p.657−670(参考文献1)、に記載の方法で製造することができる。 The squarylium compound represented by the above formula (1) is produced by various methods. For example, Dyes and Pigments Volume 95, Issue 3, 2012, p, regardless of whether the groups Ar 1 and Ar 2 are the same. . 657-670 (Reference Document 1).

スクアリリウム化合物を含む本発明の樹脂組成物を使用した赤外線カットフィルタ(光学フィルタ)は、スクアリリウム化合物を含有する樹脂層を基材上に設けたものでも、又、基材自体がスクアリリウム化合物を含有する樹脂組成物(又はその硬化物)からなる層であってもよい。基材としては、一般に光学フィルタに使用し得るものであれば特に制限されないが、通常、樹脂製の基材が使用される。層の厚みは通常0.1μm〜10mm程度であるが、近赤外線カット率等の目的に応じて適宜、決定できる。   The infrared cut filter (optical filter) using the resin composition of the present invention containing a squarylium compound may be one in which a resin layer containing a squarylium compound is provided on a substrate, or the substrate itself contains a squarylium compound. The layer which consists of a resin composition (or its hardened | cured material) may be sufficient. The substrate is not particularly limited as long as it can be generally used for an optical filter, but a resin substrate is usually used. The thickness of the layer is usually about 0.1 μm to 10 mm, but can be appropriately determined according to the purpose such as the near infrared cut rate.

又、本発明の樹脂組成物に用いるスクアリリウム化合物の含有率も目的とする近赤外線カット率に応じて適宜、決定できる。用いる樹脂製の基材としては、例えば、ポリエチレン、ポリシクロアルカン、ポリスチレン、ポリアクリル酸、ポリアクリル酸エステル、ポリ酢酸ビニル、ポリアクリロニトリル、ポリ塩化ビニル、ポリフッ化ビニル等のビニル化合物、及びそれらのビニル化合物の付加重合体、ポリメタクリル酸、ポリメタクリル酸エステル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリシアン化ビニリデン、フッ化ビニリデン/ トリフルオロエチレン共重合体、フッ化ビニリデン/ テトラフルオロエチレン共重合体、シアン化ビニリデン/ 酢酸ビニル共重合体等のビニル化合物又はフッ素系化合物の共重合体、ポリトリフルオロエチレン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン等のフッ素を含む樹脂、ナイロン6、ナイロン66等のポリアミド、ポリイミド、ポリウレタン、ポリペプチド、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ポリオキシメチレン等のポリエーテル、エポキシ樹脂、ポリビニルアルコール、ポリビニルブチラール等が挙げられる。   Moreover, the content rate of the squarylium compound used for the resin composition of this invention can also be suitably determined according to the target near-infrared cut rate. Examples of the resin base material used include polyethylene, polycycloalkane, polystyrene, polyacrylic acid, polyacrylic acid ester, polyvinyl acetate, polyacrylonitrile, polyvinyl chloride, polyvinyl fluoride, and other vinyl compounds, and their Addition polymer of vinyl compound, polymethacrylic acid, polymethacrylic acid ester, polyvinylidene chloride, polyvinylidene fluoride, polyvinylidene fluoride, vinylidene fluoride / trifluoroethylene copolymer, vinylidene fluoride / tetrafluoroethylene copolymer, Vinyl compounds such as vinylidene cyanide / vinyl acetate copolymers or copolymers of fluorine compounds, fluorine-containing resins such as polytrifluoroethylene, polytetrafluoroethylene, and polyhexafluoropropylene, nylon 6, and nylon Polyamide 66 or the like, polyimides, polyurethanes, polypeptides, polyesters such as polyethylene terephthalate, polycarbonate, polyether polyoxymethylene or the like, epoxy resins, polyvinyl alcohol, polyvinyl butyral, and the like.

本発明の赤外線カットフィルタ(光学フィルタ)を作製する方法としては特に限定されるものではないが、例えば、下記の公知の方法が利用できる。1)樹脂にスクアリリウム化合物を混練し、本発明の樹脂組成物とし、加熱成形して樹脂板又はフィルムを作製する方法、2)スクアリリウム化合物と樹脂モノマー又は樹脂モノマーの予備重合体を重合触媒の存在下にキャスト重合し、樹脂板又はフィルムを作製する方法、3)スクアリリウム化合物を含有する塗料を作製し、透明樹脂板、透明フィルム、又は透明ガラス板にコーティングする方法、4)スクアリリウム化合物及び樹脂(接着剤)を含有させた組成物を用いて、合わせ樹脂板、合わせ樹脂フィルム、又は合わせガラス板を作製する方法、等である。   Although it does not specifically limit as a method of producing the infrared cut filter (optical filter) of this invention, For example, the following well-known method can be utilized. 1) A method of kneading a squarylium compound into a resin to obtain a resin composition of the present invention and thermoforming it to produce a resin plate or film. 2) Presence of a polymerization catalyst comprising a squarylium compound and a resin monomer or a prepolymer of the resin monomer. A method for producing a resin plate or film by cast polymerization below, 3) a method for producing a coating containing a squarylium compound, and coating the transparent resin plate, transparent film or transparent glass plate, 4) a squarylium compound and a resin ( And a method of producing a laminated resin plate, a laminated resin film, or a laminated glass plate using a composition containing an adhesive).

1)の方法は、用いる樹脂によって加工温度、フィルム化(樹脂板化)条件等が多少異なるが、通常、スクアリリウム化合物を例えば上記の基材樹脂の粉体又はペレットに添加し、150〜350℃に加熱、溶解させた後、成形して樹脂板を作製する方法あるいは押し出し機によりフィルム化(樹脂板化)する方法等が挙げられる。スクアリリウム化合物の添加量は、作製する樹脂板又はフィルムの厚み、吸収強度、可視光透過率等によって異なるが、通常、基材樹脂の質量に対して0.01〜30質量%程度、好ましくは0.03〜15質量%程度使用される。   In the method 1), the processing temperature, filming (resin plate) conditions, etc. are slightly different depending on the resin to be used. Usually, a squarylium compound is added to, for example, the above-mentioned base resin powder or pellet, and the temperature is 150 to 350 ° C. And a method of forming a resin plate by heating and dissolving, or a method of forming a film (resin plate) with an extruder. The addition amount of the squarylium compound varies depending on the thickness, absorption strength, visible light transmittance, etc. of the resin plate or film to be produced, but is usually about 0.01 to 30% by mass, preferably 0, based on the mass of the base resin. About 0.03 to 15% by mass is used.

2)の方法は、スクアリリウム化合物と、樹脂モノマー又は樹脂モノマーの予備重合体を重合触媒の存在下に型内に注入し、本発明の樹脂組成物とし、反応させて硬化させるか、又は、金型に流し込んで型内で硬い製品となるまで固化させて成形する方法が挙げられる。多くの樹脂がこの方法で成形可能であり、その様な樹脂としては、(メタ)アクリル樹脂、ジエチレングリコールビス(アリルカーボネート)樹脂、エポキシ樹脂、フェノール− ホルムアルデヒド樹脂、ポリスチレン樹脂、シリコン樹脂等が挙げられる。その中でも、硬度、耐熱性、耐薬品性に優れたアクリルシートが得られるメタクリル酸メチルの塊状重合によるキャスティング法が好ましい。重合触媒としては公知のラジカル熱重合開始剤が利用でき、例えば、ベンゾイルパーオキシド、p−クロロベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート等の過酸化物、アゾビスイソブチロニトリル等のアゾ化合物が挙げられる。その使用量は混合物の総量に対して、一般的に0.01〜5質量% である。熱重合における加熱温度は、通常40〜200℃であり、重合時間は通常30分〜8時間程度である。又、熱重合以外に、光重合開始剤や増感剤を添加して光重合する方法も採用できる。   In the method of 2), a squarylium compound and a resin monomer or a prepolymer of a resin monomer are injected into a mold in the presence of a polymerization catalyst to form a resin composition of the present invention, which is reacted and cured, or gold There is a method in which it is cast into a mold and solidified until it becomes a hard product in the mold. Many resins can be molded by this method, and examples of such resins include (meth) acrylic resins, diethylene glycol bis (allyl carbonate) resins, epoxy resins, phenol-formaldehyde resins, polystyrene resins, and silicon resins. . Among them, the casting method by bulk polymerization of methyl methacrylate, which can obtain an acrylic sheet excellent in hardness, heat resistance, and chemical resistance, is preferable. As the polymerization catalyst, known radical thermal polymerization initiators can be used, for example, peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, diisopropyl peroxycarbonate, and azo compounds such as azobisisobutyronitrile. It is done. The amount used is generally from 0.01 to 5% by weight, based on the total amount of the mixture. The heating temperature in the thermal polymerization is usually 40 to 200 ° C., and the polymerization time is usually about 30 minutes to 8 hours. In addition to thermal polymerization, a method of photopolymerization by adding a photopolymerization initiator or a sensitizer can also be employed.

3)の方法は、スクアリリウム化合物をバインダー樹脂及び溶媒に溶解し塗料(本発明の樹脂組成物)化する方法、スクアリリウム化合物を樹脂の存在下に微粒子化して分散し、水系塗料とする方法等がある。前者の方法では、例えば、脂肪族エステル樹脂、アクリル系樹脂、メラミン樹脂、ウレタン樹脂、芳香族エステル樹脂、ポリカーボネート樹脂、ポリビニル系樹脂、脂肪族ポリオレフィン樹脂、芳香族ポリオレフィン樹脂、ポリビニルアルコール樹脂、ポリビニル変性樹脂等、又は、それらの共重合樹脂を用いる事ができる。   The method of 3) includes a method of dissolving the squarylium compound in a binder resin and a solvent to form a paint (resin composition of the present invention), a method of dispersing the squarylium compound into fine particles in the presence of the resin, and forming a water-based paint. is there. In the former method, for example, aliphatic ester resin, acrylic resin, melamine resin, urethane resin, aromatic ester resin, polycarbonate resin, polyvinyl resin, aliphatic polyolefin resin, aromatic polyolefin resin, polyvinyl alcohol resin, polyvinyl modification Resins or the like or copolymer resins thereof can be used.

溶媒としては、ハロゲン系、アルコール系、ケトン系、エステル系、脂肪族炭化水素系、芳香族炭化水素系、エーテル系の溶媒、又は、それらの混合溶媒を用いることができる。スクアリリウム化合物の濃度は、作製するコーティングの厚み、吸収強度、可視光透過率によって異なるが、バインダー樹脂に対して一般的に0.1〜30質量%程度である。このようにして得られた塗料を透明樹脂フィルム、透明樹脂板、透明ガラス等の上にスピンコーター、バーコーター、ロールコーター、スプレー等でコーティングして近赤外線吸収フィルタを得ることができる。   As the solvent, a halogen-based, alcohol-based, ketone-based, ester-based, aliphatic hydrocarbon-based, aromatic hydrocarbon-based, ether-based solvent, or a mixed solvent thereof can be used. The concentration of the squarylium compound varies depending on the thickness of the coating to be produced, the absorption strength, and the visible light transmittance, but is generally about 0.1 to 30% by mass with respect to the binder resin. The paint thus obtained can be coated on a transparent resin film, transparent resin plate, transparent glass or the like with a spin coater, bar coater, roll coater, spray or the like to obtain a near infrared absorption filter.

4)の方法は、シリコン系、ウレタン系、アクリル系等の樹脂用、ポリビニルブチラール接着剤、エチレン− 酢酸ビニル系接着剤等の合わせガラス用の公知の透明接着剤に、スクアリリウム化合物を0.1〜30質量%程度添加した樹脂を用い、透明な樹脂板同士、樹脂板と樹脂フィルム、樹脂板とガラス、樹脂フィルム同士、樹脂フィルムとガラス、ガラス同士を接着することにより光学フィルタを作製する。尚、それぞれの方法で混練・混合の際、紫外線吸収剤、可塑剤等の樹脂成形に用いる通常の添加剤を加えてもよい。   In the method 4), 0.1% of squarylium compound is added to a known transparent adhesive for laminated glass such as silicon-based, urethane-based, acrylic-based resin, polyvinyl butyral adhesive, ethylene-vinyl acetate-based adhesive, and the like. An optical filter is prepared by bonding transparent resin plates, resin plates and resin films, resin plates and glass, resin films, resin films and glass, and glasses using a resin added to about 30% by mass. In addition, when kneading and mixing by each method, usual additives used for resin molding such as an ultraviolet absorber and a plasticizer may be added.

本発明の近赤外線カットフィルタは近赤外線吸収化合物として上記の式(1)のスクアリリウム化合物のみを1種又は2種以上使用してもよいが、吸収波長域を広くするために、更にこれらの化合物以外の近赤外線吸収化合物を併用してもよい。併用できる他の近赤外線吸収化合物としては、例えば、シアニン系化合物、ジイモニウム系化合物、フタロシアニン系化合物、ニッケルジチオール錯体等の金属錯体化合物が挙げられる。これらと併用できる他の近赤外線吸収化合物がカチオン系である場合、対アニオンはトリス(ハロゲノアルキルスルホニル)メチドアニオンであってもよい。他の近赤外線吸収化合物としては、特にジイモニウム系化合物が好ましく、更に、このジイモニウム系化合物の対アニオンがトリス(ハロゲノアルキルスルホニル)メチドアニオンであるものが好ましい。   The near-infrared cut filter of the present invention may use only one or two or more squarylium compounds of the above formula (1) as a near-infrared absorbing compound, but these compounds are further used to broaden the absorption wavelength range. Other near infrared absorbing compounds may be used in combination. Examples of other near infrared absorbing compounds that can be used in combination include metal complex compounds such as cyanine compounds, diimonium compounds, phthalocyanine compounds, and nickel dithiol complexes. When other near infrared ray absorbing compounds that can be used in combination with these are cationic, the counter anion may be a tris (halogenoalkylsulfonyl) methide anion. As the other near-infrared absorbing compound, a diimonium compound is particularly preferable, and a counter anion of the diimonium compound is preferably a tris (halogenoalkylsulfonyl) methide anion.

又、併用できる無機金属の近赤外線吸収化合物としては、例えば、金属銅又は硫化銅、酸化銅等の銅化合物、酸化亜鉛を主成分とする混合物、タングステン化合物、酸化チタンを主成分とする混合物等が挙げられる。   Examples of the near-infrared absorbing compound of inorganic metal that can be used in combination include, for example, copper compounds such as metallic copper or copper sulfide, copper oxide, a mixture mainly composed of zinc oxide, a tungsten compound, and a mixture mainly composed of titanium oxide. Is mentioned.

近赤外線吸収用の本発明の光学フィルタは、撮像素子用途やディスプレイの前面板に限らず、近赤外線をカットする必要があるフィルタフィルム、例えば、断熱フィルム、光学製品、サングラス等にも使用することが出来る。   The optical filter of the present invention for absorbing near infrared rays is used not only for imaging device applications and display front plates, but also for filter films that need to cut near infrared rays, such as heat insulating films, optical products, sunglasses, etc. I can do it.

以下に本発明を実施例により、具体的に説明するが、本発明は実施例に限定されるものではない。なお、特別の記載のない限り、本文中「部」及び「%」とあるのは質量基準である。また、分光特性は紫外可視分光光度計UV−3150(島津製作所社製)を用い、メタノール中で測定した。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples. Unless otherwise specified, “part” and “%” in the text are based on mass. Spectral characteristics were measured in methanol using an ultraviolet-visible spectrophotometer UV-3150 (manufactured by Shimadzu Corporation).

[実施例1]
ジアリルフタレート樹脂(ダイソー株式会社製、商品名「ダイソーダップS」)を、クロロホルム に30質量% になるように溶解して、主剤溶液を得た。この主剤溶液の全質量に対して、参考文献1にて合成される下記式(9)で表されるスクアリリウム化合物(最大吸収波長:662nm)を0.05質量%となるように主剤溶液に添加し、これらを溶解させた塗工液を得た。この塗工液をスピンコーター上に配置したガラス基板上に滴下し、その基板を1000rpmで10秒間回転させることで基板表面をコーティングし、その後80℃で10分間乾燥させて光学フィルタを得た。
[Example 1]
A diallyl phthalate resin (Daiso Co., Ltd., trade name “Daiso Dup S”) was dissolved in chloroform so as to be 30% by mass to obtain a base solution. The squarylium compound (maximum absorption wavelength: 662 nm) represented by the following formula (9) synthesized in Reference 1 is added to the main agent solution so as to be 0.05% by mass with respect to the total mass of the main agent solution. Thus, a coating solution in which these were dissolved was obtained. This coating solution was dropped on a glass substrate placed on a spin coater, and the substrate surface was coated by rotating the substrate at 1000 rpm for 10 seconds, and then dried at 80 ° C. for 10 minutes to obtain an optical filter.

Figure 2014148567
Figure 2014148567

[比較例1]
特許第4635007号公報を参考に合成される下記式(10)で表されるシアニン化合物(最大吸収波長:693nm)のみを0.14質量%用いる以外は実施例1と同様にして比較用の光学フィルタを作製した。この光学フィルタを比較例1とする。
[Comparative Example 1]
Optical for comparison in the same manner as in Example 1, except that only 0.14% by mass of a cyanine compound (maximum absorption wavelength: 693 nm) represented by the following formula (10) synthesized with reference to Japanese Patent No. 4635007 is used. A filter was produced. This optical filter is referred to as Comparative Example 1.

Figure 2014148567
Figure 2014148567

実施例1および比較例1で得た光学フィルタの光学特性を下記方法で評価した。   The optical characteristics of the optical filters obtained in Example 1 and Comparative Example 1 were evaluated by the following methods.

[光学特性]
前記の分光光度計を用い、実施例1、及び比較例1の各光学フィルタの吸光度を200〜1100nmの範囲で測定した。実施例1及び比較例1の光学フィルタの最大吸収波長での吸光度をA2、400nm〜500nmの波長領域における最大吸収波長での吸光度をA1とし、A1とA2の比R(A2/A1)を求めた。それぞれの値を表1に示す。
[optical properties]
Using the spectrophotometer, the absorbance of each optical filter of Example 1 and Comparative Example 1 was measured in the range of 200 to 1100 nm. The absorbance at the maximum absorption wavelength of the optical filter of Example 1 and Comparative Example 1 is A2, and the absorbance at the maximum absorption wavelength in the wavelength region of 400 nm to 500 nm is A1, and the ratio R (A2 / A1) of A1 and A2 is obtained. It was. The respective values are shown in Table 1.

Figure 2014148567
Figure 2014148567

A2に対するA1の値が小さい、つまりRの値が大きいほど、赤外吸収に対する可視光吸収が少なく、可視光域の透過性に優れた近赤外線カットフィルタと言える。表1の結果から比較例1のRは実施例1のRより低い値を示し、近赤外カットフィルタとして劣る結果を示した。   It can be said that the smaller the value of A1 with respect to A2, that is, the larger the value of R, the less the visible light absorption with respect to the infrared absorption, and the near-infrared cut filter having excellent transparency in the visible light region. From the results in Table 1, R in Comparative Example 1 showed a lower value than R in Example 1, indicating a result inferior as a near infrared cut filter.

上記式(1)で表わされるスクアリリウム化合物を含む本発明の樹脂組成物及びこれらによって得られる近赤外線カットフィルタ(光学フィルタ)は可視光域、特に400nm〜500nmの透過性を担保しつつ、近赤外光、特に650nm〜700nmの近赤外光を十分に遮蔽できるため、各種用途の光学フィルタ、特にCCDやCMOSなどの撮像素子用の近赤外線カットフィルタ(光学フィルタ)として非常に有用である。   The resin composition of the present invention containing the squarylium compound represented by the above formula (1) and the near-infrared cut filter (optical filter) obtained by these have a near red color while ensuring a visible light region, particularly 400 nm to 500 nm. Since external light, particularly near-infrared light of 650 nm to 700 nm can be sufficiently shielded, it is very useful as an optical filter for various applications, particularly as a near-infrared cut filter (optical filter) for an image sensor such as a CCD or CMOS.

Claims (5)

下記の式(1)で表される化合物と樹脂から成ることを特徴とする樹脂組成物。
Figure 2014148567
(式中、基Ar、Arはそれぞれ独立に下記の式(2)〜(4)のいずれかの置換基を表す。ただし、Ar、Arが共に(2)の場合は除く)
Figure 2014148567
(式(2)〜(4)中、基Aは独立に下記の式(5)〜(8)のいずれかの置換基を表す。)
Figure 2014148567
(式(5)中、nは0〜3の整数を表す。)
Figure 2014148567
Figure 2014148567
Figure 2014148567
(式(8)中、mは0〜3の整数を表す。)
A resin composition comprising a compound represented by the following formula (1) and a resin.
Figure 2014148567
(In the formula, groups Ar 1 and Ar 2 each independently represent a substituent of any one of the following formulas (2) to (4), except when both Ar 1 and Ar 2 are (2)).
Figure 2014148567
(In the formulas (2) to (4), the group A independently represents any substituent of the following formulas (5) to (8).)
Figure 2014148567
(In formula (5), n represents an integer of 0 to 3)
Figure 2014148567
Figure 2014148567
Figure 2014148567
(In formula (8), m represents an integer of 0 to 3.)
式(1)において、基Ar、Arが共に式(3)である化合物を含有することを特徴とする請求項1に記載の樹脂組成物。 2. The resin composition according to claim 1 , wherein in the formula (1), the groups Ar 1 and Ar 2 both contain a compound represented by the formula (3). 式(3)において、基Aが式(5)である化合物を含有することを特徴とする請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein in the formula (3), the group A contains a compound represented by the formula (5). 請求項3に記載の樹脂組成物を用いた近赤外線カットフィルタ。 A near-infrared cut filter using the resin composition according to claim 3. 請求項4に記載の近赤外線カットフィルタを用いた撮像素子。 An image sensor using the near-infrared cut filter according to claim 4.
JP2013016608A 2013-01-31 2013-01-31 Resin composition and near-infrared ray cut filter Pending JP2014148567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016608A JP2014148567A (en) 2013-01-31 2013-01-31 Resin composition and near-infrared ray cut filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016608A JP2014148567A (en) 2013-01-31 2013-01-31 Resin composition and near-infrared ray cut filter

Publications (1)

Publication Number Publication Date
JP2014148567A true JP2014148567A (en) 2014-08-21

Family

ID=51571815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016608A Pending JP2014148567A (en) 2013-01-31 2013-01-31 Resin composition and near-infrared ray cut filter

Country Status (1)

Country Link
JP (1) JP2014148567A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160041786A (en) 2014-10-08 2016-04-18 가부시키가이샤 닛폰 쇼쿠바이 Oxo carbon-based compounds, a resin composition comprising the same, and a filter containing the resin composition
CN105503699A (en) * 2014-10-08 2016-04-20 株式会社日本触媒 Oxo carbon-based compounds, a resin composition comprising the same and a filter containing the resin composition
JP2016166320A (en) * 2015-03-05 2016-09-15 株式会社日本触媒 Resin composition containing oxocarbon compound, and optical filter containing resin composition
KR20170007236A (en) 2015-02-18 2017-01-18 아사히 가라스 가부시키가이샤 Optical Filter and Imaging Device
KR20170134667A (en) 2015-05-20 2017-12-06 후지필름 가부시키가이샤 An infrared absorbing composition, an infrared cut filter, a laminate, a pattern forming method, and a solid-
CN107533171A (en) * 2015-05-12 2018-01-02 旭硝子株式会社 Optical filter and camera device
WO2019176409A1 (en) 2018-03-13 2019-09-19 富士フイルム株式会社 Method for manufacturing cured film, and method for manufacturing solid-state imaging element
KR20190138289A (en) 2018-06-04 2019-12-12 호야 칸데오 옵트로닉스 가부시키가이샤 Optical filter and imaging apparatus
WO2020049930A1 (en) 2018-09-07 2020-03-12 富士フイルム株式会社 Vehicular headlight unit, light-shielding film for headlight, and method for producing light-shielding film for headlight
JP2021054890A (en) * 2019-09-27 2021-04-08 三菱ケミカル株式会社 Squarylium compound, dye composition, film, optical filter, solid state image sensor, image display device and infrared sensor
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device
KR20240095223A (en) 2021-10-27 2024-06-25 호야 가부시키가이샤 Optical elements and imaging devices

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105503699A (en) * 2014-10-08 2016-04-20 株式会社日本触媒 Oxo carbon-based compounds, a resin composition comprising the same and a filter containing the resin composition
CN105503699B (en) * 2014-10-08 2021-05-11 株式会社日本触媒 Oxocarbon compound, resin composition containing the same, and filter containing the resin composition
KR20160041786A (en) 2014-10-08 2016-04-18 가부시키가이샤 닛폰 쇼쿠바이 Oxo carbon-based compounds, a resin composition comprising the same, and a filter containing the resin composition
US10745572B2 (en) 2015-02-18 2020-08-18 AGC Inc. Squarylium-based dye for near-infrared optical filter
KR20170007236A (en) 2015-02-18 2017-01-18 아사히 가라스 가부시키가이샤 Optical Filter and Imaging Device
US10351718B2 (en) 2015-02-18 2019-07-16 AGC Inc. Optical filter and imaging device
JP2016166320A (en) * 2015-03-05 2016-09-15 株式会社日本触媒 Resin composition containing oxocarbon compound, and optical filter containing resin composition
CN107533171A (en) * 2015-05-12 2018-01-02 旭硝子株式会社 Optical filter and camera device
CN107533171B (en) * 2015-05-12 2020-07-24 Agc株式会社 Optical filter and imaging device
US10809428B2 (en) 2015-05-12 2020-10-20 AGC Inc. Optical filter and imaging device
US11693163B2 (en) 2015-05-12 2023-07-04 AGC Inc. Optical filter and imaging device
US10598835B2 (en) 2015-05-20 2020-03-24 Fujifilm Corporation Infrared absorbing composition, infrared cut filter, laminate, pattern forming method, solid image pickup element
KR20170134667A (en) 2015-05-20 2017-12-06 후지필름 가부시키가이샤 An infrared absorbing composition, an infrared cut filter, a laminate, a pattern forming method, and a solid-
US11059977B2 (en) 2016-02-02 2021-07-13 AGC Inc. Near-infrared-absorbing dye, optical filter, and imaging device
WO2019176409A1 (en) 2018-03-13 2019-09-19 富士フイルム株式会社 Method for manufacturing cured film, and method for manufacturing solid-state imaging element
KR20190138289A (en) 2018-06-04 2019-12-12 호야 칸데오 옵트로닉스 가부시키가이샤 Optical filter and imaging apparatus
KR20240008967A (en) 2018-06-04 2024-01-19 호야 가부시키가이샤 Optical filter and imaging apparatus
WO2020049930A1 (en) 2018-09-07 2020-03-12 富士フイルム株式会社 Vehicular headlight unit, light-shielding film for headlight, and method for producing light-shielding film for headlight
JP2021054890A (en) * 2019-09-27 2021-04-08 三菱ケミカル株式会社 Squarylium compound, dye composition, film, optical filter, solid state image sensor, image display device and infrared sensor
KR20240095223A (en) 2021-10-27 2024-06-25 호야 가부시키가이샤 Optical elements and imaging devices

Similar Documents

Publication Publication Date Title
JP2014148567A (en) Resin composition and near-infrared ray cut filter
TWI634144B (en) Infrared ray shielding composition, infrared ray shielding layer, infrared ray cut filter, camera module
TWI633341B (en) The optical filter for solid-state image element and usage thereof
JP4635007B2 (en) Filter and cyanine compound
US10215898B2 (en) Near infrared ray absorbent composition, near infrared ray cut filter, solid image pickup element, and camera module
JP5904546B2 (en) Novel cyanine dye compound, resin composition and near-infrared cut filter
CN108345059B (en) Optical filter and use thereof
JP2014095007A (en) Novel cyanine pigment compound, resin composition and near infrared ray cutting filter
TWI699614B (en) Composition, composition manufacturing method, cured film, color filter, light shielding film, solid-state imaging element, and image display device
JP6771880B2 (en) Resin composition and laminate
TW201837042A (en) Composition for solid-state imaging element, infrared shielding film, and solid-state imaging element having both good visible light transmittance and infrared shielding properties
JP2014080487A (en) Resin composition and near infrared ray cutting filter
JP6342645B2 (en) LAMINATED RESIN COMPOSITION AND USE THEREOF
JP6251530B2 (en) Curable resin composition for imaging device and use thereof
JP2016081056A (en) Light selective transmission filter and imaging element
WO2018168231A1 (en) Near-infrared blocking filter, method for producing near-infrared blocking filter, solid-state imaging element, camera module and image display device
JP6196109B2 (en) Curable resin composition for imaging device and use thereof
JP2016071323A (en) Near-infrared cut filter
JP2015004838A (en) Near-infrared ray cut filter for solid imaging device, and solid imaging device and camera module using the filter
JP2014058621A (en) Novel cyanine pigment compound, resin composition and near-infrared ray cut filter
TWI641649B (en) Resin composition for lamination and use thereof
US10752708B2 (en) Curable composition, cured product and optical member
WO2020138013A1 (en) Optical lens and method for manufacturing same
JP6251529B2 (en) Laminate for imaging device and use thereof
JP2020173294A (en) Optical filter and application thereof