WO2018168231A1 - Near-infrared blocking filter, method for producing near-infrared blocking filter, solid-state imaging element, camera module and image display device - Google Patents

Near-infrared blocking filter, method for producing near-infrared blocking filter, solid-state imaging element, camera module and image display device Download PDF

Info

Publication number
WO2018168231A1
WO2018168231A1 PCT/JP2018/003126 JP2018003126W WO2018168231A1 WO 2018168231 A1 WO2018168231 A1 WO 2018168231A1 JP 2018003126 W JP2018003126 W JP 2018003126W WO 2018168231 A1 WO2018168231 A1 WO 2018168231A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
compound
copper
infrared cut
Prior art date
Application number
PCT/JP2018/003126
Other languages
French (fr)
Japanese (ja)
Inventor
昂広 大河原
敬史 川島
博昭 津山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019505753A priority Critical patent/JPWO2018168231A1/en
Publication of WO2018168231A1 publication Critical patent/WO2018168231A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a near infrared cut filter. More specifically, the present invention relates to a near infrared cut filter containing a copper complex. The present invention also relates to a method for manufacturing a near-infrared cut filter, a solid-state imaging device, a camera module, and an image display device.
  • Video cameras, digital still cameras, mobile phones with camera functions, etc. use charge coupled devices (CCD), complementary metal oxide semiconductors (CMOS), etc., which are solid-state imaging devices for color images. Since these solid-state imaging devices use silicon photodiodes having sensitivity to near infrared rays in their light receiving portions, it is necessary to perform visibility correction and often use near-infrared cut filters.
  • CCD charge coupled devices
  • CMOS complementary metal oxide semiconductors
  • Patent Document 1 discloses a light selective transmission filter including a resin sheet, the resin sheet has a resin layer including a dye and a resin component, and the dye has a nonionic conjugated skeleton. And a light selective transmission filter which is a compound having an absorption maximum wavelength in the wavelength region of 600 to 800 nm and having at least one absorption maximum wavelength in the range of 600 to 710 nm.
  • a phthalocyanine dye is used as the dye.
  • Patent Document 2 describes that a near-infrared cut filter is produced using a near-infrared absorbing composition containing a copper complex.
  • near-infrared cut filters formed using a near-infrared absorbing composition containing a copper complex are excellent in visible transparency and infrared shielding properties, but are required to further improve heat resistance.
  • An object of the present invention is to provide a near-infrared cut filter excellent in heat resistance. Moreover, the objective of this invention is providing the manufacturing method of a near-infrared cut filter, a solid-state image sensor, a camera module, and an image display apparatus.
  • a copper complex and a cross-linking component are used for such a resin film.
  • a cross-linking component for example, a resin containing a cross-linkable group
  • it formed using the composition containing it discovered that it exists in the tendency for heat resistance to fall easily. Further investigation was made on the cause of the heat resistance of the resin film formed using such a composition easily decreasing.
  • by-products generated during the reaction of the crosslinking component interacted with the copper complex, It was thought that the unreacted cross-linking component remaining in the metal interacts with the copper complex to reduce the heat resistance of the copper complex.
  • the copper complex is a compound represented by the following formula (1),
  • the total amount of copper complex and resin in the resin film is 60 to 100% by mass,
  • a near-infrared cut filter in which the resin does not form a three-dimensional bridge in the resin film Cu ⁇ (L) n1 ⁇ (X) n2
  • L is a ligand, and at least one selected from a coordination site coordinated by an anion to a copper atom and a coordination atom coordinated by a lone pair to the copper atom.
  • n1 represents an integer of 1 to 4
  • n2 represents an integer of 0 to 4.
  • ⁇ 3> At least one selected from a coordination site in which the ligand L in Formula (1) coordinates with an anion with respect to a copper atom and a coordination atom with an unshared electron pair with respect to the copper atom.
  • ⁇ 4> The near-infrared cut filter according to ⁇ 1> or ⁇ 2>, wherein the ligand L in the formula (1) is at least one selected from a carboxylic acid compound, a sulfonic acid compound, and a phosphate ester compound.
  • ⁇ 5> The near infrared cut filter according to any one of ⁇ 1> to ⁇ 4>, wherein the resin film has a thickness of 1 to 500 ⁇ m.
  • ⁇ 6> The near-infrared cut filter according to any one of ⁇ 1> to ⁇ 5>, wherein the resin film contains 5% by mass or more of a copper complex.
  • a method for producing a near-infrared cut filter including a step of applying a resin composition containing a copper complex and a resin on a support and drying to form a resin film,
  • the copper complex is a compound represented by the following formula (1)
  • the resin is a resin substantially free of crosslinkable groups
  • a method for producing a near-infrared cut filter wherein the total amount of the copper complex and the resin in the resin composition is 60 to 100% by mass relative to the total solid content of the resin composition; Cu ⁇ (L) n1 ⁇ (X) n2
  • L is a ligand, and at least one selected from a coordination site coordinated by an anion to a copper atom and a coordination atom coordinated by a lone pair to the copper atom.
  • a solid-state imaging device having the near-infrared cut filter according to any one of ⁇ 1> to ⁇ 6>.
  • a camera module having the near-infrared cut filter according to any one of ⁇ 1> to ⁇ 6>.
  • An image display device having the near infrared cut filter according to any one of ⁇ 1> to ⁇ 6>.
  • a near-infrared cut filter having excellent heat resistance can be provided. Moreover, the manufacturing method of the near-infrared cut filter excellent in heat resistance can be provided. Moreover, the solid-state image sensor, camera module, and image display apparatus which have the near-infrared cut filter excellent in heat resistance can be provided.
  • Me in the chemical formula represents a methyl group
  • Et represents an ethyl group
  • Pr represents a propyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • near-infrared light refers to light (electromagnetic wave) having a wavelength of 700 to 2500 nm.
  • the total solid content refers to the total mass of components obtained by removing the solvent from all components of the composition.
  • a weight average molecular weight and a number average molecular weight are defined as a polystyrene conversion value by a gel permeation chromatography (GPC) measurement.
  • the near infrared cut filter of the present invention is a near infrared cut filter having a resin film containing a copper complex and a resin,
  • the copper complex is a compound represented by the formula (1) described below,
  • the total amount of copper complex and resin in the resin film is 60 to 100% by mass,
  • the resin is characterized in that the resin does not form a three-dimensional crosslink in the resin film.
  • the near-infrared cut filter of the present invention has excellent heat resistance, is hardly colored even after heating, and has excellent visible transparency and infrared shielding properties.
  • the total amount of the copper complex and the resin in the resin film is 60 to 100% by mass, preferably 70 to 100% by mass, and preferably 80 to 100% by mass. More preferably, it is 90 to 100% by mass.
  • the content of the copper complex in the resin film is preferably 5% by mass or more, and more preferably 5 to 90% by mass.
  • the lower limit is more preferably 10% by mass or more, further preferably 15% by mass or more, and still more preferably 20% by mass or more.
  • the upper limit is more preferably 70% by mass or less, still more preferably 60% by mass or less, and still more preferably 50% by mass or less. Details of the copper complex will be described later.
  • a copper complex has the compound which has 4 or 5 coordination site
  • a resin film contains 2 or more types of copper complexes. According to this aspect, a near-infrared cut filter having excellent infrared shielding properties can be obtained.
  • the content of copper atoms in the resin film is preferably 0.5% by mass or more, and more preferably 0.5 to 20% by mass.
  • the lower limit is more preferably 1% by mass or more, further preferably 2% by mass or more, and still more preferably 3% by mass or more.
  • the upper limit is more preferably 15% by mass or less, still more preferably 12% by mass or less, and still more preferably 10% by mass or less.
  • the resin content in the resin film is preferably 30 to 90% by mass.
  • the lower limit is more preferably 35% by mass or more, still more preferably 40% by mass or more, and even more preferably 50% by mass or more.
  • the upper limit is more preferably 85% by mass or less, still more preferably 80% by mass or less, and even more preferably 70% by mass or less.
  • the resin film may contain a solvent as a component other than the copper complex and the resin.
  • the solvent is preferably a compound that does not contain a crosslinkable group.
  • the content of the solvent in the resin film is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less.
  • the content of the compound containing a crosslinkable group in the resin film is preferably 1% by mass or less, more preferably 0.5% by mass or less, and the crosslinkable group It is particularly preferred that the compound containing is not substantially contained.
  • the crosslinkable group include a vinyl group, a (meth) allyl group, a (meth) acryloyl group, a styryl group, an epoxy group, an oxetanyl group, a methylol group, and an alkoxysilyl group.
  • That the resin film does not substantially contain a compound containing a crosslinkable group means that the content of the compound containing a crosslinkable group in the resin film is 0.1% by mass or less, and 0.05% by mass The following is preferable, and it is more preferable not to contain.
  • the content of a cross-linked product derived from a monomer containing a crosslinkable group in the resin film is preferably 1% by mass or less, and more preferably 0.5% by mass or less. It is particularly preferable that the monomer-containing crosslinked product containing a crosslinkable group is substantially not contained. That the resin film does not substantially contain a cross-linked product derived from a monomer containing a crosslinkable group means that the content of the cross-linked product derived from a monomer containing a crosslinkable group in the resin film is 0.1% by mass or less. This means that it is preferably 0.05% by mass or less, and more preferably not contained.
  • the average value of the transmittance of light irradiated from the direction perpendicular to the film surface of the near-infrared cut filter is preferably 20% or less in the wavelength range of 800 to 1000 nm. % Or less is more preferable, 10% or less is further preferable, and 5% or less is particularly preferable.
  • the transmittance of light irradiated from the direction perpendicular to the film surface of the near-infrared cut filter is preferably 20% or less over the entire wavelength range of 800 to 1000 nm. % Or less is more preferable, 10% or less is further preferable, and 5% or less is particularly preferable. According to this aspect, a near-infrared cut filter having excellent infrared shielding properties can be obtained.
  • the average reflectance in the wavelength range of 800 to 1000 nm is preferably 20% or less, preferably 10% or less, and more preferably 5% or less.
  • the near-infrared cut filter of the present invention has a reflectance of preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less over the entire wavelength range of 800 to 1000 nm. .
  • a near-infrared cut filter having a wide viewing angle and excellent infrared shielding properties can be obtained.
  • the reflectance is a value measured using U-4100 (manufactured by Hitachi High-Technologies Corporation), setting the surface normal direction of the near-infrared cut filter to 0 °, and setting the incident angle to 5 °.
  • the transmittance of light irradiated from the direction perpendicular to the film surface of the near-infrared cut filter satisfies at least one of the following conditions (1) to (9): It is more preferable to satisfy all the following conditions (1) to (8), and it is even more preferable to satisfy all the conditions (1) to (9).
  • the transmittance of light having a wavelength of 400 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the transmittance of light having a wavelength of 450 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the transmittance of light having a wavelength of 500 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the transmittance of light having a wavelength of 550 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the transmittance of light having a wavelength of 700 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the transmittance of light having a wavelength of 750 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the transmittance of light having a wavelength of 800 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the transmittance of light having a wavelength of 850 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the transmittance of light having a wavelength of 900 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the transmittance in the entire range of wavelengths from 400 to 550 nm is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more. The higher the transmittance in the visible region, the better.
  • the thickness of the resin film can be appropriately selected according to the purpose. For example, 500 ⁇ m or less is preferable, 300 ⁇ m or less is more preferable, 250 ⁇ m or less is further preferable, and 200 ⁇ m or less is even more preferable.
  • the lower limit of the thickness of the resin film is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.5 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the rate of change in absorbance at a wavelength of 450 nm represented by the following formula before and after heating at 200 ° C. for 1 minute is preferably 6% or less, and 4.5% or less. Is more preferable and 3% or less is particularly preferable.
  • the average absorbance change rate in the range of wavelength 700 nm to less than 800 nm represented by the following formula is preferably 6% or less, and 4.5% or less. More preferably, it is particularly preferably 3% or less.
  • the change rate of the average absorbance in the wavelength range of 800 nm to 1100 nm represented by the following formula is preferably 6% or less, more preferably 4.5% or less, and more preferably 3% or less. Particularly preferred. If the rate of change in absorbance is within the above range, a near-infrared cut filter having excellent heat resistance and suppressed coloring due to heating can be obtained.
  • Rate of change in absorbance at wavelength 450 nm (%)
  • ⁇ 100 (%) Average absorbance change rate (%) in the wavelength range from 700 nm to less than 800 nm
  • ⁇ 100 (%) Average absorbance change rate (%) in the wavelength range from 800 nm to 1100 nm
  • the near-infrared cut filter of the present invention may have a functional layer such as a dielectric multilayer film or an ultraviolet absorption layer in addition to the resin film described above. These functional layers may be formed on the resin film.
  • a near infrared cut filter further includes a dielectric multilayer film, a near infrared cut filter excellent in infrared shielding properties can be easily obtained.
  • it can be set as the near-infrared cut filter excellent in ultraviolet-shielding property because a near-infrared cut filter has an ultraviolet absorption layer further.
  • the ultraviolet absorbing layer for example, the absorbing layer described in paragraph Nos. 0040 to 0070 and 0119 to 0145 of International Publication No.
  • WO2015 / 099060 can be referred to, and the contents thereof are incorporated in the present specification.
  • the description of paragraph numbers 0255 to 0259 of JP 2014-41318 A can be referred to, and the contents thereof are incorporated in the present specification.
  • the near-infrared cut filter of the present invention can be used for various devices such as a solid-state imaging device such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor), an infrared sensor, and an image display device.
  • a solid-state imaging device such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor)
  • an infrared sensor and an image display device.
  • the resin composition contains a compound represented by the following formula (1) as a copper complex.
  • L is a ligand, and at least one selected from a coordination site coordinated by an anion to a copper atom and a coordination atom coordinated by a lone pair to the copper atom.
  • a compound having one or more, X is a counter ion, n1 represents an integer of 1 to 4, and n2 represents an integer of 0 to 4.
  • Examples of the compound represented by the formula (1) (copper complex) include tetracoordinate, pentacoordinate and hexacoordinate copper complexes, and tetracoordinate and pentacoordinate copper complexes are more preferred. More preferred is a copper complex at the position.
  • the compound (copper complex) represented by the formula (1) preferably has a 5-membered ring and / or a 6-membered ring formed of copper and a ligand. Such a copper complex is stable in shape and excellent in complex stability.
  • X represents a counter ion.
  • the compound (copper complex) represented by the formula (1) may be a cation complex or an anion complex in addition to a neutral complex having no charge.
  • counter ions are present as necessary to neutralize the charge of the copper complex.
  • the counter ion is a counter ion having a negative charge (counter anion), for example, an inorganic anion or an organic anion may be used.
  • hydroxide ion, halogen anion for example, fluoride ion, chloride ion, bromide ion, iodide ion, etc.
  • substituted or unsubstituted alkylcarboxylate ion acetate ion, trifluoro ion
  • substituted or unsubstituted aryl carboxylate ion substituted or unsubstituted alkyl sulfonate ion (methane sulfonate ion, trifluoromethane sulfonate ion, etc.) substituted or unsubstituted aryl Sulfonate ion (eg, p-toluenesulfonate ion, p-chlorobenzenesulfonate ion, etc.), aryl disulfonate
  • the counter anion is preferably a low nucleophilic anion.
  • the low nucleophilic anion is an anion formed by dissociating a proton from an acid having a low pKa, generally called a super acid.
  • the definition of superacid differs depending on the literature, but is a general term for acids having a lower pKa than methanesulfonic acid.
  • Org. Chem. The structure described in 2011, 76, 391-395 Equilibrium Acids of Super Acids is known.
  • the pKa of the low nucleophilic anion is, for example, preferably ⁇ 11 or less, and preferably ⁇ 11 to ⁇ 18. pKa is, for example, J.P. Org. Chem.
  • the pKa value in the present specification is pKa in 1,2-dichloroethane unless otherwise specified.
  • the counter anion is a low nucleophilic anion, the decomposition reaction of the copper complex or the resin hardly occurs, and the heat resistance is good.
  • Low nucleophilic anions include tetrafluoroborate ion, tetraarylborate ion (including aryl substituted with halogen atom or fluoroalkyl group), hexafluorophosphate ion, imide ion (substituted with acyl group or sulfonyl group) Amides), methide ions (including methides substituted with acyl groups or sulfonyl groups), tetraarylborate ions (including aryls substituted with halogen atoms or fluoroalkyl groups), imide ions (including sulfonyl groups) And substituted amides) and methide ions (including methides substituted with sulfonyl groups) are particularly preferred.
  • the counter anion is also preferably a halogen anion, carboxylate ion, sulfonate ion, borate ion, sulfonate ion, or imide ion.
  • Specific examples include chloride ion, bromide ion, iodide ion, acetate ion, trifluoroacetate ion, formate ion, phosphate ion, hexafluorophosphate ion, p-toluenesulfonate ion, tetrafluoroborate ion, tetrakis ( Pentafluorophenyl) borate ion, N, N-bis (fluorosulfonyl) imide ion, bis (trifluoromethanesulfonyl) imide ion, bis (nonafluorobutanesulfonyl) imide ion, nonafluoro-N-[(tri
  • the counter ion is a positively charged counter ion (counter cation), for example, inorganic or organic ammonium ion (for example, tetraalkylammonium ion such as tetrabutylammonium ion, triethylbenzylammonium ion, pyridinium ion, etc.), phosphonium Examples thereof include ions (for example, tetraalkylphosphonium ions such as tetrabutylphosphonium ion, alkyltriphenylphosphonium ions, triethylphenylphosphonium ions, etc.), alkali metal ions, protons, and the like.
  • the counter ion may be a metal complex ion (for example, a copper complex ion).
  • L is a ligand, and at least one selected from a coordination site coordinated with an anion to a copper atom and a coordination atom coordinated with a lone pair to the copper atom.
  • a compound having one or more species is represented.
  • the coordination site coordinated by an anion may be dissociated or non-dissociated.
  • the ligand L has a total of two or more of at least one selected from a coordination site coordinated with an anion to a copper atom and a coordination atom coordinated with a lone pair to the copper atom. Examples thereof include compounds, carboxylic acid compounds, sulfonic acid compounds, and phosphate ester compounds.
  • a coordination site that coordinates with an anion with respect to a copper atom and a coordination atom that coordinates with an unshared electron pair with respect to the copper atom are collectively referred to as a coordination site.
  • a multidentate compound having a total of at least one selected from a coordination site coordinated with an anion to a copper atom and a coordination atom coordinated with a lone pair to the copper atom It is also called a rank.
  • Examples of the carboxylic acid compound include a compound represented by the following formula (L-100) or a salt thereof.
  • Examples of the sulfonic acid compound include a compound represented by the following formula (L-200) or a salt thereof.
  • Examples of the phosphoric acid ester compound include a compound represented by the formula (L-300) or a salt thereof.
  • R 100 and R 200 each independently represents a monovalent organic group.
  • the monovalent organic group include an alkyl group, an aryl group, a heteroaryl group, and a divalent linking group (for example, a linear or branched alkylene group, a cyclic alkylene group, an arylene group, —O A group formed by bonding via —, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NR— (wherein R is a hydrogen atom or an alkyl group).
  • the alkyl group, aryl group, and heteroaryl group may be unsubstituted or may have a substituent.
  • substituents include an alkyl group, an alkoxy group, an aryl group, a heteroaryl group, a carboxyl group, a sulfo group, a phosphate ester group, a hydroxyl group, and a halogen atom.
  • R 300 represents an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms
  • -OR 300 is represents polyoxyethylene alkyl group having 4 to 100 carbon atoms, having 4 to 100 carbon atoms (meth) acryloyloxy alkyl group, or, having 4 to 100 carbon atoms of (meth) acryloyl polyoxyalkyl group
  • n represents 1 or 2. When n is 1, two R 300 may be the same or different.
  • the ligand L is preferably a compound (multidentate ligand) having two or more coordination sites with respect to a copper atom.
  • the polydentate ligand is preferably a compound having 3 or more coordination sites with respect to a copper atom, more preferably a compound having 3 to 5 ligands, and a compound having 4 to 5 ligands. Further preferred.
  • Multidentate ligands act as chelate ligands for copper atoms. That is, at least two coordination sites of the multidentate ligand are chelate-coordinated with copper, so that the structure of the copper complex is distorted, and excellent visible transparency is obtained. It is thought that the color value can also be improved.
  • a multidentate ligand is a compound comprising one or more coordination sites coordinated by an anion and one or more coordination atoms coordinated by an unshared electron pair, or coordinated by an unshared electron pair. Examples thereof include compounds having two or more atoms, compounds containing two coordination sites coordinated by anions, and the like.
  • the multidentate ligand is preferably a compound containing a coordinating atom coordinated by an unshared electron pair, and more preferably a compound containing a nitrogen atom as a coordinating atom coordinated by an unshared electron pair. More preferably, the compound includes a nitrogen atom as a coordinating atom coordinated by an unshared electron pair, and an alkyl group (preferably a methyl group) is substituted on the nitrogen atom.
  • the ligand L uses a compound having one coordination site for a copper atom (monodentate ligand) and a compound having two or more coordination sites for a copper atom (multidentate ligand). It is also preferable.
  • a monodentate ligand a compound having one coordination site coordinated by an anion (also referred to as a monodentate ligand coordinated by an anion), a compound having one coordination atom coordinated by an unshared electron pair (Also referred to as a monodentate ligand coordinated by an unshared electron pair).
  • Monodentate ligands coordinated with anions include halide anions, hydroxide anions, alkoxide anions, phenoxide anions, amide anions (including amides substituted with acyl and sulfonyl groups), imide anions (acyl and sulfonyl groups).
  • Imide substituted with anilide anion (including anilide substituted with acyl group or sulfonyl group), thiolate anion, hydrogen carbonate anion, carboxylate anion, thiocarboxylate anion, dithiocarboxylate anion, hydrogen sulfate anion, Sulfonate anion, dihydrogen phosphate anion, phosphate diester anion, phosphonate monoester anion, hydrogen phosphonate anion, phosphinate anion, nitrogen-containing heterocyclic anion, nitrate anion, hypochlorite anion, cyanide anion Emissions, cyanate anion, isocyanate anion, thiocyanate anion, isothiocyanate anions, such as azide anions.
  • Monodentate ligands coordinated by lone pairs include water, alcohol, phenol, ether, amine, aniline, amide, imide, imine, nitrile, isonitrile, thiol, thioether, carbonyl compound, thiocarbonyl compound, sulfoxide, Examples include heterocycles, carbonic acid, carboxylic acid, sulfuric acid, sulfonic acid, phosphoric acid, phosphonic acid, phosphinic acid, nitric acid, and esters thereof.
  • the ligand L is preferably a compound in which a plurality of ⁇ -conjugated systems such as aromatic are not continuously bonded in order to improve visible transparency.
  • the compound represented by the formula (1) is also preferably a copper complex having a compound having no maximum absorption wavelength in the wavelength range of 400 to 600 nm as a ligand.
  • a copper complex having a compound having a maximum absorption wavelength in the wavelength range of 400 to 600 nm as a ligand has absorption in the visible region (for example, a wavelength region of 400 to 600 nm), and thus the visible transparency may be insufficient. is there.
  • Examples of the compound having a maximum absorption wavelength in the wavelength region of 400 to 600 nm include a compound having a long conjugated structure and large absorption of light of a ⁇ - ⁇ * transition. Specific examples include compounds having a phthalocyanine skeleton.
  • the copper complex is also preferably a copper complex other than the phthalocyanine copper complex.
  • the phthalocyanine copper complex is a copper complex having a compound having a phthalocyanine skeleton as a ligand.
  • a compound having a phthalocyanine skeleton has a planar structure in which a ⁇ -electron conjugated system spreads throughout the molecule.
  • the phthalocyanine copper complex absorbs light at the ⁇ - ⁇ * transition.
  • the ligand compound In order to absorb light in the infrared region through the ⁇ - ⁇ * transition, the ligand compound must have a long conjugated structure. However, when the conjugated structure of the ligand is lengthened, the visible transparency tends to decrease. For this reason, the phthalocyanine copper complex may have insufficient visible transparency.
  • the anion in the ligand L may be any one that can coordinate to a copper atom, and an oxygen anion, a nitrogen anion, or a sulfur anion is preferable.
  • the coordination site coordinated with the copper atom by an anion is at least one selected from the following monovalent functional group (AN-1) or divalent functional group (AN-2) It is preferable that
  • the wavy line in the following structural formula is the bonding position with the atomic group constituting the ligand.
  • X represents N or CR
  • R each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
  • the alkyl group represented by R may be linear, branched or cyclic, but is preferably linear.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group.
  • the alkyl group may have a substituent. Examples of the substituent include a halogen atom, a carboxyl group, and a heterocyclic group.
  • the heterocyclic group as a substituent may be monocyclic or polycyclic, and may be aromatic or non-aromatic.
  • the number of heteroatoms constituting the heterocycle is preferably 1 to 3, and preferably 1 or 2.
  • the hetero atom constituting the hetero ring is preferably a nitrogen atom.
  • the alkyl group may further have a substituent.
  • the alkenyl group represented by R may be linear, branched or cyclic, but is preferably linear.
  • the alkenyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • the alkenyl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
  • the alkynyl group represented by R may be linear, branched or cyclic, but is preferably linear.
  • the alkynyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • the alkynyl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
  • the aryl group represented by R may be monocyclic or polycyclic, but is preferably monocyclic.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
  • the aryl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
  • the heteroaryl group represented by R may be monocyclic or polycyclic.
  • the number of heteroatoms constituting the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the heteroaryl group is preferably a nitrogen atom, a sulfur atom or an oxygen atom.
  • the heteroaryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the heteroaryl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
  • Examples of coordination sites coordinated by anions also include monoanionic coordination sites.
  • part represents the site
  • an acid group having an acid dissociation constant (pKa) of 12 or less can be mentioned.
  • Specific examples include acid groups containing phosphorous atoms (phosphoric acid diester groups, phosphonic acid monoester groups, phosphinic acid groups, etc.), sulfo groups, carboxyl groups, imido acid groups, and the like. preferable.
  • the coordination atom coordinated by the lone pair is preferably an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom, more preferably an oxygen atom, a nitrogen atom or a sulfur atom, still more preferably an oxygen atom or a nitrogen atom, and a nitrogen atom. Is particularly preferred.
  • the coordinating atom coordinated by the lone pair is a nitrogen atom
  • the atom adjacent to the nitrogen atom is preferably a carbon atom or a nitrogen atom, and more preferably a carbon atom.
  • the coordination atom coordinated by the lone pair of electrons is included in the ring, or the following monovalent functional group (UE-1), divalent functional group (UE-2), trivalent It is preferably contained in at least one partial structure selected from the functional group group (UE-3).
  • the wavy line in the following structural formula is the bonding position with the atomic group constituting the ligand.
  • R 1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group
  • R 2 represents a hydrogen atom, an alkyl group, an alkenyl group Represents a group, alkynyl group, aryl group, heteroaryl group, alkoxy group, aryloxy group, heteroaryloxy group, alkylthio group, arylthio group, heteroarylthio group, amino group or acyl group.
  • the coordinating atom coordinated by the lone pair may be contained in the ring.
  • the ring that includes a coordination atom that coordinates with an unshared electron pair may be monocyclic or polycyclic, It may be aromatic or non-aromatic.
  • the ring containing a coordination atom coordinated by a lone pair is preferably a 5- to 12-membered ring, and more preferably a 5- to 7-membered ring.
  • the ring containing a coordinating atom coordinated by a lone pair may have a substituent, such as a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, carbon number Examples include 6-12 aryl groups, halogen atoms, silicon atoms, alkoxy groups having 1 to 12 carbon atoms, acyl groups having 2 to 12 carbon atoms, alkylthio groups having 1 to 12 carbon atoms, and carboxyl groups.
  • a substituent such as a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, carbon number Examples include 6-12 aryl groups, halogen atoms, silicon atoms, alkoxy groups having 1 to 12 carbon atoms, acyl groups having 2 to 12 carbon atoms, alkylthio groups having 1 to 12 carbon atoms, and carboxyl groups.
  • the ring may further have a substituent, and as the substituent, the coordination coordinated by the lone pair A group comprising a ring containing an atom, a group comprising at least one partial structure selected from the groups (UE-1) to (UE-3), an alkyl group having 1 to 12 carbon atoms, and 2 to 12 carbon atoms And an acyl group, a hydroxy group, and the like.
  • the coordination coordinated by the lone pair A group comprising a ring containing an atom, a group comprising at least one partial structure selected from the groups (UE-1) to (UE-3), an alkyl group having 1 to 12 carbon atoms, and 2 to 12 carbon atoms And an acyl group, a hydroxy group, and the like.
  • the alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group represented by R 1 and R 2 in groups (UE-1) to (UE-3) are the groups (AN-1) and (AN- It is synonymous with the alkyl group, alkenyl group, alkynyl group, aryl group, and heteroaryl group demonstrated by R of 2), and its preferable range is also the same.
  • the number of carbon atoms of the alkoxy group represented by R 2 is preferably 1 to 12, and more preferably 3 to 9.
  • the number of carbon atoms of the aryloxy group represented by R 2 is preferably 6-18, and more preferably 6-12.
  • the heteroaryloxy group represented by R 2 may be monocyclic or polycyclic.
  • the heteroaryl group which comprises a heteroaryloxy group is synonymous with the heteroaryl group mentioned above, and its preferable range is also the same.
  • the alkylthio group represented by R 2 preferably has 1 to 12 carbon atoms, and more preferably 1 to 9 carbon atoms.
  • the number of carbon atoms of the arylthio group represented by R 2 is preferably 6-18, and more preferably 6-12.
  • the heteroarylthio group represented by R 2 may be monocyclic or polycyclic.
  • the heteroaryl group which comprises a heteroarylthio group is synonymous with the heteroaryl group mentioned above, and its preferable range is also the same.
  • the acyl group represented by R 2 preferably has 2 to 12 carbon atoms, and more preferably 2 to 9 carbon atoms.
  • R 1 is preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably an alkyl group.
  • the alkyl group an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group is more preferable.
  • the coordination site coordinated by an anion and an unshared electron pair When the ligand L has a coordination site coordinated by an anion and a coordination atom coordinated by an unshared electron pair in one molecule, the coordination site coordinated by an anion and an unshared electron pair
  • the number of atoms linking the coordinating coordinate atoms is preferably 1 to 6, and more preferably 1 to 3. With such a configuration, the structure of the copper complex becomes more easily distorted, so that the color value can be further improved, and the molar extinction coefficient can be easily increased while enhancing the visible transparency.
  • the kind of atom that connects the coordination site coordinated by the anion and the coordination atom coordinated by the lone pair may be one or more. A carbon atom or a nitrogen atom is preferable.
  • the ligand L When the ligand L has two or more coordination atoms coordinated by an unshared electron pair in one molecule, the ligand L must have three or more coordination atoms coordinated by an unshared electron pair. Preferably, 3 to 5 are more preferable, 3 or 4 are more preferable, and 4 is particularly preferable.
  • the number of atoms connecting the coordinating atoms coordinated by the lone pair is preferably 1 to 6, more preferably 1 to 3, and still more preferably 2 to 3. It is particularly preferable that the number is 3. By setting it as such a structure, since the structure of a copper complex becomes easier to distort, color value can be improved more.
  • the number of atoms connecting the coordinating atoms coordinated by the lone pair may be one, or two or more.
  • the atom connecting the coordinating atoms coordinated by the lone pair is preferably a carbon atom.
  • the multidentate ligand is preferably a compound represented by the following formulas (IV-1) to (IV-14).
  • compounds represented by the following formulas (IV-3), (IV-6), (IV-7), and (IV-12) are:
  • the compound represented by (IV-12) is more preferable because it is more strongly coordinated with the metal center and easily forms a stable complex having high heat resistance.
  • the following formulas (IV-4), (IV-8) to (IV-11), (IV-13), (IV- (14) is preferred, and (IV-9) to (IV-10), (IV-13) are preferred because they are more strongly coordinated with the metal center and easily form a stable complex with high heat resistance.
  • (IV-14) are more preferred, and compounds represented by (IV-13) are particularly preferred.
  • X 1 to X 59 each independently represent a coordination site
  • L 1 to L 25 each independently represents a single bond or a divalent linking group
  • L 26 to L 32 each independently represents a trivalent linking group
  • L 33 to L 34 each independently represents a tetravalent linking group
  • X 1 to X 42 are each independently selected from the group consisting of a ring containing a coordinating atom coordinated by a lone pair, the group (AN-1), or the group (UE-1) described above It is preferable to represent at least one.
  • X 43 to X 56 are each independently selected from the group consisting of a ring containing a coordinating atom coordinated by a lone pair, the group (AN-2), or the group (UE-2) described above It is preferable to represent at least one.
  • X 57 to X 59 each independently preferably represent at least one selected from the group (UE-3) described above.
  • L 1 to L 25 each independently represents a single bond or a divalent linking group.
  • the divalent linking group an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, —SO—, —O—, —SO 2 —, or a combination thereof is preferable.
  • a group consisting of an alkylene group of 1 to 3 groups, a phenylene group, —SO 2 — or a combination thereof is more preferable.
  • L 26 to L 32 each independently represents a trivalent linking group. Examples of the trivalent linking group include groups obtained by removing one hydrogen atom from the above-described divalent linking group.
  • L 33 ⁇ L 34 each independently represent a tetravalent linking group. Examples of the tetravalent linking group include groups obtained by removing two hydrogen atoms from the above-described divalent linking group.
  • Specific examples of the compound forming the ligand include the following compounds, compounds shown as preferred specific examples of the polydentate ligand described below, and salts of these compounds.
  • Examples of the atoms or atomic groups constituting the salt include metal atoms and tetrabutylammonium.
  • As the metal atom an alkali metal atom or an alkaline earth metal atom is more preferable.
  • Examples of the alkali metal atom include sodium and potassium.
  • Examples of alkaline earth metal atoms include calcium and magnesium.
  • the description of paragraphs 0022 to 0042 of JP 2014-41318 A and the description of paragraphs 0021 to 0039 of JP 2015-43063 A can be referred to, and the contents thereof are incorporated in this specification.
  • Examples of the copper complex include the following embodiments (1) to (5) as preferred examples, (2) to (5) are more preferred, (3) to (5) are more preferred, and (4) Or (5) is more preferable.
  • the compound having two coordination sites is a compound having two coordination atoms coordinated by an unshared electron pair, or a coordination site and an unshared electron pair coordinated by an anion.
  • a compound having a coordination atom coordinated with is preferable.
  • the compound of a ligand may be the same and may differ.
  • the copper complex can further have a monodentate ligand as the ligand L.
  • the number of monodentate ligands can be 0, or 1 to 3.
  • the monodentate ligand is a coordination coordinated by an anion because of its high coordination power.
  • a compound having one coordination site is preferred.
  • the monodentate ligand is coordinated by an unshared electron pair. It is preferable that the compound has one coordinating atom.
  • the compound having three coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and has three coordination atoms coordinated by a lone pair. More preferred are compounds.
  • the copper complex may further have a monodentate ligand.
  • the number of monodentate ligands can also be zero. Moreover, it can also be 1 or more, 1 to 3 or more is more preferable, 1 to 2 is more preferable, and 2 is more preferable.
  • a compound having one coordination site coordinated by an anion is preferable for the above-described reason.
  • the compound having three coordination sites is preferably a compound having a coordination site coordinated by an anion and a coordination atom coordinated by an unshared electron pair.
  • a compound having two coordination sites to be coordinated and one coordination atom coordinated by an unshared electron pair is more preferable.
  • the coordination sites coordinated by the two anions are different.
  • the compound having two coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and more preferably a compound having two coordination atoms coordinated by a lone pair.
  • a compound having three coordination sites is a compound having two coordination sites coordinated by an anion and one coordination atom coordinated by an unshared electron pair.
  • the copper complex may further have a monodentate ligand.
  • the number of monodentate ligands can be zero, or one or more.
  • the number of monodentate ligands is more preferably 0.
  • the compound having four coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and has two or more coordination atoms coordinated by a lone pair.
  • a compound is more preferable, and a compound having four coordination atoms coordinated by an unshared electron pair is more preferable.
  • the copper complex may further have a monodentate ligand.
  • the number of monodentate ligands can be 0, 1 or more, or 2 or more.
  • the number of monodentate ligands is preferably one.
  • As the kind of monodentate ligand both a compound having one coordination site coordinated by an anion and a compound having one coordination atom coordinated by an unshared electron pair are preferable.
  • the compound having five coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and has two or more coordination atoms coordinated by a lone pair.
  • a compound is more preferable, and a compound having five coordinating atoms coordinated by an unshared electron pair is more preferable.
  • the copper complex may further have a monodentate ligand.
  • the number of monodentate ligands can be zero, or one or more.
  • the number of monodentate ligands is preferably 0.
  • multidentate ligand examples include compounds having two or more coordination sites among the compounds described in the specific examples of the ligand described above, and compounds shown below.
  • content of metals other than copper in a copper complex 10 mass% or less is preferable with respect to solid content of a copper complex, 5 mass% or less is more preferable, and 2 mass% or less is still more preferable. According to this aspect, it is easy to form a resin film in which foreign object defects are suppressed. Moreover, it is preferable that lithium content of a copper complex is 100 mass ppm or less. Moreover, it is preferable that the potassium content of a copper complex is 30 mass ppm or less.
  • Examples of the method for reducing the content of metals other than copper in the copper complex include a method for purifying the copper complex by a method such as reprecipitation, recrystallization, column chromatography, and sublimation purification. Moreover, after dissolving a copper complex in a solvent, the method of filtering with a filter and refine
  • the water content of the copper complex is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less. According to this aspect, the temporal stability of the resin composition can be improved.
  • the total amount of free halogen anions and halogen compounds in the copper complex is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less based on the total solid content of the copper complex. According to this aspect, the temporal stability of the resin composition can be improved.
  • the copper complex represented by the formula (1) can be obtained, for example, by mixing and reacting a compound (ligand) having a coordination site for copper with a copper component (copper or a compound containing copper). it can.
  • the copper component is preferably a compound containing divalent copper.
  • a copper component may use only 1 type and may use 2 or more types.
  • copper oxide or copper salt can be used as the copper component.
  • the copper salt examples include copper carboxylate (eg, copper acetate, copper ethyl acetoacetate, copper formate, copper benzoate, copper stearate, copper naphthenate, copper citrate, copper 2-ethylhexanoate), copper sulfonate (For example, copper methanesulfonate), copper phosphate, phosphate copper, phosphonate copper, phosphonate copper, phosphinate, amide copper, sulfonamido copper, imide copper, acylsulfonimide copper, bissulfonimide Copper, methido copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper sulfate, copper nitrate, copper perchlorate, copper fluoride, copper chloride, copper bromide are preferred, copper carboxylate, copper sulfonate, Sulfonamide copper, imide copper, acylsulfonimide copper, bissulfon
  • the ratio is preferably 1: q (where q ⁇ p, and q is an arbitrary number).
  • q ⁇ p the copper component as a raw material is likely to remain in the copper complex, resulting in a decrease in visible transparency and a cause of foreign matter defects.
  • the residual ratio of the copper component which is a raw material in the copper complex is preferably 10% by mass or less with respect to the solid content of the copper complex, and 5% by mass or less. Is more preferable, and 2 mass% or less is still more preferable.
  • the visible transparency may decrease, the number of foreign matter defects may increase, and the thermal stability of the composition may decrease, so p ⁇ q ⁇ 2p is preferable, p ⁇ q ⁇ 1.5p is more preferable, and p ⁇ q ⁇ 1.2p is still more preferable.
  • the residual ratio of ligand in the copper complex is preferably 10% by mass or less, more preferably 5% by mass or less, based on the solid content of the copper complex. 2 mass% or less is still more preferable.
  • the content of the copper complex is preferably 5 to 95% by mass with respect to the total solid content of the resin composition.
  • the lower limit is more preferably 10% by mass or more, further preferably 15% by mass or more, and still more preferably 20% by mass or more.
  • the upper limit is more preferably 70% by mass or less, still more preferably 60% by mass or less, and still more preferably 50% by mass or less.
  • a copper complex may be used individually by 1 type and can also use 2 or more types together. It is preferable to use two or more copper complexes in combination. When using 2 or more types of copper complexes together, it is preferable that those total amount is the said range.
  • the resin composition can contain an infrared absorbent (also referred to as other infrared absorbent) other than the copper complex.
  • infrared absorbent also referred to as other infrared absorbent
  • examples of other infrared absorbers include cyanine compounds, pyrrolopyrrole compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, diiminium compounds, thiol complex compounds, transition metal oxides, quaterylene compounds, and croconium compounds.
  • Examples of the pyrrolopyrrole compound include compounds described in paragraph Nos. 0016 to 0058 of JP-A-2009-263614, compounds described in paragraph Nos. 0037 to 0052 of JP-A-2011-68731, and the like. The contents are incorporated herein.
  • Examples of the squarylium compound include compounds described in JP-A-2011-208101, paragraphs 0044 to 0049, the contents of which are incorporated herein.
  • Examples of the cyanine compound include compounds described in paragraph Nos. 0044 to 0045 of JP-A-2009-108267, and compounds described in paragraph Nos. 0026 to 0030 of JP-A No. 2002-194040. Incorporated herein.
  • Examples of the diiminium compound include compounds described in JP-T-2008-528706, and the contents thereof are incorporated in the present specification.
  • Examples of the phthalocyanine compound include compounds described in paragraph No. 0093 of JP2012-77153A, oxytitanium phthalocyanine described in JP2006-343631, paragraph Nos. 0013 to 0029 of JP2013-195480A. And the contents of which are incorporated herein.
  • Examples of the naphthalocyanine compound include compounds described in paragraph No. 0093 of JP2012-77153A, the contents of which are incorporated herein.
  • cyanine compound phthalocyanine compound, diiminium compound, squarylium compound, and croconium compound
  • the compounds described in paragraph numbers 0010 to 0081 of JP 2010-1111750 A may be used, the contents of which are incorporated herein. It is.
  • the cyanine compound for example, “functional pigment, Nobu Okawara / Ken Matsuoka / Keijiro Kitao / Kensuke Hirashima, Kodansha Scientific”, the contents of which are incorporated herein. It is.
  • infrared absorbers compounds described in JP-A-2016-146619, JP-A-2017-031394, JP-A-2016-200771 and JP-A-2016-142891 may be used. The contents of which are incorporated herein.
  • a compound having the following structure may be used as another infrared absorber.
  • inorganic particles can also be used as other infrared absorbers.
  • the inorganic particles are preferably metal oxide particles or metal particles from the viewpoint of better infrared shielding properties.
  • the metal oxide particles include indium tin oxide (ITO) particles, antimony tin oxide (ATO) particles, zinc oxide (ZnO) particles, Al-doped zinc oxide (Al-doped ZnO) particles, and fluorine-doped tin dioxide (F-doped).
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • ZnO zinc oxide
  • Al-doped zinc oxide Al-doped zinc oxide
  • F-doped fluorine-doped tin dioxide
  • SnO 2 niobium-doped titanium dioxide (Nb-doped TiO 2 ) particles, and the like.
  • the metal particles include silver (Ag) particles, gold (Au) particles, copper (Cu) particles, and nickel (Ni) particles.
  • a tungsten oxide compound can be used as the inorganic particles.
  • the tungsten oxide compound is preferably cesium tungsten oxide.
  • paragraph No. 0080 of JP-A-2016-006476 can be referred to, the contents of which are incorporated herein.
  • the shape of the inorganic particles is not particularly limited, and may be a sheet shape, a wire shape, or a tube shape regardless of spherical or non-spherical.
  • the average particle size of the inorganic particles is preferably 800 nm or less, more preferably 400 nm or less, and even more preferably 200 nm or less. If the average particle diameter of the inorganic particles is 800 nm or less, the visible transparency is good.
  • the average particle size of the inorganic particles is preferably as small as possible, but from the viewpoint of handling properties, the average particle size of the inorganic particles is preferably 1 nm or more.
  • the content of the other infrared absorber is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the copper complex.
  • the lower limit is more preferably 0.5 parts by mass or more, and still more preferably 1 part by mass or more.
  • the upper limit is more preferably 45 parts by mass or less, still more preferably 40 parts by mass or less, and even more preferably 35 parts by mass or less.
  • the resin composition contains a resin.
  • a resin having substantially no crosslinkable group is used as the resin.
  • the crosslinkable group include a vinyl group, a (meth) allyl group, a (meth) acryloyl group, a styryl group, an epoxy group, an oxetanyl group, a methylol group, and an alkoxysilyl group. That is, in the present invention, the resin substantially has a crosslinkable group selected from vinyl group, (meth) allyl group, (meth) acryloyl group, styryl group, epoxy group, oxetanyl group, methylol group and alkoxysilyl group.
  • the resin having substantially no crosslinkable group means that the resin does not form a three-dimensional crosslink after heating. More specifically, the resin having substantially no crosslinkable group is preferably a resin that does not form a three-dimensional crosslink even after being heated to 100 ° C. Whether the resin forms a three-dimensional cross-linkage is determined by physical structure analysis such as molecular structure analysis by NMR (nuclear magnetic resonance), thermogravimetry, differential thermal analysis or thermophysical analysis by differential scanning calorimetry, Young's modulus or elongation at break It can be analyzed by methods such as physical property analysis.
  • the resin does not form a three-dimensional crosslink. That is, it can be said that the resin is a resin having substantially no crosslinkable group.
  • the amount of the crosslinkable group in the resin is preferably less than the detection limit value in NMR (nuclear magnetic resonance) analysis. More preferably, the resin does not have a crosslinkable group.
  • the type of resin is not particularly limited as long as it has substantially no crosslinkable group.
  • the resin is preferably a highly transparent resin.
  • polyolefin resin such as polyethylene, polypropylene, carboxylated polyolefin, chlorinated polyolefin, cycloolefin polymer; polystyrene resin; (meth) acrylic resin such as (meth) acrylic ester resin, (meth) acrylamide resin; vinyl acetate Resin; Halogenated vinyl resin; Polyvinyl alcohol resin; Polyamide resin; Polyurethane resin; Polyester resin such as polyethylene terephthalate (PET) and polyarylate (PAR); Polycarbonate resin; Polymaleimide resin; Polyurea resin; Polyvinyl acetal such as polyvinyl butyral resin Examples thereof include resins.
  • (meth) acrylic resins, polyurethane resins, polyester resins, polymaleimide resins, and polyurea resins are preferable, and (meth) acrylic resins, polyurethane resins, and polyester resins are more preferable.
  • the weight average molecular weight of the resin is preferably 1000 to 300,000.
  • the lower limit is more preferably 2000 or more, and further preferably 3000 or more.
  • the upper limit is more preferably 100,000 or less, and even more preferably 50,000 or less.
  • the number average molecular weight of the resin is preferably 500 to 200,000.
  • the lower limit is more preferably 1000 or more, and further preferably 2,000 or more.
  • the upper limit is more preferably 150,000 or less, and even more preferably 100,000 or less.
  • the resin is preferably a resin having at least one repeating unit represented by the following formulas (A1-1) to (A1-7).
  • R 1 represents a hydrogen atom or an alkyl group
  • L 1 to L 4 each independently represents a single bond or a divalent linking group
  • R 10 to R 13 each independently represents an alkyl group or an aryl group.
  • R 14 and R 15 each independently represents a hydrogen atom or a substituent.
  • the number of carbon atoms of the alkyl group represented by R 1 is preferably 1 to 5, more preferably 1 to 3, and particularly preferably 1.
  • R 1 is preferably a hydrogen atom or a methyl group.
  • Examples of the divalent linking group L 1 ⁇ L 4 represents an alkylene group, an arylene group, -O -, - S -, - SO -, - CO -, - COO -, - OCO -, - SO 2 -, Examples include —NR a — (R a represents a hydrogen atom or an alkyl group), or a group consisting of a combination thereof.
  • the alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkylene group may have a substituent, but is preferably unsubstituted.
  • the alkylene group may be linear, branched or cyclic. Further, the cyclic alkylene group may be monocyclic or polycyclic.
  • the number of carbon atoms of the arylene group is preferably 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10.
  • the alkyl group represented by R 10 to R 13 may be linear, branched or cyclic.
  • the alkyl group may have a substituent or may be unsubstituted.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, still more preferably 1 to 10 carbon atoms.
  • the aryl group represented by R 10 to R 13 preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
  • R 10 is preferably a linear or branched alkyl group or an aryl group, and more preferably a linear or branched alkyl group.
  • R 11 and R 12 are preferably each independently a linear or branched alkyl group, and more preferably a linear alkyl group.
  • R 13 is preferably a linear or branched alkyl group or an aryl group.
  • the substituents represented by R 14 and R 15 are halogen atoms, cyano groups, nitro groups, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, aralkyl groups, alkoxy groups, aryloxy groups, heteroaryloxy groups, Alkylthio group, arylthio group, heteroarylthio group, —NR a1 R a2 , —COR a3 , —COOR a4 , —OCOR a5 , —NHCOR a6 , —CONR a7 R a8 , —NHCONR a9 R a10 , —NHCOOR a11 , — SO 2 R a12 , —SO 2 OR a13 , —NHSO 2 R a14, or —SO 2 NR a15 R a16 may be mentioned.
  • R a1 to R a16 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group. Of these, at least one of R 14 and R 15 preferably represents a cyano group or —COOR a4 . R a4 preferably represents a hydrogen atom, an alkyl group or an aryl group.
  • Examples of a commercially available resin having a repeating unit represented by the formula (A1-7) include ARTON F4520 (manufactured by JSR Corporation). The details of the resin having a repeating unit represented by the formula (A1-7) can be referred to the descriptions in paragraph numbers 0053 to 0075 and 0127 to 0130 of JP2011-100084A. Embedded in the book.
  • the resin is preferably a resin having a repeating unit represented by the formula (A1-4), and a repeating unit represented by the formula (A1-1) and a repeating unit represented by the formula (A1-4).
  • a resin having a unit is more preferable. According to this aspect, the thermal shock resistance of the resin film tends to be improved. Furthermore, the compatibility between the copper complex and the resin is improved, and a resin film with few precipitates is easily obtained.
  • Resin may contain other repeating units in addition to the repeating units described above.
  • the description in paragraph Nos. 0068 to 0075 of JP-A-2010-106268 paragraph Nos. 0112 to 0118 of the corresponding US Patent Application Publication No. 2011/0124824 can be referred to. The contents of which are incorporated herein.
  • the resin content is preferably 30 to 90% by mass with respect to the total solid content of the resin composition.
  • the lower limit is more preferably 35% by mass or more, still more preferably 40% by mass or more, and still more preferably 50% by mass or more.
  • the upper limit is more preferably 85% by mass or less, and still more preferably 80% by mass or less.
  • the total amount of the copper complex and the resin is 60 to 100% by mass, preferably 70 to 100% by mass, and preferably 80 to 100% by mass with respect to the total solid content of the resin composition. More preferably, it is 90 to 100% by mass.
  • the resin composition preferably contains a solvent.
  • the solvent is not particularly limited and may be appropriately selected depending on the purpose as long as each component can be uniformly dissolved or dispersed.
  • water or an organic solvent can be used.
  • the organic solvent include alcohols, ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane and the like. These may be used alone or in combination of two or more.
  • a solvent is a compound which does not contain a crosslinkable group.
  • alcohols, aromatic hydrocarbons, and halogenated hydrocarbons include the solvents described in paragraph 0136 of JP2012-194534A, the contents of which are incorporated herein.
  • esters, ketones, and ethers include the solvents described in paragraph 0497 of JP2012-208494A (paragraph number 0609 of the corresponding US Patent Application Publication No. 2012/0235099).
  • an ester solvent substituted with a cyclic alkyl group or a ketone solvent substituted with a cyclic alkyl group can also be used.
  • the solvent include: n-amyl acetate, ethyl propionate, dimethyl phthalate, ethyl benzoate, methyl sulfate, acetone, methyl isobutyl ketone, diethyl ether, ethylene glycol monobutyl ether acetate, 1-methoxy-2-propanol Cyclohexyl acetate, cyclopentanone, cyclohexanone, propylene glycol monomethyl ether acetate, N-methyl-2-pyrrolidone, butyl acetate, ethyl lactate, propylene glycol monomethyl ether, 3-methoxybutyl acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether Acetate, triacetin, 3-methoxybutanol, dipropylene glycol methyl ether acetate, 1,4-butane All diacetate, cyclohexanol
  • a solvent having a boiling point of 150 ° C. or lower (preferably having a boiling point of 30 to 145 ° C., more preferably 50 to 140 ° C.) may be used alone. May be used alone (hereinafter, also referred to as a high boiling point solvent) having a boiling point of 155 to 300 ° C. (preferably a boiling point of 155 to 300 ° C., more preferably 160 to 250 ° C.). May be used in combination.
  • a high boiling point solvent By using a high boiling point solvent, the evaporation rate of the solvent in the resin composition becomes slow, and it is easy to stabilize drying and prevent precipitation of residues.
  • a high-boiling solvent and a low-boiling point solvent are used from the viewpoints of stabilization of drying and precipitation of residues. It is preferable to use a solvent together.
  • the difference between the boiling point of the high boiling point solvent and the boiling point of the low boiling point solvent is preferably 20 to 250 ° C., more preferably 50 to 150 ° C. .
  • the high boiling point solvent include 3-methoxybutyl acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triacetin, 3-methoxybutanol, dipropylene glycol methyl ether acetate, 1,4-butanediol diacetate, cyclohexanol.
  • Examples include acetate, dipropylene glycol dimethyl ether, propylene glycol diacetate, dipropylene glycol methyl-n-propyl ether, 1,3-butylene glycol diacetate, and 1,6-hexanediol diacetate.
  • Examples of the low boiling point solvent include cyclopentanone, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, and the like.
  • a solvent having a low metal content it is preferable to use a solvent having a low metal content, and the metal content of the solvent is preferably 10 mass ppb (parts per billion) or less, for example. If necessary, a solvent having a mass ppt (parts per trillation) level may be used, and such a high-purity solvent is provided, for example, by Toyo Gosei Co., Ltd. (Chemical Industry Daily, November 13, 2015).
  • Examples of the method for removing impurities such as metals from the solvent include distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter.
  • the filter pore diameter of the filter used for filtration is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the filter material is preferably polytetrafluoroethylene, polyethylene or nylon.
  • the solvent may contain isomers (compounds having the same number of atoms and different structures). Moreover, only 1 type may be included and the isomer may be included multiple types.
  • the content of the solvent is preferably such that the total solid content of the resin composition is 5 to 80% by mass.
  • the lower limit is more preferably 10% by weight or more, further preferably 20% by weight or more, still more preferably 30% by weight or more, still more preferably 50% by weight or more, still more preferably 55% by weight or more, and 60% by weight or more. Is particularly preferred.
  • the upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less.
  • the solubility of the component in a resin composition is favorable. Only one type of solvent may be used, or two or more types may be used, and in the case of two or more types, the total amount is preferably within the above range. In addition, for reasons such as environmental aspects, it may be preferable that the composition does not contain aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.) as a solvent.
  • aromatic hydrocarbons benzene, toluene, xylene, ethylbenzene, etc.
  • the resin composition can also contain a radical trapping agent.
  • radical trapping agents include oxime compounds.
  • Commercially available oxime compounds include IRGACURE-OXE01, IRGACURE-OXE02, IRGACURE-OXE03, IRGACURE-OXE04 (above, manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831 (manufactured by ADEKA Corporation), Adeka Arkles NCI-930 (manufactured by ADEKA Corporation), Adekaoptomer N-1919 (manufactured by ADEKA Corporation, photopolymerization described in JP 2012-14052 A Initiator 2) and the like can be used.
  • an oxime compound having a fluorine atom can be used as the oxime compound.
  • Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-A-2014-500852, and JP-A 2013-164471. Compound (C-3). This content is incorporated herein.
  • an oxime compound having a nitro group can be used as the oxime compound.
  • the oxime compound having a nitro group is also preferably a dimer.
  • Specific examples of the oxime compound having a nitro group include compounds described in paragraphs 0031 to 0047 of JP2013-114249A, paragraphs 0008 to 0012 and 0070 to 0079 of JP2014-137466A, Examples include compounds described in paragraph Nos. 0007 to 0025 of Japanese Patent No. 4223071, Adeka Arcles NCI-831 (manufactured by ADEKA Corporation).
  • an oxime compound having a fluorene ring can also be used.
  • Specific examples of the oxime compound having a fluorene ring include compounds described in JP-A-2014-137466. This content is incorporated herein.
  • an oxime compound having a benzofuran skeleton can also be used.
  • Specific examples include compounds OE-01 to OE-75 described in International Publication No. WO2015 / 036910.
  • the content of the radical trapping agent is preferably 0.01 to 30% by mass with respect to the total solid content of the resin composition.
  • the lower limit is more preferably 0.1% by mass or more.
  • the upper limit is more preferably 20% by mass or less, and still more preferably 10% by mass or less.
  • the resin composition can also contain a surfactant. Only one type of surfactant may be used, or two or more types may be combined.
  • the content of the surfactant is preferably 0.0001 to 5% by mass with respect to the total solid content of the resin composition.
  • the lower limit is more preferably 0.005% by mass or more, and still more preferably 0.01% by mass or more.
  • the upper limit is more preferably 2% by mass or less, and still more preferably 1% by mass or less.
  • the surfactant various surfactants such as a fluorosurfactant, nonionic surfactant, cationic surfactant, anionic surfactant, and silicone surfactant can be used. And a silicone-based surfactant are preferable, and a fluorine-based surfactant is more preferable.
  • the fluorine content in the fluorosurfactant is preferably 3 to 40% by mass.
  • the lower limit is more preferably 5% by mass or more, and further preferably 7% by mass or more.
  • the upper limit is more preferably 30% by mass or less, and further preferably 25% by mass or less. If the fluorine content in the fluorosurfactant is in the above-described range, it is effective in terms of uniformity of coating film thickness and liquid-saving properties.
  • fluorosurfactant examples include surfactants described in paragraph numbers 0060 to 0064 of JP-A-2014-41318 (paragraph numbers 0060 to 0064 of corresponding international publication 2014/17669), JP-A-2011-132503. And surfactants described in paragraph Nos. 0117 to 0132 of the publication, and the contents thereof are incorporated herein.
  • fluorosurfactants include Megafac F171, F172, F173, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780 (and above, DIC).
  • an acrylic compound having a molecular structure having a functional group containing a fluorine atom, and the fluorine atom is volatilized by cleavage of the functional group containing the fluorine atom when heated can also be suitably used.
  • a fluorosurfactant include Megafac DS series manufactured by DIC Corporation (Chemical Industry Daily, February 22, 2016 and Nikkei Sangyo Shimbun, February 23, 2016), such as Megafac DS- 21 can be used, and these can be used.
  • a block polymer can also be used as the fluorosurfactant.
  • the fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy group or propyleneoxy group) (meta).
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used.
  • the following compounds are also exemplified as the fluorosurfactant used in the present invention.
  • the weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example, 14,000. In the above compounds,% indicating the ratio of repeating units is mol%.
  • a fluoropolymer having an ethylenically unsaturated group in the side chain can also be used.
  • Specific examples thereof include compounds described in paragraph Nos. 0050 to 0090 and paragraph Nos. 0289 to 0295 of JP2010-164965A, for example, Megafac RS-101, RS-102, RS-718K manufactured by DIC Corporation. RS-72-K and the like.
  • the fluorine-based surfactant compounds described in paragraph numbers 0015 to 0158 of JP-A No. 2015-117327 can also be used.
  • nonionic surfactants examples include nonionic surfactants described in paragraph No. 0553 of JP2012-208494A (paragraph number 0679 of the corresponding US Patent Application Publication No. 2012/0235099), This content is incorporated herein.
  • examples of the cationic surfactant include a cationic surfactant described in paragraph No. 0554 of JP2012-208494A (paragraph number 0680 of the corresponding US Patent Application Publication No. 2012/0235099). This content is incorporated herein.
  • the anionic surfactant examples include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
  • silicone surfactant examples include KF6001 (manufactured by Shin-Etsu Silicone) and paragraph number 0556 of JP 2012-208494 A (corresponding to paragraph number 0682 of US Patent Application Publication No. 2012/0235099). Of silicone surfactants, the contents of which are incorporated herein.
  • the resin composition can contain an ultraviolet absorber.
  • an ultraviolet absorber a conjugated diene compound, an aminodiene compound, a salicylate compound, a benzophenone compound, a benzotriazole compound, an acrylonitrile compound, a hydroxyphenyltriazine compound, or the like can be used.
  • the benzotriazole compound has good compatibility with the copper compound, and further, the copper compound and the absorption wavelength are suitable, and the ultraviolet shielding property can be improved while maintaining excellent visible transparency.
  • hydroxyphenyltriazine compounds are preferred.
  • benzotriazole compounds examples include TINUVIN PS, TINUVIN 99-2, TINUVIN 384-2, TINUVIN 900, TINUVIN 928, and TINUVIN 1130 (above, manufactured by BASF).
  • benzotriazole compound you may use the MYUA series (Chemical Industry Daily, February 1, 2016) made from Miyoshi oil and fat.
  • the content of the ultraviolet absorber is preferably from 0.01 to 10% by mass, more preferably from 0.01 to 5% by mass, based on the total solid content of the resin composition.
  • the resin composition further includes a dispersant, a sensitizer, a filler, a thermal polymerization inhibitor, a plasticizer, an adhesion promoter, and other auxiliary agents (for example, conductive particles, fillers, antifoaming agents, flame retardants, Leveling agents, peeling accelerators, antioxidants, surface tension modifiers, chain transfer agents, etc.).
  • auxiliary agents for example, conductive particles, fillers, antifoaming agents, flame retardants, Leveling agents, peeling accelerators, antioxidants, surface tension modifiers, chain transfer agents, etc.
  • the antioxidant include a phenol compound, a phosphite compound, and a thioether compound.
  • a phenol compound having a molecular weight of 500 or more, a phosphite compound having a molecular weight of 500 or more, or a thioether compound having a molecular weight of 500 or more is more preferable. You may use these in mixture of 2 or more types.
  • the phenol compound any phenol compound known as a phenol-based antioxidant can be used.
  • Preferable phenolic compounds include hindered phenolic compounds.
  • a compound having a substituent at a site (ortho position) adjacent to the phenolic hydroxyl group is preferable.
  • a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferable, and a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isopentyl group.
  • T-pentyl group, hexyl group, octyl group, isooctyl group and 2-ethylhexyl group are more preferable.
  • a compound (antioxidant) having a phenol group and a phosphite group in the same molecule is also preferred.
  • phosphorus antioxidant can also be used suitably for antioxidant.
  • phosphorus-based antioxidant tris [2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphine-6 -Yl] oxy] ethyl] amine, tris [2-[(4,6,9,11-tetra-tert-butyldibenzo [d, f] [1,3,2] dioxaphosphin-2-yl And at least one compound selected from the group consisting of) oxy] ethyl] amine and ethyl bis (2,4-di-tert-butyl-6-methylphenyl) phosphite.
  • the content of the antioxidant is preferably 0.01 to 20% by mass and more preferably 0.3 to 15% by mass with respect to the total solid content of the resin composition. Only one type of antioxidant may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
  • the content of the monomer containing a crosslinkable group is preferably 1% by mass or less, more preferably 0.5% by mass or less, based on the total solid content of the resin composition. It is particularly preferable that the monomer containing a functional group is substantially not contained. That the resin composition does not substantially contain a monomer containing a crosslinkable group means that the content of the monomer containing a crosslinkable group is 0.1% by mass or less based on the total solid content of the resin composition. This means that it is preferably 0.05% by mass or less, and more preferably not contained.
  • Examples of the monomer containing a crosslinkable group include monomers having at least one selected from vinyl group, (meth) allyl group, (meth) acryloyl group, styryl group, epoxy group, oxetanyl group, methylol group and alkoxysilyl group. It is done.
  • content of metals other than copper in a resin composition 10 mass% or less is preferable with respect to solid content of a copper complex, 5 mass% or less is more preferable, and 2 mass% or less is still more preferable. According to this aspect, it is easy to form a resin film in which foreign object defects are suppressed. Moreover, it is preferable that lithium content in a resin composition is 100 mass ppm or less. Moreover, it is preferable that potassium content in a resin composition is 30 mass ppm or less. The content of metals other than copper in the resin composition can be measured by inductively coupled plasma emission spectroscopy.
  • content of the water in a resin composition 5 mass% or less is preferable with respect to solid content of a copper complex, 3 mass% or less is more preferable, and 1 mass% or less is still more preferable.
  • the total amount of free halogen anions and halogen compounds in the resin composition is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less, based on the total solid content of the copper complex. .
  • the residual ratio of the copper component that is the raw material of the copper complex in the resin composition is preferably 10% by mass or less based on the solid content of the copper complex, 5 mass% or less is more preferable, and 2 mass% or less is still more preferable. Further, the residual ratio of the ligand that is a raw material of the copper complex in the resin composition (content of the ligand not coordinated with copper) is preferably 10% by mass or less based on the solid content of the copper complex. 5 mass% or less is more preferable, and 2 mass% or less is still more preferable.
  • the viscosity of the resin composition is preferably 1 to 3000 mPa ⁇ s when a resin film is formed by coating.
  • the lower limit is more preferably 10 mPa ⁇ s or more, and still more preferably 100 mPa ⁇ s or more.
  • the upper limit is more preferably 2000 mPa ⁇ s or less, and even more preferably 1500 mPa ⁇ s or less.
  • Said resin composition can be prepared by mixing each component.
  • the components constituting the resin composition may be blended together, or may be blended sequentially after each component is dissolved and / or dispersed in a solvent. Further, the order of addition and the working conditions when blending are not particularly limited, but it is preferable to add a high-viscosity component last from the viewpoint of ensuring agitation.
  • the resin composition is preferably prepared in a closed system to prevent volatilization.
  • the resin composition is preferably prepared in an atmosphere of dried air or nitrogen gas (preferably nitrogen gas).
  • the mechanical force used for dispersing the particles includes compression, squeezing, impact, shearing, cavitation and the like.
  • Specific examples of these processes include a bead mill, a sand mill, a roll mill, a ball mill, a paint shaker, a microfluidizer, a high speed impeller, a sand grinder, a flow jet mixer, a high pressure wet atomization, and an ultrasonic dispersion.
  • the process and disperser for dispersing particles are described in “Dispersion Technology Taizen, Issued by Information Technology Corporation, July 15, 2005” and “Dispersion technology and industrial application centering on suspension (solid / liquid dispersion system)”. In fact, the process and the disperser described in Paragraph No. 0022 of Japanese Unexamined Patent Publication No. 2015-157893 can be suitably used.
  • the particles may be refined in the salt milling process.
  • materials, equipment, processing conditions, etc. used in the salt milling process for example, descriptions in JP-A Nos. 2015-194521 and 2012-046629 can be referred to.
  • any filter can be used without particular limitation as long as it has been conventionally used for filtration.
  • fluororesin such as polytetrafluoroethylene (PTFE), polyamide resin such as nylon (eg nylon-6, nylon-6,6), polyolefin resin such as polyethylene and polypropylene (PP) (high density, ultra high molecular weight)
  • PP polypropylene
  • polypropylene including high density polypropylene
  • nylon are preferable.
  • the pore size of the filter is suitably about 0.01 to 7.0 ⁇ m, preferably about 0.01 to 3.0 ⁇ m, more preferably about 0.05 to 0.5 ⁇ m.
  • the thickness of the filter is preferably 25.4 mm or more, and more preferably 50.8 mm or more.
  • the filter medium include polypropylene fiber, nylon fiber, glass fiber, and the like. Specifically, SBP type series (SBP008 etc.), TPR type series (TPR002) manufactured by Loki Techno Co., Ltd. , TPR005, etc.) and SHPX type series (SHPX003 etc.) filter cartridges can be used.
  • the pore diameter can refer to the nominal value of the filter manufacturer. As a commercially available filter, for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co. .
  • a filter formed of the same material as the first filter described above can be used.
  • the pore size of the second filter is preferably 0.2 to 10.0 ⁇ m, more preferably 0.2 to 7.0 ⁇ m, and still more preferably 0.3 to 6.0 ⁇ m.
  • the filling rate of the resin composition in the container may be 70 to 100% for the purpose of avoiding contact between the resin composition and moisture in the container.
  • gap in a storage container shall be dry air or dry nitrogen.
  • a container of a resin composition A well-known container can be used.
  • a container made of various resins such as polypropylene can be used.
  • a container for the purpose of suppressing impurities from being mixed into raw materials and resin compositions, a multilayer bottle in which the inner wall of the container is composed of six types and six layers of resin, and a bottle having six types of resin having a seven layer structure. It is also preferred to use Examples of such a container include a container described in JP-A-2015-123351.
  • the method for producing a near-infrared cut filter of the present invention is a method for producing a near-infrared cut filter including a step of applying a resin composition containing a copper complex and a resin on a support and drying to form a resin film.
  • the copper complex is a compound represented by the formula (1) described above,
  • the resin is a resin substantially free of crosslinkable groups,
  • a resin composition in which the total amount of the copper complex and the resin in the resin composition is 60 to 100% by mass with respect to the total solid content of the resin composition is used.
  • the resin composition mentioned above is mentioned.
  • the type of support is not particularly limited.
  • examples of the material for the support include general glass, tempered glass such as sapphire glass and gorilla glass, transparent ceramic, and plastic.
  • another substrate provided on the light receiving side of the solid-state imaging device can be used as a support.
  • a layer such as a planarization layer provided on the light receiving side of the solid-state imaging device can be used as the support.
  • a substrate having no transparency can be used as the support.
  • a metal substrate, a resin substrate, a silicon substrate, etc. are mentioned.
  • it is preferable that a release layer is formed on the surface of the support in order to easily peel the resin film from the support.
  • a coating method of the resin composition As a coating method of the resin composition, a known method can be used. Drip method (drop casting); slit coating method; spray method; roll coating method; spin coating method (spin coating); casting coating method; slit and spin method; prewet method (for example, in JP 2009-145395 A) Described method); ink jet (for example, on-demand method, piezo method, thermal method), discharge printing such as nozzle jet, flexographic printing, screen printing, gravure printing, reverse offset printing, various printing such as metal mask printing Examples thereof include: a transfer method using a mold or the like; a nanoimprint method; a blade coating method; a bar coating method; an applicator coating method.
  • Drip method drop casting
  • slit coating method spray method
  • roll coating method spin coating
  • casting coating method for example, in JP 2009-145395 A
  • prewet method for example, in JP 2009-145395 A
  • ink jet for example, on-demand method, piezo method,
  • the application method by ink jet is not particularly limited as long as it is a method capable of ejecting the composition.
  • “Expanding and usable ink jet-unlimited possibilities seen in patents, published in February 2005, Sumibe Techno Research” The methods described in the patent publications indicated (particularly, pages 115 to 133), JP-A 2003-262716, JP-A 2003-185831, JP-A 2003-261827, JP-A 2012-126830
  • the method described in JP-A-2006-169325 can be used. Of these, the casting method is preferred from the viewpoint of productivity.
  • the drying conditions of the resin composition (resin composition layer) applied to the support vary depending on the type and content of each component contained in the resin composition.
  • the drying temperature is preferably 40 to 150 ° C.
  • the lower limit is more preferably 50 ° C. or higher, and further preferably 55 ° C. or higher.
  • the upper limit is more preferably 130 ° C. or less, and even more preferably 110 ° C. or less.
  • the heating time is preferably 1 minute to 100 hours.
  • the lower limit is more preferably 5 minutes or more, and still more preferably 10 minutes or more.
  • the upper limit is more preferably 50 hours or less, still more preferably 25 hours or less, and even more preferably 20 hours or less.
  • Another example is a method in which the temperature is raised from room temperature (for example, 25 ° C.) to a predetermined drying temperature at a constant heating rate, and the temperature is maintained and dried.
  • the rate of temperature rise is preferably 0.5 to 10 ° C./min, more preferably 1.0 to 5 ° C./min.
  • aging may be performed on the dried resin composition layer.
  • the resin composition layer is preferably subjected to a high temperature and high humidity treatment.
  • the aging temperature is preferably 60 to 150 ° C.
  • the lower limit is more preferably 70 ° C. or higher, and still more preferably 80 ° C. or higher.
  • the upper limit is more preferably 140 ° C. or less, and further preferably 130 ° C. or less.
  • the humidity is preferably 30 to 100%.
  • the lower limit is more preferably 40% or more, and further preferably 50% or more.
  • the upper limit is more preferably 95% or less, and still more preferably 90% or less.
  • the aging time is preferably 0.5 to 100 hours.
  • the lower limit is more preferably 1 hour or longer, and further preferably 2 hours or longer.
  • the upper limit is more preferably 50 hours or less, and even more preferably 25 hours or less. If it is the conditions of these ranges, the resin film which has the mechanical property mentioned above will be easy to be obtained.
  • the solid-state imaging device of the present invention includes the near-infrared cut filter of the present invention.
  • the camera module of the present invention includes the near-infrared cut filter of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a camera module having a near infrared cut filter according to an embodiment of the present invention.
  • a camera module 10 illustrated in FIG. 1 includes a solid-state image sensor 11, a planarization layer 12 provided on the main surface side (light-receiving side) of the solid-state image sensor, a near-infrared cut filter 13, and a near-infrared cut filter. And a lens holder 15 having an imaging lens 14 in the internal space.
  • incident light from the outside passes through the imaging lens 14, the near-infrared cut filter 13, and the planarization layer 12 in order, and then reaches the imaging device portion of the solid-state imaging device 11.
  • the near-infrared cut filter 13 only the resin film having the physical properties described above may be used, or a laminate of the resin film and the support may be used.
  • the material for the support include general glass, tempered glass such as sapphire glass and gorilla glass, transparent ceramic, and plastic.
  • the material for the imaging lens 14 include general glass, tempered glass such as sapphire glass and gorilla glass, transparent ceramic, and plastic.
  • the solid-state imaging device 11 includes, for example, a photodiode, an interlayer insulating film (not shown), a base layer (not shown), a color filter 17, an overcoat (not shown), and a microlens 18 on the main surface of the substrate 16. Are provided in this order.
  • the color filter 17 (red color filter, green color filter, blue color filter) and the microlens 18 are respectively disposed so as to correspond to the solid-state imaging device 11.
  • the surface of the microlens 18, between the base layer and the color filter 17, or between the color filter 17 and the overcoat may be sufficient.
  • the near-infrared cut filter 13 may be provided at a position within 2 mm (more preferably within 1 mm) from the surface of the microlens. If the near infrared cut filter 13 is provided at this position, the process of forming the near infrared cut filter can be simplified. Furthermore, unnecessary near-infrared light incident on the microlens can be sufficiently cut, and the infrared shielding property can be further improved.
  • the number of imaging lenses 14 is one, but the number of imaging lenses 14 may be two or more.
  • the near-infrared cut filter of this invention is excellent in heat resistance, it can use for a solder reflow process.
  • the camera module By manufacturing the camera module through the solder reflow process, it is possible to automatically mount electronic component mounting boards, etc. that need to be soldered, making the productivity significantly higher than when not using the solder reflow process. Can be improved. Furthermore, since it can be performed automatically, the cost can be reduced.
  • the near-infrared cut filter is exposed to a temperature of about 250 to 270 ° C. Therefore, the near-infrared cut filter has a heat resistance that can withstand the solder reflow process (hereinafter also referred to as “solder reflow resistance”). .).
  • “having solder reflow resistance” means that the characteristics as a near-infrared cut filter are maintained even after heating at 180 ° C. for 1 minute. More preferably, the characteristics are maintained even after heating at 230 ° C. for 10 minutes. More preferably, the characteristics are maintained even after heating at 250 ° C. for 3 minutes.
  • the infrared shielding property of a near-infrared cut filter may fall, or the function as a film
  • the camera module of the present invention can further have an ultraviolet absorbing layer. According to this aspect, the ultraviolet shielding property can be enhanced.
  • the description of paragraphs 0040 to 0070 and 0119 to 0145 in International Publication No. WO2015 / 099060 can be referred to for the ultraviolet absorbing layer, and the contents thereof are incorporated herein.
  • FIGS 2 to 4 are schematic cross-sectional views showing an example of the peripheral portion of the near-infrared cut filter in the camera module.
  • the camera module includes a solid-state imaging device 11, a planarization layer 12, an ultraviolet / infrared light reflection film 19, a transparent base material 20, a near-infrared cut filter 21, and an antireflection layer 22. May be included in this order.
  • the ultraviolet / infrared light reflection film 19 for example, paragraph numbers 0033 to 0039 of JP2013-68688A and paragraph numbers 0110 to 0114 of international publication WO2015 / 099060 can be referred to.
  • the transparent substrate 20 transmits light having a wavelength in the visible region.
  • paragraphs 0026 to 0032 of JP2013-68688A can be referred to, and the contents thereof are incorporated in the present specification. .
  • the antireflection layer 22 has a function of improving the transmittance by preventing reflection of light incident on the near-infrared cut filter 21 and efficiently using incident light.
  • Japanese Patent Application Laid-Open No. 2013-68688 Reference can be made to the description of paragraph number 0040 of the publication, the contents of which are incorporated herein.
  • the camera module includes a solid-state imaging device 11, a near-infrared cut filter 21, an antireflection layer 22, a planarization layer 12, an antireflection layer 22, a transparent substrate 20, an ultraviolet
  • the infrared light reflection film 19 may be provided in this order.
  • the camera module includes a solid-state imaging device 11, a near infrared cut filter 21, an ultraviolet / infrared light reflection film 19, a planarization layer 12, an antireflection layer 22, and a transparent substrate 20. And an antireflection layer 22 in this order.
  • FIG. 5 shows another embodiment of the camera module of the present invention.
  • This camera module is different from the camera module shown in FIG. 1 in that the near infrared cut filter 13 is arranged outside the lens holder 15 in the camera module shown in FIG. That is, in the camera module shown in FIG. 5, the near-infrared cut filter 13 is arranged on the incident light side from the outside with respect to the imaging lens 14.
  • incident light from the outside sequentially passes through the near-infrared cut filter 13, the imaging lens 14, and the planarization layer 12, and then reaches the imaging device portion of the solid-state imaging device 11.
  • the near-infrared cut filter 13 When the near-infrared cut filter 13 is arranged on the incident light side from the outside of the imaging lens 14, even if the near-infrared cut filter has a defect because the distance between the near-infrared cut filter 13 and the light receiving unit increases. These defects are blurred and the influence of these defects on the image can be reduced.
  • the near-infrared cut filter 13 is disposed outside the lens holder 15, but may be disposed within the lens holder 15.
  • the near infrared cut filter 13 is arranged at a predetermined interval from the surface of the imaging lens 14, but the near infrared cut filter 13 may be directly formed on the surface of the imaging lens 14.
  • the imaging lens 14 is one, but the imaging lens 14 may be two or more.
  • the near-infrared cut filter 13 may be disposed on the outer side (incident light side) than the imaging lens 14 disposed on the outermost side (incident light side).
  • a near-infrared cut filter 13 may be disposed between the imaging lenses.
  • the near-infrared cut filter, the imaging lens, and the imaging lens may be arranged in this order from the incident light side.
  • the imaging lens, the near-infrared cut filter, and the imaging lens Each may be arranged in order.
  • the image display device of the present invention has the near infrared cut filter of the present invention.
  • the near-infrared cut filter of the present invention can also be used for image display devices such as liquid crystal display devices and organic electroluminescence (organic EL) display devices.
  • image display devices such as liquid crystal display devices and organic electroluminescence (organic EL) display devices.
  • organic EL organic electroluminescence
  • display devices and details of each display device refer to, for example, “Electronic Display Devices (Akio Sasaki, published by Kogyo Kenkyukai 1990)”, “Display Devices (Junaki Ibuki, Sangyo Tosho Co., Ltd.) Issued in the first year).
  • the liquid crystal display device is described in, for example, “Next-generation liquid crystal display technology (edited by Tatsuo Uchida, published by Kogyo Kenkyukai 1994)”.
  • the liquid crystal display device to which the present invention can be applied is not particularly limited, and can be applied to, for example, various types of liquid crystal display devices described in the “next generation liquid crystal display technology”.
  • the image display device may have a white organic EL element.
  • the white organic EL element preferably has a tandem structure.
  • JP 2003-45676 A supervised by Akiyoshi Mikami, “Frontier of Organic EL Technology Development-High Brightness, High Precision, Long Life, Know-how Collection”, Technical Information Association, 326-328 pages, 2008, etc.
  • the spectrum of white light emitted from the organic EL element preferably has a strong maximum emission peak in the blue region (430 nm to 485 nm), the green region (530 nm to 580 nm) and the yellow region (580 nm to 620 nm). In addition to these emission peaks, those having a maximum emission peak in the red region (650 nm to 700 nm) are more preferable.
  • A-1 to A-4 Copper complex having the following structure
  • A-5 Copper complex having the following compound as a ligand
  • A-6 Copper complex having the following compound as a ligand
  • A-7 Copper complex having the following compound as a ligand
  • A-12 Compound s-1 (squarylium compound) described in Table 1 of paragraph No. 0059 of JP-A-2016-200771
  • A-13 Compound s-5 (squarylium compound) described in Table 1 of paragraph No. 0059 of JP-A-2016-200771
  • Resin B-3 had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C. Resin B-3 was a resin containing no crosslinkable group.
  • Example 14 On the glass substrate, the resin composition described in the following table was cast and formed to form a resin composition layer. Next, the resin composition layer was dried at 40 ° C. for 24 hours using a hot plate to prepare a resin film (near infrared cut filter) having a thickness of 100 ⁇ m.
  • a resin film near infrared cut filter
  • Rate of change in absorbance at wavelength 450 nm (%)
  • Average absorbance change rate (%) in the wavelength range from 700 nm to less than 800 nm
  • Average absorbance change rate (%) in the wavelength range from 800 nm to 1100 nm
  • the near-infrared cut filters of the examples were excellent in heat resistance, and had excellent visible transparency and infrared shielding properties even after heating.

Abstract

Provide is a near-infrared blocking filter which has excellent heat resistance. Also provided are: a method for producing a near-infrared blocking filter; a solid-state imaging element; a camera module; and an image display device. This near-infrared blocking filter comprises a resin film that contains a resin and a specific copper complex; the total amount of the copper complex and the resin in the resin film is 60-100% by mass; and the resin does not form a three-dimensional crosslinked structure in the resin film.

Description

近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置Near-infrared cut filter, method for manufacturing near-infrared cut filter, solid-state imaging device, camera module, and image display device
 本発明は、近赤外線カットフィルタに関する。更に詳しくは、銅錯体を含む近赤外線カットフィルタに関する。また、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置に関する。 The present invention relates to a near infrared cut filter. More specifically, the present invention relates to a near infrared cut filter containing a copper complex. The present invention also relates to a method for manufacturing a near-infrared cut filter, a solid-state imaging device, a camera module, and an image display device.
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などにはカラー画像の固体撮像素子である、電荷結合素子(CCD)や、相補型金属酸化膜半導体(CMOS)などが用いられている。これら固体撮像素子は、その受光部において近赤外線に感度を有するシリコンフォトダイオードを使用しているために、視感度補正を行うことが必要であり、近赤外線カットフィルタを用いることが多い。 Video cameras, digital still cameras, mobile phones with camera functions, etc. use charge coupled devices (CCD), complementary metal oxide semiconductors (CMOS), etc., which are solid-state imaging devices for color images. Since these solid-state imaging devices use silicon photodiodes having sensitivity to near infrared rays in their light receiving portions, it is necessary to perform visibility correction and often use near-infrared cut filters.
 例えば、特許文献1には、樹脂シートを含む光選択透過フィルタであって、樹脂シートは、色素及び樹脂成分を含む樹脂層を有し、色素は、それが有する共役系骨格がノニオン性であり、かつ600~800nmの波長域に吸収極大波長を有し、その少なくとも1つの吸収極大波長が600~710nmに存在する化合物である光選択透過フィルタについて記載されている。特許文献1では、上記色素としてフタロシアニン色素が用いられている。 For example, Patent Document 1 discloses a light selective transmission filter including a resin sheet, the resin sheet has a resin layer including a dye and a resin component, and the dye has a nonionic conjugated skeleton. And a light selective transmission filter which is a compound having an absorption maximum wavelength in the wavelength region of 600 to 800 nm and having at least one absorption maximum wavelength in the range of 600 to 710 nm. In Patent Document 1, a phthalocyanine dye is used as the dye.
 また、特許文献2には、銅錯体を含む近赤外線吸収性組成物を用いて近赤外線カットフィルタを製造することが記載されている。 Patent Document 2 describes that a near-infrared cut filter is produced using a near-infrared absorbing composition containing a copper complex.
特開2013-257532号公報JP 2013-257532 A 特開2016-006476号公報JP 2016-006476 A
 本発明者の検討によれば、特許文献1に記載された光選択透過フィルタは、可視透明性や、赤外線遮蔽性が不十分であることが分かった。 According to the study of the present inventor, it was found that the light selective transmission filter described in Patent Document 1 has insufficient visible transparency and infrared shielding properties.
 一方、銅錯体を含む近赤外線吸収性組成物を用いて形成した近赤外線カットフィルタは可視透明性や赤外線遮蔽性は優れるものの、耐熱性のさらなる向上が求められている。 On the other hand, near-infrared cut filters formed using a near-infrared absorbing composition containing a copper complex are excellent in visible transparency and infrared shielding properties, but are required to further improve heat resistance.
 本発明の目的は、耐熱性に優れた近赤外線カットフィルタを提供することにある。また、本発明の目的は、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールおよび画像表示装置を提供することにある。 An object of the present invention is to provide a near-infrared cut filter excellent in heat resistance. Moreover, the objective of this invention is providing the manufacturing method of a near-infrared cut filter, a solid-state image sensor, a camera module, and an image display apparatus.
 本発明者が銅錯体と樹脂とを含む樹脂膜を有する近赤外線カットフィルタについて鋭意検討を行った結果、このような樹脂膜について、銅錯体と架橋成分(例えば架橋性基を含む樹脂など)を含む組成物を用いて形成した場合、耐熱性が低下し易い傾向にあることを見出した。このような組成物を用いて形成した樹脂膜の耐熱性が低下し易い原因についてさらに検討を進めたところ、架橋成分の反応時に発生する副生物などが銅錯体と相互作用したり、樹脂膜中に残存している未反応の架橋成分が銅錯体と相互作用して銅錯体の耐熱性を低下させていると考えた。そして、樹脂として、架橋性基を含まない樹脂を用いて銅錯体を含む樹脂膜を形成したところ、このような樹脂膜は加熱後も着色が生じにくく、優れた可視透明性や赤外線遮蔽性を有していることを見出し、本発明を完成するに至った。本発明は、以下を提供する。
 <1> 銅錯体と樹脂とを含む樹脂膜を有する近赤外線カットフィルタであって、
 銅錯体が、下記式(1)で表される化合物であり、
 樹脂膜中における銅錯体と樹脂との合計量が60~100質量%であり、
 樹脂膜中において樹脂が三次元架橋を形成していない、近赤外線カットフィルタ;
 Cu・(L)n1・(X)n2    ・・・(1)
 式中、Lは、配位子であって、銅原子に対してアニオンで配位する配位部位および銅原子に対して非共有電子対で配位する配位原子から選ばれる少なくとも1種を1個以上有する化合物であり、Xは対イオンであり、n1は1~4の整数を表し、n2は0~4の整数を表す。
 <2> 式(1)における配位子Lは、波長400~600nmの範囲に極大吸収波長を有さない化合物である、<1>に記載の近赤外線カットフィルタ。
 <3> 式(1)における配位子Lが、銅原子に対してアニオンで配位する配位部位および銅原子に対して非共有電子対で配位する配位原子から選ばれる少なくとも1種を合計で2個以上有する化合物である、<1>または<2>に記載の近赤外線カットフィルタ。
 <4> 式(1)における配位子Lが、カルボン酸化合物、スルホン酸化合物及びリン酸エステル化合物から選ばれる少なくとも1種である、<1>または<2>に記載の近赤外線カットフィルタ。
 <5> 樹脂膜の膜厚が1~500μmである、<1>~<4>のいずれか1つに記載の近赤外線カットフィルタ。
 <6> 樹脂膜は銅錯体を5質量%以上含有する、<1>~<5>のいずれか1つに記載の近赤外線カットフィルタ。
 <7> 支持体上に銅錯体と樹脂とを含む樹脂組成物を塗布し、乾燥して樹脂膜を形成する工程を含む近赤外線カットフィルタの製造方法であって、
 銅錯体が、下記式(1)で表される化合物であり、
 樹脂が架橋性基を実質的に含まない樹脂であり、
 樹脂組成物中における銅錯体と樹脂との合計量が、樹脂組成物の全固形分に対して60~100質量%である、近赤外線カットフィルタの製造方法;
 Cu・(L)n1・(X)n2    ・・・(1)
 式中、Lは、配位子であって、銅原子に対してアニオンで配位する配位部位および銅原子に対して非共有電子対で配位する配位原子から選ばれる少なくとも1種を1個以上有する化合物であり、Xは対イオンであり、n1は1~4の整数を表し、n2は0~4の整数を表す。
 <8> <1>~<6>のいずれか1つに記載の近赤外線カットフィルタを有する固体撮像素子。
 <9> <1>~<6>のいずれか1つに記載の近赤外線カットフィルタを有するカメラモジュール。
 <10> <1>~<6>のいずれか1つに記載の近赤外線カットフィルタを有する画像表示装置。
As a result of intensive studies on the near-infrared cut filter having a resin film containing a copper complex and a resin by the present inventor, a copper complex and a cross-linking component (for example, a resin containing a cross-linkable group) are used for such a resin film. When it formed using the composition containing, it discovered that it exists in the tendency for heat resistance to fall easily. Further investigation was made on the cause of the heat resistance of the resin film formed using such a composition easily decreasing. As a result, by-products generated during the reaction of the crosslinking component interacted with the copper complex, It was thought that the unreacted cross-linking component remaining in the metal interacts with the copper complex to reduce the heat resistance of the copper complex. When a resin film containing a copper complex is formed using a resin that does not contain a crosslinkable group as a resin, such a resin film is less likely to be colored even after heating, and has excellent visible transparency and infrared shielding properties. As a result, the present invention has been completed. The present invention provides the following.
<1> A near-infrared cut filter having a resin film containing a copper complex and a resin,
The copper complex is a compound represented by the following formula (1),
The total amount of copper complex and resin in the resin film is 60 to 100% by mass,
A near-infrared cut filter in which the resin does not form a three-dimensional bridge in the resin film;
Cu · (L) n1 · (X) n2 (1)
In the formula, L is a ligand, and at least one selected from a coordination site coordinated by an anion to a copper atom and a coordination atom coordinated by a lone pair to the copper atom. A compound having one or more, X is a counter ion, n1 represents an integer of 1 to 4, and n2 represents an integer of 0 to 4.
<2> The near-infrared cut filter according to <1>, wherein the ligand L in the formula (1) is a compound having no maximum absorption wavelength in the wavelength range of 400 to 600 nm.
<3> At least one selected from a coordination site in which the ligand L in Formula (1) coordinates with an anion with respect to a copper atom and a coordination atom with an unshared electron pair with respect to the copper atom. The near-infrared cut filter according to <1> or <2>, which is a compound having 2 or more in total.
<4> The near-infrared cut filter according to <1> or <2>, wherein the ligand L in the formula (1) is at least one selected from a carboxylic acid compound, a sulfonic acid compound, and a phosphate ester compound.
<5> The near infrared cut filter according to any one of <1> to <4>, wherein the resin film has a thickness of 1 to 500 μm.
<6> The near-infrared cut filter according to any one of <1> to <5>, wherein the resin film contains 5% by mass or more of a copper complex.
<7> A method for producing a near-infrared cut filter including a step of applying a resin composition containing a copper complex and a resin on a support and drying to form a resin film,
The copper complex is a compound represented by the following formula (1),
The resin is a resin substantially free of crosslinkable groups,
A method for producing a near-infrared cut filter, wherein the total amount of the copper complex and the resin in the resin composition is 60 to 100% by mass relative to the total solid content of the resin composition;
Cu · (L) n1 · (X) n2 (1)
In the formula, L is a ligand, and at least one selected from a coordination site coordinated by an anion to a copper atom and a coordination atom coordinated by a lone pair to the copper atom. A compound having one or more, X is a counter ion, n1 represents an integer of 1 to 4, and n2 represents an integer of 0 to 4.
<8> A solid-state imaging device having the near-infrared cut filter according to any one of <1> to <6>.
<9> A camera module having the near-infrared cut filter according to any one of <1> to <6>.
<10> An image display device having the near infrared cut filter according to any one of <1> to <6>.
 本発明によれば、耐熱性に優れた近赤外線カットフィルタを提供することができる。また、耐熱性に優れた近赤外線カットフィルタの製造方法を提供することができる。また、耐熱性に優れた近赤外線カットフィルタを有する固体撮像素子、カメラモジュールおよび画像表示装置を提供することができる。 According to the present invention, a near-infrared cut filter having excellent heat resistance can be provided. Moreover, the manufacturing method of the near-infrared cut filter excellent in heat resistance can be provided. Moreover, the solid-state image sensor, camera module, and image display apparatus which have the near-infrared cut filter excellent in heat resistance can be provided.
本発明の実施形態に係る、近赤外線カットフィルタを有するカメラモジュールの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the camera module which has a near-infrared cut off filter based on embodiment of this invention. カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the near-infrared cut filter periphery part in a camera module. カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the near-infrared cut filter periphery part in a camera module. カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the near-infrared cut filter periphery part in a camera module. 本発明の実施形態に係る、近赤外線カットフィルタを有するカメラモジュールの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the camera module which has a near-infrared cut off filter based on embodiment of this invention.
 以下において、本発明の内容について詳細に説明する。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートを表し、「(メタ)アリル」は、アリルおよびメタリルを表し、「(メタ)アクリル」は、アクリルおよびメタクリルを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルを表す。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。
 本明細書において、化学式中のMeはメチル基を、Etはエチル基を、Prはプロピル基を、Buはブチル基を、Phはフェニル基をそれぞれ示す。
 本明細書において、近赤外線とは、波長700~2500nmの光(電磁波)をいう。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。
 本明細書において、重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)測定によるポリスチレン換算値として定義される。
Hereinafter, the contents of the present invention will be described in detail.
In the present specification, “to” is used in the sense of including the numerical values described before and after it as lower and upper limits.
In the present specification, “(meth) acrylate” represents acrylate and methacrylate, “(meth) allyl” represents allyl and methallyl, “(meth) acryl” represents acryl and methacryl, “(meth) ) "Acryloyl" represents acryloyl and methacryloyl.
In the notation of group (atomic group) in this specification, the notation which does not describe substitution and unsubstituted includes group (atomic group) which has a substituent with the group (atomic group) which does not have a substituent.
In the present specification, Me in the chemical formula represents a methyl group, Et represents an ethyl group, Pr represents a propyl group, Bu represents a butyl group, and Ph represents a phenyl group.
In this specification, near-infrared light refers to light (electromagnetic wave) having a wavelength of 700 to 2500 nm.
In this specification, the total solid content refers to the total mass of components obtained by removing the solvent from all components of the composition.
In this specification, a weight average molecular weight and a number average molecular weight are defined as a polystyrene conversion value by a gel permeation chromatography (GPC) measurement.
<近赤外線カットフィルタ>
 本発明の近赤外線カットフィルタは、銅錯体と樹脂とを含む樹脂膜を有する近赤外線カットフィルタであって、
 銅錯体が、後述する式(1)で表される化合物であり、
 樹脂膜中における銅錯体と樹脂との合計量が60~100質量%であり、
 樹脂膜中において樹脂が三次元架橋を形成していないことを特徴とする。
<Near-infrared cut filter>
The near infrared cut filter of the present invention is a near infrared cut filter having a resin film containing a copper complex and a resin,
The copper complex is a compound represented by the formula (1) described below,
The total amount of copper complex and resin in the resin film is 60 to 100% by mass,
The resin is characterized in that the resin does not form a three-dimensional crosslink in the resin film.
 本発明の近赤外線カットフィルタは、優れた耐熱性を有しており、加熱後も着色が生じにくく、優れた可視透明性や赤外線遮蔽性を有している。 The near-infrared cut filter of the present invention has excellent heat resistance, is hardly colored even after heating, and has excellent visible transparency and infrared shielding properties.
 本発明の近赤外線カットフィルタにおいて、樹脂膜中における銅錯体と樹脂との合計量が60~100質量%であり、70~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることが更に好ましい。 In the near-infrared cut filter of the present invention, the total amount of the copper complex and the resin in the resin film is 60 to 100% by mass, preferably 70 to 100% by mass, and preferably 80 to 100% by mass. More preferably, it is 90 to 100% by mass.
 樹脂膜中の銅錯体の含有量は、5質量%以上であることが好ましく、5~90質量%であることがより好ましい。下限は10質量%以上がより好ましく、15質量%以上が更に好ましく、20質量%以上が更により好ましい。上限は、70質量%以下がより好ましく、60質量%以下が更に好ましく、50質量%以下が更により好ましい。銅錯体の詳細については後述する。なかでも、銅錯体は、銅に対して4個または5個の配位部位を有する化合物を配位子として有することが好ましい。この態様によれば、近赤外線カットフィルタの可視透明性および赤外線遮蔽性をより向上できる。また、樹脂膜は、銅錯体を2種類以上含むことが好ましい。この態様によれば、赤外線遮蔽性に優れた近赤外線カットフィルタとすることができる。 The content of the copper complex in the resin film is preferably 5% by mass or more, and more preferably 5 to 90% by mass. The lower limit is more preferably 10% by mass or more, further preferably 15% by mass or more, and still more preferably 20% by mass or more. The upper limit is more preferably 70% by mass or less, still more preferably 60% by mass or less, and still more preferably 50% by mass or less. Details of the copper complex will be described later. Especially, it is preferable that a copper complex has the compound which has 4 or 5 coordination site | parts with respect to copper as a ligand. According to this aspect, the visible transparency and the infrared shielding property of the near-infrared cut filter can be further improved. Moreover, it is preferable that a resin film contains 2 or more types of copper complexes. According to this aspect, a near-infrared cut filter having excellent infrared shielding properties can be obtained.
 樹脂膜中の銅原子の含有量は、0.5質量%以上であることが好ましく、0.5~20質量%であることがより好ましい。下限は1質量%以上がより好ましく、2質量%以上が更に好ましく、3質量%以上が更により好ましい。上限は、15質量%以下がより好ましく、12質量%以下が更に好ましく、10質量%以下が更により好ましい。 The content of copper atoms in the resin film is preferably 0.5% by mass or more, and more preferably 0.5 to 20% by mass. The lower limit is more preferably 1% by mass or more, further preferably 2% by mass or more, and still more preferably 3% by mass or more. The upper limit is more preferably 15% by mass or less, still more preferably 12% by mass or less, and still more preferably 10% by mass or less.
 樹脂膜中の樹脂の含有量は、30~90質量%であることが好ましい。下限は35質量%以上がより好ましく、40質量%以上が更に好ましく、50質量%以上が更により好ましい。上限は、85質量%以下がより好ましく、80質量%以下が更に好ましく、70質量%以下が更により好ましい。 The resin content in the resin film is preferably 30 to 90% by mass. The lower limit is more preferably 35% by mass or more, still more preferably 40% by mass or more, and even more preferably 50% by mass or more. The upper limit is more preferably 85% by mass or less, still more preferably 80% by mass or less, and even more preferably 70% by mass or less.
 本発明の近赤外線カットフィルタにおいて、樹脂膜は、銅錯体および樹脂以外の成分として溶剤を含んでいてもよい。溶剤としては、架橋性基を含まない化合物であることが好ましい。また、樹脂膜中における溶剤の含有量としては、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。 In the near-infrared cut filter of the present invention, the resin film may contain a solvent as a component other than the copper complex and the resin. The solvent is preferably a compound that does not contain a crosslinkable group. Further, the content of the solvent in the resin film is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less.
 本発明の近赤外線カットフィルタにおいて、樹脂膜中の架橋性基を含む化合物の含有量が、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、架橋性基を含む化合物を実質的に含有しないことが特に好ましい。架橋性基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、スチリル基、エポキシ基、オキセタニル基、メチロール基およびアルコキシシリル基などが挙げられる。樹脂膜が架橋性基を含む化合物を実質的に含有しないとは、樹脂膜中における架橋性基を含む化合物の含有量が0.1質量%以下であることを意味し、0.05質量%以下であることが好ましく、含有しないことがより好ましい。 In the near infrared cut filter of the present invention, the content of the compound containing a crosslinkable group in the resin film is preferably 1% by mass or less, more preferably 0.5% by mass or less, and the crosslinkable group It is particularly preferred that the compound containing is not substantially contained. Examples of the crosslinkable group include a vinyl group, a (meth) allyl group, a (meth) acryloyl group, a styryl group, an epoxy group, an oxetanyl group, a methylol group, and an alkoxysilyl group. That the resin film does not substantially contain a compound containing a crosslinkable group means that the content of the compound containing a crosslinkable group in the resin film is 0.1% by mass or less, and 0.05% by mass The following is preferable, and it is more preferable not to contain.
 本発明の近赤外線カットフィルタにおいて、樹脂膜中の架橋性基を含むモノマー由来の架橋物の含有量が、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、架橋性基を含むモノマー由来の架橋物を実質的に含有しないことが特に好ましい。樹脂膜が架橋性基を含むモノマー由来の架橋物を実質的に含有しないとは、樹脂膜中における架橋性基を含むモノマー由来の架橋物の含有量が0.1質量%以下であることを意味し、0.05質量%以下であることが好ましく、含有しないことがより好ましい。 In the near-infrared cut filter of the present invention, the content of a cross-linked product derived from a monomer containing a crosslinkable group in the resin film is preferably 1% by mass or less, and more preferably 0.5% by mass or less. It is particularly preferable that the monomer-containing crosslinked product containing a crosslinkable group is substantially not contained. That the resin film does not substantially contain a cross-linked product derived from a monomer containing a crosslinkable group means that the content of the cross-linked product derived from a monomer containing a crosslinkable group in the resin film is 0.1% by mass or less. This means that it is preferably 0.05% by mass or less, and more preferably not contained.
 本発明の近赤外線カットフィルタは、波長800~1000nmの範囲において、近赤外線カットフィルタの膜面に対して垂直方向から照射した光の透過率の平均値が20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることが更に好ましく、5%以下であることが特に好ましい。また、本発明の近赤外線カットフィルタは、波長800~1000nmの全範囲において、近赤外線カットフィルタの膜面に対して垂直方向から照射した光の透過率が20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることが更に好ましく、5%以下であることが特に好ましい。この態様によれば、赤外線遮蔽性に優れた近赤外線カットフィルタとすることができる。 In the near-infrared cut filter of the present invention, the average value of the transmittance of light irradiated from the direction perpendicular to the film surface of the near-infrared cut filter is preferably 20% or less in the wavelength range of 800 to 1000 nm. % Or less is more preferable, 10% or less is further preferable, and 5% or less is particularly preferable. In the near-infrared cut filter of the present invention, the transmittance of light irradiated from the direction perpendicular to the film surface of the near-infrared cut filter is preferably 20% or less over the entire wavelength range of 800 to 1000 nm. % Or less is more preferable, 10% or less is further preferable, and 5% or less is particularly preferable. According to this aspect, a near-infrared cut filter having excellent infrared shielding properties can be obtained.
 本発明の近赤外線カットフィルタは、波長800~1000nmの範囲における反射率の平均値が20%以下であることが好ましく、10%以下であることが好ましく、5%以下であることがより好ましい。また、本発明の近赤外線カットフィルタは、波長800~1000nmの全範囲において反射率が20%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることが更に好ましい。この態様によれば、視野角が広く、赤外線遮蔽性に優れた近赤外線カットフィルタとすることができる。上記反射率は、U-4100(日立ハイテクノロジーズ社製)を用い、近赤外線カットフィルタの表面法線方向を0°として、入射角度を5°に設定して測定した値である。 In the near-infrared cut filter of the present invention, the average reflectance in the wavelength range of 800 to 1000 nm is preferably 20% or less, preferably 10% or less, and more preferably 5% or less. The near-infrared cut filter of the present invention has a reflectance of preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less over the entire wavelength range of 800 to 1000 nm. . According to this aspect, a near-infrared cut filter having a wide viewing angle and excellent infrared shielding properties can be obtained. The reflectance is a value measured using U-4100 (manufactured by Hitachi High-Technologies Corporation), setting the surface normal direction of the near-infrared cut filter to 0 °, and setting the incident angle to 5 °.
 本発明の近赤外線カットフィルタは、近赤外線カットフィルタの膜面に対して垂直方向から照射した光の透過率が以下の(1)~(9)のうちの少なくとも1つの条件を満たすことが好ましく、以下の(1)~(8)のすべての条件を満たすことがより好ましく、(1)~(9)のすべての条件を満たすことがさらに好ましい。
(1)波長400nmの光の透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(2)波長450nmの光の透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(3)波長500nmの光の透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(4)波長550nmの光の透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(5)波長700nmの光の透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(6)波長750nmの光の透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(7)波長800nmの光の透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(8)波長850nmの光の透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(9)波長900nmの光の透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
In the near-infrared cut filter of the present invention, it is preferable that the transmittance of light irradiated from the direction perpendicular to the film surface of the near-infrared cut filter satisfies at least one of the following conditions (1) to (9): It is more preferable to satisfy all the following conditions (1) to (8), and it is even more preferable to satisfy all the conditions (1) to (9).
(1) The transmittance of light having a wavelength of 400 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(2) The transmittance of light having a wavelength of 450 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(3) The transmittance of light having a wavelength of 500 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(4) The transmittance of light having a wavelength of 550 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(5) The transmittance of light having a wavelength of 700 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
(6) The transmittance of light having a wavelength of 750 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
(7) The transmittance of light having a wavelength of 800 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
(8) The transmittance of light having a wavelength of 850 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
(9) The transmittance of light having a wavelength of 900 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
 本発明の近赤外線カットフィルタは、波長400~550nmの全ての範囲の透過率が85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましい。可視領域の透過率は高いほど好ましい。 In the near-infrared cut filter of the present invention, the transmittance in the entire range of wavelengths from 400 to 550 nm is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more. The higher the transmittance in the visible region, the better.
 近赤外線カットフィルタにおいて、樹脂膜の厚みは、目的に応じて適宜選択することができる。例えば、500μm以下が好ましく、300μm以下がより好ましく、250μm以下が更に好ましく、200μm以下が更により好ましい。樹脂膜の厚みの下限は、例えば、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.5μm以上が更に好ましく、1μm以上が更により好ましい。 In the near infrared cut filter, the thickness of the resin film can be appropriately selected according to the purpose. For example, 500 μm or less is preferable, 300 μm or less is more preferable, 250 μm or less is further preferable, and 200 μm or less is even more preferable. For example, the lower limit of the thickness of the resin film is preferably 0.1 μm or more, more preferably 0.2 μm or more, still more preferably 0.5 μm or more, and even more preferably 1 μm or more.
 本発明の近赤外線カットフィルタは、200℃で1分間加熱した前後における、下記式で表される波長450nmにおける吸光度の変化率が6%以下であることが好ましく、4.5%以下であることがより好ましく、3%以下であることが特に好ましい。また、200℃で1分間加熱した前後における、下記式で表される波長700nm以上800nm未満の範囲の平均吸光度の変化率が6%以下であることが好ましく、4.5%以下であることがより好ましく、3%以下であることが特に好ましい。また、下記式で表される波長800nm以上1100nm以下の範囲の平均吸光度の変化率が6%以下であることが好ましく、4.5%以下であることがより好ましく、3%以下であることが特に好ましい。吸光度の変化率が上記範囲であれば、耐熱性に優れ、加熱による着色が抑制された近赤外線カットフィルタとすることができる。
 波長450nmにおける吸光度の変化率(%)=|(加熱前における波長450nmの吸光度-加熱後における波長450nmの吸光度)/加熱前における波長450nmの吸光度|×100(%)
 波長700nm以上800nm未満の範囲の平均吸光度の変化率(%)=|(加熱前における波長700nm以上800nm未満の範囲の平均吸光度-加熱後における波長700nm以上800nm未満の範囲の平均吸光度)/加熱前における波長700nm以上800nm未満の範囲の平均吸光度|×100(%)
 波長800nm以上1100nm以下の範囲の平均吸光度の変化率(%)=|(加熱前における波長800nm以上1100nm以下の範囲の平均吸光度-加熱後における波長800nm以上1100nm以下の範囲の平均吸光度)/加熱前における波長800nm以上1100nm以下の範囲の平均吸光度|×100(%)
In the near-infrared cut filter of the present invention, the rate of change in absorbance at a wavelength of 450 nm represented by the following formula before and after heating at 200 ° C. for 1 minute is preferably 6% or less, and 4.5% or less. Is more preferable and 3% or less is particularly preferable. In addition, before and after heating at 200 ° C. for 1 minute, the average absorbance change rate in the range of wavelength 700 nm to less than 800 nm represented by the following formula is preferably 6% or less, and 4.5% or less. More preferably, it is particularly preferably 3% or less. Further, the change rate of the average absorbance in the wavelength range of 800 nm to 1100 nm represented by the following formula is preferably 6% or less, more preferably 4.5% or less, and more preferably 3% or less. Particularly preferred. If the rate of change in absorbance is within the above range, a near-infrared cut filter having excellent heat resistance and suppressed coloring due to heating can be obtained.
Rate of change in absorbance at wavelength 450 nm (%) = | (absorbance at wavelength 450 nm before heating−absorbance at wavelength 450 nm after heating) / absorbance at wavelength 450 nm before heating | × 100 (%)
Average absorbance change rate (%) in the wavelength range from 700 nm to less than 800 nm = | (average absorbance in the wavelength range from 700 nm to less than 800 nm before heating−average absorbance in the wavelength range from 700 nm to less than 800 nm after heating) / before heating Average absorbance in the wavelength range of 700 nm or more and less than 800 nm | × 100 (%)
Average absorbance change rate (%) in the wavelength range from 800 nm to 1100 nm = | (average absorbance in the wavelength range from 800 nm to 1100 nm before heating−average absorbance in the wavelength range from 800 nm to 1100 nm after heating) / before heating Average absorbance in the wavelength range of 800 nm to 1100 nm at | × 100 (%)
 本発明の近赤外線カットフィルタは、上述した樹脂膜の他に、誘電体多層膜、紫外線吸収層などの機能層を有していてもよい。これらの機能層は、樹脂膜上に形成されていてもよい。近赤外線カットフィルタが、更に、誘電体多層膜を有することで、赤外線遮蔽性に優れた近赤外線カットフィルタが得られ易い。また、近赤外線カットフィルタが、更に、紫外線吸収層を有することで、紫外線遮蔽性に優れた近赤外線カットフィルタとすることができる。紫外線吸収層としては、例えば、国際公開WO2015/099060号公報の段落番号0040~0070、0119~0145に記載の吸収層を参酌でき、この内容は本明細書に組み込まれる。誘電体多層膜としては、特開2014-41318号公報の段落番号0255~0259の記載を参酌でき、この内容は本明細書に組み込まれる。 The near-infrared cut filter of the present invention may have a functional layer such as a dielectric multilayer film or an ultraviolet absorption layer in addition to the resin film described above. These functional layers may be formed on the resin film. When the near infrared cut filter further includes a dielectric multilayer film, a near infrared cut filter excellent in infrared shielding properties can be easily obtained. Moreover, it can be set as the near-infrared cut filter excellent in ultraviolet-shielding property because a near-infrared cut filter has an ultraviolet absorption layer further. As the ultraviolet absorbing layer, for example, the absorbing layer described in paragraph Nos. 0040 to 0070 and 0119 to 0145 of International Publication No. WO2015 / 099060 can be referred to, and the contents thereof are incorporated in the present specification. As the dielectric multilayer film, the description of paragraph numbers 0255 to 0259 of JP 2014-41318 A can be referred to, and the contents thereof are incorporated in the present specification.
 本発明の近赤外線カットフィルタは、CCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)などの固体撮像素子や、赤外線センサ、画像表示装置などの各種装置に用いることができる。 The near-infrared cut filter of the present invention can be used for various devices such as a solid-state imaging device such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor), an infrared sensor, and an image display device.
<樹脂組成物>
 次に、本発明の近赤外線カットフィルタにおける樹脂膜の形成に好ましく用いることができる樹脂組成物について説明する。
<Resin composition>
Next, a resin composition that can be preferably used for forming a resin film in the near-infrared cut filter of the present invention will be described.
<<銅錯体>>
 樹脂組成物は、銅錯体として下記式(1)で表される化合物を含有する。
 Cu・(L)n1・(X)n2    ・・・(1)
 式中、Lは、配位子であって、銅原子に対してアニオンで配位する配位部位および銅原子に対して非共有電子対で配位する配位原子から選ばれる少なくとも1種を1個以上有する化合物であり、Xは対イオンであり、n1は1~4の整数を表し、n2は0~4の整数を表す。
<< Copper Complex >>
The resin composition contains a compound represented by the following formula (1) as a copper complex.
Cu · (L) n1 · ( X) n2 ··· (1)
In the formula, L is a ligand, and at least one selected from a coordination site coordinated by an anion to a copper atom and a coordination atom coordinated by a lone pair to the copper atom. A compound having one or more, X is a counter ion, n1 represents an integer of 1 to 4, and n2 represents an integer of 0 to 4.
 式(1)で表される化合物(銅錯体)としては、4配位、5配位および6配位の銅錯体が例示され、4配位および5配位の銅錯体がより好ましく、5配位の銅錯体がさらに好ましい。また、式(1)で表される化合物(銅錯体)は、銅と配位子によって、5員環および/または6員環が形成されていることが好ましい。このような銅錯体は、形状が安定であり、錯体安定性に優れる。 Examples of the compound represented by the formula (1) (copper complex) include tetracoordinate, pentacoordinate and hexacoordinate copper complexes, and tetracoordinate and pentacoordinate copper complexes are more preferred. More preferred is a copper complex at the position. The compound (copper complex) represented by the formula (1) preferably has a 5-membered ring and / or a 6-membered ring formed of copper and a ligand. Such a copper complex is stable in shape and excellent in complex stability.
 式(1)においてXは、対イオンを表す。式(1)で表される化合物(銅錯体)は、電荷を持たない中性錯体のほか、カチオン錯体、アニオン錯体になることもある。この場合、銅錯体の電荷を中和するよう、必要に応じて対イオンが存在する。
 対イオンが負の電荷をもつ対イオン(対アニオン)の場合、例えば、無機陰イオンでもよく、有機陰イオンでもよい。例えば、対イオンとしては、水酸化物イオン、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換または無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸イオン等)、置換または無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換もしくは無置換のアルキルスルホン酸イオン(メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等)、置換もしくは無置換のアリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、硝酸イオン、過塩素酸イオン、ホウ素酸イオン(例えば、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン(B-(C654)等)、スルホネートイオン(例えば、p-トルエンスルホネートイオンなど)、イミドイオン(例えば、スルホンイミドイオン、N,N-ビス(フルオロスルホニル)イミドイオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ノナフルオロブタンスルホニル)イミドイオン、N,N-ヘキサフルオロ-1,3-ジスルホニルイミドイオン等)、ホスフェートイオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、アミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドを含む)が挙げられ、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、硫酸イオン、硝酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、ヘキサフルオロホスフェートイオン、アミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドを含む)が好ましい。
 また、対アニオンは、低求核性アニオンであることが好ましい。低求核性アニオンとは、一般的に超酸(super acid)と呼ばれるpKaの低い酸がプロトンを解離してなるアニオンである。超酸の定義は、文献によっても異なるがメタンスルホン酸よりpKaが低い酸の総称であり、J.Org.Chem.2011,76,391-395  Equilibrium Acidities of Super acidsに記載される構造が知られている。低求核性アニオンのpKaは、例えば、-11以下が好ましく、-11~-18が好ましい。pKaは、例えば、J.Org.Chem.2011,76,391-395に記載の方法により測定することができる。本明細書におけるpKa値は、特に断りがない場合、1,2-ジクロロエタン中でのpKaである。対アニオンが、低求核性アニオンであると、銅錯体や樹脂の分解反応が生じにくく、耐熱性が良好である。低求核性アニオンは、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン(ハロゲン原子やフルオロアルキル基で置換されたアリールを含む)、ヘキサフルオロホスフェートイオン、イミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドを含む)がより好ましく、テトラアリールホウ酸イオン(ハロゲン原子やフルオロアルキル基で置換されたアリールを含む)、イミドイオン(スルホニル基で置換されたアミドを含む)、メチドイオン(スルホニル基で置換されたメチドを含む)が特に好ましい。
 また、対アニオンは、ハロゲン陰イオン、カルボン酸イオン、スルホン酸イオン、ホウ素酸イオン、スルホネートイオン、イミドイオンであることも好ましい。具体例としては、塩化物イオン、臭化物イオン、ヨウ化物イオン、酢酸イオン、トリフルオロ酢酸イオン、ホルメートイオン、ホスフェートイオン、ヘキサフルオロホスフェートイオン、p-トルエンスルホネートイオン、テトラフルオロホウ素酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、N,N-ビス(フルオロスルホニル)イミドイオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ノナフルオロブタンスルホニル)イミドイオン、ノナフルオロ-N-[(トリフルオロメタン)スルホニル]ブタンスルホニルイミドイオン、N,N-ヘキサフルオロ-1,3-ジスルホニルイミドイオン等が挙げられる。なかでも、トリフルオロ酢酸イオン、ヘキサフルオロホスフェートイオン、テトラフルホウ素酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、N,N-ビス(フルオロスルホニル)イミドイオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ノナフルオロブタンスルホニル)イミドイオン、ノナフルオロ-N-[(トリフルオロメタン)スルホニル]ブタンスルホニルイミドイオン、N,N-ヘキサフルオロ-1,3-ジスルホニルイミドイオンが好ましく、トリフルオロ酢酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、N,N-ビス(フルオロスルホニル)イミドイオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ノナフルオロブタンスルホニル)イミドイオン、ノナフルオロ-N-[(トリフルオロメタン)スルホニル]ブタンスルホニルイミドイオン、N,N-ヘキサフルオロ-1,3-ジスルホニルイミドイオンがより好ましい。
 対イオンが正の電荷をもつ対イオン(対カチオン)の場合、例えば、無機もしくは有機のアンモニウムイオン(例えば、テトラブチルアンモニウムイオンなどのテトラアルキルアンモニウムイオン、トリエチルベンジルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えば、テトラブチルホスホニウムイオンなどのテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン、トリエチルフェニルホスホニウムイオン等)、アルカリ金属イオン、プロトンなどが挙げられる。
 また、対イオンは金属錯体イオン(例えば銅錯体イオンなど)であってもよい。
In the formula (1), X represents a counter ion. The compound (copper complex) represented by the formula (1) may be a cation complex or an anion complex in addition to a neutral complex having no charge. In this case, counter ions are present as necessary to neutralize the charge of the copper complex.
When the counter ion is a counter ion having a negative charge (counter anion), for example, an inorganic anion or an organic anion may be used. For example, as a counter ion, hydroxide ion, halogen anion (for example, fluoride ion, chloride ion, bromide ion, iodide ion, etc.), substituted or unsubstituted alkylcarboxylate ion (acetate ion, trifluoro ion) Acetate ion, etc.), substituted or unsubstituted aryl carboxylate ion (benzoate ion, etc.), substituted or unsubstituted alkyl sulfonate ion (methane sulfonate ion, trifluoromethane sulfonate ion, etc.), substituted or unsubstituted aryl Sulfonate ion (eg, p-toluenesulfonate ion, p-chlorobenzenesulfonate ion, etc.), aryl disulfonate ion (eg, 1,3-benzenedisulfonate ion, 1,5-naphthalenedisulfonate ion, 2,6-naphthalene ion) Disulfonate ion, etc.), Al Sulfate ion (eg methyl sulfate ion), sulfate ion, thiocyanate ion, nitrate ion, perchlorate ion, borate ion (eg tetrafluoroborate ion, tetraarylborate ion, tetrakis (pentafluorophenyl) Borate ion (B (C 6 F 5 ) 4 ), etc.), sulfonate ion (eg, p-toluenesulfonate ion, etc.), imide ion (eg, sulfonimide ion, N, N-bis (fluorosulfonyl) imide ion, bis) (Trifluoromethanesulfonyl) imide ion, bis (nonafluorobutanesulfonyl) imide ion, N, N-hexafluoro-1,3-disulfonylimide ion, etc.), phosphate ion, hexafluorophosphate ion, picrate ion, amide ion ( Amide substituted with a sil group or a sulfonyl group), a methide ion (including a metide substituted with an acyl group or a sulfonyl group), a halogen anion, a substituted or unsubstituted alkylcarboxylate ion, a sulfate ion, Nitrate ion, tetrafluoroborate ion, tetraarylborate ion, hexafluorophosphate ion, amide ion (including amide substituted with acyl group or sulfonyl group), methide ion (methide substituted with acyl group or sulfonyl group) Including).
The counter anion is preferably a low nucleophilic anion. The low nucleophilic anion is an anion formed by dissociating a proton from an acid having a low pKa, generally called a super acid. The definition of superacid differs depending on the literature, but is a general term for acids having a lower pKa than methanesulfonic acid. Org. Chem. The structure described in 2011, 76, 391-395 Equilibrium Acids of Super Acids is known. The pKa of the low nucleophilic anion is, for example, preferably −11 or less, and preferably −11 to −18. pKa is, for example, J.P. Org. Chem. It can be measured by the method described in 2011, 76, 391-395. The pKa value in the present specification is pKa in 1,2-dichloroethane unless otherwise specified. When the counter anion is a low nucleophilic anion, the decomposition reaction of the copper complex or the resin hardly occurs, and the heat resistance is good. Low nucleophilic anions include tetrafluoroborate ion, tetraarylborate ion (including aryl substituted with halogen atom or fluoroalkyl group), hexafluorophosphate ion, imide ion (substituted with acyl group or sulfonyl group) Amides), methide ions (including methides substituted with acyl groups or sulfonyl groups), tetraarylborate ions (including aryls substituted with halogen atoms or fluoroalkyl groups), imide ions (including sulfonyl groups) And substituted amides) and methide ions (including methides substituted with sulfonyl groups) are particularly preferred.
The counter anion is also preferably a halogen anion, carboxylate ion, sulfonate ion, borate ion, sulfonate ion, or imide ion. Specific examples include chloride ion, bromide ion, iodide ion, acetate ion, trifluoroacetate ion, formate ion, phosphate ion, hexafluorophosphate ion, p-toluenesulfonate ion, tetrafluoroborate ion, tetrakis ( Pentafluorophenyl) borate ion, N, N-bis (fluorosulfonyl) imide ion, bis (trifluoromethanesulfonyl) imide ion, bis (nonafluorobutanesulfonyl) imide ion, nonafluoro-N-[(trifluoromethane) sulfonyl] butanesulfonylimide Ion, N, N-hexafluoro-1,3-disulfonylimide ion and the like. Among them, trifluoroacetate ion, hexafluorophosphate ion, tetrafluoroborate ion, tetrakis (pentafluorophenyl) borate ion, N, N-bis (fluorosulfonyl) imide ion, bis (trifluoromethanesulfonyl) imide ion, bis ( Nonafluorobutanesulfonyl) imide ion, nonafluoro-N-[(trifluoromethane) sulfonyl] butanesulfonylimide ion, N, N-hexafluoro-1,3-disulfonylimide ion are preferable, trifluoroacetate ion, tetrakis (pentafluoro) Phenyl) borate ion, N, N-bis (fluorosulfonyl) imide ion, bis (trifluoromethanesulfonyl) imide ion, bis (nonafluorobutanesulfonyl) imide ion, Nafuruoro -N - [(trifluoromethane) sulfonyl] butane sulfonyl imide ion, N, N-hexafluoro-1,3-imide ion is more preferable.
When the counter ion is a positively charged counter ion (counter cation), for example, inorganic or organic ammonium ion (for example, tetraalkylammonium ion such as tetrabutylammonium ion, triethylbenzylammonium ion, pyridinium ion, etc.), phosphonium Examples thereof include ions (for example, tetraalkylphosphonium ions such as tetrabutylphosphonium ion, alkyltriphenylphosphonium ions, triethylphenylphosphonium ions, etc.), alkali metal ions, protons, and the like.
Further, the counter ion may be a metal complex ion (for example, a copper complex ion).
 式(1)において、Lは配位子であって、銅原子に対してアニオンで配位する配位部位および銅原子に対して非共有電子対で配位する配位原子から選ばれる少なくとも1種を1個以上有する化合物を表す。アニオンで配位する配位部位は、解離していてもよく、非解離でも良い。配位子Lとしては、銅原子に対してアニオンで配位する配位部位および銅原子に対して非共有電子対で配位する配位原子から選ばれる少なくとも1種を合計で2個以上有する化合物、カルボン酸化合物、スルホン酸化合物及びリン酸エステル化合物などが挙げられる。以下、銅原子に対してアニオンで配位する配位部位と、銅原子に対して非共有電子対で配位する配位原子とをあわせて配位部位ともいう。また、銅原子に対してアニオンで配位する配位部位および銅原子に対して非共有電子対で配位する配位原子から選ばれる少なくとも1種を合計で2個以上有する化合物を多座配位子ともいう。 In the formula (1), L is a ligand, and at least one selected from a coordination site coordinated with an anion to a copper atom and a coordination atom coordinated with a lone pair to the copper atom. A compound having one or more species is represented. The coordination site coordinated by an anion may be dissociated or non-dissociated. The ligand L has a total of two or more of at least one selected from a coordination site coordinated with an anion to a copper atom and a coordination atom coordinated with a lone pair to the copper atom. Examples thereof include compounds, carboxylic acid compounds, sulfonic acid compounds, and phosphate ester compounds. Hereinafter, a coordination site that coordinates with an anion with respect to a copper atom and a coordination atom that coordinates with an unshared electron pair with respect to the copper atom are collectively referred to as a coordination site. In addition, a multidentate compound having a total of at least one selected from a coordination site coordinated with an anion to a copper atom and a coordination atom coordinated with a lone pair to the copper atom It is also called a rank.
 カルボン酸化合物としては、下記式(L-100)で表される化合物またはその塩が挙げられる。スルホン酸化合物としては、下記式(L-200)で表される化合物またはその塩が挙げられる。リン酸エステル化合物としては、式(L-300)で表される化合物またはその塩が挙げられる。 Examples of the carboxylic acid compound include a compound represented by the following formula (L-100) or a salt thereof. Examples of the sulfonic acid compound include a compound represented by the following formula (L-200) or a salt thereof. Examples of the phosphoric acid ester compound include a compound represented by the formula (L-300) or a salt thereof.
 R100-COOH   ・・・式(L-100)
 R200-SO2-OH  ・・・式(L-200)
 (HO)n-P(=O)-(OR3003-n  ・・・式(L-300)
R 100 —COOH Formula (L-100)
R 200 —SO 2 —OH Formula (L-200)
(HO) n -P (= O)-(OR 300 ) 3-n Formula (L-300)
 式(L-100)および式(L-200)において、R100およびR200は、それぞれ独立して1価の有機基を表す。1価の有機基としては、アルキル基、アリール基、ヘテロアリール基およびこれらの基が2価の連結基(例えば、直鎖状または分岐状のアルキレン基、環状のアルキレン基、アリーレン基、-O-、-S-、-CO-、-COO-、-OCO-、-SO-、-NR-(Rは水素原子あるいはアルキル基)など)を介して結合して形成された基が挙げられる。また、アルキル基、アリール基、ヘテロアリール基は、無置換であってもよく、置換基を有していてもよい。置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基、カルボキシル基、スルホ基、リン酸エステル基、ヒドロキシル基、ハロゲン原子などが挙げられる。 In the formula (L-100) and the formula (L-200), R 100 and R 200 each independently represents a monovalent organic group. Examples of the monovalent organic group include an alkyl group, an aryl group, a heteroaryl group, and a divalent linking group (for example, a linear or branched alkylene group, a cyclic alkylene group, an arylene group, —O A group formed by bonding via —, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NR— (wherein R is a hydrogen atom or an alkyl group). . The alkyl group, aryl group, and heteroaryl group may be unsubstituted or may have a substituent. Examples of the substituent include an alkyl group, an alkoxy group, an aryl group, a heteroaryl group, a carboxyl group, a sulfo group, a phosphate ester group, a hydroxyl group, and a halogen atom.
 式(L-300)において、R300は炭素数1~18のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基、または炭素数2~18のアルケニル基を表すか、-OR300が、炭素数4~100のポリオキシアルキル基、炭素数4~100の(メタ)アクリロイルオキシアルキル基、または、炭素数4~100の(メタ)アクリロイルポリオキシアルキル基を表し、nは1または2を表す。nが1のとき、2つのR300はそれぞれ同一でもよいし、異なっていてもよい。スルホン酸化合物の詳細については、特開2015-43063号公報の段落番号0010~0039の記載を参酌でき、この内容は本明細書に組み込まれる。リン酸エステル化合物の詳細については特開2014-41318号公報の段落0018~0042の記載を参酌でき、この内容は本明細書に組み込まれる。 In the formula (L-300), R 300 represents an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms , -OR 300 is represents polyoxyethylene alkyl group having 4 to 100 carbon atoms, having 4 to 100 carbon atoms (meth) acryloyloxy alkyl group, or, having 4 to 100 carbon atoms of (meth) acryloyl polyoxyalkyl group, n represents 1 or 2. When n is 1, two R 300 may be the same or different. Details of the sulfonic acid compound can be referred to the descriptions in paragraphs 0010 to 0039 of JP-A-2015-43063, the contents of which are incorporated herein. Details of the phosphoric acid ester compound can be referred to the descriptions in paragraphs 0018 to 0042 of JP-A-2014-41318, the contents of which are incorporated herein.
 配位子Lは、銅原子に対する配位部位を2個以上有する化合物(多座配位子)であることが好ましい。また、多座配位子は、銅原子に対する配位部位を3個以上有する化合物であることが好ましく、3~5個有する化合物であることがより好ましく、4~5個有する化合物であることが更に好ましい。多座配位子は、銅原子に対し、キレート配位子として働く。すなわち、多座配位子が有する少なくとも2つの配位部位が、銅とキレート配位することにより、銅錯体の構造が歪んで、優れた可視透明性が得られ、更には、赤外線の吸光能力を向上でき、色価も向上すると考えられる。多座配位子は、アニオンで配位する配位部位を1つ以上と非共有電子対で配位する配位原子を1つ以上とを含む化合物、非共有電子対で配位する配位原子を2つ以上有する化合物、アニオンで配位する配位部位を2つ含む化合物等が挙げられる。多座配位子は、非共有電子対で配位する配位原子を含む化合物であることが好ましく、非共有電子対で配位する配位原子として窒素原子を含む化合物であることがより好ましく、非共有電子対で配位する配位原子として窒素原子を含み、この窒素原子にアルキル基(好ましくはメチル基)が置換されている化合物であることがより好ましい。 The ligand L is preferably a compound (multidentate ligand) having two or more coordination sites with respect to a copper atom. The polydentate ligand is preferably a compound having 3 or more coordination sites with respect to a copper atom, more preferably a compound having 3 to 5 ligands, and a compound having 4 to 5 ligands. Further preferred. Multidentate ligands act as chelate ligands for copper atoms. That is, at least two coordination sites of the multidentate ligand are chelate-coordinated with copper, so that the structure of the copper complex is distorted, and excellent visible transparency is obtained. It is thought that the color value can also be improved. A multidentate ligand is a compound comprising one or more coordination sites coordinated by an anion and one or more coordination atoms coordinated by an unshared electron pair, or coordinated by an unshared electron pair. Examples thereof include compounds having two or more atoms, compounds containing two coordination sites coordinated by anions, and the like. The multidentate ligand is preferably a compound containing a coordinating atom coordinated by an unshared electron pair, and more preferably a compound containing a nitrogen atom as a coordinating atom coordinated by an unshared electron pair. More preferably, the compound includes a nitrogen atom as a coordinating atom coordinated by an unshared electron pair, and an alkyl group (preferably a methyl group) is substituted on the nitrogen atom.
 また、配位子Lは、銅原子に対する配位部位を1個有する化合物(単座配位子)と、銅原子に対する配位部位を2個以上有する化合物(多座配位子)とを併用することも好ましい。単座配位子としては、アニオンで配位する配位部位を1個有する化合物(アニオンで配位する単座配位子ともいう)、非共有電子対で配位する配位原子を1個有する化合物(非共有電子対で配位する単座配位子ともいう)が挙げられる。アニオンで配位する単座配位子としては、ハライドアニオン、ヒドロキシドアニオン、アルコキシドアニオン、フェノキシドアニオン、アミドアニオン(アシル基やスルホニル基で置換されたアミドを含む)、イミドアニオン(アシル基やスルホニル基で置換されたイミドを含む)、アニリドアニオン(アシル基やスルホニル基で置換されたアニリドを含む)、チオラートアニオン、炭酸水素アニオン、カルボン酸アニオン、チオカルボン酸アニオン、ジチオカルボン酸アニオン、硫酸水素アニオン、スルホン酸アニオン、リン酸二水素アニオン、リン酸ジエステルアニオン、ホスホン酸モノエステルアニオン、ホスホン酸水素アニオン、ホスフィン酸アニオン、含窒素へテロ環アニオン、硝酸アニオン、次亜塩素酸アニオン、シアニドアニオン、シアナートアニオン、イソシアナートアニオン、チオシアナートアニオン、イソチオシアナートアニオン、アジドアニオンなどが挙げられる。非共有電子対で配位する単座配位子としては、水、アルコール、フェノール、エーテル、アミン、アニリン、アミド、イミド、イミン、ニトリル、イソニトリル、チオール、チオエーテル、カルボニル化合物、チオカルボニル化合物、スルホキシド、へテロ環、あるいは、炭酸、カルボン酸、硫酸、スルホン酸、リン酸、ホスホン酸、ホスフィン酸、硝酸、または、そのエステルが挙げられる。 The ligand L uses a compound having one coordination site for a copper atom (monodentate ligand) and a compound having two or more coordination sites for a copper atom (multidentate ligand). It is also preferable. As a monodentate ligand, a compound having one coordination site coordinated by an anion (also referred to as a monodentate ligand coordinated by an anion), a compound having one coordination atom coordinated by an unshared electron pair (Also referred to as a monodentate ligand coordinated by an unshared electron pair). Monodentate ligands coordinated with anions include halide anions, hydroxide anions, alkoxide anions, phenoxide anions, amide anions (including amides substituted with acyl and sulfonyl groups), imide anions (acyl and sulfonyl groups). Imide substituted with), anilide anion (including anilide substituted with acyl group or sulfonyl group), thiolate anion, hydrogen carbonate anion, carboxylate anion, thiocarboxylate anion, dithiocarboxylate anion, hydrogen sulfate anion, Sulfonate anion, dihydrogen phosphate anion, phosphate diester anion, phosphonate monoester anion, hydrogen phosphonate anion, phosphinate anion, nitrogen-containing heterocyclic anion, nitrate anion, hypochlorite anion, cyanide anion Emissions, cyanate anion, isocyanate anion, thiocyanate anion, isothiocyanate anions, such as azide anions. Monodentate ligands coordinated by lone pairs include water, alcohol, phenol, ether, amine, aniline, amide, imide, imine, nitrile, isonitrile, thiol, thioether, carbonyl compound, thiocarbonyl compound, sulfoxide, Examples include heterocycles, carbonic acid, carboxylic acid, sulfuric acid, sulfonic acid, phosphoric acid, phosphonic acid, phosphinic acid, nitric acid, and esters thereof.
 式(1)において、配位子Lは、可視透明性を向上させるために、芳香族などのπ共役系が連続して複数結合していない化合物であることが好ましい。 In the formula (1), the ligand L is preferably a compound in which a plurality of π-conjugated systems such as aromatic are not continuously bonded in order to improve visible transparency.
 式(1)で表される化合物は、波長400~600nmの範囲に極大吸収波長を有さない化合物を配位子とする銅錯体であることも好ましい。波長400~600nmの範囲に極大吸収波長を有する化合物を配位子とする銅錯体は、可視領域(例えば、400~600nmの波長領域)に吸収を有するため、可視透明性が不十分な場合がある。400~600nmの波長領域に極大吸収波長を有する化合物としては、長い共役構造を有し、π-π*遷移の光の吸収の大きい化合物が挙げられる。具体的には、フタロシアニン骨格を有する化合物が挙げられる。 The compound represented by the formula (1) is also preferably a copper complex having a compound having no maximum absorption wavelength in the wavelength range of 400 to 600 nm as a ligand. A copper complex having a compound having a maximum absorption wavelength in the wavelength range of 400 to 600 nm as a ligand has absorption in the visible region (for example, a wavelength region of 400 to 600 nm), and thus the visible transparency may be insufficient. is there. Examples of the compound having a maximum absorption wavelength in the wavelength region of 400 to 600 nm include a compound having a long conjugated structure and large absorption of light of a π-π * transition. Specific examples include compounds having a phthalocyanine skeleton.
 銅錯体は、フタロシアニン銅錯体以外の銅錯体であることも好ましい。ここで、フタロシアニン銅錯体とは、フタロシアニン骨格を有する化合物を配位子とする銅錯体である。フタロシアニン骨格を有する化合物は、分子全体にπ電子共役系が広がり、平面構造を取る。フタロシアニン銅錯体は、π-π*遷移で光を吸収する。π-π*遷移で赤外領域の光を吸収するには、配位子をなす化合物が長い共役構造をとる必要がある。しかしながら、配位子の共役構造を長くすると、可視透明性が低下する傾向にある。このため、フタロシアニン銅錯体は、可視透明性が不十分な場合がある。 The copper complex is also preferably a copper complex other than the phthalocyanine copper complex. Here, the phthalocyanine copper complex is a copper complex having a compound having a phthalocyanine skeleton as a ligand. A compound having a phthalocyanine skeleton has a planar structure in which a π-electron conjugated system spreads throughout the molecule. The phthalocyanine copper complex absorbs light at the π-π * transition. In order to absorb light in the infrared region through the π-π * transition, the ligand compound must have a long conjugated structure. However, when the conjugated structure of the ligand is lengthened, the visible transparency tends to decrease. For this reason, the phthalocyanine copper complex may have insufficient visible transparency.
 式(1)において、配位子Lにおけるアニオンとしては、銅原子に配位可能なものであればよく、酸素アニオン、窒素アニオンまたは硫黄アニオンが好ましい。銅原子に対してアニオンで配位する配位部位としては、以下の1価の官能基群(AN-1)、または、2価の官能基群(AN-2)から選択される少なくとも1種であることが好ましい。なお、以下の構造式における波線は、配位子を構成する原子団との結合位置である。 In the formula (1), the anion in the ligand L may be any one that can coordinate to a copper atom, and an oxygen anion, a nitrogen anion, or a sulfur anion is preferable. The coordination site coordinated with the copper atom by an anion is at least one selected from the following monovalent functional group (AN-1) or divalent functional group (AN-2) It is preferable that In addition, the wavy line in the following structural formula is the bonding position with the atomic group constituting the ligand.
群(AN-1)
Figure JPOXMLDOC01-appb-C000001
Group (AN-1)
Figure JPOXMLDOC01-appb-C000001
群(AN-2)
Figure JPOXMLDOC01-appb-C000002
Group (AN-2)
Figure JPOXMLDOC01-appb-C000002
 上記式中、Xは、NまたはCRを表し、Rは、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表す。
 Rが表すアルキル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。アルキル基の例としては、メチル基が挙げられる。アルキル基は置換基を有していてもよい。置換基としてはハロゲン原子、カルボキシル基、ヘテロ環基が挙げられる。置換基としてのヘテロ環基は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。ヘテロ環を構成するヘテロ原子の数は1~3が好ましく、1または2が好ましい。ヘテロ環を構成するヘテロ原子は、窒素原子が好ましい。アルキル基が置換基を有している場合、さらに置換基を有していてもよい。
 Rが表すアルケニル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルケニル基の炭素数は、2~10が好ましく、2~6がより好ましい。アルケニル基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
 Rが表すアルキニル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルキニル基の炭素数は、2~10が好ましく、2~6がより好ましい。アルキニル基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
 Rが表すアリール基は、単環であっても多環であってもよいが単環が好ましい。アリール基の炭素数は6~18が好ましく、6~12がより好ましく、6がさらに好ましい。アリール基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
 Rが表すヘテロアリール基は、単環であっても多環であってもよい。ヘテロアリール基を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基を構成するヘテロ原子は、窒素原子、硫黄原子、酸素原子が好ましい。ヘテロアリール基の炭素数は6~18が好ましく、6~12がより好ましい。ヘテロアリール基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
In the above formula, X represents N or CR, and R each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
The alkyl group represented by R may be linear, branched or cyclic, but is preferably linear. The alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group. The alkyl group may have a substituent. Examples of the substituent include a halogen atom, a carboxyl group, and a heterocyclic group. The heterocyclic group as a substituent may be monocyclic or polycyclic, and may be aromatic or non-aromatic. The number of heteroatoms constituting the heterocycle is preferably 1 to 3, and preferably 1 or 2. The hetero atom constituting the hetero ring is preferably a nitrogen atom. When the alkyl group has a substituent, it may further have a substituent.
The alkenyl group represented by R may be linear, branched or cyclic, but is preferably linear. The alkenyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms. The alkenyl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
The alkynyl group represented by R may be linear, branched or cyclic, but is preferably linear. The alkynyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms. The alkynyl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
The aryl group represented by R may be monocyclic or polycyclic, but is preferably monocyclic. The aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms. The aryl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
The heteroaryl group represented by R may be monocyclic or polycyclic. The number of heteroatoms constituting the heteroaryl group is preferably 1 to 3. The hetero atom constituting the heteroaryl group is preferably a nitrogen atom, a sulfur atom or an oxygen atom. The heteroaryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms. The heteroaryl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
 アニオンで配位する配位部位の例として、モノアニオン性配位部位も挙げられる。モノアニオン性配位部位は、1つの負電荷を有する官能基を介して銅原子と配位する部位を表す。例えば、酸解離定数(pKa)が12以下の酸基が挙げられる。具体的には、リン原子を含有する酸基(リン酸ジエステル基、ホスホン酸モノエステル基、ホスフィン酸基等)、スルホ基、カルボキシル基、イミド酸基等が挙げられ、スルホ基、カルボキシル基が好ましい。 Examples of coordination sites coordinated by anions also include monoanionic coordination sites. A monoanionic coordination site | part represents the site | part coordinated with a copper atom through the functional group which has one negative charge. For example, an acid group having an acid dissociation constant (pKa) of 12 or less can be mentioned. Specific examples include acid groups containing phosphorous atoms (phosphoric acid diester groups, phosphonic acid monoester groups, phosphinic acid groups, etc.), sulfo groups, carboxyl groups, imido acid groups, and the like. preferable.
 非共有電子対で配位する配位原子は、酸素原子、窒素原子、硫黄原子またはリン原子が好ましく、酸素原子、窒素原子または硫黄原子がより好ましく、酸素原子、窒素原子がさらに好ましく、窒素原子が特に好ましい。非共有電子対で配位する配位原子が窒素原子である場合、窒素原子に隣接する原子が炭素原子、または、窒素原子であることが好ましく、炭素原子がより好ましい。 The coordination atom coordinated by the lone pair is preferably an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom, more preferably an oxygen atom, a nitrogen atom or a sulfur atom, still more preferably an oxygen atom or a nitrogen atom, and a nitrogen atom. Is particularly preferred. When the coordinating atom coordinated by the lone pair is a nitrogen atom, the atom adjacent to the nitrogen atom is preferably a carbon atom or a nitrogen atom, and more preferably a carbon atom.
 非共有電子対で配位する配位原子は、環に含まれるか、または、以下の1価の官能基群(UE-1)、2価の官能基群(UE-2)、3価の官能基群(UE-3)から選択される少なくとも1種の部分構造に含まれることが好ましい。なお、以下の構造式における波線は、配位子を構成する原子団との結合位置である。
群(UE-1)
Figure JPOXMLDOC01-appb-C000003
The coordination atom coordinated by the lone pair of electrons is included in the ring, or the following monovalent functional group (UE-1), divalent functional group (UE-2), trivalent It is preferably contained in at least one partial structure selected from the functional group group (UE-3). In addition, the wavy line in the following structural formula is the bonding position with the atomic group constituting the ligand.
Group (UE-1)
Figure JPOXMLDOC01-appb-C000003
群(UE-2)
Figure JPOXMLDOC01-appb-C000004
Group (UE-2)
Figure JPOXMLDOC01-appb-C000004
群(UE-3)
Figure JPOXMLDOC01-appb-C000005
Group (UE-3)
Figure JPOXMLDOC01-appb-C000005
 群(UE-1)~(UE-3)中、R1は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、R2は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基またはアシル基を表す。 In the groups (UE-1) to (UE-3), R 1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group, and R 2 represents a hydrogen atom, an alkyl group, an alkenyl group Represents a group, alkynyl group, aryl group, heteroaryl group, alkoxy group, aryloxy group, heteroaryloxy group, alkylthio group, arylthio group, heteroarylthio group, amino group or acyl group.
 非共有電子対で配位する配位原子は、環に含まれていてもよい。非共有電子対で配位する配位原子が環に含まれる場合、非共有電子対で配位する配位原子を含む環は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。非共有電子対で配位する配位原子を含む環は、5~12員環が好ましく、5~7員環がより好ましい。
 非共有電子対で配位する配位原子を含む環は、置換基を有していてもよく、置換基としては炭素数1~10の直鎖状、分岐状または環状のアルキル基、炭素数6~12のアリール基、ハロゲン原子、ケイ素原子、炭素数1~12のアルコキシ基、炭素数2~12のアシル基、炭素数1~12のアルキルチオ基、カルボキシル基等が挙げられる。
 非共有電子対で配位する配位原子を含む環が置換基を有している場合、さらに置換基を有していてもよく、置換基としては、非共有電子対で配位する配位原子を含む環からなる基、上述した群(UE-1)~(UE-3)から選択される少なくとも1種の部分構造を含む基、炭素数1~12のアルキル基、炭素数2~12のアシル基、ヒドロキシ基などが挙げられる。
The coordinating atom coordinated by the lone pair may be contained in the ring. In the case where the ring includes a coordination atom that coordinates with an unshared electron pair, the ring that includes a coordination atom that coordinates with an unshared electron pair may be monocyclic or polycyclic, It may be aromatic or non-aromatic. The ring containing a coordination atom coordinated by a lone pair is preferably a 5- to 12-membered ring, and more preferably a 5- to 7-membered ring.
The ring containing a coordinating atom coordinated by a lone pair may have a substituent, such as a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, carbon number Examples include 6-12 aryl groups, halogen atoms, silicon atoms, alkoxy groups having 1 to 12 carbon atoms, acyl groups having 2 to 12 carbon atoms, alkylthio groups having 1 to 12 carbon atoms, and carboxyl groups.
When the ring containing the coordination atom coordinated by the lone pair has a substituent, the ring may further have a substituent, and as the substituent, the coordination coordinated by the lone pair A group comprising a ring containing an atom, a group comprising at least one partial structure selected from the groups (UE-1) to (UE-3), an alkyl group having 1 to 12 carbon atoms, and 2 to 12 carbon atoms And an acyl group, a hydroxy group, and the like.
 群(UE-1)~(UE-3)のR1およびR2が表すアルキル基、アルケニル基、アルキニル基、アリール基、およびヘテロアリール基は、上記群(AN-1)および群(AN-2)のRで説明したアルキル基、アルケニル基、アルキニル基、アリール基およびヘテロアリール基と同義であり、好ましい範囲も同様である。
 R2が表すアルコキシ基の炭素数は、1~12が好ましく、3~9がより好ましい。
 R2が表すアリールオキシ基の炭素数は、6~18が好ましく、6~12がより好ましい。
 R2が表すヘテロアリールオキシ基は、単環であっても多環であってもよい。ヘテロアリールオキシ基を構成するヘテロアリール基は、上述したヘテロアリール基と同義であり、好ましい範囲も同様である。
 R2が表すアルキルチオ基の炭素数は、1~12が好ましく、1~9がより好ましい。
 R2が表すアリールチオ基の炭素数は、6~18が好ましく、6~12がより好ましい。
 R2が表すヘテロアリールチオ基は、単環であっても多環であってもよい。ヘテロアリールチオ基を構成するヘテロアリール基は、上述したヘテロアリール基と同義であり、好ましい範囲も同様である。
 R2が表すアシル基の炭素数は、2~12が好ましく、2~9がより好ましい。
The alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group represented by R 1 and R 2 in groups (UE-1) to (UE-3) are the groups (AN-1) and (AN- It is synonymous with the alkyl group, alkenyl group, alkynyl group, aryl group, and heteroaryl group demonstrated by R of 2), and its preferable range is also the same.
The number of carbon atoms of the alkoxy group represented by R 2 is preferably 1 to 12, and more preferably 3 to 9.
The number of carbon atoms of the aryloxy group represented by R 2 is preferably 6-18, and more preferably 6-12.
The heteroaryloxy group represented by R 2 may be monocyclic or polycyclic. The heteroaryl group which comprises a heteroaryloxy group is synonymous with the heteroaryl group mentioned above, and its preferable range is also the same.
The alkylthio group represented by R 2 preferably has 1 to 12 carbon atoms, and more preferably 1 to 9 carbon atoms.
The number of carbon atoms of the arylthio group represented by R 2 is preferably 6-18, and more preferably 6-12.
The heteroarylthio group represented by R 2 may be monocyclic or polycyclic. The heteroaryl group which comprises a heteroarylthio group is synonymous with the heteroaryl group mentioned above, and its preferable range is also the same.
The acyl group represented by R 2 preferably has 2 to 12 carbon atoms, and more preferably 2 to 9 carbon atoms.
 群(UE-1)~(UE-3)において、R1は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基が好ましく、水素原子またはアルキル基がより好ましく、アルキル基が特に好ましい。アルキル基としては、炭素数1~4のアルキル基が好ましく、メチル基がより好ましい。N原子上の置換基、すなわちR1をアルキル基とすることで、銅錯体の分子軌道への配位子寄与率が向上して、極大吸収波長でのモル吸光係数が向上し、赤外線遮蔽性および可視透明性がより向上する傾向にある。耐熱性と赤外線遮蔽性と可視透明性とのバランスの観点からは、R1はアルキル基であることが好ましい。 In the groups (UE-1) to (UE-3), R 1 is preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably an alkyl group. As the alkyl group, an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group is more preferable. By making the substituent on the N atom, that is, R 1 an alkyl group, the contribution ratio of the ligand to the molecular orbital of the copper complex is improved, the molar extinction coefficient at the maximum absorption wavelength is improved, and the infrared shielding property. In addition, the visible transparency tends to be further improved. From the standpoint of balance between heat resistance and infrared shielding property and visible transparency, it is preferred that R 1 is an alkyl group.
 配位子Lが、1分子内に、アニオンで配位する配位部位と非共有電子対で配位する配位原子とを有する場合、アニオンで配位する配位部位と非共有電子対で配位する配位原子とを連結する原子数は、1~6個であることが好ましく、1~3個であることがより好ましい。このような構成とすることにより、銅錯体の構造がより歪みやすくなるため、色価をより向上させることができ、可視透明性を高めつつ、モル吸光係数を大きくし易い。アニオンで配位する配位部位と非共有電子対で配位する配位原子とを連結する原子の種類は、1種または2種以上であってもよい。炭素原子、または、窒素原子が好ましい。 When the ligand L has a coordination site coordinated by an anion and a coordination atom coordinated by an unshared electron pair in one molecule, the coordination site coordinated by an anion and an unshared electron pair The number of atoms linking the coordinating coordinate atoms is preferably 1 to 6, and more preferably 1 to 3. With such a configuration, the structure of the copper complex becomes more easily distorted, so that the color value can be further improved, and the molar extinction coefficient can be easily increased while enhancing the visible transparency. The kind of atom that connects the coordination site coordinated by the anion and the coordination atom coordinated by the lone pair may be one or more. A carbon atom or a nitrogen atom is preferable.
 配位子Lが、1分子内に、非共有電子対で配位する配位原子を2個以上有する場合、非共有電子対で配位する配位原子を3個以上有していることが好ましく、3~5個有していることがより好ましく、3個または4個有していることが更に好ましく、4個有していることが特に好ましい。非共有電子対で配位する配位原子同士を連結する原子数は、1~6個であることが好ましく、1~3個であることがより好ましく、2~3個であることが更に好ましく、3個であることが特に好ましい。このような構成とすることにより、銅錯体の構造がより歪みやすくなるため、色価をより向上させることができる。非共有電子対で配位する配位原子同士を連結する原子は、1種であってもよく、2種以上であってもよい。非共有電子対で配位する配位原子同士を連結する原子は、炭素原子が好ましい。 When the ligand L has two or more coordination atoms coordinated by an unshared electron pair in one molecule, the ligand L must have three or more coordination atoms coordinated by an unshared electron pair. Preferably, 3 to 5 are more preferable, 3 or 4 are more preferable, and 4 is particularly preferable. The number of atoms connecting the coordinating atoms coordinated by the lone pair is preferably 1 to 6, more preferably 1 to 3, and still more preferably 2 to 3. It is particularly preferable that the number is 3. By setting it as such a structure, since the structure of a copper complex becomes easier to distort, color value can be improved more. The number of atoms connecting the coordinating atoms coordinated by the lone pair may be one, or two or more. The atom connecting the coordinating atoms coordinated by the lone pair is preferably a carbon atom.
 多座配位子は、下記式(IV-1)~(IV-14)で表される化合物であることが好ましい。例えば、配位子が4つの配位部位を有する化合物である場合は、下記式(IV-3)、(IV-6)、(IV-7)、(IV-12)で表される化合物が好ましく、金属中心により強固に配位し、耐熱性の高い安定な錯体を形成しやすいという理由から、(IV-12)で表される化合物がより好ましい。また、例えば、配位子が5つの配位部位を有する化合物である場合は、下記式(IV-4)、(IV-8)~(IV-11)、(IV-13)、(IV-14)で表される化合物が好ましく、金属中心により強固に配位し、耐熱性の高い安定な錯体を形成しやすいという理由から、(IV-9)~(IV-10)、(IV-13)、(IV-14)で表される化合物がより好ましく、(IV-13)で表される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000006
The multidentate ligand is preferably a compound represented by the following formulas (IV-1) to (IV-14). For example, when the ligand is a compound having four coordination sites, compounds represented by the following formulas (IV-3), (IV-6), (IV-7), and (IV-12) are: The compound represented by (IV-12) is more preferable because it is more strongly coordinated with the metal center and easily forms a stable complex having high heat resistance. For example, when the ligand is a compound having five coordination sites, the following formulas (IV-4), (IV-8) to (IV-11), (IV-13), (IV- (14) is preferred, and (IV-9) to (IV-10), (IV-13) are preferred because they are more strongly coordinated with the metal center and easily form a stable complex with high heat resistance. ) And (IV-14) are more preferred, and compounds represented by (IV-13) are particularly preferred.
Figure JPOXMLDOC01-appb-C000006
 式(IV-1)~(IV-14)中、X1~X59はそれぞれ独立して、配位部位を表し、L1~L25はそれぞれ独立して単結合または2価の連結基を表し、L26~L32はそれぞれ独立して3価の連結基を表し、L33~L34はそれぞれ独立して4価の連結基を表す。
 X1~X42はそれぞれ独立して、非共有電子対で配位する配位原子を含む環からなる基、上述した群(AN-1)、または、群(UE-1)から選択される少なくとも1種を表すことが好ましい。
 X43~X56はそれぞれ独立して、非共有電子対で配位する配位原子を含む環からなる基、上述した群(AN-2)、または、群(UE-2)から選択される少なくとも1種を表すことが好ましい。
 X57~X59はそれぞれ独立して、上述した群(UE-3)から選択される少なくとも1種を表すことが好ましい。
 L1~L25はそれぞれ独立して単結合または2価の連結基を表す。2価の連結基としては、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、-SO-、-O-、-SO2-または、これらの組み合わせからなる基が好ましく、炭素数1~3のアルキレン基、フェニレン基、-SO2-またはこれらの組み合わせからなる基がより好ましい。
 L26~L32はそれぞれ独立して3価の連結基を表す。3価の連結基としては、上述した2価の連結基から水素原子を1つ除いた基が挙げられる。
 L33~L34はそれぞれ独立して4価の連結基を表す。4価の連結基としては、上述した2価の連結基から水素原子を2つ除いた基が挙げられる。
In formulas (IV-1) to (IV-14), X 1 to X 59 each independently represent a coordination site, and L 1 to L 25 each independently represents a single bond or a divalent linking group. L 26 to L 32 each independently represents a trivalent linking group, and L 33 to L 34 each independently represents a tetravalent linking group.
X 1 to X 42 are each independently selected from the group consisting of a ring containing a coordinating atom coordinated by a lone pair, the group (AN-1), or the group (UE-1) described above It is preferable to represent at least one.
X 43 to X 56 are each independently selected from the group consisting of a ring containing a coordinating atom coordinated by a lone pair, the group (AN-2), or the group (UE-2) described above It is preferable to represent at least one.
X 57 to X 59 each independently preferably represent at least one selected from the group (UE-3) described above.
L 1 to L 25 each independently represents a single bond or a divalent linking group. As the divalent linking group, an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, —SO—, —O—, —SO 2 —, or a combination thereof is preferable. A group consisting of an alkylene group of 1 to 3 groups, a phenylene group, —SO 2 — or a combination thereof is more preferable.
L 26 to L 32 each independently represents a trivalent linking group. Examples of the trivalent linking group include groups obtained by removing one hydrogen atom from the above-described divalent linking group.
L 33 ~ L 34 each independently represent a tetravalent linking group. Examples of the tetravalent linking group include groups obtained by removing two hydrogen atoms from the above-described divalent linking group.
 配位子をなす化合物の具体例としては、以下に示す化合物、後述する多座配位子の好ましい具体例として示す化合物、および、これらの化合物の塩が挙げられる。塩を構成する原子または原子団としては、金属原子、テトラブチルアンモニウムなどが挙げられる。金属原子としては、アルカリ金属原子またはアルカリ土類金属原子がより好ましい。アルカリ金属原子としては、ナトリウム、カリウム等が挙げられる。アルカリ土類金属原子としては、カルシウム、マグネシウム等が挙げられる。また、特開2014-41318号公報の段落0022~0042の記載、特開2015-43063号公報の段落0021~0039の記載を参酌でき、これらの内容は本明細書に組み込まれる。 Specific examples of the compound forming the ligand include the following compounds, compounds shown as preferred specific examples of the polydentate ligand described below, and salts of these compounds. Examples of the atoms or atomic groups constituting the salt include metal atoms and tetrabutylammonium. As the metal atom, an alkali metal atom or an alkaline earth metal atom is more preferable. Examples of the alkali metal atom include sodium and potassium. Examples of alkaline earth metal atoms include calcium and magnesium. In addition, the description of paragraphs 0022 to 0042 of JP 2014-41318 A and the description of paragraphs 0021 to 0039 of JP 2015-43063 A can be referred to, and the contents thereof are incorporated in this specification.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 銅錯体としては、例えば、以下の(1)~(5)の態様が好ましい例として挙げられ、(2)~(5)がより好ましく、(3)~(5)が更に好ましく、(4)または(5)が一層好ましい。
 (1)2つの配位部位を有する化合物の1つまたは2つを配位子Lとして有する銅錯体。
 (2)3つの配位部位を有する化合物を配位子Lとして有する銅錯体。
 (3)3つの配位部位を有する化合物と2つの配位部位を有する化合物とを配位子Lとして有する銅錯体。
 (4)4つの配位部位を有する化合物を配位子Lとして有する銅錯体。
 (5)5つの配位部位を有する化合物を配位子Lとして有する銅錯体。
Examples of the copper complex include the following embodiments (1) to (5) as preferred examples, (2) to (5) are more preferred, (3) to (5) are more preferred, and (4) Or (5) is more preferable.
(1) A copper complex having one or two compounds having two coordination sites as the ligand L.
(2) A copper complex having a compound having three coordination sites as the ligand L.
(3) A copper complex having as a ligand L a compound having three coordination sites and a compound having two coordination sites.
(4) A copper complex having a compound having four coordination sites as the ligand L.
(5) A copper complex having a compound having five coordination sites as the ligand L.
 上記(1)の態様において、2つの配位部位を有する化合物は、非共有電子対で配位する配位原子を2つ有する化合物、または、アニオンで配位する配位部位と非共有電子対で配位する配位原子とを有する化合物が好ましい。また、2つの配位部位を有する化合物の2つを配位子として有する場合、配位子の化合物は、同一であってもよく、異なっていてもよい。
 また、(1)の態様において、銅錯体は、単座配位子を配位子Lとして更に有することもできる。単座配位子の数は、0個とすることもでき、1~3個とすることもできる。2つの配位部位を有する化合物が非共有電子対で配位する配位原子を2つ有する化合物の場合は、単座配位子としては、配位力が強いという理由からアニオンで配位する配位部位を1個有する化合物であることが好ましい。2つの配位部位を有する化合物がアニオンで配位する配位部位と非共有電子対で配位する配位原子とを有する化合物の場合は、単座配位子としては、非共有電子対で配位する配位原子を1個有する化合物であることが好ましい。
In the above aspect (1), the compound having two coordination sites is a compound having two coordination atoms coordinated by an unshared electron pair, or a coordination site and an unshared electron pair coordinated by an anion. A compound having a coordination atom coordinated with is preferable. Moreover, when it has two of the compounds which have two coordination site | parts as a ligand, the compound of a ligand may be the same and may differ.
Moreover, in the aspect of (1), the copper complex can further have a monodentate ligand as the ligand L. The number of monodentate ligands can be 0, or 1 to 3. In the case where the compound having two coordination sites is a compound having two coordination atoms coordinated by an unshared electron pair, the monodentate ligand is a coordination coordinated by an anion because of its high coordination power. A compound having one coordination site is preferred. In the case of a compound in which a compound having two coordination sites has a coordination site coordinated by an anion and a coordination atom coordinated by an unshared electron pair, the monodentate ligand is coordinated by an unshared electron pair. It is preferable that the compound has one coordinating atom.
 上記(2)の態様において、3つの配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を3つ有する化合物が更に好ましい。また、(2)の態様において、銅錯体は、単座配位子を更に有することもできる。単座配位子の数は、0個とすることもできる。また、1個以上とすることもでき、1~3個以上がより好ましく、1~2個がさらに好ましく、2個が一層好ましい。単座配位子の種類としては、上述した理由によりアニオンで配位する配位部位を1個有する化合物が好ましい。 In the above aspect (2), the compound having three coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and has three coordination atoms coordinated by a lone pair. More preferred are compounds. In the embodiment (2), the copper complex may further have a monodentate ligand. The number of monodentate ligands can also be zero. Moreover, it can also be 1 or more, 1 to 3 or more is more preferable, 1 to 2 is more preferable, and 2 is more preferable. As a kind of monodentate ligand, a compound having one coordination site coordinated by an anion is preferable for the above-described reason.
 上記(3)の態様において、3つの配位部位を有する化合物は、アニオンで配位する配位部位と、非共有電子対で配位する配位原子とを有する化合物が好ましく、アニオンで配位する配位部位を2つ、および、非共有電子対で配位する配位原子を1つ有する化合物が更に好ましい。さらに、この2つのアニオンで配位する配位部位が異なっていることが特に好ましい。また、2つの配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を2つ有する化合物が更に好ましい。なかでも、3つの配位部位を有する化合物が、アニオンで配位する配位部位を2つ、および、非共有電子対で配位する配位原子を1つ有する化合物であり、2つの配位部位を有する化合物が、非共有電子対で配位する配位原子を2つ有する化合物である組み合わせが、特に好ましい。また、(3)の態様において、銅錯体は、単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもできる。単座配位子の数は、0個がより好ましい。 In the above aspect (3), the compound having three coordination sites is preferably a compound having a coordination site coordinated by an anion and a coordination atom coordinated by an unshared electron pair. A compound having two coordination sites to be coordinated and one coordination atom coordinated by an unshared electron pair is more preferable. Furthermore, it is particularly preferable that the coordination sites coordinated by the two anions are different. In addition, the compound having two coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and more preferably a compound having two coordination atoms coordinated by a lone pair. Among them, a compound having three coordination sites is a compound having two coordination sites coordinated by an anion and one coordination atom coordinated by an unshared electron pair. A combination in which the compound having a site is a compound having two coordination atoms coordinated by an unshared electron pair is particularly preferable. In the embodiment (3), the copper complex may further have a monodentate ligand. The number of monodentate ligands can be zero, or one or more. The number of monodentate ligands is more preferably 0.
 上記(4)の態様において、4つの配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を2以上有する化合物がより好ましく、非共有電子対で配位する配位原子を4つ有する化合物が更に好ましい。また、(4)の態様において、銅錯体は、単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもでき、2個以上とすることもできる。単座配位子の数は、1個が好ましい。単座配位子の種類としては、アニオンで配位する配位部位を1個有する化合物、非共有電子対で配位する配位原子を1個有する化合物のいずれも好ましい。 In the above aspect (4), the compound having four coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and has two or more coordination atoms coordinated by a lone pair. A compound is more preferable, and a compound having four coordination atoms coordinated by an unshared electron pair is more preferable. In the embodiment (4), the copper complex may further have a monodentate ligand. The number of monodentate ligands can be 0, 1 or more, or 2 or more. The number of monodentate ligands is preferably one. As the kind of monodentate ligand, both a compound having one coordination site coordinated by an anion and a compound having one coordination atom coordinated by an unshared electron pair are preferable.
 上記(5)の態様において、5つの配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を2以上有する化合物がより好ましく、非共有電子対で配位する配位原子を5つ有する化合物が更に好ましい。また、(5)の態様において、銅錯体は、単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもできる。単座配位子の数は0個が好ましい。 In the above aspect (5), the compound having five coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and has two or more coordination atoms coordinated by a lone pair. A compound is more preferable, and a compound having five coordinating atoms coordinated by an unshared electron pair is more preferable. In the embodiment (5), the copper complex may further have a monodentate ligand. The number of monodentate ligands can be zero, or one or more. The number of monodentate ligands is preferably 0.
 多座配位子は、上述した配位子の具体例で説明した化合物のうち、配位部位を2以上有する化合物や、以下に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011
Examples of the multidentate ligand include compounds having two or more coordination sites among the compounds described in the specific examples of the ligand described above, and compounds shown below.
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011
 銅錯体中における銅以外の金属の含有量としては、銅錯体の固形分に対して10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が更に好ましい。この態様によれば、異物欠陥の抑制された樹脂膜を形成し易い。また、銅錯体のリチウム含有量は100質量ppm以下であることが好ましい。また、銅錯体のカリウム含有量は30質量ppm以下であることが好ましい。銅錯体中における銅以外の金属の含有量を低減させる方法としては、再沈殿、再結晶、カラムクロマトグラフィー、昇華精製などの方法で、銅錯体を精製する方法が挙げられる。また、銅錯体を溶剤に溶解させた後にフィルタでろ過して精製する方法を用いることもできる。銅錯体中における銅以外の金属の含有量は、誘導結合プラズマ発光分光分析法にて測定することができる。 As content of metals other than copper in a copper complex, 10 mass% or less is preferable with respect to solid content of a copper complex, 5 mass% or less is more preferable, and 2 mass% or less is still more preferable. According to this aspect, it is easy to form a resin film in which foreign object defects are suppressed. Moreover, it is preferable that lithium content of a copper complex is 100 mass ppm or less. Moreover, it is preferable that the potassium content of a copper complex is 30 mass ppm or less. Examples of the method for reducing the content of metals other than copper in the copper complex include a method for purifying the copper complex by a method such as reprecipitation, recrystallization, column chromatography, and sublimation purification. Moreover, after dissolving a copper complex in a solvent, the method of filtering with a filter and refine | purifying can also be used. The content of metals other than copper in the copper complex can be measured by inductively coupled plasma emission spectroscopy.
 銅錯体の水分量としては、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましい。この態様によれば、樹脂組成物の経時安定性を高めることができる。 The water content of the copper complex is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less. According to this aspect, the temporal stability of the resin composition can be improved.
 銅錯体中の遊離したハロゲン陰イオンおよびハロゲン化合物の合計量としては、銅錯体の全固形分に対して5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましい。この態様によれば、樹脂組成物の経時安定性を高めることができる。 The total amount of free halogen anions and halogen compounds in the copper complex is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less based on the total solid content of the copper complex. According to this aspect, the temporal stability of the resin composition can be improved.
 式(1)で表される銅錯体は、例えば銅成分(銅または銅を含む化合物)に対して、銅に対する配位部位を有する化合物(配位子)を混合・反応等させて得ることができる。銅成分は、2価の銅を含む化合物が好ましい。銅成分は、1種のみを用いてもよいし、2種以上を用いてもよい。銅成分としては、例えば、酸化銅や銅塩を用いることができる。銅塩は、例えば、カルボン酸銅(例えば、酢酸銅、エチルアセト酢酸銅、ギ酸銅、安息香酸銅、ステアリン酸銅、ナフテン酸銅、クエン酸銅、2-エチルヘキサン酸銅など)、スルホン酸銅(例えば、メタンスルホン酸銅など)、リン酸銅、リン酸エステル銅、ホスホン酸銅、ホスホン酸エステル銅、ホスフィン酸銅、アミド銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、メチド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、硫酸銅、硝酸銅、過塩素酸銅、フッ化銅、塩化銅、臭化銅が好ましく、カルボン酸銅、スルホン酸銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、フッ化銅、塩化銅、硫酸銅、硝酸銅がより好ましく、カルボン酸銅、アシルスルホンイミド銅、フェノキシ銅、塩化銅、硫酸銅、硝酸銅が更に好ましく、カルボン酸銅、アシルスルホンイミド銅、塩化銅、硫酸銅が特に好ましい。銅成分はメタノールで希釈するかまたは溶解させたのち、ろ過してから使用することが好ましい。ろ過に用いるろ紙やフィルタの孔径は1μm以下であることが好ましい。 The copper complex represented by the formula (1) can be obtained, for example, by mixing and reacting a compound (ligand) having a coordination site for copper with a copper component (copper or a compound containing copper). it can. The copper component is preferably a compound containing divalent copper. A copper component may use only 1 type and may use 2 or more types. As the copper component, for example, copper oxide or copper salt can be used. Examples of the copper salt include copper carboxylate (eg, copper acetate, copper ethyl acetoacetate, copper formate, copper benzoate, copper stearate, copper naphthenate, copper citrate, copper 2-ethylhexanoate), copper sulfonate (For example, copper methanesulfonate), copper phosphate, phosphate copper, phosphonate copper, phosphonate copper, phosphinate, amide copper, sulfonamido copper, imide copper, acylsulfonimide copper, bissulfonimide Copper, methido copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper sulfate, copper nitrate, copper perchlorate, copper fluoride, copper chloride, copper bromide are preferred, copper carboxylate, copper sulfonate, Sulfonamide copper, imide copper, acylsulfonimide copper, bissulfonimide copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper fluoride, copper chloride, copper sulfate, glass Copper is more preferable, copper carboxylate, acyl sulfonimide copper, phenoxy, copper chloride, copper sulfate, copper nitrate are more preferred, copper carboxylate, acyl sulfonimide, copper chloride, copper sulfate particularly preferred. The copper component is preferably used after being diluted with methanol or dissolved and then filtered. The pore size of the filter paper or filter used for filtration is preferably 1 μm or less.
 銅と配位子とが、銅:配位子=1:pのモル比で量論的に配位するような配位子に関しては、銅錯体合成において銅成分と配位子の反応のモル比を1:q(ただし、q≧pであり、qは任意の数である)とすることが好ましい。q<pとなる場合は原料である銅成分が銅錯体中に残存しやすく、可視透明性が低下したり、異物欠陥の要因となる。銅錯体中における原材料である銅成分の残存率(配位子と配位していない銅成分の含有量)としては、銅錯体の固形分に対して10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が更に好ましい。また、銅錯体中に配位子が過剰に残存していると可視透明性が低下したり、異物欠陥数が増加したり、組成物の熱安定性が低下することがあるので、p≦q≦2pであることが好ましく、p≦q≦1.5pであることがより好ましく、p≦q≦1.2pであることが更に好ましい。銅錯体中における配位子の残存率(銅と配位していない配位子の含有量)としては銅錯体の固形分に対して10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が更に好ましい。また、銅錯体の製造にあたり、複数回の晶析工程を設けることが好ましい。晶析の際は、良溶媒は貧溶媒より少ないことが好ましい。また、複数回晶析工程を設ける場合は、銅錯体の固形分を80質量%としてから次の晶析工程に移ることが好ましい。 Regarding ligands in which copper and ligand are coordinated stoichiometrically in a molar ratio of copper: ligand = 1: p, the molarity of the reaction between the copper component and the ligand in the copper complex synthesis. The ratio is preferably 1: q (where q ≧ p, and q is an arbitrary number). When q <p, the copper component as a raw material is likely to remain in the copper complex, resulting in a decrease in visible transparency and a cause of foreign matter defects. The residual ratio of the copper component which is a raw material in the copper complex (content of the copper component not coordinated with the ligand) is preferably 10% by mass or less with respect to the solid content of the copper complex, and 5% by mass or less. Is more preferable, and 2 mass% or less is still more preferable. In addition, if excessive ligands remain in the copper complex, the visible transparency may decrease, the number of foreign matter defects may increase, and the thermal stability of the composition may decrease, so p ≦ q ≦ 2p is preferable, p ≦ q ≦ 1.5p is more preferable, and p ≦ q ≦ 1.2p is still more preferable. The residual ratio of ligand in the copper complex (content of ligand not coordinated with copper) is preferably 10% by mass or less, more preferably 5% by mass or less, based on the solid content of the copper complex. 2 mass% or less is still more preferable. Moreover, in the production of the copper complex, it is preferable to provide a plurality of crystallization steps. At the time of crystallization, the good solvent is preferably less than the poor solvent. Moreover, when providing a multiple times of crystallization process, after making solid content of a copper complex into 80 mass%, it is preferable to transfer to the following crystallization process.
 樹脂組成物において、銅錯体の含有量は、樹脂組成物の全固形分に対して5~95質量%であることが好ましい。下限は10質量%以上がより好ましく、15質量%以上が更に好ましく、20質量%以上が更により好ましい。上限は、70質量%以下がより好ましく、60質量%以下が更に好ましく、50質量%以下が更により好ましい。銅錯体は、1種単独で用いてもよく、2種以上を併用することもできる。銅錯体を2種以上併用することが好ましい。銅錯体を2種以上併用する場合は、それらの合計量が上記範囲であることが好ましい。 In the resin composition, the content of the copper complex is preferably 5 to 95% by mass with respect to the total solid content of the resin composition. The lower limit is more preferably 10% by mass or more, further preferably 15% by mass or more, and still more preferably 20% by mass or more. The upper limit is more preferably 70% by mass or less, still more preferably 60% by mass or less, and still more preferably 50% by mass or less. A copper complex may be used individually by 1 type and can also use 2 or more types together. It is preferable to use two or more copper complexes in combination. When using 2 or more types of copper complexes together, it is preferable that those total amount is the said range.
<<他の赤外線吸収剤>>
 樹脂組成物は、銅錯体以外の赤外線吸収剤(他の赤外線吸収剤ともいう)を含有することができる。他の赤外線吸収剤としては、シアニン化合物、ピロロピロール化合物、スクアリリウム化合物、フタロシアニン化合物、ナフタロシアニン化合物、ジイミニウム化合物、チオール錯体化合物、遷移金属酸化物、クアテリレン化合物、クロコニウム化合物等が挙げられる。
<< other infrared absorbers >>
The resin composition can contain an infrared absorbent (also referred to as other infrared absorbent) other than the copper complex. Examples of other infrared absorbers include cyanine compounds, pyrrolopyrrole compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, diiminium compounds, thiol complex compounds, transition metal oxides, quaterylene compounds, and croconium compounds.
 ピロロピロール化合物としては、例えば、特開2009-263614号公報の段落番号0016~0058に記載の化合物、特開2011-68731号公報の段落番号0037~0052に記載の化合物などが挙げられ、これらの内容は本明細書に組み込まれる。スクアリリウム化合物としては、例えば、特開2011-208101号公報の段落番号0044~0049に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。シアニン化合物としては、例えば、特開2009-108267号公報の段落番号0044~0045に記載の化合物、特開2002-194040号公報の段落番号0026~0030に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。ジイミニウム化合物としては、例えば、特表2008-528706号公報に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。フタロシアニン化合物としては、例えば、特開2012-77153号公報の段落番号0093に記載の化合物、特開2006-343631号公報に記載のオキシチタニウムフタロシアニン、特開2013-195480号公報の段落番号0013~0029に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。ナフタロシアニン化合物としては、例えば、特開2012-77153号公報の段落番号0093に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。また、シアニン化合物、フタロシアニン化合物、ジイミニウム化合物、スクアリリウム化合物及びクロコニウム化合物は、特開2010-111750号公報の段落番号0010~0081に記載の化合物を使用してもよく、この内容は本明細書に組み込まれる。また、シアニン系化合物は、例えば、「機能性色素、大河原信/松岡賢/北尾悌次郎/平嶋恒亮・著、講談社サイエンティフィック」を参酌することができ、この内容は本明細書に組み込まれる。また、他の赤外線吸収剤としては、特開2016-146619号公報、特開2017-031394号公報、特開2016-200771号公報および特開2016-142891号公報に記載された化合物を用いることもでき、これらの内容は本明細書に組み込まれる。また、他の赤外線吸収剤としては、下記構造の化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000012
Examples of the pyrrolopyrrole compound include compounds described in paragraph Nos. 0016 to 0058 of JP-A-2009-263614, compounds described in paragraph Nos. 0037 to 0052 of JP-A-2011-68731, and the like. The contents are incorporated herein. Examples of the squarylium compound include compounds described in JP-A-2011-208101, paragraphs 0044 to 0049, the contents of which are incorporated herein. Examples of the cyanine compound include compounds described in paragraph Nos. 0044 to 0045 of JP-A-2009-108267, and compounds described in paragraph Nos. 0026 to 0030 of JP-A No. 2002-194040. Incorporated herein. Examples of the diiminium compound include compounds described in JP-T-2008-528706, and the contents thereof are incorporated in the present specification. Examples of the phthalocyanine compound include compounds described in paragraph No. 0093 of JP2012-77153A, oxytitanium phthalocyanine described in JP2006-343631, paragraph Nos. 0013 to 0029 of JP2013-195480A. And the contents of which are incorporated herein. Examples of the naphthalocyanine compound include compounds described in paragraph No. 0093 of JP2012-77153A, the contents of which are incorporated herein. In addition, as the cyanine compound, phthalocyanine compound, diiminium compound, squarylium compound, and croconium compound, the compounds described in paragraph numbers 0010 to 0081 of JP 2010-1111750 A may be used, the contents of which are incorporated herein. It is. In addition, as for the cyanine compound, for example, “functional pigment, Nobu Okawara / Ken Matsuoka / Keijiro Kitao / Kensuke Hirashima, Kodansha Scientific”, the contents of which are incorporated herein. It is. Further, as other infrared absorbers, compounds described in JP-A-2016-146619, JP-A-2017-031394, JP-A-2016-200771 and JP-A-2016-142891 may be used. The contents of which are incorporated herein. Moreover, as another infrared absorber, a compound having the following structure may be used.
Figure JPOXMLDOC01-appb-C000012
 また、他の赤外線吸収剤として、無機粒子を用いることもできる。無機粒子は、赤外線遮蔽性がより優れる点で、金属酸化物粒子または金属粒子であることが好ましい。金属酸化物粒子としては、例えば、酸化インジウムスズ(ITO)粒子、酸化アンチモンスズ(ATO)粒子、酸化亜鉛(ZnO)粒子、Alドープ酸化亜鉛(AlドープZnO)粒子、フッ素ドープ二酸化スズ(FドープSnO2)粒子、ニオブドープ二酸化チタン(NbドープTiO2)粒子などが挙げられる。金属粒子としては、例えば、銀(Ag)粒子、金(Au)粒子、銅(Cu)粒子、ニッケル(Ni)粒子などが挙げられる。また、無機粒子としては酸化タングステン系化合物を用いることもできる。酸化タングステン系化合物は、セシウム酸化タングステンであることが好ましい。酸化タングステン系化合物の詳細については、特開2016-006476号公報の段落番号0080を参酌でき、この内容は本明細書に組み込まれる。無機粒子の形状は特に制限されず、球状、非球状を問わず、シート状、ワイヤー状、チューブ状であってもよい。 Moreover, inorganic particles can also be used as other infrared absorbers. The inorganic particles are preferably metal oxide particles or metal particles from the viewpoint of better infrared shielding properties. Examples of the metal oxide particles include indium tin oxide (ITO) particles, antimony tin oxide (ATO) particles, zinc oxide (ZnO) particles, Al-doped zinc oxide (Al-doped ZnO) particles, and fluorine-doped tin dioxide (F-doped). SnO 2 ) particles, niobium-doped titanium dioxide (Nb-doped TiO 2 ) particles, and the like. Examples of the metal particles include silver (Ag) particles, gold (Au) particles, copper (Cu) particles, and nickel (Ni) particles. In addition, a tungsten oxide compound can be used as the inorganic particles. The tungsten oxide compound is preferably cesium tungsten oxide. For details of the tungsten oxide-based compound, paragraph No. 0080 of JP-A-2016-006476 can be referred to, the contents of which are incorporated herein. The shape of the inorganic particles is not particularly limited, and may be a sheet shape, a wire shape, or a tube shape regardless of spherical or non-spherical.
 無機粒子の平均粒子径は、800nm以下が好ましく、400nm以下がより好ましく、200nm以下が更に好ましい。無機粒子の平均粒子径が800nm以下であれば、可視透明性が良好である。無機粒子の平均粒子径は小さいほど好ましいが、取り扱い性などの観点から、無機粒子の平均粒子径は、1nm以上であることが好ましい。 The average particle size of the inorganic particles is preferably 800 nm or less, more preferably 400 nm or less, and even more preferably 200 nm or less. If the average particle diameter of the inorganic particles is 800 nm or less, the visible transparency is good. The average particle size of the inorganic particles is preferably as small as possible, but from the viewpoint of handling properties, the average particle size of the inorganic particles is preferably 1 nm or more.
 樹脂組成物が他の赤外線吸収剤を含有する場合、他の赤外線吸収剤の含有量は、銅錯体100質量部に対し、0.1~50質量部が好ましい。下限は0.5質量部以上がより好ましく、1質量部以上が更に好ましい。上限は、45質量部以下がより好ましく、40質量部以下が更に好ましく、35質量部以下が更により好ましい。 When the resin composition contains another infrared absorber, the content of the other infrared absorber is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the copper complex. The lower limit is more preferably 0.5 parts by mass or more, and still more preferably 1 part by mass or more. The upper limit is more preferably 45 parts by mass or less, still more preferably 40 parts by mass or less, and even more preferably 35 parts by mass or less.
<<樹脂>>
 樹脂組成物は、樹脂を含有する。本発明においては、樹脂として架橋性基を実質的に有さない樹脂を用いる。架橋性基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、スチリル基、エポキシ基、オキセタニル基、メチロール基およびアルコキシシリル基などが挙げられる。すなわち、本発明では、樹脂として、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、スチリル基、エポキシ基、オキセタニル基、メチロール基およびアルコキシシリル基から選ばれる架橋性基を実質的に有さない樹脂を用いることが好ましい。なお、本発明において、架橋性基を実質的に有さない樹脂とは、加熱後において樹脂が3次元架橋を形成しない樹脂であることを意味する。より具体的には、架橋性基を実質的に有さない樹脂は、100℃に加熱した後も樹脂が3次元架橋を形成しない樹脂であることが好ましい。樹脂が3次元架橋を形成しているかどうかは、NMR(核磁気共鳴)による分子構造解析、熱重量測定、示差熱分析または示差走査熱量測定による熱物性解析、ヤング率または破断伸び等の物理的物性解析等の方法により解析できる。これらのいずれかの方法において、加熱前後でプロファイルの大きな変化がない場合は、その樹脂は3次元架橋を形成していないといえる。すなわち、その樹脂は、架橋性基を実質的に有さない樹脂であるといえる。
 また、樹脂中の架橋性基量は、NMR(核磁気共鳴)解析での検出限界値未満であることが好ましい。また、樹脂は架橋性基を有さないことがより好ましい。
<< Resin >>
The resin composition contains a resin. In the present invention, a resin having substantially no crosslinkable group is used as the resin. Examples of the crosslinkable group include a vinyl group, a (meth) allyl group, a (meth) acryloyl group, a styryl group, an epoxy group, an oxetanyl group, a methylol group, and an alkoxysilyl group. That is, in the present invention, the resin substantially has a crosslinkable group selected from vinyl group, (meth) allyl group, (meth) acryloyl group, styryl group, epoxy group, oxetanyl group, methylol group and alkoxysilyl group. It is preferable to use a resin that does not. In the present invention, the resin having substantially no crosslinkable group means that the resin does not form a three-dimensional crosslink after heating. More specifically, the resin having substantially no crosslinkable group is preferably a resin that does not form a three-dimensional crosslink even after being heated to 100 ° C. Whether the resin forms a three-dimensional cross-linkage is determined by physical structure analysis such as molecular structure analysis by NMR (nuclear magnetic resonance), thermogravimetry, differential thermal analysis or thermophysical analysis by differential scanning calorimetry, Young's modulus or elongation at break It can be analyzed by methods such as physical property analysis. In any of these methods, if there is no significant change in the profile before and after heating, it can be said that the resin does not form a three-dimensional crosslink. That is, it can be said that the resin is a resin having substantially no crosslinkable group.
The amount of the crosslinkable group in the resin is preferably less than the detection limit value in NMR (nuclear magnetic resonance) analysis. More preferably, the resin does not have a crosslinkable group.
 樹脂の種類としては、架橋性基を実質的に有さないものであれば特に限定は無い。樹脂は透明性の高い樹脂が好ましい。具体的にはポリエチレン、ポリプロピレン、カルボキシル化ポリオレフィン、塩素化ポリオレフィン、シクロオレフィンポリマー等のポリオレフィン樹脂;ポリスチレン樹脂;(メタ)アクリル酸エステル樹脂、(メタ)アクリルアミド樹脂等の(メタ)アクリル樹脂;酢酸ビニル樹脂;ハロゲン化ビニル樹脂;ポリビニルアルコール樹脂;ポリアミド樹脂;ポリウレタン樹脂;ポリエチレンテレフタレート(PET)やポリアリレート(PAR)等のポリエステル樹脂;ポリカーボネート樹脂;ポリマレイミド樹脂;ポリウレア樹脂;ポリビニルブチラール樹脂等のポリビニルアセタール樹脂等が挙げられる。なかでも、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリマレイミド樹脂、ポリウレア樹脂が好ましく、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂がより好ましい。樹脂の重量平均分子量は、1000~300,000が好ましい。下限は、2000以上がより好ましく、3000以上がさらに好ましい。上限は、100,000以下がより好ましく、50,000以下がさらに好ましい。樹脂の数平均分子量は、500~200,000が好ましい。下限は、1000以上がより好ましく、2,000以上がさらに好ましい。上限は、150,000以下がより好ましく、100,000以下がさらに好ましい。 The type of resin is not particularly limited as long as it has substantially no crosslinkable group. The resin is preferably a highly transparent resin. Specifically, polyolefin resin such as polyethylene, polypropylene, carboxylated polyolefin, chlorinated polyolefin, cycloolefin polymer; polystyrene resin; (meth) acrylic resin such as (meth) acrylic ester resin, (meth) acrylamide resin; vinyl acetate Resin; Halogenated vinyl resin; Polyvinyl alcohol resin; Polyamide resin; Polyurethane resin; Polyester resin such as polyethylene terephthalate (PET) and polyarylate (PAR); Polycarbonate resin; Polymaleimide resin; Polyurea resin; Polyvinyl acetal such as polyvinyl butyral resin Examples thereof include resins. Among these, (meth) acrylic resins, polyurethane resins, polyester resins, polymaleimide resins, and polyurea resins are preferable, and (meth) acrylic resins, polyurethane resins, and polyester resins are more preferable. The weight average molecular weight of the resin is preferably 1000 to 300,000. The lower limit is more preferably 2000 or more, and further preferably 3000 or more. The upper limit is more preferably 100,000 or less, and even more preferably 50,000 or less. The number average molecular weight of the resin is preferably 500 to 200,000. The lower limit is more preferably 1000 or more, and further preferably 2,000 or more. The upper limit is more preferably 150,000 or less, and even more preferably 100,000 or less.
 樹脂は、下記式(A1-1)~(A1-7)で表される繰り返し単位の少なくとも1種を有する樹脂であることも好ましい。
Figure JPOXMLDOC01-appb-C000013

 式中、R1は水素原子またはアルキル基を表し、L1~L4はそれぞれ独立に、単結合または2価の連結基を表し、R10~R13はそれぞれ独立にアルキル基またはアリール基を表す。R14およびR15は、それぞれ独立に、水素原子または置換基を表す。
The resin is preferably a resin having at least one repeating unit represented by the following formulas (A1-1) to (A1-7).
Figure JPOXMLDOC01-appb-C000013

In the formula, R 1 represents a hydrogen atom or an alkyl group, L 1 to L 4 each independently represents a single bond or a divalent linking group, and R 10 to R 13 each independently represents an alkyl group or an aryl group. To express. R 14 and R 15 each independently represents a hydrogen atom or a substituent.
 R1が表すアルキル基の炭素数は、1~5が好ましく、1~3がさらに好ましく、1が特に好ましい。R1は、水素原子またはメチル基が好ましい。 The number of carbon atoms of the alkyl group represented by R 1 is preferably 1 to 5, more preferably 1 to 3, and particularly preferably 1. R 1 is preferably a hydrogen atom or a methyl group.
 L1~L4が表す2価の連結基としては、アルキレン基、アリーレン基、-O-、-S-、-SO-、-CO-、-COO-、-OCO-、-SO2-、-NRa-(Raは水素原子あるいはアルキル基を表す)、または、これらの組み合わせからなる基が挙げられる。アルキレン基の炭素数は、1~30が好ましく、1~15がより好ましく、1~10がさらに好ましい。アルキレン基は、置換基を有していてもよいが、無置換が好ましい。アルキレン基は、直鎖、分岐、環状のいずれであってもよい。また、環状のアルキレン基は、単環、多環のいずれであってもよい。アリーレン基の炭素数は、6~18が好ましく、6~14がより好ましく、6~10がさらに好ましい。 Examples of the divalent linking group L 1 ~ L 4 represents an alkylene group, an arylene group, -O -, - S -, - SO -, - CO -, - COO -, - OCO -, - SO 2 -, Examples include —NR a — (R a represents a hydrogen atom or an alkyl group), or a group consisting of a combination thereof. The alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms. The alkylene group may have a substituent, but is preferably unsubstituted. The alkylene group may be linear, branched or cyclic. Further, the cyclic alkylene group may be monocyclic or polycyclic. The number of carbon atoms of the arylene group is preferably 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10.
 R10~R13が表すアルキル基は、直鎖、分岐または環状のいずれでもよい。アルキル基は置換基を有していてもよく、無置換であってもよい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10がさらに好ましい。R10~R13が表すアリール基の炭素数は6~18が好ましく、6~12がより好ましく、6がさらに好ましい。
 R10は、直鎖もしくは分岐のアルキル基またはアリール基であることが好ましく、直鎖もしくは分岐のアルキル基であることがより好ましい。
 R11およびR12は、それぞれ独立して直鎖または分岐のアルキル基であることが好ましく、直鎖のアルキル基であることがより好ましい。
 R13は、直鎖もしくは分岐のアルキル基またはアリール基であることが好ましい。
The alkyl group represented by R 10 to R 13 may be linear, branched or cyclic. The alkyl group may have a substituent or may be unsubstituted. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, still more preferably 1 to 10 carbon atoms. The aryl group represented by R 10 to R 13 preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
R 10 is preferably a linear or branched alkyl group or an aryl group, and more preferably a linear or branched alkyl group.
R 11 and R 12 are preferably each independently a linear or branched alkyl group, and more preferably a linear alkyl group.
R 13 is preferably a linear or branched alkyl group or an aryl group.
 R14およびR15が表す置換基は、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、アルコキシ基、アリーロキシ基、ヘテロアリーロキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、-NRa1a2、-CORa3、-COORa4、-OCORa5、-NHCORa6、-CONRa7a8、-NHCONRa9a10、-NHCOORa11、-SO2a12、-SO2ORa13、-NHSO2a14または-SO2NRa15a16が挙げられる。Ra1~Ra16は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、または、ヘテロアリール基を表す。なかでも、R14およびR15の少なくとも一方は、シアノ基または-COORa4を表すことが好ましい。Ra4は、水素原子、アルキル基またはアリール基を表すことが好ましい。 The substituents represented by R 14 and R 15 are halogen atoms, cyano groups, nitro groups, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, aralkyl groups, alkoxy groups, aryloxy groups, heteroaryloxy groups, Alkylthio group, arylthio group, heteroarylthio group, —NR a1 R a2 , —COR a3 , —COOR a4 , —OCOR a5 , —NHCOR a6 , —CONR a7 R a8 , —NHCONR a9 R a10 , —NHCOOR a11 , — SO 2 R a12 , —SO 2 OR a13 , —NHSO 2 R a14, or —SO 2 NR a15 R a16 may be mentioned. R a1 to R a16 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group. Of these, at least one of R 14 and R 15 preferably represents a cyano group or —COOR a4 . R a4 preferably represents a hydrogen atom, an alkyl group or an aryl group.
 式(A1-7)で表される繰り返し単位を有する樹脂の市販品としては、ARTON F4520(JSR(株)製)などが挙げられる。また、式(A1-7)で表される繰り返し単位を有する樹脂の詳細については、特開2011-100084号公報の段落番号0053~0075、0127~0130の記載を参酌でき、この内容は本明細書に組み込まれる。 Examples of a commercially available resin having a repeating unit represented by the formula (A1-7) include ARTON F4520 (manufactured by JSR Corporation). The details of the resin having a repeating unit represented by the formula (A1-7) can be referred to the descriptions in paragraph numbers 0053 to 0075 and 0127 to 0130 of JP2011-100084A. Embedded in the book.
 樹脂としては、式(A1-4)で表される繰り返し単位を有する樹脂であることが好ましく、式(A1-1)で表される繰り返し単位と、式(A1-4)で表される繰り返し単位とを有する樹脂であることがより好ましい。この態様によれば、樹脂膜の耐熱衝撃性が向上する傾向にある。更には、銅錯体と樹脂との相溶性が向上し、析出物などの少ない樹脂膜が得られやすい。 The resin is preferably a resin having a repeating unit represented by the formula (A1-4), and a repeating unit represented by the formula (A1-1) and a repeating unit represented by the formula (A1-4). A resin having a unit is more preferable. According to this aspect, the thermal shock resistance of the resin film tends to be improved. Furthermore, the compatibility between the copper complex and the resin is improved, and a resin film with few precipitates is easily obtained.
 樹脂は、上述した繰り返し単位の他に、他の繰り返し単位を含有していてもよい。他の繰り返し単位を構成する成分については、特開2010-106268号公報の段落番号0068~0075(対応する米国特許出願公開第2011/0124824号明細書の段落番号0112~0118)の記載を参酌でき、これらの内容は本明細書に組み込まれる。 Resin may contain other repeating units in addition to the repeating units described above. Regarding the components constituting other repeating units, the description in paragraph Nos. 0068 to 0075 of JP-A-2010-106268 (paragraph Nos. 0112 to 0118 of the corresponding US Patent Application Publication No. 2011/0124824) can be referred to. The contents of which are incorporated herein.
 樹脂組成物において、樹脂の含有量は、樹脂組成物の全固形分に対して、30~90質量%が好ましい。下限は、35質量%以上がより好ましく、40質量%以上が更に好ましく、50質量%以上が更により好ましい。上限は、85質量%以下がより好ましく、80質量%以下が更に好ましい。また、銅錯体と樹脂の合計量は、樹脂組成物の全固形分に対して、60~100質量%であり、70~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることが更に好ましい。 In the resin composition, the resin content is preferably 30 to 90% by mass with respect to the total solid content of the resin composition. The lower limit is more preferably 35% by mass or more, still more preferably 40% by mass or more, and still more preferably 50% by mass or more. The upper limit is more preferably 85% by mass or less, and still more preferably 80% by mass or less. The total amount of the copper complex and the resin is 60 to 100% by mass, preferably 70 to 100% by mass, and preferably 80 to 100% by mass with respect to the total solid content of the resin composition. More preferably, it is 90 to 100% by mass.
<<溶剤>>
 樹脂組成物は、溶剤を含有することが好ましい。溶剤は、特に制限はなく、各成分を均一に溶解或いは分散しうるものであれば、目的に応じて適宜選択することができる。例えば、水、有機溶剤を用いることができる。有機溶剤としては、例えば、アルコール類、ケトン類、エステル類、芳香族炭化水素類、ハロゲン化炭化水素類、およびジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホラン等が好適に挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、溶剤は、架橋性基を含まない化合物であることが好ましい。アルコール類、芳香族炭化水素類、ハロゲン化炭化水素類の具体例としては、特開2012-194534号公報の段落0136等に記載の溶剤が挙げられ、この内容は本明細書に組み込まれる。エステル類、ケトン類、エーテル類の具体例としては、特開2012-208494号公報の段落0497(対応する米国特許出願公開第2012/0235099号明細書の段落番号0609)に記載の溶剤が挙げられる。また、溶剤としては、環状アルキル基が置換したエステル系溶剤、環状アルキル基が置換したケトン系溶剤を用いることもできる。溶剤の具体例としては、酢酸-n-アミル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、硫酸メチル、アセトン、メチルイソブチルケトン、ジエチルエーテル、エチレングリコールモノブチルエーテルアセテート、1-メトキシ-2-プロパノール、酢酸シクロヘキシル、シクロペンタノン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、N-メチル-2-ピロリドン、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテル、3-メトキシブチルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリアセチン、3-メトキシブタノール、ジプロピレングリコールメチルエーテルアセテート、1,4-ブタンジオールジアセテート、シクロヘキサノールアセテート、ジプロピレングリコールジメチルエーテル、プロピレングリコールジアセテート、ジプロピレングリコールメチル-n-プロピルエーテル、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテートなどが挙げられる。これらを1種単独で用いてもよく、2種以上を併用してもよい。
<< Solvent >>
The resin composition preferably contains a solvent. The solvent is not particularly limited and may be appropriately selected depending on the purpose as long as each component can be uniformly dissolved or dispersed. For example, water or an organic solvent can be used. Preferable examples of the organic solvent include alcohols, ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane and the like. These may be used alone or in combination of two or more. Moreover, it is preferable that a solvent is a compound which does not contain a crosslinkable group. Specific examples of alcohols, aromatic hydrocarbons, and halogenated hydrocarbons include the solvents described in paragraph 0136 of JP2012-194534A, the contents of which are incorporated herein. Specific examples of the esters, ketones, and ethers include the solvents described in paragraph 0497 of JP2012-208494A (paragraph number 0609 of the corresponding US Patent Application Publication No. 2012/0235099). . As the solvent, an ester solvent substituted with a cyclic alkyl group or a ketone solvent substituted with a cyclic alkyl group can also be used. Specific examples of the solvent include: n-amyl acetate, ethyl propionate, dimethyl phthalate, ethyl benzoate, methyl sulfate, acetone, methyl isobutyl ketone, diethyl ether, ethylene glycol monobutyl ether acetate, 1-methoxy-2-propanol Cyclohexyl acetate, cyclopentanone, cyclohexanone, propylene glycol monomethyl ether acetate, N-methyl-2-pyrrolidone, butyl acetate, ethyl lactate, propylene glycol monomethyl ether, 3-methoxybutyl acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether Acetate, triacetin, 3-methoxybutanol, dipropylene glycol methyl ether acetate, 1,4-butane All diacetate, cyclohexanol acetate, dipropylene glycol dimethyl ether, propylene glycol diacetate, dipropylene glycol methyl -n- propyl ether, 1,3-butylene glycol diacetate, 1,6-hexanediol diacetate. These may be used alone or in combination of two or more.
 また、溶剤としては、沸点が150℃以下(好ましくは沸点が30~145℃、より好ましくは50~140℃)の溶剤(以下、低沸点溶剤ともいう)を単独で使用してもよく、沸点が150℃以上(好ましくは沸点が155~300℃、より好ましくは160~250℃)の溶剤(以下、高沸点溶剤ともいう)を単独で使用してもよく、低沸点溶剤と高沸点溶剤とを併用してもよい。高沸点溶剤を用いることで、樹脂組成物中の溶剤の蒸発速度が遅くなり、乾燥の安定化と残渣の析出を抑制しやすい。特に、樹脂組成物の固形分濃度が低い場合(例えば、固形分濃度が35質量%以下の場合など)においては、乾燥の安定化と残渣の析出の観点から、溶剤として高沸点溶剤と低沸点溶剤をと併用することが好ましい。また、高沸点溶剤と低沸点溶剤をと併用する場合、高沸点溶剤の沸点と、低沸点溶剤の沸点の差は20~250℃であることが好ましく、50~150℃であることがより好ましい。また、高沸点溶剤と、低沸点溶剤との質量比は特に限定はないが、高沸点溶剤:低沸点溶剤=99:1~55:45であることが好ましく、95:5~70:30であることがより好ましい。
 高沸点溶剤としては、例えば、3-メトキシブチルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリアセチン、3-メトキシブタノール、ジプロピレングリコールメチルエーテルアセテート、1,4-ブタンジオールジアセテート、シクロヘキサノールアセテート、ジプロピレングリコールジメチルエーテル、プロピレングリコールジアセテート、ジプロピレングリコールメチル-n-プロピルエーテル、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテートなどが挙げられる。
 低沸点溶剤としては、例えば、シクロペンタノン、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメテルエーテルアセテート、プロピレングリコールモノメテルエーテルなどが挙げられる。
As the solvent, a solvent having a boiling point of 150 ° C. or lower (preferably having a boiling point of 30 to 145 ° C., more preferably 50 to 140 ° C.) may be used alone. May be used alone (hereinafter, also referred to as a high boiling point solvent) having a boiling point of 155 to 300 ° C. (preferably a boiling point of 155 to 300 ° C., more preferably 160 to 250 ° C.). May be used in combination. By using a high boiling point solvent, the evaporation rate of the solvent in the resin composition becomes slow, and it is easy to stabilize drying and prevent precipitation of residues. In particular, when the solid content concentration of the resin composition is low (for example, when the solid content concentration is 35% by mass or less), a high-boiling solvent and a low-boiling point solvent are used from the viewpoints of stabilization of drying and precipitation of residues. It is preferable to use a solvent together. When a high boiling point solvent and a low boiling point solvent are used in combination, the difference between the boiling point of the high boiling point solvent and the boiling point of the low boiling point solvent is preferably 20 to 250 ° C., more preferably 50 to 150 ° C. . The mass ratio of the high-boiling solvent to the low-boiling solvent is not particularly limited, but is preferably high-boiling solvent: low-boiling solvent = 99: 1 to 55:45, and 95: 5 to 70:30. More preferably.
Examples of the high boiling point solvent include 3-methoxybutyl acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triacetin, 3-methoxybutanol, dipropylene glycol methyl ether acetate, 1,4-butanediol diacetate, cyclohexanol. Examples include acetate, dipropylene glycol dimethyl ether, propylene glycol diacetate, dipropylene glycol methyl-n-propyl ether, 1,3-butylene glycol diacetate, and 1,6-hexanediol diacetate.
Examples of the low boiling point solvent include cyclopentanone, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, and the like.
 本発明において、金属含有量の少ない溶剤を用いることが好ましく、溶剤の金属含有量は、例えば10質量ppb(parts per billion)以下であることが好ましい。必要に応じて質量ppt(parts per trillion)レベルの溶剤を用いてもよく、そのような高純度溶剤は例えば東洋合成社が提供している(化学工業日報、2015年11月13日)。 In the present invention, it is preferable to use a solvent having a low metal content, and the metal content of the solvent is preferably 10 mass ppb (parts per billion) or less, for example. If necessary, a solvent having a mass ppt (parts per trillation) level may be used, and such a high-purity solvent is provided, for example, by Toyo Gosei Co., Ltd. (Chemical Industry Daily, November 13, 2015).
 溶剤から金属等の不純物を除去する方法としては、例えば、蒸留(分子蒸留や薄膜蒸留等)やフィルタを用いたろ過を挙げることができる。ろ過に用いるフィルタのフィルタ孔径としては、10μm以下が好ましく、5μm以下がより好ましく、3μm以下が更に好ましい。フィルタの材質は、ポリテトラフロロエチレン、ポリエチレンまたはナイロンが好ましい。 Examples of the method for removing impurities such as metals from the solvent include distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter. The filter pore diameter of the filter used for filtration is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less. The filter material is preferably polytetrafluoroethylene, polyethylene or nylon.
 溶剤は、異性体(同じ原子数で異なる構造の化合物)が含まれていてもよい。また、異性体は、1種のみが含まれていてもよいし、複数種含まれていてもよい。 The solvent may contain isomers (compounds having the same number of atoms and different structures). Moreover, only 1 type may be included and the isomer may be included multiple types.
 溶剤の含有量は、樹脂組成物の全固形分が5~80質量%となる量が好ましい。下限は、10質量%以上がより好ましく、20質量%以上が更に好ましく、30質量%以上が更により好ましく、50質量%以上がより一層好ましく、55質量%以上が更に一層好ましく、60質量%以上が特に好ましい。上限は、75質量%以下がより好ましく、70質量%以下が更に好ましい。樹脂組成物の固形分濃度(全固形分)を高めることで、一回の塗布で厚みのある樹脂層を形成することができる。例えば、樹脂組成物の全固形分を50質量%以上とすることで、一回の塗布で5~40μmの厚みの樹脂層を形成することができる。また、樹脂組成物の全固形分が80質量%以下であれば、樹脂組成物中の成分の溶解性が良好である。溶剤は1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となることが好ましい。また、環境面等の理由により、組成物は、溶剤としての芳香族炭化水素類(ベンゼン、トルエン、キシレン、エチルベンゼン等)を含有しないことが好ましい場合もある。 The content of the solvent is preferably such that the total solid content of the resin composition is 5 to 80% by mass. The lower limit is more preferably 10% by weight or more, further preferably 20% by weight or more, still more preferably 30% by weight or more, still more preferably 50% by weight or more, still more preferably 55% by weight or more, and 60% by weight or more. Is particularly preferred. The upper limit is more preferably 75% by mass or less, and still more preferably 70% by mass or less. By increasing the solid content concentration (total solid content) of the resin composition, a thick resin layer can be formed by a single application. For example, when the total solid content of the resin composition is 50% by mass or more, a resin layer having a thickness of 5 to 40 μm can be formed by a single application. Moreover, if the total solid content of a resin composition is 80 mass% or less, the solubility of the component in a resin composition is favorable. Only one type of solvent may be used, or two or more types may be used, and in the case of two or more types, the total amount is preferably within the above range. In addition, for reasons such as environmental aspects, it may be preferable that the composition does not contain aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.) as a solvent.
<<ラジカルトラップ剤>>
 樹脂組成物は、ラジカルトラップ剤を含有することもできる。ラジカルトラップ剤としてはオキシム化合物が挙げられる。オキシム化合物の市販品としては、IRGACURE-OXE01、IRGACURE-OXE02、IRGACURE-OXE03、IRGACURE-OXE04(以上、BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831((株)ADEKA製)、アデカアークルズNCI-930((株)ADEKA製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-14052号公報に記載の光重合開始剤2)等を用いることができる。
<< Radical trapping agent >>
The resin composition can also contain a radical trapping agent. Examples of radical trapping agents include oxime compounds. Commercially available oxime compounds include IRGACURE-OXE01, IRGACURE-OXE02, IRGACURE-OXE03, IRGACURE-OXE04 (above, manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831 (manufactured by ADEKA Corporation), Adeka Arkles NCI-930 (manufactured by ADEKA Corporation), Adekaoptomer N-1919 (manufactured by ADEKA Corporation, photopolymerization described in JP 2012-14052 A Initiator 2) and the like can be used.
 また、オキシム化合物として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物、特表2014-500852号公報に記載の化合物24、36~40、特開2013-164471号公報に記載の化合物(C-3)などが挙げられる。この内容は本明細書に組み込まれる。 Also, as the oxime compound, an oxime compound having a fluorine atom can be used. Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-A-2014-500852, and JP-A 2013-164471. Compound (C-3). This content is incorporated herein.
 また、オキシム化合物として、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物は、二量体とすることも好ましい。ニトロ基を有するオキシム化合物の具体例としては、特開2013-114249号公報の段落番号0031~0047、特開2014-137466号公報の段落番号0008~0012、0070~0079に記載されている化合物、特許4223071号公報の段落番号0007~0025に記載されている化合物、アデカアークルズNCI-831((株)ADEKA製)が挙げられる。 Further, as the oxime compound, an oxime compound having a nitro group can be used. The oxime compound having a nitro group is also preferably a dimer. Specific examples of the oxime compound having a nitro group include compounds described in paragraphs 0031 to 0047 of JP2013-114249A, paragraphs 0008 to 0012 and 0070 to 0079 of JP2014-137466A, Examples include compounds described in paragraph Nos. 0007 to 0025 of Japanese Patent No. 4223071, Adeka Arcles NCI-831 (manufactured by ADEKA Corporation).
 また、オキシム化合物として、フルオレン環を有するオキシム化合物を用いることもできる。フルオレン環を有するオキシム化合物の具体例としては、特開2014-137466号公報に記載の化合物が挙げられる。この内容は本明細書に組み込まれる。 Further, as the oxime compound, an oxime compound having a fluorene ring can also be used. Specific examples of the oxime compound having a fluorene ring include compounds described in JP-A-2014-137466. This content is incorporated herein.
 また、オキシム化合物として、ベンゾフラン骨格を有するオキシム化合物を用いることもできる。具体例としては、国際公開WO2015/036910号公報に記載されている化合物OE-01~OE-75が挙げられる。 Further, as the oxime compound, an oxime compound having a benzofuran skeleton can also be used. Specific examples include compounds OE-01 to OE-75 described in International Publication No. WO2015 / 036910.
 ラジカルトラップ剤の含有量は、樹脂組成物の全固形分に対して、0.01~30質量%が好ましい。下限は、0.1質量%以上がより好ましい。上限は、20質量%以下がより好ましく、10質量%以下が更に好ましい。 The content of the radical trapping agent is preferably 0.01 to 30% by mass with respect to the total solid content of the resin composition. The lower limit is more preferably 0.1% by mass or more. The upper limit is more preferably 20% by mass or less, and still more preferably 10% by mass or less.
<<界面活性剤>>
 樹脂組成物は、界面活性剤を含有することもできる。界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。界面活性剤の含有量は、樹脂組成物の全固形分に対して、0.0001~5質量%が好ましい。下限は、0.005質量%以上がより好ましく、0.01質量%以上が更に好ましい。上限は、2質量%以下がより好ましく、1質量%以下が更に好ましい。樹脂組成物に界面活性剤を含有させることで、例えば、樹脂組成物を塗り重ねて樹脂層を形成する場合において、樹脂組成物の濡れ性を高めることができる。
<< Surfactant >>
The resin composition can also contain a surfactant. Only one type of surfactant may be used, or two or more types may be combined. The content of the surfactant is preferably 0.0001 to 5% by mass with respect to the total solid content of the resin composition. The lower limit is more preferably 0.005% by mass or more, and still more preferably 0.01% by mass or more. The upper limit is more preferably 2% by mass or less, and still more preferably 1% by mass or less. By including a surfactant in the resin composition, for example, when the resin layer is formed by repeatedly applying the resin composition, the wettability of the resin composition can be improved.
 界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用でき、フッ素系界面活性剤およびシリコーン系界面活性剤が好ましく、フッ素系界面活性剤がより好ましい。フッ素系界面活性剤におけるフッ素含有率は、3~40質量%が好ましい。下限は、5質量%以上がより好ましく、7質量%以上が更に好ましい。上限は、30質量%以下がより好ましく、25質量%以下が更に好ましい。フッ素系界面活性剤におけるフッ素含有率が上述した範囲であれば、塗布膜の厚さの均一性や省液性の点で効果的である。 As the surfactant, various surfactants such as a fluorosurfactant, nonionic surfactant, cationic surfactant, anionic surfactant, and silicone surfactant can be used. And a silicone-based surfactant are preferable, and a fluorine-based surfactant is more preferable. The fluorine content in the fluorosurfactant is preferably 3 to 40% by mass. The lower limit is more preferably 5% by mass or more, and further preferably 7% by mass or more. The upper limit is more preferably 30% by mass or less, and further preferably 25% by mass or less. If the fluorine content in the fluorosurfactant is in the above-described range, it is effective in terms of uniformity of coating film thickness and liquid-saving properties.
 フッ素系界面活性剤としては、特開2014-41318号公報の段落番号0060~0064(対応する国際公開2014/17669号公報の段落番号0060~0064)に記載の界面活性剤、特開2011-132503号公報の段落番号0117~0132に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF171、F172、F173、F176、F177、F141、F142、F143、F144、R30、F437、F475、F479、F482、F554、F780(以上、DIC(株)製)、フロラードFC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、旭硝子(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)等が挙げられる。 Examples of the fluorosurfactant include surfactants described in paragraph numbers 0060 to 0064 of JP-A-2014-41318 (paragraph numbers 0060 to 0064 of corresponding international publication 2014/17669), JP-A-2011-132503. And surfactants described in paragraph Nos. 0117 to 0132 of the publication, and the contents thereof are incorporated herein. Examples of commercially available fluorosurfactants include Megafac F171, F172, F173, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780 (and above, DIC). ), FLORARD FC430, FC431, FC171 (Sumitomo 3M), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC-1068, SC- 381, SC-383, S-393, KH-40 (above, manufactured by Asahi Glass Co., Ltd.), PolyFox PF636, PF656, PF6320, PF6520, PF7002 (above, manufactured by OMNOVA).
 また、フッ素系界面活性剤としては、フッ素原子を含有する官能基を持つ分子構造を有し、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC(株)製のメガファックDSシリーズ(化学工業日報、2016年2月22日および日経産業新聞、2016年2月23日)、例えばメガファックDS-21が挙げられ、これらを用いることができる。 In addition, as the fluorine-based surfactant, an acrylic compound having a molecular structure having a functional group containing a fluorine atom, and the fluorine atom is volatilized by cleavage of the functional group containing the fluorine atom when heated. Can also be suitably used. Examples of such a fluorosurfactant include Megafac DS series manufactured by DIC Corporation (Chemical Industry Daily, February 22, 2016 and Nikkei Sangyo Shimbun, February 23, 2016), such as Megafac DS- 21 can be used, and these can be used.
 フッ素系界面活性剤としては、ブロックポリマーを用いることもできる。例えば、特開2011-89090号公報に記載された化合物が挙げられる。フッ素系界面活性剤としては、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができる。下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
Figure JPOXMLDOC01-appb-C000014

 上記の化合物の重量平均分子量は、好ましくは3,000~50,000であり、例えば、14,000である。上記の化合物中、繰り返し単位の割合を示す%はモル%である。
A block polymer can also be used as the fluorosurfactant. Examples thereof include compounds described in JP2011-89090A. The fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy group or propyleneoxy group) (meta). ) A fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used. The following compounds are also exemplified as the fluorosurfactant used in the present invention.
Figure JPOXMLDOC01-appb-C000014

The weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example, 14,000. In the above compounds,% indicating the ratio of repeating units is mol%.
 また、フッ素系界面活性剤としては、エチレン性不飽和基を側鎖に有する含フッ素重合体を用いることもできる。具体例としては、特開2010-164965号公報の段落番号0050~0090および段落番号0289~0295に記載された化合物、例えばDIC(株)製のメガファックRS-101、RS-102、RS-718K、RS-72-K等が挙げられる。フッ素系界面活性剤としては、特開2015-117327号公報の段落番号0015~0158に記載の化合物を用いることもできる。 Further, as the fluorosurfactant, a fluoropolymer having an ethylenically unsaturated group in the side chain can also be used. Specific examples thereof include compounds described in paragraph Nos. 0050 to 0090 and paragraph Nos. 0289 to 0295 of JP2010-164965A, for example, Megafac RS-101, RS-102, RS-718K manufactured by DIC Corporation. RS-72-K and the like. As the fluorine-based surfactant, compounds described in paragraph numbers 0015 to 0158 of JP-A No. 2015-117327 can also be used.
 ノニオン系界面活性剤としては、特開2012-208494号公報の段落番号0553(対応する米国特許出願公開第2012/0235099号明細書の段落番号0679)に記載のノニオン系界面活性剤が挙げられ、この内容は本明細書に組み込まれる。カチオン系界面活性剤としては、特開2012-208494号公報の段落番号0554(対応する米国特許出願公開第2012/0235099号明細書の段落番号0680)に記載のカチオン系界面活性剤が挙げられ、この内容は本明細書に組み込まれる。アニオン系界面活性剤としては、W004、W005、W017(裕商(株)製)等が挙げられる。シリコーン系界面活性剤としては、例えば、KF6001(信越シリコーン製)や、特開2012-208494号公報の段落番号0556(対応する米国特許出願公開第2012/0235099号明細書の段落番号0682)に記載のシリコーン系界面活性剤が挙げられ、この内容は本明細書に組み込まれる。 Examples of nonionic surfactants include nonionic surfactants described in paragraph No. 0553 of JP2012-208494A (paragraph number 0679 of the corresponding US Patent Application Publication No. 2012/0235099), This content is incorporated herein. Examples of the cationic surfactant include a cationic surfactant described in paragraph No. 0554 of JP2012-208494A (paragraph number 0680 of the corresponding US Patent Application Publication No. 2012/0235099). This content is incorporated herein. Examples of the anionic surfactant include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like. Examples of the silicone surfactant include KF6001 (manufactured by Shin-Etsu Silicone) and paragraph number 0556 of JP 2012-208494 A (corresponding to paragraph number 0682 of US Patent Application Publication No. 2012/0235099). Of silicone surfactants, the contents of which are incorporated herein.
<<紫外線吸収剤>>
 樹脂組成物は、紫外線吸収剤を含有することができる。紫外線吸収剤としては、共役ジエン化合物、アミノジエン化合物、サリシレート化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、アクリロニトリル化合物、ヒドロキシフェニルトリアジン化合物などを用いることができる。なかでも、銅化合物との相溶性が良好であり、更には銅化合物と吸収波長が適し、優れた可視透明性を維持しつつ、紫外線の遮蔽性を高めることができるという理由から、ベンゾトリアゾール化合物およびヒドロキシフェニルトリアジン化合物が好ましい。これらの詳細については、特開2012-208374号公報の段落番号0052~0072、特開2013-68814号公報の段落番号0317~0334の記載を参酌でき、これらの内容は本明細書に組み込まれる。ベンゾトリアゾール化合物の市販品としては、TINUVIN PS、TINUVIN 99-2、TINUVIN 384-2、TINUVIN 900、TINUVIN 928、TINUVIN 1130(以上、BASF社製)などが挙げられる。また、ベンゾトリアゾール化合物としてはミヨシ油脂製のMYUAシリーズ(化学工業日報、2016年2月1日)を用いてもよい。紫外線吸収剤の含有量は、樹脂組成物の全固形分に対して、0.01~10質量%が好ましく、0.01~5質量%がより好ましい。
<< UV absorber >>
The resin composition can contain an ultraviolet absorber. As the ultraviolet absorber, a conjugated diene compound, an aminodiene compound, a salicylate compound, a benzophenone compound, a benzotriazole compound, an acrylonitrile compound, a hydroxyphenyltriazine compound, or the like can be used. Among them, the benzotriazole compound has good compatibility with the copper compound, and further, the copper compound and the absorption wavelength are suitable, and the ultraviolet shielding property can be improved while maintaining excellent visible transparency. And hydroxyphenyltriazine compounds are preferred. For details of these, reference can be made to the descriptions of paragraph numbers 0052 to 0072 of JP2012-208374A and paragraph numbers 0317 to 0334 of JP2013-68814A, the contents of which are incorporated herein. Examples of commercially available benzotriazole compounds include TINUVIN PS, TINUVIN 99-2, TINUVIN 384-2, TINUVIN 900, TINUVIN 928, and TINUVIN 1130 (above, manufactured by BASF). Moreover, as a benzotriazole compound, you may use the MYUA series (Chemical Industry Daily, February 1, 2016) made from Miyoshi oil and fat. The content of the ultraviolet absorber is preferably from 0.01 to 10% by mass, more preferably from 0.01 to 5% by mass, based on the total solid content of the resin composition.
<<その他の成分>> << Other ingredients >>
 樹脂組成物は、さらに、分散剤、増感剤、フィラー、熱重合禁止剤、可塑剤、密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、表面張力調整剤、連鎖移動剤など)を含んでいてもよい。これらの成分は、特開2008-250074号公報の段落番号0101~0104、0107~0109等の記載を参酌でき、この内容は本明細書に組み込まれる。また、酸化防止剤としては、フェノール化合物、亜リン酸エステル化合物、チオエーテル化合物などが挙げられる。分子量500以上のフェノール化合物、分子量500以上の亜リン酸エステル化合物又は分子量500以上のチオエーテル化合物がより好ましい。これらは2種以上を混合して使用してもよい。フェノール化合物としては、フェノール系酸化防止剤として知られる任意のフェノール化合物を使用することができる。好ましいフェノール化合物としては、ヒンダードフェノール化合物が挙げられる。特に、フェノール性水酸基に隣接する部位(オルト位)に置換基を有する化合物が好ましい。前述の置換基としては炭素数1~22の置換又は無置換のアルキル基が好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、t-ペンチル基、ヘキシル基、オクチル基、イソオクチル基、2-エチルへキシル基がより好ましい。また、同一分子内にフェノール基と亜リン酸エステル基を有する化合物(酸化防止剤)も好ましい。また、酸化防止剤は、リン系酸化防止剤も好適に使用することができる。リン系酸化防止剤としてはトリス[2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル]オキシ]エチル]アミン、トリス[2-[(4,6,9,11-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-2-イル)オキシ]エチル]アミン、および亜リン酸エチルビス(2,4-ジ-tert-ブチル-6-メチルフェニル)からなる群から選ばれる少なくとも1種の化合物が挙げられる。これらは、市販品として容易に入手可能であり、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-50F、アデカスタブAO-60、アデカスタブAO-60G、アデカスタブAO-80、アデカスタブAO-330((株)ADEKA)などが挙げられる。酸化防止剤の含有量は、樹脂組成物の全固形分に対して、0.01~20質量%であることが好ましく、0.3~15質量%であることがより好ましい。酸化防止剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。 The resin composition further includes a dispersant, a sensitizer, a filler, a thermal polymerization inhibitor, a plasticizer, an adhesion promoter, and other auxiliary agents (for example, conductive particles, fillers, antifoaming agents, flame retardants, Leveling agents, peeling accelerators, antioxidants, surface tension modifiers, chain transfer agents, etc.). With respect to these components, descriptions in paragraph numbers 0101 to 0104 and 0107 to 0109 of JP-A-2008-250074 can be referred to, and the contents thereof are incorporated in the present specification. Examples of the antioxidant include a phenol compound, a phosphite compound, and a thioether compound. A phenol compound having a molecular weight of 500 or more, a phosphite compound having a molecular weight of 500 or more, or a thioether compound having a molecular weight of 500 or more is more preferable. You may use these in mixture of 2 or more types. As the phenol compound, any phenol compound known as a phenol-based antioxidant can be used. Preferable phenolic compounds include hindered phenolic compounds. In particular, a compound having a substituent at a site (ortho position) adjacent to the phenolic hydroxyl group is preferable. As the above-mentioned substituent, a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferable, and a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isopentyl group. T-pentyl group, hexyl group, octyl group, isooctyl group and 2-ethylhexyl group are more preferable. A compound (antioxidant) having a phenol group and a phosphite group in the same molecule is also preferred. Moreover, phosphorus antioxidant can also be used suitably for antioxidant. As the phosphorus-based antioxidant, tris [2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphine-6 -Yl] oxy] ethyl] amine, tris [2-[(4,6,9,11-tetra-tert-butyldibenzo [d, f] [1,3,2] dioxaphosphin-2-yl And at least one compound selected from the group consisting of) oxy] ethyl] amine and ethyl bis (2,4-di-tert-butyl-6-methylphenyl) phosphite. These are readily available as commercial products, such as ADK STAB AO-20, ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-50F, ADK STAB AO-60, ADK STAB AO-60G and ADK STAB AO. -80, ADK STAB AO-330 (ADEKA) and the like. The content of the antioxidant is preferably 0.01 to 20% by mass and more preferably 0.3 to 15% by mass with respect to the total solid content of the resin composition. Only one type of antioxidant may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
 樹脂組成物は、架橋性基を含むモノマーの含有量が、樹脂組成物の全固形分に対して1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、架橋性基を含むモノマーを実質的に含有しないことが特に好ましい。樹脂組成物が架橋性基を含むモノマーを実質的に含有しないとは、架橋性基を含むモノマーの含有量が、樹脂組成物の全固形分に対して0.1質量%以下であることを意味し、0.05質量%以下であることが好ましく、含有しないことがより好ましい。架橋性基を含むモノマーとしては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、スチリル基、エポキシ基、オキセタニル基、メチロール基およびアルコキシシリル基から選ばれる少なくとも1種を有するモノマーが挙げられる。 In the resin composition, the content of the monomer containing a crosslinkable group is preferably 1% by mass or less, more preferably 0.5% by mass or less, based on the total solid content of the resin composition. It is particularly preferable that the monomer containing a functional group is substantially not contained. That the resin composition does not substantially contain a monomer containing a crosslinkable group means that the content of the monomer containing a crosslinkable group is 0.1% by mass or less based on the total solid content of the resin composition. This means that it is preferably 0.05% by mass or less, and more preferably not contained. Examples of the monomer containing a crosslinkable group include monomers having at least one selected from vinyl group, (meth) allyl group, (meth) acryloyl group, styryl group, epoxy group, oxetanyl group, methylol group and alkoxysilyl group. It is done.
 樹脂組成物中における銅以外の金属の含有量としては、銅錯体の固形分に対して10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が更に好ましい。この態様によれば、異物欠陥の抑制された樹脂膜を形成し易い。また、樹脂組成物中におけるリチウム含有量は100質量ppm以下であることが好ましい。また、樹脂組成物中におけるカリウム含有量は30質量ppm以下であることが好ましい。樹脂組成物中における銅以外の金属の含有量は、誘導結合プラズマ発光分光分析法にて測定することができる。 As content of metals other than copper in a resin composition, 10 mass% or less is preferable with respect to solid content of a copper complex, 5 mass% or less is more preferable, and 2 mass% or less is still more preferable. According to this aspect, it is easy to form a resin film in which foreign object defects are suppressed. Moreover, it is preferable that lithium content in a resin composition is 100 mass ppm or less. Moreover, it is preferable that potassium content in a resin composition is 30 mass ppm or less. The content of metals other than copper in the resin composition can be measured by inductively coupled plasma emission spectroscopy.
 樹脂組成物中における水の含有量としては、銅錯体の固形分に対して5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましい。 As content of the water in a resin composition, 5 mass% or less is preferable with respect to solid content of a copper complex, 3 mass% or less is more preferable, and 1 mass% or less is still more preferable.
 樹脂組成物中における遊離したハロゲン陰イオンおよびハロゲン化合物の合計量としては、銅錯体の全固形分に対して5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましい。 The total amount of free halogen anions and halogen compounds in the resin composition is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less, based on the total solid content of the copper complex. .
 樹脂組成物中における銅錯体の原材料である銅成分の残存率(配位子と配位していない銅成分の含有量)としては、銅錯体の固形分に対して10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が更に好ましい。また、樹脂組成物中における銅錯体の原料である配位子の残存率(銅と配位していない配位子の含有量)としては銅錯体の固形分に対して10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が更に好ましい。 The residual ratio of the copper component that is the raw material of the copper complex in the resin composition (content of the copper component not coordinated with the ligand) is preferably 10% by mass or less based on the solid content of the copper complex, 5 mass% or less is more preferable, and 2 mass% or less is still more preferable. Further, the residual ratio of the ligand that is a raw material of the copper complex in the resin composition (content of the ligand not coordinated with copper) is preferably 10% by mass or less based on the solid content of the copper complex. 5 mass% or less is more preferable, and 2 mass% or less is still more preferable.
 樹脂組成物の粘度は、塗布により樹脂膜を形成する場合は、1~3000mPa・sであることが好ましい。下限は、10mPa・s以上がより好ましく、100mPa・s以上が更に好ましい。上限は、2000mPa・s以下がより好ましく、1500mPa・s以下が更に好ましい。 The viscosity of the resin composition is preferably 1 to 3000 mPa · s when a resin film is formed by coating. The lower limit is more preferably 10 mPa · s or more, and still more preferably 100 mPa · s or more. The upper limit is more preferably 2000 mPa · s or less, and even more preferably 1500 mPa · s or less.
<樹脂組成物の調製方法>
 上記の樹脂組成物は、各成分を混合して調製できる。樹脂組成物の製造に際しては、内壁が金属でコーティングされた釜を用いることが好ましい。樹脂組成物の調製に際しては、樹脂組成物を構成する各成分を一括配合してもよいし、各成分を溶剤に溶解および/または分散した後に逐次配合してもよい。また、配合する際の投入順序や作業条件は特に制約を受けないが、高粘度の成分を最後に添加することが、撹拌性確保の点から好ましい。また、樹脂組成物の調製の際は、揮発防止のため閉鎖系で行うことが好ましい。また、樹脂組成物は、乾燥された空気または窒素ガス(好ましくは窒素ガス)の雰囲気下で調製することが好ましい。
<Method for preparing resin composition>
Said resin composition can be prepared by mixing each component. In producing the resin composition, it is preferable to use a kettle whose inner wall is coated with metal. In preparing the resin composition, the components constituting the resin composition may be blended together, or may be blended sequentially after each component is dissolved and / or dispersed in a solvent. Further, the order of addition and the working conditions when blending are not particularly limited, but it is preferable to add a high-viscosity component last from the viewpoint of ensuring agitation. In addition, the resin composition is preferably prepared in a closed system to prevent volatilization. The resin composition is preferably prepared in an atmosphere of dried air or nitrogen gas (preferably nitrogen gas).
 また、樹脂組成物が粒子を含む場合は、粒子を分散させるプロセスを含むことが好ましい。粒子を分散させるプロセスにおいて、粒子の分散に用いる機械力としては、圧縮、圧搾、衝撃、剪断、キャビテーションなどが挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、ボールミル、ペイントシェーカー、マイクロフルイダイザー、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化、超音波分散などが挙げられる。またサンドミル(ビーズミル)における粒子の粉砕においては、径の小さいビーズを使用する、ビーズの充填率を大きくする事等により粉砕効率を高めた条件で処理することが好ましい。また、粉砕処理後にろ過、遠心分離などで粗粒子を除去することが好ましい。また、粒子を分散させるプロセスおよび分散機は、「分散技術大全、株式会社情報機構発行、2005年7月15日」や「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際、総合資料集、経営開発センター出版部発行、1978年10月10日」、特開2015-157893号公報の段落番号0022に記載のプロセス及び分散機を好適に使用出来る。また粒子を分散させるプロセスにおいては、ソルトミリング工程にて粒子の微細化処理を行ってもよい。ソルトミリング工程に用いられる素材、機器、処理条件等は、例えば特開2015-194521号公報、特開2012-046629号公報の記載を参酌できる。 Further, when the resin composition contains particles, it is preferable to include a process of dispersing the particles. In the process of dispersing the particles, the mechanical force used for dispersing the particles includes compression, squeezing, impact, shearing, cavitation and the like. Specific examples of these processes include a bead mill, a sand mill, a roll mill, a ball mill, a paint shaker, a microfluidizer, a high speed impeller, a sand grinder, a flow jet mixer, a high pressure wet atomization, and an ultrasonic dispersion. Further, in the pulverization of particles in a sand mill (bead mill), it is preferable to use beads having a small diameter or to increase the pulverization efficiency by increasing the filling rate of beads. Further, it is preferable to remove coarse particles by filtration, centrifugation, or the like after the pulverization treatment. Also, the process and disperser for dispersing particles are described in “Dispersion Technology Taizen, Issued by Information Technology Corporation, July 15, 2005” and “Dispersion technology and industrial application centering on suspension (solid / liquid dispersion system)”. In fact, the process and the disperser described in Paragraph No. 0022 of Japanese Unexamined Patent Publication No. 2015-157893 can be suitably used. In the process of dispersing the particles, the particles may be refined in the salt milling process. For the materials, equipment, processing conditions, etc. used in the salt milling process, for example, descriptions in JP-A Nos. 2015-194521 and 2012-046629 can be referred to.
 樹脂組成物の調製において、異物の除去や欠陥の低減などの目的で、樹脂組成物をフィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ナイロン(例えばナイロン-6、ナイロン-6,6)等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量のポリオレフィン樹脂を含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)およびナイロンが好ましい。フィルタの孔径は、0.01~7.0μm程度が適しており、好ましくは0.01~3.0μm程度、さらに好ましくは0.05~0.5μm程度である。フィルタの厚さとしては、25.4mm以上であることが好ましく、50.8mm以上であることがより好ましい。また、ファイバ状のろ材を用いることも好ましく、ろ材としては例えばポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられ、具体的にはロキテクノ社製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)のフィルタカートリッジを用いることができる。 In preparing the resin composition, it is preferable to filter the resin composition with a filter for the purpose of removing foreign substances or reducing defects. Any filter can be used without particular limitation as long as it has been conventionally used for filtration. For example, fluororesin such as polytetrafluoroethylene (PTFE), polyamide resin such as nylon (eg nylon-6, nylon-6,6), polyolefin resin such as polyethylene and polypropylene (PP) (high density, ultra high molecular weight) And a filter using a material such as polyolefin resin). Among these materials, polypropylene (including high density polypropylene) and nylon are preferable. The pore size of the filter is suitably about 0.01 to 7.0 μm, preferably about 0.01 to 3.0 μm, more preferably about 0.05 to 0.5 μm. The thickness of the filter is preferably 25.4 mm or more, and more preferably 50.8 mm or more. Further, it is also preferable to use a fiber-like filter medium, and examples of the filter medium include polypropylene fiber, nylon fiber, glass fiber, and the like. Specifically, SBP type series (SBP008 etc.), TPR type series (TPR002) manufactured by Loki Techno Co., Ltd. , TPR005, etc.) and SHPX type series (SHPX003 etc.) filter cartridges can be used.
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.2~10.0μmが好ましく、0.2~7.0μmがより好ましく、0.3~6.0μmが更に好ましい。 When using filters, different filters may be combined. At that time, the filtering by the first filter may be performed only once or may be performed twice or more. Moreover, you may combine the 1st filter of a different hole diameter within the range mentioned above. The pore diameter here can refer to the nominal value of the filter manufacturer. As a commercially available filter, for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co. . As the second filter, a filter formed of the same material as the first filter described above can be used. The pore size of the second filter is preferably 0.2 to 10.0 μm, more preferably 0.2 to 7.0 μm, and still more preferably 0.3 to 6.0 μm.
 樹脂組成物を収容容器に充填するに当たり、収容容器内で樹脂組成物と水分との接触を避けることを目的に、収容容器への樹脂組成物の充填率としては70~100%であることが好ましい。また、収容容器内の空隙は乾燥空気または乾燥窒素とすることも好ましい。樹脂組成物の収容容器としては、特に限定はなく、公知の収容容器を用いることができる。例えば、ポリプロピレンなどの各種樹脂で構成された容器を用いることができる。また、収容容器として、原材料や樹脂組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成する多層ボトルや6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。 When filling the container with the resin composition, the filling rate of the resin composition in the container may be 70 to 100% for the purpose of avoiding contact between the resin composition and moisture in the container. preferable. Moreover, it is also preferable that the space | gap in a storage container shall be dry air or dry nitrogen. There is no limitation in particular as a container of a resin composition, A well-known container can be used. For example, a container made of various resins such as polypropylene can be used. In addition, as a container, for the purpose of suppressing impurities from being mixed into raw materials and resin compositions, a multilayer bottle in which the inner wall of the container is composed of six types and six layers of resin, and a bottle having six types of resin having a seven layer structure. It is also preferred to use Examples of such a container include a container described in JP-A-2015-123351.
<近赤外線カットフィルタの製造方法>
 次に、本発明の近赤外線カットフィルタの製造方法について説明する。本発明の近赤外線カットフィルタの製造方法は、支持体上に銅錯体と樹脂とを含む樹脂組成物を塗布し、乾燥して樹脂膜を形成する工程を含む近赤外線カットフィルタの製造方法であって、
 銅錯体が、上述した式(1)で表される化合物であり、
 樹脂が架橋性基を実質的に含まない樹脂であり、
 樹脂組成物中における銅錯体と樹脂との合計量が、樹脂組成物の全固形分に対して60~100質量%である樹脂組成物を用いる。樹脂組成物の詳細については、上述した樹脂組成物が挙げられる。
<Method for manufacturing near-infrared cut filter>
Next, the manufacturing method of the near-infrared cut filter of this invention is demonstrated. The method for producing a near-infrared cut filter of the present invention is a method for producing a near-infrared cut filter including a step of applying a resin composition containing a copper complex and a resin on a support and drying to form a resin film. And
The copper complex is a compound represented by the formula (1) described above,
The resin is a resin substantially free of crosslinkable groups,
A resin composition in which the total amount of the copper complex and the resin in the resin composition is 60 to 100% by mass with respect to the total solid content of the resin composition is used. About the detail of a resin composition, the resin composition mentioned above is mentioned.
 支持体の種類としては、特に限定はされない。例えば、支持体の材質としては、一般的なガラスの他、サファイアガラス、ゴリラガラスなどの強化ガラス、透明なセラミック、プラスチックなどが挙げられる。また、支持体として固体撮像素子を用いてもよい。また、固体撮像素子の受光側に設けられた別の基板を支持体として用いることもできる。また、固体撮像素子の受光側に設けられた平坦化層等の層を支持体として用いることもできる。また、支持体から樹脂膜を剥離して用いる場合においては、支持体としては透明性を有さない基板を用いることもできる。たとえば、金属基板、樹脂基板、シリコン基板などが挙げられる。また、支持体から樹脂膜を剥離して用いる場合においては、樹脂膜を支持体から剥離しやすくするため、支持体の表面には離型層が形成されていることも好ましい。 The type of support is not particularly limited. For example, examples of the material for the support include general glass, tempered glass such as sapphire glass and gorilla glass, transparent ceramic, and plastic. Moreover, you may use a solid-state image sensor as a support body. Further, another substrate provided on the light receiving side of the solid-state imaging device can be used as a support. In addition, a layer such as a planarization layer provided on the light receiving side of the solid-state imaging device can be used as the support. In the case where the resin film is peeled from the support and used, a substrate having no transparency can be used as the support. For example, a metal substrate, a resin substrate, a silicon substrate, etc. are mentioned. In the case where the resin film is peeled from the support and used, it is preferable that a release layer is formed on the surface of the support in order to easily peel the resin film from the support.
 樹脂組成物の塗布方法としては、公知の方法を用いることができる。滴下法(ドロップキャスト);スリットコート法;スプレー法;ロールコート法;回転塗布法(スピンコーティング);流延塗布法;スリットアンドスピン法;プリウェット法(たとえば、特開2009-145395号公報に記載されている方法);インクジェット(例えばオンデマンド方式、ピエゾ方式、サーマル方式)、ノズルジェット等の吐出系印刷、フレキソ印刷、スクリーン印刷、グラビア印刷、反転オフセット印刷、メタルマスク印刷法などの各種印刷法;金型等を用いた転写法;ナノインプリント法;ブレードコート法;バーコート法;アプリケーター塗布法などが挙げられる。インクジェットによる適用方法としては、組成物を吐出可能な方法であれば特に限定されず、例えば「広がる・使えるインクジェット-特許に見る無限の可能性-、2005年2月発行、住べテクノリサーチ」に示された特許公報に記載の方法(特に115ページ~133ページ)や、特開2003-262716号公報、特開2003-185831号公報、特開2003-261827号公報、特開2012-126830号公報、特開2006-169325号公報などに記載の方法を用いることができる。なかでも、生産性の観点から流延塗布法が好ましい。 As a coating method of the resin composition, a known method can be used. Drip method (drop casting); slit coating method; spray method; roll coating method; spin coating method (spin coating); casting coating method; slit and spin method; prewet method (for example, in JP 2009-145395 A) Described method); ink jet (for example, on-demand method, piezo method, thermal method), discharge printing such as nozzle jet, flexographic printing, screen printing, gravure printing, reverse offset printing, various printing such as metal mask printing Examples thereof include: a transfer method using a mold or the like; a nanoimprint method; a blade coating method; a bar coating method; an applicator coating method. The application method by ink jet is not particularly limited as long as it is a method capable of ejecting the composition. For example, “Expanding and usable ink jet-unlimited possibilities seen in patents, published in February 2005, Sumibe Techno Research” The methods described in the patent publications indicated (particularly, pages 115 to 133), JP-A 2003-262716, JP-A 2003-185831, JP-A 2003-261827, JP-A 2012-126830 The method described in JP-A-2006-169325 can be used. Of these, the casting method is preferred from the viewpoint of productivity.
 支持体に塗布した樹脂組成物(樹脂組成物層)の乾燥条件としては、樹脂組成物に含まれる各成分の種類や含有量等によっても異なる。例えば、乾燥温度としては、40~150℃が好ましい。下限は50℃以上がより好ましく、55℃以上が更に好ましい。上限は130℃以下がより好ましく、110℃以下が更に好ましい。加熱時間としては、1分~100時間が好ましい。下限は5分以上がより好ましく、10分以上が更に好ましい。上限は50時間以下がより好ましく、25時間以下が更に好ましく、20時間以下が更により好ましい。また、室温(例えば25℃)から一定の昇温速度で所定の乾燥温度まで昇温し、その温度保持して乾燥する方法も挙げられる。昇温速度としては、0.5~10℃/分が好ましく、1.0~5℃/分がより好ましい。 The drying conditions of the resin composition (resin composition layer) applied to the support vary depending on the type and content of each component contained in the resin composition. For example, the drying temperature is preferably 40 to 150 ° C. The lower limit is more preferably 50 ° C. or higher, and further preferably 55 ° C. or higher. The upper limit is more preferably 130 ° C. or less, and even more preferably 110 ° C. or less. The heating time is preferably 1 minute to 100 hours. The lower limit is more preferably 5 minutes or more, and still more preferably 10 minutes or more. The upper limit is more preferably 50 hours or less, still more preferably 25 hours or less, and even more preferably 20 hours or less. Another example is a method in which the temperature is raised from room temperature (for example, 25 ° C.) to a predetermined drying temperature at a constant heating rate, and the temperature is maintained and dried. The rate of temperature rise is preferably 0.5 to 10 ° C./min, more preferably 1.0 to 5 ° C./min.
 また、乾燥後の樹脂組成物層に対してエージングを行ってもよい。エージングにおいては、樹脂組成物層を高温高湿処理することが好ましい。エージング温度としては、60~150℃が好ましい。下限は70℃以上がより好ましく、80℃以上が更に好ましい。上限は140℃以下がより好ましく、130℃以下が更に好ましい。湿度としては、30~100%が好ましい。下限は40%以上がより好ましく、50%以上が更に好ましい。上限は95%以下がより好ましく、90%以下が更に好ましい。エージング時間としては、0.5~100時間が好ましい。下限は1時間以上がより好ましく、2時間以上が更に好ましい。上限は50時間以下がより好ましく、25時間以下が更に好ましい。これらの範囲の条件であれば、上述した機械物性を有する樹脂膜が得られやすい。エージング装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、高温高湿炉などが挙げられる。 Further, aging may be performed on the dried resin composition layer. In aging, the resin composition layer is preferably subjected to a high temperature and high humidity treatment. The aging temperature is preferably 60 to 150 ° C. The lower limit is more preferably 70 ° C. or higher, and still more preferably 80 ° C. or higher. The upper limit is more preferably 140 ° C. or less, and further preferably 130 ° C. or less. The humidity is preferably 30 to 100%. The lower limit is more preferably 40% or more, and further preferably 50% or more. The upper limit is more preferably 95% or less, and still more preferably 90% or less. The aging time is preferably 0.5 to 100 hours. The lower limit is more preferably 1 hour or longer, and further preferably 2 hours or longer. The upper limit is more preferably 50 hours or less, and even more preferably 25 hours or less. If it is the conditions of these ranges, the resin film which has the mechanical property mentioned above will be easy to be obtained. There is no restriction | limiting in particular as an aging apparatus, According to the objective, it can select suitably from well-known apparatuses, For example, a high temperature / humidity furnace etc. are mentioned.
<固体撮像素子、カメラモジュール>
 本発明の固体撮像素子は、本発明の近赤外線カットフィルタを含む。また、本発明のカメラモジュールは、本発明の近赤外線カットフィルタを含む。
<Solid-state imaging device, camera module>
The solid-state imaging device of the present invention includes the near-infrared cut filter of the present invention. The camera module of the present invention includes the near-infrared cut filter of the present invention.
 図1は、本発明の実施形態に係る近赤外線カットフィルタを有するカメラモジュールの構成を示す概略断面図である。図1に示すカメラモジュール10は、固体撮像素子11と、固体撮像素子の主面側(受光側)に設けられた平坦化層12と、近赤外線カットフィルタ13と、近赤外線カットフィルタの上方に配置され内部空間に撮像レンズ14を有するレンズホルダー15と、を備える。カメラモジュール10は、外部からの入射光が、撮像レンズ14、近赤外線カットフィルタ13、平坦化層12を順次透過した後、固体撮像素子11の撮像素子部に到達するようになっている。近赤外線カットフィルタ13としては、上述した物性の樹脂膜のみを用いてもよく、樹脂膜と支持体との積層体を用いてもよい。支持体の材質としては、一般的なガラスの他、サファイアガラス、ゴリラガラスなどの強化ガラス、透明なセラミック、プラスチックなどが挙げられる。撮像レンズ14の材質としては、一般的なガラスの他、サファイアガラス、ゴリラガラスなどの強化ガラス、透明なセラミック、プラスチックなどが挙げられる。 FIG. 1 is a schematic cross-sectional view showing the configuration of a camera module having a near infrared cut filter according to an embodiment of the present invention. A camera module 10 illustrated in FIG. 1 includes a solid-state image sensor 11, a planarization layer 12 provided on the main surface side (light-receiving side) of the solid-state image sensor, a near-infrared cut filter 13, and a near-infrared cut filter. And a lens holder 15 having an imaging lens 14 in the internal space. In the camera module 10, incident light from the outside passes through the imaging lens 14, the near-infrared cut filter 13, and the planarization layer 12 in order, and then reaches the imaging device portion of the solid-state imaging device 11. As the near-infrared cut filter 13, only the resin film having the physical properties described above may be used, or a laminate of the resin film and the support may be used. Examples of the material for the support include general glass, tempered glass such as sapphire glass and gorilla glass, transparent ceramic, and plastic. Examples of the material for the imaging lens 14 include general glass, tempered glass such as sapphire glass and gorilla glass, transparent ceramic, and plastic.
 固体撮像素子11は、例えば、基板16の主面に、フォトダイオード、層間絶縁膜(図示せず)、ベース層(図示せず)、カラーフィルタ17、オーバーコート(図示せず)、マイクロレンズ18をこの順に備えている。カラーフィルタ17(赤色のカラーフィルタ、緑色のカラーフィルタ、青色のカラーフィルタ)やマイクロレンズ18は、固体撮像素子11に対応するように、それぞれ配置されている。なお、平坦化層12の表面に近赤外線カットフィルタ13が設けられる代わりに、マイクロレンズ18の表面、ベース層とカラーフィルタ17との間、または、カラーフィルタ17とオーバーコートとの間に、近赤外線カットフィルタ13が設けられる形態であってもよい。例えば、近赤外線カットフィルタ13は、マイクロレンズ表面から2mm以内(より好ましくは1mm以内)の位置に設けられていてもよい。この位置に近赤外線カットフィルタ13を設けると、近赤外線カットフィルタを形成する工程が簡略化できる。更には、マイクロレンズへの不要な近赤外線の入射を十分にカットすることができ、赤外線遮蔽性をより高めることができる。また、図1において、撮像レンズ14は1枚であるが、撮像レンズ14は2枚以上であってもよい。 The solid-state imaging device 11 includes, for example, a photodiode, an interlayer insulating film (not shown), a base layer (not shown), a color filter 17, an overcoat (not shown), and a microlens 18 on the main surface of the substrate 16. Are provided in this order. The color filter 17 (red color filter, green color filter, blue color filter) and the microlens 18 are respectively disposed so as to correspond to the solid-state imaging device 11. Instead of providing the near-infrared cut filter 13 on the surface of the planarizing layer 12, the surface of the microlens 18, between the base layer and the color filter 17, or between the color filter 17 and the overcoat The form in which the infrared cut filter 13 is provided may be sufficient. For example, the near-infrared cut filter 13 may be provided at a position within 2 mm (more preferably within 1 mm) from the surface of the microlens. If the near infrared cut filter 13 is provided at this position, the process of forming the near infrared cut filter can be simplified. Furthermore, unnecessary near-infrared light incident on the microlens can be sufficiently cut, and the infrared shielding property can be further improved. In FIG. 1, the number of imaging lenses 14 is one, but the number of imaging lenses 14 may be two or more.
 本発明の近赤外線カットフィルタは、耐熱性に優れるため、半田リフロー工程に供することができる。半田リフロー工程によりカメラモジュールを製造することによって、半田付けを行うことが必要な電子部品実装基板等の自動実装化が可能となり、半田リフロー工程を用いない場合と比較して、生産性を格段に向上することができる。更に、自動で行うことができるため、低コスト化を図ることもできる。半田リフロー工程に供される場合、250~270℃程度の温度に曝されることとなるため、近赤外線カットフィルタは、半田リフロー工程に耐え得る耐熱性(以下、「耐半田リフロー性」ともいう。)を有することが好ましい。本明細書中で、「耐半田リフロー性を有する」とは、180℃で1分間の加熱を行った後にも近赤外線カットフィルタとしての特性を保持することをいう。より好ましくは、230℃で10分間の加熱を行った後にも特性を保持することである。更に好ましくは、250℃で3分間の加熱を行った後にも特性を保持することである。耐半田リフロー性を有しない場合には、上記条件で加熱した場合に、近赤外線カットフィルタの赤外線遮蔽性が低下したり、膜としての機能が不十分となる場合がある。
 本発明のカメラモジュールは、更に、紫外線吸収層を有することもできる。この態様によれば、紫外線遮蔽性を高めることができる。紫外線吸収層は、例えば、国際公開WO2015/099060号公報の段落番号0040~0070、0119~0145の記載を参酌でき、この内容は本明細書に組み込まれることする。
Since the near-infrared cut filter of this invention is excellent in heat resistance, it can use for a solder reflow process. By manufacturing the camera module through the solder reflow process, it is possible to automatically mount electronic component mounting boards, etc. that need to be soldered, making the productivity significantly higher than when not using the solder reflow process. Can be improved. Furthermore, since it can be performed automatically, the cost can be reduced. When subjected to the solder reflow process, the near-infrared cut filter is exposed to a temperature of about 250 to 270 ° C. Therefore, the near-infrared cut filter has a heat resistance that can withstand the solder reflow process (hereinafter also referred to as “solder reflow resistance”). .). In the present specification, “having solder reflow resistance” means that the characteristics as a near-infrared cut filter are maintained even after heating at 180 ° C. for 1 minute. More preferably, the characteristics are maintained even after heating at 230 ° C. for 10 minutes. More preferably, the characteristics are maintained even after heating at 250 ° C. for 3 minutes. When it does not have solder reflow resistance, when it heats on the said conditions, the infrared shielding property of a near-infrared cut filter may fall, or the function as a film | membrane may become inadequate.
The camera module of the present invention can further have an ultraviolet absorbing layer. According to this aspect, the ultraviolet shielding property can be enhanced. For example, the description of paragraphs 0040 to 0070 and 0119 to 0145 in International Publication No. WO2015 / 099060 can be referred to for the ultraviolet absorbing layer, and the contents thereof are incorporated herein.
 図2~4は、カメラモジュールにおける近赤外線カットフィルタの周辺部分の一例を示す概略断面図である。 2 to 4 are schematic cross-sectional views showing an example of the peripheral portion of the near-infrared cut filter in the camera module.
 図2に示すように、カメラモジュールは、固体撮像素子11と、平坦化層12と、紫外・赤外光反射膜19と、透明基材20と、近赤外線カットフィルタ21と、反射防止層22とをこの順に有していてもよい。紫外・赤外光反射膜19は、例えば、特開2013-68688号公報の段落番号0033~0039、国際公開WO2015/099060号公報の段落番号0110~0114を参酌することができ、これらの内容は本明細書に組み込まれる。透明基材20は、可視領域の波長の光を透過するものであり、例えば、特開2013-68688号公報の段落番号0026~0032を参酌することができ、この内容は本明細書に組み込まれる。反射防止層22は、近赤外線カットフィルタ21に入射する光の反射を防止することにより透過率を向上させ、効率よく入射光を利用する機能を有するものであり、例えば、特開2013-68688号公報の段落番号0040の記載を参酌することができ、この内容は本明細書に組み込まれる。 As shown in FIG. 2, the camera module includes a solid-state imaging device 11, a planarization layer 12, an ultraviolet / infrared light reflection film 19, a transparent base material 20, a near-infrared cut filter 21, and an antireflection layer 22. May be included in this order. As for the ultraviolet / infrared light reflection film 19, for example, paragraph numbers 0033 to 0039 of JP2013-68688A and paragraph numbers 0110 to 0114 of international publication WO2015 / 099060 can be referred to. Incorporated herein. The transparent substrate 20 transmits light having a wavelength in the visible region. For example, paragraphs 0026 to 0032 of JP2013-68688A can be referred to, and the contents thereof are incorporated in the present specification. . The antireflection layer 22 has a function of improving the transmittance by preventing reflection of light incident on the near-infrared cut filter 21 and efficiently using incident light. For example, Japanese Patent Application Laid-Open No. 2013-68688. Reference can be made to the description of paragraph number 0040 of the publication, the contents of which are incorporated herein.
 図3に示すように、カメラモジュールは、固体撮像素子11と、近赤外線カットフィルタ21と、反射防止層22と、平坦化層12と、反射防止層22と、透明基材20と、紫外・赤外光反射膜19とをこの順に有していてもよい。 As shown in FIG. 3, the camera module includes a solid-state imaging device 11, a near-infrared cut filter 21, an antireflection layer 22, a planarization layer 12, an antireflection layer 22, a transparent substrate 20, an ultraviolet The infrared light reflection film 19 may be provided in this order.
 図4に示すように、カメラモジュールは、固体撮像素子11と、近赤外線カットフィルタ21と、紫外・赤外光反射膜19と、平坦化層12と、反射防止層22と、透明基材20と、反射防止層22とをこの順に有していてもよい。 As shown in FIG. 4, the camera module includes a solid-state imaging device 11, a near infrared cut filter 21, an ultraviolet / infrared light reflection film 19, a planarization layer 12, an antireflection layer 22, and a transparent substrate 20. And an antireflection layer 22 in this order.
 図5に本発明のカメラモジュールの他の実施形態を示す。このカメラモジュールは、図1に示したカメラモジュールにおいて、近赤外線カットフィルタ13がレンズホルダー15の外側に配置されている点が、図1に示したカメラモジュールと相違している。すなわち、図5に示したカメラモジュールにおいては、近赤外線カットフィルタ13が撮像レンズ14よりも外部からの入射光側に配置されている。このカメラモジュールにおいては、外部からの入射光が、近赤外線カットフィルタ13、撮像レンズ14、平坦化層12を順次透過した後、固体撮像素子11の撮像素子部に到達するようになっている。近赤外線カットフィルタ13を撮像レンズ14よりも外部からの入射光側に配置した場合においては、近赤外線カットフィルタ13と受光部との距離が離れることにより、近赤外線カットフィルタに欠陥があっても、これらの欠陥がぼやけて、これらの欠陥による画像への影響を小さくできる。
 また、図5では、近赤外線カットフィルタ13がレンズホルダー15の外側に配置されているが、レンズホルダー15内に配置されていてもよい。また、図5では、撮像レンズ14の表面から所定の間隔をおいて近赤外線カットフィルタ13が配置されているが、撮像レンズ14の表面に近赤外線カットフィルタ13が直接形成されていてもよい。
 また、図5では、撮像レンズ14は1枚であるが、撮像レンズ14は2枚以上であってもよい。また、撮像レンズ14を2枚以上有する場合においては、最も外側(入射光側)に配置された撮像レンズ14よりも外側(入射光側)に近赤外線カットフィルタ13が配置されていてもよく、撮像レンズ間に近赤外線カットフィルタ13が配置されていてもよい。例えば撮像レンズ14を2枚有する場合においては、入射光側から順に、近赤外線カットフィルタ、撮像レンズ、撮像レンズの順にそれぞれが配置されていてもよく、撮像レンズ、近赤外線カットフィルタ、撮像レンズの順にそれぞれが配置されていてもよい。
FIG. 5 shows another embodiment of the camera module of the present invention. This camera module is different from the camera module shown in FIG. 1 in that the near infrared cut filter 13 is arranged outside the lens holder 15 in the camera module shown in FIG. That is, in the camera module shown in FIG. 5, the near-infrared cut filter 13 is arranged on the incident light side from the outside with respect to the imaging lens 14. In this camera module, incident light from the outside sequentially passes through the near-infrared cut filter 13, the imaging lens 14, and the planarization layer 12, and then reaches the imaging device portion of the solid-state imaging device 11. When the near-infrared cut filter 13 is arranged on the incident light side from the outside of the imaging lens 14, even if the near-infrared cut filter has a defect because the distance between the near-infrared cut filter 13 and the light receiving unit increases. These defects are blurred and the influence of these defects on the image can be reduced.
In FIG. 5, the near-infrared cut filter 13 is disposed outside the lens holder 15, but may be disposed within the lens holder 15. In FIG. 5, the near infrared cut filter 13 is arranged at a predetermined interval from the surface of the imaging lens 14, but the near infrared cut filter 13 may be directly formed on the surface of the imaging lens 14.
In FIG. 5, the imaging lens 14 is one, but the imaging lens 14 may be two or more. In the case of having two or more imaging lenses 14, the near-infrared cut filter 13 may be disposed on the outer side (incident light side) than the imaging lens 14 disposed on the outermost side (incident light side). A near-infrared cut filter 13 may be disposed between the imaging lenses. For example, when two imaging lenses 14 are provided, the near-infrared cut filter, the imaging lens, and the imaging lens may be arranged in this order from the incident light side. The imaging lens, the near-infrared cut filter, and the imaging lens Each may be arranged in order.
<画像表示装置>
 本発明の画像表示装置は、本発明の近赤外線カットフィルタを有する。本発明の近赤外線カットフィルタは、液晶表示装置や有機エレクトロルミネッセンス(有機EL)表示装置などの画像表示装置に用いることもできる。表示装置の定義や各表示装置の詳細については、例えば「電子ディスプレイデバイス(佐々木 昭夫著、(株)工業調査会 1990年発行)」、「ディスプレイデバイス(伊吹 順章著、産業図書(株)平成元年発行)」などに記載されている。また、液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田 龍男編集、(株)工業調査会 1994年発行)」に記載されている。本発明が適用できる液晶表示装置に特に制限はなく、例えば、上記の「次世代液晶ディスプレイ技術」に記載されている色々な方式の液晶表示装置に適用できる。
<Image display device>
The image display device of the present invention has the near infrared cut filter of the present invention. The near-infrared cut filter of the present invention can also be used for image display devices such as liquid crystal display devices and organic electroluminescence (organic EL) display devices. For the definition of display devices and details of each display device, refer to, for example, “Electronic Display Devices (Akio Sasaki, published by Kogyo Kenkyukai 1990)”, “Display Devices (Junaki Ibuki, Sangyo Tosho Co., Ltd.) Issued in the first year). The liquid crystal display device is described in, for example, “Next-generation liquid crystal display technology (edited by Tatsuo Uchida, published by Kogyo Kenkyukai 1994)”. The liquid crystal display device to which the present invention can be applied is not particularly limited, and can be applied to, for example, various types of liquid crystal display devices described in the “next generation liquid crystal display technology”.
 画像表示装置は、白色有機EL素子を有するものであってもよい。白色有機EL素子としては、タンデム構造であることが好ましい。有機EL素子のタンデム構造については、特開2003-45676号公報、三上明義監修、「有機EL技術開発の最前線-高輝度・高精度・長寿命化・ノウハウ集-」、技術情報協会、326-328ページ、2008年などに記載されている。有機EL素子が発光する白色光のスペクトルは、青色領域(430nm-485nm)、緑色領域(530nm-580nm)及び黄色領域(580nm-620nm)に強い極大発光ピークを有するものが好ましい。これらの発光ピークに加え更に赤色領域(650nm-700nm)に極大発光ピークを有するものがより好ましい。 The image display device may have a white organic EL element. The white organic EL element preferably has a tandem structure. Regarding the tandem structure of organic EL elements, JP 2003-45676 A, supervised by Akiyoshi Mikami, “Frontier of Organic EL Technology Development-High Brightness, High Precision, Long Life, Know-how Collection”, Technical Information Association, 326-328 pages, 2008, etc. The spectrum of white light emitted from the organic EL element preferably has a strong maximum emission peak in the blue region (430 nm to 485 nm), the green region (530 nm to 580 nm) and the yellow region (580 nm to 620 nm). In addition to these emission peaks, those having a maximum emission peak in the red region (650 nm to 700 nm) are more preferable.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は、質量基準である。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. Unless otherwise specified, “part” and “%” are based on mass.
<重量平均分子量(Mw)>
 重量平均分子量(Mw)は、以下の方法で、ゲルパーミエーションクロマトグラフィ(GPC)にて測定した。
装置:HLC-8220 GPC(東ソー株式会社製)
検出器:RI(Refractive Index)検出器
カラム:ガードカラム HZ-Lと、TSK gel Super HZM-Mと、TSK gel Super HZ4000と、TSK gel Super HZ3000と、TSK gel Super HZ2000(東ソー株式会社製)とを連結したカラム
溶離液:テトラヒドロフラン(安定剤含有)
カラム温度:40℃
注入量:10μL
分析時間:26min.
流量(流速):0.35mL/min.(サンプルポンプ) 0.20mL/min.(リファレンスポンプ)
検量線ベース樹脂:ポリスチレン
<Weight average molecular weight (Mw)>
The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC) by the following method.
Equipment: HLC-8220 GPC (manufactured by Tosoh Corporation)
Detector: RI (Refractive Index) Detector column: Guard column HZ-L, TSK gel Super HZM-M, TSK gel Super HZ4000, TSK gel Super HZ3000, TSK gel Super HZ2000 (Tosoh Corporation) Column eluent coupled with: Tetrahydrofuran (containing stabilizer)
Column temperature: 40 ° C
Injection volume: 10 μL
Analysis time: 26 min.
Flow rate (flow rate): 0.35 mL / min. (Sample pump) 0.20 mL / min. (Reference pump)
Calibration curve base resin: polystyrene
<樹脂組成物の調製>
 下記の表に示す材料を下記の表に示す配合量(質量部)で混合して、下記表に記載の固形分濃度の樹脂組成物を調製した。なお、樹脂組成物の固形分濃度は溶剤の配合量を調整して行った。
<Preparation of resin composition>
The materials shown in the table below were mixed in the blending amounts (parts by mass) shown in the table below to prepare resin compositions having solid content concentrations shown in the table below. The solid content concentration of the resin composition was adjusted by adjusting the amount of the solvent.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表に記載の原料は以下である。以下に示す樹脂において、主鎖に付記した数値はモル比である。 The raw materials listed in the table are as follows. In the resins shown below, the numerical values appended to the main chain are molar ratios.
(赤外線吸収剤)
A-1~A-4:下記構造の銅錯体
Figure JPOXMLDOC01-appb-C000016

A-5:下記化合物を配位子として有する銅錯体
Figure JPOXMLDOC01-appb-C000017

A-6:下記化合物を配位子として有する銅錯体
Figure JPOXMLDOC01-appb-C000018

A-7:下記化合物を配位子として有する銅錯体
Figure JPOXMLDOC01-appb-C000019

A-12:特開2016-200771号公報の段落番号0059の表1に記載の化合物s-1(スクアリリウム化合物)
A-13:特開2016-200771号公報の段落番号0059の表1に記載の化合物s-5(スクアリリウム化合物)
(Infrared absorber)
A-1 to A-4: Copper complex having the following structure
Figure JPOXMLDOC01-appb-C000016

A-5: Copper complex having the following compound as a ligand
Figure JPOXMLDOC01-appb-C000017

A-6: Copper complex having the following compound as a ligand
Figure JPOXMLDOC01-appb-C000018

A-7: Copper complex having the following compound as a ligand
Figure JPOXMLDOC01-appb-C000019

A-12: Compound s-1 (squarylium compound) described in Table 1 of paragraph No. 0059 of JP-A-2016-200771
A-13: Compound s-5 (squarylium compound) described in Table 1 of paragraph No. 0059 of JP-A-2016-200771
(樹脂)
 B-1:下記構造の樹脂(Mw=8,000)
 B-2:下記構造の樹脂(Mw=12,000)
 B-3: 次の方法で合成した樹脂を用いた。8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン100質量部、1-ヘキセン18質量部およびトルエン300質量部を、窒素置換した反応容器に入れ、この溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(濃度0.6mol/リットル)0.2質量部と、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9質量部とを添加し、得られた溶液を80℃で3時間加熱攪拌することにより開環重合反応させて開環重合体溶液を得た。この重合反応における重合転化率は97%であった。このようにして得られた開環重合体溶液1,000質量部をオートクレーブに入れ、この開環重合体溶液に、RuHCl(CO)[P(C6533を0.12質量部添加し、水素ガス圧100kg/cm2、反応温度165℃の条件下で、3時間加熱撹拌して水素添加反応を行った。得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、樹脂B-3を得た。樹脂B-3は、数平均分子量(Mn)が32,000、重量平均分子量(Mw)が137,000であり、ガラス転移温度(Tg)が165℃であった。樹脂B-3は、架橋性基を含まない樹脂であった。
 B-4:下記構造の樹脂(Mw=10,000)
Figure JPOXMLDOC01-appb-C000020
(resin)
B-1: Resin having the following structure (Mw = 8,000)
B-2: Resin having the following structure (Mw = 12,000)
B-3: A resin synthesized by the following method was used. 8-methyl-8-methoxycarbonyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] Dodeca-3-ene (100 parts by mass), 1-hexene (18 parts by mass) and toluene (300 parts by mass) were placed in a nitrogen-substituted reaction vessel, and the solution was heated to 80 ° C. Next, 0.2 parts by mass of a toluene solution of triethylaluminum (concentration 0.6 mol / liter) and a toluene solution of methanol-modified tungsten hexachloride (concentration 0.025 mol / liter) were added to the solution in the reaction vessel as a polymerization catalyst. 0.9 parts by mass was added, and the resulting solution was heated and stirred at 80 ° C. for 3 hours to cause a ring-opening polymerization reaction to obtain a ring-opening polymer solution. The polymerization conversion rate in this polymerization reaction was 97%. 1,000 parts by mass of the ring-opening polymer solution thus obtained was put in an autoclave, and RuCl (CO) [P (C 6 H 5 ) 3 ] 3 was added to the ring-opening polymer solution in an amount of 0.12 mass. A hydrogenation reaction was carried out by heating and stirring for 3 hours under the conditions of a hydrogen gas pressure of 100 kg / cm 2 and a reaction temperature of 165 ° C. After cooling the obtained reaction solution (hydrogenated polymer solution), the hydrogen gas was released. The reaction solution was poured into a large amount of methanol to separate and recover the coagulated product, which was dried to obtain Resin B-3. Resin B-3 had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C. Resin B-3 was a resin containing no crosslinkable group.
B-4: Resin having the following structure (Mw = 10,000)
Figure JPOXMLDOC01-appb-C000020
(界面活性剤)
W-1:下記化合物(重量平均分子量=14,000。繰り返し単位の割合を示す%はモル%である。)
Figure JPOXMLDOC01-appb-C000021
(Surfactant)
W-1: The following compound (weight average molecular weight = 14,000.% Indicating the ratio of repeating units is mol%)
Figure JPOXMLDOC01-appb-C000021
(溶剤)
 CP:シクロペンタノン
 CH:シクロヘキサノン
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
(solvent)
CP: cyclopentanone CH: cyclohexanone PGMEA: propylene glycol monomethyl ether acetate
<近赤外線カットフィルタの作製>
(実施例1~13、15~17、比較例1)
 ガラス基材上に、下記表に記載の樹脂組成物を流延塗布して、樹脂組成物層を形成した。次いで、ホットプレートを用いて樹脂組成物層を60℃で12時間乾燥して、厚さ100μmの樹脂膜(近赤外線カットフィルタ)を作製した。
<Production of near-infrared cut filter>
(Examples 1 to 13, 15 to 17, Comparative Example 1)
On the glass substrate, the resin composition described in the following table was cast and formed to form a resin composition layer. Next, the resin composition layer was dried at 60 ° C. for 12 hours using a hot plate to prepare a resin film (near infrared cut filter) having a thickness of 100 μm.
(実施例14)
 ガラス基材上に、下記表に記載の樹脂組成物を流延塗布して、樹脂組成物層を形成した。次いで、ホットプレートを用いて樹脂組成物層を40℃で24時間乾燥して、厚さ100μmの樹脂膜(近赤外線カットフィルタ)を作製した。
(Example 14)
On the glass substrate, the resin composition described in the following table was cast and formed to form a resin composition layer. Next, the resin composition layer was dried at 40 ° C. for 24 hours using a hot plate to prepare a resin film (near infrared cut filter) having a thickness of 100 μm.
<耐熱性の評価>
 (耐熱試験前後の可視透明性の変化の評価)
 近赤外線カットフィルタを200℃で1分間加熱した。加熱前後の近赤外線カットフィルタの波長450nmにおける吸光度に基づき、下記式から波長450nmにおける吸光度の変化率を算出し、耐熱試験前後の可視透明性の変化を評価した。
 波長450nmにおける吸光度の変化率(%)=|(加熱前における波長450nmの吸光度-加熱後における波長450nmの吸光度)/加熱前における波長450nmの吸光度|×100(%)
 A:吸光度の変化率が3%以下である
 B:吸光度の変化率が3%より大きく4.5%以下である
 C:吸光度の変化率が4.5%より大きく6%以下である
 D:吸光度の変化率が6%より大きい
<Evaluation of heat resistance>
(Evaluation of change in visible transparency before and after heat test)
The near-infrared cut filter was heated at 200 ° C. for 1 minute. Based on the absorbance at a wavelength of 450 nm of the near-infrared cut filter before and after heating, the change rate of the absorbance at a wavelength of 450 nm was calculated from the following formula, and the change in visible transparency before and after the heat resistance test was evaluated.
Rate of change in absorbance at wavelength 450 nm (%) = | (absorbance at wavelength 450 nm before heating−absorbance at wavelength 450 nm after heating) / absorbance at wavelength 450 nm before heating | × 100 (%)
A: Change rate of absorbance is 3% or less B: Change rate of absorbance is greater than 3% and 4.5% or less C: Change rate of absorbance is greater than 4.5% and 6% or less D: Absorbance change rate is greater than 6%
 (耐熱試験前後の赤外線遮蔽性1(耐熱後の波長700nm以上800nm未満の光の遮蔽性)の変化の評価)
 近赤外線カットフィルタを200℃で1分間加熱した。加熱前後の近赤外線カットフィルタの波長700nm以上800nm未満の範囲の平均吸光度に基づき、下記式から波長700nm以上800nm未満の範囲の平均吸光度の変化率を算出し、耐熱試験前後の赤外線遮蔽性1の変化を評価した。
 波長700nm以上800nm未満の範囲の平均吸光度の変化率(%)=|(加熱前における波長700nm以上800nm未満の範囲の平均吸光度-加熱後における波長700nm以上800nm未満の範囲の平均吸光度)/加熱前における波長700nm以上800nm未満の範囲の平均吸光度|×100(%)
 A:吸光度の変化率が3%以下である
 B:吸光度の変化率が3%より大きく4.5%以下である
 C:吸光度の変化率が4.5%より大きく6%以下である
 D:吸光度の変化率が6%より大きい
(Evaluation of change in infrared shielding property 1 before and after the heat resistance test (shielding property of light having a wavelength of 700 nm to less than 800 nm after heat resistance))
The near-infrared cut filter was heated at 200 ° C. for 1 minute. Based on the average absorbance in the wavelength range from 700 nm to less than 800 nm of the near-infrared cut filter before and after heating, the change rate of the average absorbance in the wavelength range from 700 nm to less than 800 nm is calculated from the following formula, and the infrared shielding property 1 before and after the heat resistance test is calculated. Changes were evaluated.
Average absorbance change rate (%) in the wavelength range from 700 nm to less than 800 nm = | (average absorbance in the wavelength range from 700 nm to less than 800 nm before heating−average absorbance in the wavelength range from 700 nm to less than 800 nm after heating) / before heating Average absorbance in the wavelength range of 700 nm or more and less than 800 nm | × 100 (%)
A: Change rate of absorbance is 3% or less B: Change rate of absorbance is greater than 3% and 4.5% or less C: Change rate of absorbance is greater than 4.5% and 6% or less D: Absorbance change rate is greater than 6%
 (耐熱試験前後の赤外線遮蔽性2(耐熱後の波長800nm以上1100nm以下の光の遮蔽性)の変化の評価)
 近赤外線カットフィルタを200℃で1分間加熱した。加熱前後の近赤外線カットフィルタの波長800nm以上1100nm以下の範囲の平均吸光度に基づき、下記式から波長800nm以上1100nm以下の範囲の平均吸光度の変化率を算出し、耐熱試験前後の赤外線遮蔽性2の変化を評価した。
 波長800nm以上1100nm以下の範囲の平均吸光度の変化率(%)=|(加熱前における波長800nm以上1100nm以下の範囲の平均吸光度-加熱後における波長800nm以上1100nm以下の範囲の平均吸光度)/加熱前における波長800nm以上1100nm以下の範囲の平均吸光度|×100(%)
 A:吸光度の変化率が3%以下である
 B:吸光度の変化率が3%より大きく4.5%以下である
 C:吸光度の変化率が4.5%より大きく6%以下である
 D:吸光度の変化率が6%より大きい
(Evaluation of change in infrared shielding property 2 before and after the heat resistance test (light shielding property at a wavelength of 800 nm to 1100 nm after heat resistance))
The near-infrared cut filter was heated at 200 ° C. for 1 minute. Based on the average absorbance in the wavelength range of 800 nm to 1100 nm of the near-infrared cut filter before and after heating, the change rate of the average absorbance in the wavelength range of 800 nm to 1100 nm is calculated from the following formula, and the infrared shielding property 2 before and after the heat resistance test is calculated. Changes were evaluated.
Average absorbance change rate (%) in the wavelength range from 800 nm to 1100 nm = | (average absorbance in the wavelength range from 800 nm to 1100 nm before heating−average absorbance in the wavelength range from 800 nm to 1100 nm after heating) / before heating Average absorbance in the wavelength range of 800 nm to 1100 nm at | × 100 (%)
A: Change rate of absorbance is 3% or less B: Change rate of absorbance is greater than 3% and 4.5% or less C: Change rate of absorbance is greater than 4.5% and 6% or less D: Absorbance change rate is greater than 6%
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022

Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 上記表から明らかなとおり、実施例の近赤外線カットフィルタは、耐熱性に優れており、加熱後も優れた可視透明性および赤外線遮蔽性を有していた。 As is clear from the above table, the near-infrared cut filters of the examples were excellent in heat resistance, and had excellent visible transparency and infrared shielding properties even after heating.
10 カメラモジュール、11 固体撮像素子、12 平坦化層、13 近赤外線カットフィルタ、14 撮像レンズ、15 レンズホルダー、16 シリコン基板、17 カラーフィルタ、18 マイクロレンズ、19 紫外・赤外光反射膜、20 透明基材、21
 近赤外線カットフィルタ、22 反射防止層
DESCRIPTION OF SYMBOLS 10 Camera module, 11 Solid-state image sensor, 12 Flattening layer, 13 Near-infrared cut filter, 14 Imaging lens, 15 Lens holder, 16 Silicon substrate, 17 Color filter, 18 Micro lens, 19 Ultraviolet / infrared light reflection film, 20 Transparent substrate, 21
Near-infrared cut filter, 22 Antireflection layer

Claims (10)

  1.  銅錯体と樹脂とを含む樹脂膜を有する近赤外線カットフィルタであって、
     前記銅錯体が、下記式(1)で表される化合物であり、
     前記樹脂膜中における前記銅錯体と前記樹脂との合計量が60~100質量%であり、
     前記樹脂膜中において前記樹脂が三次元架橋を形成していない、近赤外線カットフィルタ;
     Cu・(L)n1・(X)n2    ・・・(1)
     式中、Lは、配位子であって、銅原子に対してアニオンで配位する配位部位および銅原子に対して非共有電子対で配位する配位原子から選ばれる少なくとも1種を1個以上有する化合物であり、Xは対イオンであり、n1は1~4の整数を表し、n2は0~4の整数を表す。
    A near-infrared cut filter having a resin film containing a copper complex and a resin,
    The copper complex is a compound represented by the following formula (1):
    The total amount of the copper complex and the resin in the resin film is 60 to 100% by mass,
    A near-infrared cut filter in which the resin does not form a three-dimensional bridge in the resin film;
    Cu · (L) n1 · (X) n2 (1)
    In the formula, L is a ligand, and at least one selected from a coordination site coordinated by an anion to a copper atom and a coordination atom coordinated by a lone pair to the copper atom. A compound having one or more, X is a counter ion, n1 represents an integer of 1 to 4, and n2 represents an integer of 0 to 4.
  2.  前記式(1)における配位子Lは、波長400~600nmの範囲に極大吸収波長を有さない化合物である、請求項1に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 1, wherein the ligand L in the formula (1) is a compound having no maximum absorption wavelength in a wavelength range of 400 to 600 nm.
  3.  前記式(1)における配位子Lが、銅原子に対してアニオンで配位する配位部位および銅原子に対して非共有電子対で配位する配位原子から選ばれる少なくとも1種を合計で2個以上有する化合物である、請求項1または2に記載の近赤外線カットフィルタ。 The ligand L in the formula (1) is a total of at least one selected from a coordination site coordinated by an anion to a copper atom and a coordination atom coordinated by a lone pair to the copper atom. The near-infrared cut filter of Claim 1 or 2 which is a compound which has 2 or more by.
  4.  前記式(1)における配位子Lが、カルボン酸化合物、スルホン酸化合物及びリン酸エステル化合物から選ばれる少なくとも1種である、請求項1または2に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 1 or 2, wherein the ligand L in the formula (1) is at least one selected from a carboxylic acid compound, a sulfonic acid compound, and a phosphate ester compound.
  5.  前記樹脂膜の膜厚が1~500μmである、請求項1~4のいずれか1項に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to any one of claims 1 to 4, wherein the resin film has a thickness of 1 to 500 µm.
  6.  前記樹脂膜は前記銅錯体を5質量%以上含有する、請求項1~5のいずれか1項に記載の近赤外線カットフィルタ。 6. The near-infrared cut filter according to claim 1, wherein the resin film contains 5% by mass or more of the copper complex.
  7.  支持体上に銅錯体と樹脂とを含む樹脂組成物を塗布し、乾燥して樹脂膜を形成する工程を含む近赤外線カットフィルタの製造方法であって、
     前記銅錯体が、下記式(1)で表される化合物であり、
     前記樹脂が架橋性基を実質的に含まない樹脂であり、
     前記樹脂組成物中における前記銅錯体と前記樹脂との合計量が、樹脂組成物の全固形分に対して60~100質量%である、近赤外線カットフィルタの製造方法;
     Cu・(L)n1・(X)n2    ・・・(1)
     式中、Lは、配位子であって、銅原子に対してアニオンで配位する配位部位および銅原子に対して非共有電子対で配位する配位原子から選ばれる少なくとも1種を1個以上有する化合物であり、Xは対イオンであり、n1は1~4の整数を表し、n2は0~4の整数を表す。
    A method for producing a near-infrared cut filter comprising a step of applying a resin composition comprising a copper complex and a resin on a support and drying to form a resin film,
    The copper complex is a compound represented by the following formula (1):
    The resin is a resin substantially free of crosslinkable groups;
    A method for producing a near-infrared cut filter, wherein a total amount of the copper complex and the resin in the resin composition is 60 to 100% by mass with respect to a total solid content of the resin composition;
    Cu · (L) n1 · (X) n2 (1)
    In the formula, L is a ligand, and at least one selected from a coordination site coordinated by an anion to a copper atom and a coordination atom coordinated by a lone pair to the copper atom. A compound having one or more, X is a counter ion, n1 represents an integer of 1 to 4, and n2 represents an integer of 0 to 4.
  8.  請求項1~6のいずれか1項に記載の近赤外線カットフィルタを有する固体撮像素子。 A solid-state imaging device having the near-infrared cut filter according to any one of claims 1 to 6.
  9.  請求項1~6のいずれか1項に記載の近赤外線カットフィルタを有するカメラモジュール。 A camera module having the near infrared cut filter according to any one of claims 1 to 6.
  10.  請求項1~6のいずれか1項に記載の近赤外線カットフィルタを有する画像表示装置。 An image display device comprising the near infrared cut filter according to any one of claims 1 to 6.
PCT/JP2018/003126 2017-03-14 2018-01-31 Near-infrared blocking filter, method for producing near-infrared blocking filter, solid-state imaging element, camera module and image display device WO2018168231A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505753A JPWO2018168231A1 (en) 2017-03-14 2018-01-31 Near-infrared cut filter, method for manufacturing near-infrared cut filter, solid-state imaging device, camera module, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-048404 2017-03-14
JP2017048404 2017-03-14

Publications (1)

Publication Number Publication Date
WO2018168231A1 true WO2018168231A1 (en) 2018-09-20

Family

ID=63523751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003126 WO2018168231A1 (en) 2017-03-14 2018-01-31 Near-infrared blocking filter, method for producing near-infrared blocking filter, solid-state imaging element, camera module and image display device

Country Status (3)

Country Link
JP (1) JPWO2018168231A1 (en)
TW (1) TW201840683A (en)
WO (1) WO2018168231A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050132A1 (en) * 2020-09-03 2022-03-10 ソニーセミコンダクタソリューションズ株式会社 Image display device and electronic apparatus
JP7404728B2 (en) 2019-09-17 2023-12-26 Toppanホールディングス株式会社 Infrared light cut filter, filter for solid-state image sensor, solid-state image sensor, and method for manufacturing filter for solid-state image sensor
JP7459468B2 (en) 2019-09-17 2024-04-02 Toppanホールディングス株式会社 Infrared light cut filter, filter for solid-state image sensor, solid-state image sensor, and method for manufacturing filter for solid-state image sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174626A (en) * 1999-12-14 2001-06-29 Bridgestone Corp Near infrared ray absorption film
JP2002006101A (en) * 2000-06-27 2002-01-09 Kureha Chem Ind Co Ltd Optical material
WO2005030898A1 (en) * 2003-09-26 2005-04-07 Kureha Corporation Absorptive composition for infrared ray and absorptive resin composition for infrared ray
WO2014017574A1 (en) * 2012-07-27 2014-01-30 富士フイルム株式会社 Near-infrared ray-absorbing composition, near-infrared ray cut filter produced using said composition and method for producing same, and camera module and method for producing same
WO2014129291A1 (en) * 2013-02-19 2014-08-28 富士フイルム株式会社 Near-infrared-absorbing composition, near-infrared cut-off filter using same, camera module, and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174626A (en) * 1999-12-14 2001-06-29 Bridgestone Corp Near infrared ray absorption film
JP2002006101A (en) * 2000-06-27 2002-01-09 Kureha Chem Ind Co Ltd Optical material
WO2005030898A1 (en) * 2003-09-26 2005-04-07 Kureha Corporation Absorptive composition for infrared ray and absorptive resin composition for infrared ray
WO2014017574A1 (en) * 2012-07-27 2014-01-30 富士フイルム株式会社 Near-infrared ray-absorbing composition, near-infrared ray cut filter produced using said composition and method for producing same, and camera module and method for producing same
WO2014129291A1 (en) * 2013-02-19 2014-08-28 富士フイルム株式会社 Near-infrared-absorbing composition, near-infrared cut-off filter using same, camera module, and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404728B2 (en) 2019-09-17 2023-12-26 Toppanホールディングス株式会社 Infrared light cut filter, filter for solid-state image sensor, solid-state image sensor, and method for manufacturing filter for solid-state image sensor
JP7459468B2 (en) 2019-09-17 2024-04-02 Toppanホールディングス株式会社 Infrared light cut filter, filter for solid-state image sensor, solid-state image sensor, and method for manufacturing filter for solid-state image sensor
WO2022050132A1 (en) * 2020-09-03 2022-03-10 ソニーセミコンダクタソリューションズ株式会社 Image display device and electronic apparatus

Also Published As

Publication number Publication date
TW201840683A (en) 2018-11-16
JPWO2018168231A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP6595610B2 (en) Near-infrared cut filter, manufacturing method of near-infrared cut filter, and solid-state imaging device
JP6806706B2 (en) Near-infrared absorption composition, near-infrared cut filter, manufacturing method of near-infrared cut filter, solid-state image sensor, camera module and image display device
JP6602396B2 (en) Near-infrared absorbing composition, method for producing near-infrared cut filter, near-infrared cut filter, solid-state imaging device, camera module, infrared sensor, and infrared absorber
JP6650040B2 (en) Near-infrared cut filter, solid-state imaging device, camera module, and image display device
WO2014199937A1 (en) Curable composition, cured film, near infrared cut filter, camera module and method for manufacturing camera module
JP6329638B2 (en) Near-infrared absorbing composition, near-infrared cut filter, solid-state image sensor, camera module
WO2018168231A1 (en) Near-infrared blocking filter, method for producing near-infrared blocking filter, solid-state imaging element, camera module and image display device
US10676447B2 (en) Benzotriazole derivative compound and the use thereof
JP6709029B2 (en) Composition, method for producing composition, film, near-infrared cut filter, solid-state imaging device, camera module, and image display device
JP6611278B2 (en) Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, solid-state imaging device, camera module, and image display device
JP6771880B2 (en) Resin composition and laminate
JP6793808B2 (en) Near-infrared cut filter, solid-state image sensor, camera module and image display device
JP6563014B2 (en) Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, apparatus, method for producing copper-containing polymer, and copper-containing polymer
WO2017126527A1 (en) Near-infrared ray adsorbing composition, method of producing near-infrared ray cut filter, near-infrared ray cut filter, solid image sensor, camera module and infrared ray sensor
JP6717955B2 (en) Near infrared cut filter, solid-state image sensor, camera module and image display device
JP6602387B2 (en) Near-infrared absorbing composition, film, near-infrared cut filter, and solid-state imaging device
JP6400654B2 (en) Curable composition, cured film, near-infrared cut filter, camera module, and camera module manufacturing method
WO2023282261A1 (en) Laminate, sight line tracking system, and head-mounted display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505753

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766583

Country of ref document: EP

Kind code of ref document: A1