JP2014146493A - Sample table for electron microscope observation and cross section observation method of sample - Google Patents

Sample table for electron microscope observation and cross section observation method of sample Download PDF

Info

Publication number
JP2014146493A
JP2014146493A JP2013014142A JP2013014142A JP2014146493A JP 2014146493 A JP2014146493 A JP 2014146493A JP 2013014142 A JP2013014142 A JP 2013014142A JP 2013014142 A JP2013014142 A JP 2013014142A JP 2014146493 A JP2014146493 A JP 2014146493A
Authority
JP
Japan
Prior art keywords
sample
cross
electron microscope
section
sample stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013014142A
Other languages
Japanese (ja)
Other versions
JP6024485B2 (en
Inventor
Tetsutaro Hayashi
徹太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013014142A priority Critical patent/JP6024485B2/en
Publication of JP2014146493A publication Critical patent/JP2014146493A/en
Application granted granted Critical
Publication of JP6024485B2 publication Critical patent/JP6024485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which allows for accurate cross-section observation, by preventing decomposition of a sample which is decomposed easily when exposed to the atmosphere.SOLUTION: A sample table 10 for electron microscope used for cross-section observation of a sample subjected to cross-section processing includes a sample table body 11 having a recess 13 of predetermined depth in an upper surface 11a of the body trunk, and at least one through hole 14 formed in a trunk side face 11b to penetrate from the side face 11b to the recess 13, and a fixing member 12 being inserted into the through hole 14. In the sample table 10 for electron microscope, a sample table for cross-section processing that is mounting a sample subjected to cross-section processing is mounted in the recess 13 of the sample table body 11, and attached while being fixed by the fixing member 12 penetrated the through hole 14.

Description

本発明は、電子顕微鏡に用いる電子顕微鏡観察用試料台、並びにその電子顕微鏡用試料台を用いた電子顕微鏡による試料の断面観察方法に関する。   The present invention relates to an electron microscope observation sample stage used for an electron microscope, and a sample cross-sectional observation method using an electron microscope using the electron microscope sample stage.

粉末粒子は、様々な分野・用途に使用されており、粒子に耐熱性や耐酸化性等の性能を持たせるために粒子に様々な処理を施すことが多い。このような粒子を開発していく上では、粉末粒子形状がどのような状態であるか詳細に調査することが重要となる。   Powder particles are used in various fields and applications, and the particles are often subjected to various treatments in order to give the particles performance such as heat resistance and oxidation resistance. In developing such particles, it is important to investigate in detail what the powder particle shape is.

通常、粉末粒子の形状評価方法として、走査電子顕微鏡(SEM)による表面・断面観察が用いられる。SEMによる粉末粒子の断面加工を行う場合においては、粒子を熱硬化性樹脂に埋めて樹脂包埋させた後、樹脂包埋させた試料を試料台に載せて、加工歪が少なく広範囲の断面加工が可能なクロスセクションポリッシャ(CP)を用いて加工を行う。その後、断面加工を終えた試料を試料台から取り外し、SEM用試料台に載せ換えて断面加工部分を観察する。   Usually, as a method for evaluating the shape of powder particles, surface / cross-section observation using a scanning electron microscope (SEM) is used. When cross-sectional processing of powder particles by SEM is performed, the particles are embedded in a thermosetting resin and then embedded in the resin, and then the resin-embedded sample is placed on the sample stage, and a wide range of cross-sectional processing is performed with less processing distortion. Processing is performed using a cross section polisher (CP) capable of Thereafter, the cross-section processed sample is removed from the sample stage and placed on the SEM sample stage to observe the cross-section processed portion.

ところが、観察対象の粉末粒子が酸化物粒子等の場合、大気に数分晒すだけで粒子自体が大気中の水分と反応して変質してしまい、粒子本来の状態を正確に捉えることができず、精度の高い断面観察を行うことができなくなる。   However, when the powder particles to be observed are oxide particles, etc., the particles themselves react with moisture in the atmosphere only after being exposed to the atmosphere for a few minutes, so that the original state of the particles cannot be accurately captured. This makes it impossible to perform cross-sectional observation with high accuracy.

また、このような方法の実用化例として、例えば特許文献1に、走査電子顕微鏡用試料台が提案され、多目的用走査電子顕微鏡の試料台を開発したことが報告されている。しかしながら、この試料台は、集束イオンビーム加工観察及びSEM観察に適した試料台であることが報告されているのみであって、酸化物粒子等の試料において変質を防止して断面観察を行うようにする考え方は示されていない。   As an example of practical application of such a method, for example, Patent Document 1 proposes a scanning electron microscope sample stage and reports that a multipurpose scanning electron microscope sample stage has been developed. However, it has only been reported that this sample stage is a sample stage suitable for focused ion beam processing observation and SEM observation, so that it is possible to perform cross-sectional observation while preventing alteration of a sample such as oxide particles. The idea of making is not shown.

また、他の実用化例として、例えば特許文献2に記載の電子顕微鏡用試料台があり、EBSD解析が可能な電子顕微鏡用の試料台について報告されている。しかしながら、この試料台は、EBSD解析用に限定したものであり、特許文献2にも酸化物粒子等の試料において変質を防止して断面観察を行うようにする考え方は示されていない。   As another practical application example, for example, there is a sample stage for an electron microscope described in Patent Document 2, and a sample stage for an electron microscope capable of EBSD analysis has been reported. However, this sample stage is limited to the EBSD analysis, and Patent Document 2 does not disclose the concept of performing the cross-sectional observation while preventing the deterioration of the sample such as oxide particles.

特開平11−149896号公報JP-A-11-149896 特開2011−204367号公報JP 2011-204367 A

本発明は、このような実情に鑑みて提案されたものであり、大気に晒されることで容易に変質してしまう試料に対して、試料の変質を防止して、正確な断面観察を行うことを可能とする方法を適用することを目的とする。   The present invention has been proposed in view of such circumstances, and it is possible to perform accurate cross-sectional observation of a sample that is easily altered by being exposed to the atmosphere, preventing the alteration of the sample. The purpose is to apply a method that enables

本発明者らは、上述した目的を達成するために鋭意検討を重ね、クロスセクションポリッシャ等により断面加工を行った後に、加工した試料を取り外してSEM等の電子顕微鏡の試料台に載せ変えることをせずにそのまま電子顕微鏡の鏡筒内に移動させて断面観察を行うことができる電子顕微鏡用試料台を開発した。   The inventors of the present invention have made extensive studies to achieve the above-mentioned object, and after processing a cross section with a cross section polisher or the like, the processed sample is removed and placed on a sample stage of an electron microscope such as an SEM. We developed a sample stage for an electron microscope that can be moved directly into the barrel of an electron microscope without cross-sectional observation.

すなわち、本発明に係る電子顕微鏡観察用試料台は、断面加工を行った後の試料の断面観察を行うための電子顕微鏡用の試料台であって、本体胴部上面に所定の深さの凹部を有するとともに、本体胴部側面に該側面から該凹部までを貫通する少なくとも1つの貫通孔が形成された試料台本体と、上記貫通孔に挿入される固定部材とを備え、上記断面加工を行った試料を載置した断面加工用試料台が、上記試料台本体の凹部に載置され、上記貫通孔を貫通した上記固定部材により固定されて取り付けられることを特徴とする。   That is, the electron microscope observation sample stage according to the present invention is an electron microscope sample stage for observing the cross section of the sample after the cross section processing, and has a concave portion with a predetermined depth on the upper surface of the body trunk. And a sample base body in which at least one through-hole penetrating from the side surface to the recess is formed on the side surface of the main body, and a fixing member inserted into the through-hole, and performing the cross-section processing The sample table for cross-section processing on which the sample is placed is placed in the concave portion of the sample table main body, and fixed and attached by the fixing member penetrating the through hole.

また、試料の断面観察方法は、観察対象の試料の断面加工を行い、加工して得られた該試料の断面を電子顕微鏡を用いて観察する試料の断面観察方法であって、上記電子顕微鏡の試料台は、本体胴部上面に所定の深さの凹部を有するとともに、本体胴部側面に該側面から該凹部まで貫通する少なくとも1つの貫通孔が形成された試料台本体と、上記貫通孔に挿入される固定部材とを備え、上記断面加工を行った試料を断面加工用試料台に載置させた状態で、該断面加工用試料台を上記試料台本体の凹部に載置し、上記貫通孔を貫通した上記固定部材により固定して、該試料の断面を電子顕微鏡により観察することを特徴とする。   Further, a sample cross-sectional observation method is a sample cross-sectional observation method in which a cross-section of a sample to be observed is processed and the cross-section of the sample obtained by processing is observed using an electron microscope. The sample stage has a recess having a predetermined depth on the upper surface of the main body body, and at least one through hole penetrating from the side surface to the recess is formed on the side surface of the main body, and the through hole The cross-section processing sample stage is placed in the concave portion of the sample stage main body in a state where the cross-section processing sample is placed on the cross-section processing sample stage. The sample is fixed by the fixing member penetrating the hole, and the cross section of the sample is observed with an electron microscope.

本発明に係る電子顕微鏡用試料台によれば、断面加工を行った試料をその断面加工用試料台に載置させたそのままの状態で電子顕微鏡の試料台に取り付けて断面観察を行うことができるので、酸化物粒子等の試料であってもその試料の変質を防止して、正確な断面観察を行うことができる。   According to the sample stage for an electron microscope according to the present invention, the cross-sectioned sample can be attached to the sample stage of the electron microscope as it is and placed on the cross-section sample stage for cross-sectional observation. Therefore, even in the case of a sample such as oxide particles, alteration of the sample can be prevented and accurate cross-sectional observation can be performed.

電子顕微鏡試料台を搭載した試料ホルダーを示す平面図(A)と斜視図(B)である。It is the top view (A) and perspective view (B) which show the sample holder which mounts an electron microscope sample stand. 電子顕微鏡用試料台の斜視図である。It is a perspective view of the sample stand for electron microscopes. 電子顕微鏡用試料台の上面図(A)及び正面図(B)である。It is the top view (A) and front view (B) of the sample stand for electron microscopes. 台座を示す図(A)と、その台座と一体化させた電子顕微鏡試料台を示した図(B)である。It is the figure (B) which showed the figure (A) which shows a base, and the electron microscope sample stand integrated with the base. 電子顕微鏡用試料台に対して、観察対象試料を載置させたときの状態を説明するための図である。It is a figure for demonstrating a state when an observation object sample is mounted with respect to the sample stand for electron microscopes. 電子顕微鏡の鏡筒の構成と、その鏡筒内の試料ステージに電子顕微鏡用試料台を取り付ける操作の流れを説明するための図である。It is a figure for demonstrating the structure of the lens barrel of an electron microscope, and the flow of operation which attaches the sample stand for electron microscopes to the sample stage in the lens barrel. 実施例1における電子顕微鏡(SEM)による断面観察写真図である。2 is a cross-sectional observation photograph by an electron microscope (SEM) in Example 1. FIG. 比較例1における電子顕微鏡(SEM)による断面観察写真図である。6 is a cross-sectional observation photograph by an electron microscope (SEM) in Comparative Example 1. FIG.

以下、本発明を適用した具体的な実施の形態(以下、「本実施の形態」という。)について、図面を参照しながら以下の順序で詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で変更が可能である。
1.電子顕微鏡用試料台の構成
2.電子顕微鏡用試料台に対する観察対象試料の載置
3.観察対象試料の断面加工、並びに断面観察について
Hereinafter, a specific embodiment to which the present invention is applied (hereinafter referred to as “the present embodiment”) will be described in detail in the following order with reference to the drawings. In addition, this invention is not limited to the following embodiment, A change is possible in the range which does not deviate from the summary of this invention.
1. 1. Configuration of electron microscope sample stage 2. Place the sample to be observed on the electron microscope sample stage. About cross-section processing and cross-section observation

<1.電子顕微鏡用試料台の構成>
本実施の形態に係る電子顕微鏡用試料台は、走査電子顕微鏡(Scanning Electron Microscope:SEM)等の電子顕微鏡によって、断面組織観察や後方散乱電子回折パターンによる断面結晶組織の結晶方位解析等を行う観察試料を載置するための電子顕微鏡用試料台である。この電子顕微鏡用試料台には、観察のために断面加工を行った試料(断面加工試料)が載置され、その断面加工試料が載置された状態で、例えば図1に示すような電子顕微鏡の試料ホルダー1に形成された試料台装着部2に着脱自在に取り付けられる。
<1. Structure of electron microscope sample stage>
The electron microscope sample stage according to the present embodiment is an observation that performs cross-sectional structure observation, crystal orientation analysis of a cross-sectional crystal structure by a backscattered electron diffraction pattern, and the like using an electron microscope such as a scanning electron microscope (SEM). It is the sample stand for electron microscopes for mounting a sample. On this electron microscope sample stage, a cross-section processed sample (cross-section processed sample) is placed for observation, and the cross-section processed sample is placed, for example, an electron microscope as shown in FIG. The sample holder 1 is detachably attached to the sample stage mounting portion 2 formed on the sample holder 1.

図2は、本実施の形態に係る電子顕微鏡用試料台を模式的に示した斜視図である。また図3は、その電子顕微鏡用試料台の上面図(A)及び正面図(B)である。図2及び図3に示すように、電子顕微鏡用試料台10は、試料台本体11と固定部材12とを備える。   FIG. 2 is a perspective view schematically showing the electron microscope sample stage according to the present embodiment. 3 is a top view (A) and a front view (B) of the electron microscope sample stage. As shown in FIGS. 2 and 3, the electron microscope sample stage 10 includes a sample stage body 11 and a fixing member 12.

試料台本体11は、その胴部が例えば円筒形状の金属部材から形成されたものであり、その本体胴部上面11aに所定の深さの凹部13を有する。このように、電子顕微鏡用試料台10においては、試料台本体11の胴部上面11aに所定の深さの凹部13を有することが特徴である。詳しくは後述するが、電子顕微鏡用試料台10では、試料台本体11に設けられた凹部13に、断面加工を行った観察対象試料を載置させた断面加工用試料台(例えば、クロスセクションポリッシャ用試料台)が載置固定される。   The sample stage main body 11 has a body portion formed of, for example, a cylindrical metal member, and has a recess 13 having a predetermined depth on the upper surface 11a of the body body portion. As described above, the electron microscope sample stage 10 is characterized in that the body upper surface 11a of the sample stage body 11 has the recess 13 having a predetermined depth. As will be described in detail later, in the electron microscope sample stage 10, the cross section processing sample stage (for example, a cross section polisher) in which the observation target sample subjected to cross section processing is placed in the recess 13 provided in the sample stage main body 11. The sample stage) is placed and fixed.

試料台本体11の胴部の形状は、上述した円筒形状に限定されるものではなく、その上面11aに凹部13を形成することができるものであればよい。例えば、四角柱や多角柱等の形状であってもよい。また、その大きさとしても特に限定されるものではなく、使用する電子顕微鏡に設置可能な大きさとすることができる。具体的には、例えば、直径が10〜20mm程度、高さが10〜15mm程度の円筒形状とすることができる。   The shape of the body portion of the sample stage main body 11 is not limited to the above-described cylindrical shape, and any shape can be used as long as the concave portion 13 can be formed on the upper surface 11a. For example, the shape may be a quadrangular column or a polygonal column. Further, the size is not particularly limited, and the size can be set on the electron microscope to be used. Specifically, for example, a cylindrical shape having a diameter of about 10 to 20 mm and a height of about 10 to 15 mm can be used.

また、試料台本体11の材質としては、電子顕微鏡による断面観察やEBSD測定に影響を及ぼすものでなければ特に限定されるものではない。具体的には、導通性を有し磁性を有しない材料、例えばアルミニウムや真鍮等で形成されたものを用いることができる。   Further, the material of the sample stage main body 11 is not particularly limited as long as it does not affect the cross-sectional observation by the electron microscope and the EBSD measurement. Specifically, a material that is conductive and does not have magnetism, such as aluminum or brass, can be used.

試料台本体11の上面11aに設けられた凹部13の形状は、この凹部13に載置される断面加工用試料台を確実に固定することができる形状であれば特に限定されない。例えば、図2及び図3に示すように、直方体の断面加工用試料台を載置固定可能なように、試料台本体11の胴部を直方体形状に刳り抜いた形状の凹部13とすることができる。   The shape of the recess 13 provided on the upper surface 11a of the sample stage main body 11 is not particularly limited as long as the cross section processing sample stage placed on the recess 13 can be securely fixed. For example, as shown in FIGS. 2 and 3, the body portion of the sample base body 11 is formed into a concave portion 13 that is hollowed out into a rectangular parallelepiped shape so that the sample base for cross section processing of the rectangular parallelepiped can be placed and fixed. it can.

また、その凹部13の深さは、載置固定される断面加工用試料台の高さ方向の長さよりも短いことが好ましい。これにより、後述する図5に示すように、断面加工用試料台を載置させたときに、その断面加工用試料台の上部が凹部13から突出した状態とすることができ、断面加工用試料台に載せた観察対象試料が試料台本体11の上面11a等に接触することを防ぎ、正確な断面観察が妨害されることを防止することができる。具体的に、その凹部13の深さとしては、例えば、断面加工用試料台が高さ8mm程度の直方体形状である場合には、深さが5mm程度となる凹部13とする。   Moreover, it is preferable that the depth of the recessed part 13 is shorter than the length of the height direction of the cross-section processing sample base mounted and fixed. Thereby, as shown in FIG. 5 to be described later, when the cross-section processing sample stage is placed, the upper portion of the cross-section processing sample stage can be protruded from the recess 13. It is possible to prevent the observation target sample placed on the table from coming into contact with the upper surface 11a of the sample table main body 11, and to prevent the accurate cross-sectional observation from being disturbed. Specifically, the depth of the concave portion 13 is, for example, the concave portion 13 having a depth of about 5 mm when the cross-section processing sample stage has a rectangular parallelepiped shape with a height of about 8 mm.

また、試料台本体11には、その本体胴部側面11bにその側面11bから凹部13までを貫通する少なくとも1つの貫通孔14が形成されている。この貫通孔14には、後述する固定部材12が挿入される。固定部材12は例えばネジからなり、貫通孔14は、そのネジ状の固定部材12を螺嵌することができるような孔を構成している。   In addition, the sample table main body 11 is formed with at least one through hole 14 penetrating from the side surface 11b to the recess 13 in the main body trunk side surface 11b. A fixing member 12 to be described later is inserted into the through hole 14. The fixing member 12 is made of, for example, a screw, and the through hole 14 constitutes a hole in which the screw-like fixing member 12 can be screwed.

貫通孔14の形成位置(本体胴部側面11bにおける形成位置)としては、特に限定されず、貫通孔14内を貫通させた固定部材12によって凹部13に載置させた断面加工用試料台を固定することができるような位置とすることができる。具体的に、その高さ位置としては、凹部13の深さが5mm程度である場合には、貫通孔14の中心位置の高さが2.5mm程度となる高さ位置とすることができる。また、水平方向の位置としては、その貫通孔14が、試料台本体11の中心を通って凹部13の形成方向に対して直交するように形成される位置とすることができる。   The formation position of the through hole 14 (formation position on the main body trunk side surface 11b) is not particularly limited, and the cross-section processing sample stage placed in the recess 13 is fixed by the fixing member 12 penetrating the through hole 14. It can be set as a position where it can be done. Specifically, as the height position, when the depth of the recess 13 is about 5 mm, the height position of the center position of the through hole 14 can be about 2.5 mm. Further, the horizontal position can be a position where the through hole 14 is formed so as to pass through the center of the sample table main body 11 and to be orthogonal to the formation direction of the recess 13.

固定部材12は、上述したように、例えばネジからなる。固定部材12は、図2(A)に示すように試料台本体11に形成された貫通孔14に挿入され、試料台本体11の凹部13に載置される断面加工用試料台とその試料台本体11とを支持固定する。これにより、試料台本体11の凹部13に載置させた断面加工用試料台が、その試料台本体11の所定位置からズレたり落下等したりすることを防止し、的確な断面観察を可能にする。   As described above, the fixing member 12 is made of a screw, for example. As shown in FIG. 2A, the fixing member 12 is inserted into a through-hole 14 formed in the sample table main body 11 and placed in the recess 13 of the sample table main body 11 and the sample table for cross section processing. The main body 11 is supported and fixed. As a result, the cross-section processing sample stage placed in the concave portion 13 of the sample stage main body 11 is prevented from being displaced or dropped from a predetermined position of the sample stage main body 11, thereby enabling accurate cross-sectional observation. To do.

固定部材12の形状としては、上述したネジ形状に限られるものではなく、試料台本体11と断面加工用試料台とを固定させることができれば何れの形状でもよいが、種々の大きさの断面加工用試料台に対して調節しながら固定することができるという点で、ネジ形状であることが好ましい。また、その材質についても、特に限定されるものではなく、試料台本体11と同様に、アルミニウム等の材質とすることができる。   The shape of the fixing member 12 is not limited to the above-described screw shape, and may be any shape as long as the sample base body 11 and the cross section processing sample base can be fixed. The screw shape is preferable in that it can be fixed while being adjusted to the sample stage. Further, the material is not particularly limited, and it can be made of a material such as aluminum as in the case of the sample table main body 11.

また、電子顕微鏡用試料台10は、使用する電子顕微鏡の鏡筒内の試料ステージに装着可能な試料ホルダーに取り付けられる台座と一体にしたものとすることができる。図4は、電子顕微鏡用試料台10と台座20とを示す模式図である。   The electron microscope sample stage 10 can be integrated with a pedestal attached to a sample holder that can be mounted on a sample stage in a barrel of the electron microscope to be used. FIG. 4 is a schematic diagram showing the electron microscope sample stage 10 and the pedestal 20.

台座20は、例えば円盤状や平板状の形状からなり、図1に示した試料ホルダー1に形成された試料台装着部2に取り付けることが可能となっている。この台座20についても、断面観察等に影響を及ぼさない材質、例えばアルミニウムや真鍮等で形成されている。   The pedestal 20 has, for example, a disk shape or a flat plate shape, and can be attached to the sample table mounting portion 2 formed on the sample holder 1 shown in FIG. The pedestal 20 is also formed of a material that does not affect the cross-sectional observation or the like, for example, aluminum or brass.

この台座20には、その略中心位置に軸21を有している。軸21は、台座20に対して垂直に固定されたものであり、例えば円柱形状に形成されている。この軸21についても、台座20と同様に例えばアルミニウム等の材質で形成されている。   This pedestal 20 has a shaft 21 at a substantially central position thereof. The axis | shaft 21 is fixed perpendicularly | vertically with respect to the base 20, for example, is formed in the column shape. The shaft 21 is also formed of a material such as aluminum, for example, like the base 20.

図2〜図4に示すように、電子顕微鏡用試料台10の本体胴部下面11cには、その下面11cから凹部13に向かって、下面11cに対して垂直に形成された孔部15が設けられており、その孔部15に対して台座20に垂直に立設された軸21が挿入される。このように電子顕微鏡用試料台10の孔部15に軸21が挿入されることで、電子顕微鏡用試料台10が台座20に固定され、一体化した状態となる。   As shown in FIGS. 2 to 4, a hole 15 formed perpendicular to the lower surface 11 c is provided on the lower surface 11 c of the main body of the sample base 10 for electron microscope from the lower surface 11 c toward the recess 13. A shaft 21 that is erected perpendicularly to the pedestal 20 is inserted into the hole 15. Thus, by inserting the shaft 21 into the hole 15 of the electron microscope sample stage 10, the electron microscope sample stage 10 is fixed to the pedestal 20 and integrated.

また、このように軸21を垂直立設させた台座20と電子顕微鏡用試料台10とを一体化することによって、その軸21を中心として、その円周方向に電子顕微鏡用試料台10を回転させることができる。これにより、電子顕微鏡による観察等を行うに際して、観察対象試料を載置させた電子顕微鏡用試料台10を適した角度に調整することでき、より精度の高い観察等を行うことができる。   Further, by integrating the pedestal 20 with the shaft 21 vertically set up in this way and the electron microscope sample table 10, the electron microscope sample table 10 is rotated in the circumferential direction around the shaft 21. Can be made. Thereby, when performing observation with an electron microscope or the like, the electron microscope sample stage 10 on which the sample to be observed is placed can be adjusted to an appropriate angle, and more accurate observation or the like can be performed.

電子顕微鏡用試料台10の本体胴部下面11cから形成された孔部15は、凹部13にまで貫通しているようにしてもよく、また本体胴部下面11cから凹部13に向かう本体胴部内の途中に孔の底部を有するものであってもよい。   The hole 15 formed from the main body trunk lower surface 11c of the electron microscope sample stage 10 may penetrate to the concave portion 13, and in the main body trunk facing the concave portion 13 from the main body trunk lower surface 11c. You may have a hole bottom part on the way.

また、軸21の表面形状については、特に限定されないが、図4に示すように電子顕微鏡用試料台10の孔部15に対して螺嵌挿入することができるようにネジ状の表面形状とすることが好ましい。これにより、台座20に対して電子顕微鏡用試料台10の高さ位置を自由に調整することが可能となる。また、このようにネジ状の表面形状とすることによって、軸21を中心とした円周方向への電子顕微鏡用試料台10の回転を、よりスムーズに行うことが可能となる。   Further, the surface shape of the shaft 21 is not particularly limited. However, as shown in FIG. 4, the surface shape of the shaft 21 is a screw shape so that the shaft 21 can be screwed into the hole portion 15 of the electron microscope sample stage 10. It is preferable. As a result, the height position of the electron microscope sample stage 10 can be freely adjusted with respect to the base 20. In addition, by using the screw-like surface shape in this way, the electron microscope sample stage 10 can be rotated more smoothly in the circumferential direction around the shaft 21.

なお、台座20と一体化させた電子顕微鏡用試料台10は、後述する図6の構成図に示すように、試料ホルダー1の試料台装着部2に載置された後に、その電子顕微鏡用試料台10を載置させた試料ホルダー1が電子顕微鏡の鏡筒3内における試料ステージ4に搬送されて取り付けられる。   The electron microscope sample stage 10 integrated with the pedestal 20 is placed on the sample stage mounting part 2 of the sample holder 1 as shown in the configuration diagram of FIG. A sample holder 1 on which a table 10 is placed is transported and attached to a sample stage 4 in a lens barrel 3 of an electron microscope.

<2.電子顕微鏡用試料台に対する観察対象試料の載置>
図5は、上述した構成からなる電子顕微鏡用試料台10に対して、観察対象試料を載置させたときの状態を説明するための図である。図5に示すように、電子顕微鏡用試料台10には、その凹部13の位置に断面加工用試料台30が載置固定される。すなわち、電子顕微鏡により断面観察される試料40は、断面加工用試料台30に載置されて観察の前処理としての断面加工が施された後、その断面加工用試料台30に載置された状態のままで、電子顕微鏡用試料台10に載置固定されることになる。
<2. Placement of observation sample on electron microscope sample stage>
FIG. 5 is a diagram for explaining a state when an observation target sample is placed on the electron microscope sample stage 10 having the above-described configuration. As shown in FIG. 5, the cross-section processing sample stage 30 is placed and fixed on the electron microscope sample stage 10 at the position of the recess 13. In other words, the sample 40 to be observed by the electron microscope is placed on the sample table 30 for cross-section processing, subjected to the cross-section processing as a pretreatment for observation, and then placed on the sample table 30 for cross-section processing. In this state, it is placed and fixed on the electron microscope sample stage 10.

具体的に、電子顕微鏡用試料台10への観察対象試料40の載置手順を説明する。   Specifically, a procedure for placing the observation target sample 40 on the electron microscope sample stage 10 will be described.

先ず、観察対象試料40を断面加工用試料台30に載置して断面加工を行った後に、その観察対象試料40を載置させた断面加工用試料台30を速やかに電子顕微鏡用試料台10の凹部13に載置させる。上述したように、電子顕微鏡用試料台10の凹部13は、断面加工用試料台30の形状に沿う形で形成されているので、容易にその凹部13に断面加工用試料台30を載置させることができる。   First, after placing the observation target sample 40 on the cross-section processing sample stage 30 and performing cross-section processing, the cross-section processing sample stage 30 on which the observation target sample 40 is placed is quickly transferred to the electron microscope sample stage 10. It is made to mount in the recessed part 13 of. As described above, since the concave portion 13 of the electron microscope sample stage 10 is formed along the shape of the cross section processing sample base 30, the cross section processing sample base 30 is easily placed in the concave portion 13. be able to.

次に、凹部13に断面加工用試料台30を載置させた状態で、電子顕微鏡用試料台10の本体胴部側面11bに設けられた貫通孔14を介して固定部材12を螺嵌挿入していく。すると、固定部材12の先端部12aが凹部13に載置された断面加工用試料台30と接触し、さらに固定部材12を貫通孔14内に螺嵌していくことで断面加工用試料台30を電子顕微鏡用試料台10に固定させる。   Next, the fixing member 12 is screwed and inserted through the through hole 14 provided in the body body side surface 11b of the electron microscope sample stage 10 with the cross section processing sample stage 30 placed in the recess 13. To go. Then, the tip end portion 12 a of the fixing member 12 comes into contact with the cross-section processing sample base 30 placed in the concave portion 13, and the fixing member 12 is screwed into the through hole 14, whereby the cross-section processing sample base 30. Is fixed to the electron microscope sample stage 10.

そして、このようにして観察対象試料40を載置させた状態の断面加工用試料台30を、電子顕微鏡用試料台10の凹部13に固定して取り付けると、これを速やかに電子顕微鏡の鏡筒内の試料ステージに装着可能な試料ホルダー1の試料台装着部2に取り付けて、電子顕微鏡による断面観察を行う。具体的には、観察対象試料40を載せたままの状態の断面加工用試料台30を電子顕微鏡用試料台10に固定すると、図6に示すように、その電子顕微鏡用試料台10を例えば台座20を介して試料ホルダー1に載置する。そして、その電子顕微鏡用試料台10を載置させた試料ホルダー1を、電子顕微鏡の鏡筒3内における試料ステージ4まで搬送して取り付け、断面観察を行う。   Then, when the cross-section processing sample stage 30 with the observation target sample 40 placed thereon is fixed and attached to the concave portion 13 of the electron microscope sample stage 10, it is quickly attached to the lens barrel of the electron microscope. It is attached to the sample stage mounting part 2 of the sample holder 1 that can be mounted on the inner sample stage, and the cross section is observed with an electron microscope. Specifically, when the cross-section processing sample stage 30 with the observation target sample 40 placed thereon is fixed to the electron microscope sample stage 10, as shown in FIG. 20 to be placed on the sample holder 1. Then, the sample holder 1 on which the electron microscope sample stage 10 is placed is transported and attached to the sample stage 4 in the lens barrel 3 of the electron microscope, and cross-sectional observation is performed.

ここで、本実施の形態に係る電子顕微鏡用試料台10は、大気との接触により変質が生じ易い酸化物粒子等の試料についての断面観察を行う場合に、特に好適に用いることができる。例えば、酸化物粒子の場合では、水との反応性が高く、大気中に僅か数分晒されるだけで大気中の水分と反応して粒子の変質を生じさせる。このようにして粒子の変質が生じると、断面観察においてその変質箇所が影のようになり、全体として正確な断面観察を行うことができなくなる。この粒子の変質は、大気に晒される時間が長いほど生じ易くなる。ところが、従来の電子顕微鏡による断面観察では、観察対象試料に対する断面加工を行った後、その試料を断面加工用試料台から取り外して電子顕微鏡用試料台に載せ換えるという作業を行っており、その間、約5〜10分間も大気に晒される状況となっていた。   Here, the electron microscope sample stage 10 according to the present embodiment can be particularly suitably used when cross-sectional observation is performed on a sample such as oxide particles that are easily altered by contact with the atmosphere. For example, in the case of oxide particles, the reactivity with water is high, and it reacts with moisture in the atmosphere only after being exposed to the atmosphere for a few minutes, thereby causing alteration of the particles. If the particles are altered in this way, the altered portion becomes a shadow in the cross-sectional observation, so that accurate cross-sectional observation as a whole cannot be performed. This alteration of particles is more likely to occur as the time of exposure to the atmosphere increases. However, in the cross-sectional observation with the conventional electron microscope, after performing the cross-section processing on the observation target sample, the sample is removed from the cross-section processing sample stage and replaced with the electron microscope sample stage. It was exposed to the atmosphere for about 5 to 10 minutes.

これに対して、本実施の形態に係る電子顕微鏡用試料台10では、上述したように、酸化物粒子等の観察対象試料40を、断面加工を行う際に用いる断面加工用試料台30に載置させた状態のままで、その断面加工用試料台30を電子顕微鏡用試料台10に載置させることができるようになっている。そのため、従来法のように、断面加工が終了した後に、観察対象試料を断面加工用試料台から取り外して、電子顕微鏡用試料台に載せ換えるといった作業を行うことを要しない。これにより、速やかに観察対象試料を電子顕微鏡の鏡筒内にセットすることが可能となり、その酸化物粒子等の観察対象試料が大気に晒される時間を極めて短時間とすることができ、大気との接触による変質を防止することができる。   On the other hand, in the electron microscope sample stage 10 according to the present embodiment, as described above, the observation target sample 40 such as oxide particles is mounted on the cross-section processing sample stage 30 used when the cross-section process is performed. The cross section processing sample stage 30 can be placed on the electron microscope sample stage 10 in the state of being placed. Therefore, unlike the conventional method, it is not necessary to remove the observation target sample from the cross-section processing sample stage and replace it with the electron microscope sample stage after the cross-section processing is completed. As a result, the observation target sample can be quickly set in the lens barrel of the electron microscope, and the time during which the observation target sample such as oxide particles is exposed to the atmosphere can be extremely short. It is possible to prevent the deterioration due to the contact.

このような電子顕微鏡用試料台10によれば、大気との接触により変質が生じ易い酸化物粒子等の試料であっても、その粒子本来の状態を正確に捉えることができ、精度の高い断面観察並びに粒子の状態評価を行うことができる。   According to such an electron microscope sample stage 10, even if it is a sample such as an oxide particle that easily changes in quality due to contact with the atmosphere, the original state of the particle can be accurately captured, and a highly accurate cross section is obtained. Observation and particle state evaluation can be performed.

<3.観察対象試料の断面加工、並びに断面観察について>
ここで、観察対象試料の断面加工方法、並びに断面観察方法について、以下にそれぞれ一例を示して説明する。
<3. Regarding cross-section processing and cross-section observation of specimens to be observed>
Here, the cross-section processing method and the cross-section observation method of the observation target sample will be described below with examples.

(断面加工方法)
断面加工方法としては、特に限定されないが、例えばクロスセクションポリッシャ(Cross Section Polisher:CP)等を用いて行うことができる。クロスセクションポリッシャは、ブロードなアルゴンイオン(Ar)ビームを遮蔽板から露出した試料に照射してイオンエッチングを行うことで試料を切削して断面加工する方法である。このクロスセクションポリッシャによれば、広範囲な断面加工を行うことができるとともに、平滑で加工歪のない断面を形成することができ、より精度の高い断面観察等を可能にする。
(Cross section processing method)
The cross-section processing method is not particularly limited, and can be performed using, for example, a cross section polisher (CP). The cross section polisher is a method of cutting a sample to perform cross-section processing by irradiating a sample exposed from a shielding plate with a broad argon ion (Ar + ) beam and performing ion etching. According to this cross section polisher, a wide range of cross-section processing can be performed, and a smooth cross-section having no processing distortion can be formed, thereby enabling cross-section observation with higher accuracy and the like.

具体的に、クロスセクションポリッシャによる断面加工方法は、先ず、観察対象となる酸化物粒子等の試料を熱硬化性のエポキシ樹脂等の樹脂と混合して混合物とし、その混合物をスライドガラス等で挟み込んで、加熱処理を施して樹脂を硬化させる。これによって、試料を樹脂で包埋(樹脂包埋)させる。   Specifically, in the cross section polisher, first, a sample such as an oxide particle to be observed is mixed with a resin such as a thermosetting epoxy resin to form a mixture, and the mixture is sandwiched between slide glasses or the like. Then, heat treatment is performed to cure the resin. Thus, the sample is embedded with resin (resin embedding).

次に、樹脂包埋させて得られた試料を所定の大きさに切断した後、その試料をクロスセクションポリッシャ用試料台(断面加工用試料台)にワックス(マウンティングワックス)等を塗布して貼り付ける。このとき、試料がクロスセクションポリッシャ用試料台の端部からはみ出るように貼り付ける。   Next, the sample obtained by embedding the resin is cut to a predetermined size, and the sample is then applied to a cross section polisher sample table (cross section processing sample table) by applying wax (mounting wax) or the like. wear. At this time, the sample is pasted so as to protrude from the end of the cross section polisher sample stage.

そして、試料の直上に試料が突出するように遮蔽板を置き、顕微鏡画像で加工位置の位置決めを行って、上方からアルゴンのイオンビームを照射することによって断面加工する。具体的には、真空中でアルゴンイオン銃によりアルゴンイオンビームを発生させ、作製しようとする断面となる試料面に対して垂直な方向からアルゴンイオンビームを照射する。この断面加工により、遮蔽板から突出した部分の試料がアルゴンイオンビームの照射により削られて断面が表出し、加工断面が得られる。なお、アルゴンイオンビームの加速電圧としては、特に限定されず試料の特性に合わせて適宜調整することが好ましいが、3〜6kV程度で行うことが特に好ましい。   Then, a shielding plate is placed so that the sample protrudes immediately above the sample, the processing position is positioned with a microscope image, and the cross section is processed by irradiating an argon ion beam from above. Specifically, an argon ion beam is generated by an argon ion gun in a vacuum, and the argon ion beam is irradiated from a direction perpendicular to a sample surface that is a cross section to be manufactured. By this cross-section processing, the portion of the sample that protrudes from the shielding plate is shaved by irradiation with an argon ion beam, and the cross-section is exposed to obtain a processed cross-section. The acceleration voltage of the argon ion beam is not particularly limited and is preferably adjusted according to the characteristics of the sample, but is preferably about 3 to 6 kV.

(電子顕微鏡による断面観察)
本実施の形態においては、上述した断面加工を行った後、その断面加工された試料を断面加工用試料台に載置させた状態のまま、電子顕微鏡試料台に取り付ける。すなわち、図5に示したように、クロスセクションポリッシャ等により断面加工した観察対象試料40を、その断面加工用試料台(クロスセクションポリッシャ用試料台)30に載置させた状態のまま、その断面加工用試料台30を電子顕微鏡用試料台10の凹部13に載置して固定することによって取り付ける。
(Section observation with electron microscope)
In the present embodiment, after performing the above-described cross-section processing, the cross-section processed sample is attached to the electron microscope sample stage while being placed on the cross-section processing sample stage. That is, as shown in FIG. 5, the observation target sample 40 that has been subjected to cross-section processing with a cross-section polisher or the like is placed on the cross-section processing sample base (cross-section polisher sample base) 30 and the cross-section thereof is maintained. The processing sample stage 30 is mounted by being placed and fixed in the recess 13 of the electron microscope sample stage 10.

そして、この電子顕微鏡用試料台10を、例えば走査電子顕微鏡の試料ホルダー1に形成された試料台装着部2に着脱可能な台座20に軸21を介して固定した後、図6に示したように、電子顕微鏡用試料台10を載置させた試料ホルダー1を電子顕微鏡の鏡筒3内の試料ステージ4にセットする。これにより、電子顕微鏡による断面観察や断面組織解析が可能となる。   Then, this electron microscope sample stage 10 is fixed to a pedestal 20 that can be attached to and detached from the sample stage mounting portion 2 formed on the sample holder 1 of the scanning electron microscope, for example, via a shaft 21, and as shown in FIG. The sample holder 1 on which the electron microscope sample stage 10 is placed is set on the sample stage 4 in the lens barrel 3 of the electron microscope. Thereby, cross-sectional observation and cross-sectional structure analysis with an electron microscope are possible.

走査型顕微鏡(SEM)等の電子顕微鏡による観察としては、従来知られている方法に従って行うことができる。具体的には、断面加工した観察対象試料40に対して電子線を照射し、照射された電子線による2次電子、反射電子、又は透過電子を検出して、観察対象となる試料の像を得る。例えばSEMの場合、その鏡筒3内には、電子ビームを生成するフィラメント5、コンデンサ(集束)レンズ6や対物レンズ7のレンズ系、偏向コイル8等が設けられており(図6)、フィラメント5から生成した電子ビームXが、レンズ系で絞られるとともに偏向コイル8で偏向制御され、鏡筒3下部の試料ステージ1に載置させた電子顕微鏡用試料台10の観察対象試料40に向けて照射されることで、試料の像が得られる。なお、検出した電子による2次電子像等の取得に際しては、分解能等を考慮して加速電圧、コンデンサレンズ電流値、対物絞り径、作動距離等を設定した後、撮影を行い、画像データを取得することで行うことができる。   Observation with an electron microscope such as a scanning microscope (SEM) can be performed according to a conventionally known method. Specifically, the observation target sample 40 having a cross-section processed is irradiated with an electron beam, and secondary electrons, reflected electrons, or transmitted electrons are detected by the irradiated electron beam, and an image of the sample to be observed is obtained. obtain. For example, in the case of an SEM, the lens barrel 3 is provided with a filament 5 for generating an electron beam, a lens system for a condenser (focusing) lens 6 and an objective lens 7, a deflection coil 8 and the like (FIG. 6). The electron beam X generated from 5 is focused by the lens system and controlled to be deflected by the deflection coil 8, and directed toward the observation target sample 40 of the electron microscope sample stage 10 placed on the sample stage 1 below the lens barrel 3. By irradiating, an image of the sample is obtained. When acquiring the secondary electron image by the detected electrons, set the acceleration voltage, condenser lens current value, objective aperture diameter, working distance, etc. in consideration of the resolution, etc., and then shoot to acquire the image data. Can be done.

また、例えば走査電子顕微鏡に搭載したEBSD検出器により結晶構造由来の回折パターンを取得して結晶学的な解析を行うことによって結晶方位を導き出すこともできる(EBSD法)。   In addition, for example, the crystal orientation can be derived by acquiring a diffraction pattern derived from a crystal structure by an EBSD detector mounted on a scanning electron microscope and performing crystallographic analysis (EBSD method).

以下に本発明の実施例を説明するが、本発明は下記の実施例に限定されるものではない。本実施例及び比較例では、大気に晒されるとその大気中の水分と反応して容易に変質してしまう酸化物粒子を観察対象試料として用い、その試料に対して断面加工を行い、得られた断面についての観察(断面観察)を行った。   Examples of the present invention will be described below, but the present invention is not limited to the following examples. In this example and comparative example, the oxide particles that react with moisture in the atmosphere and easily change in quality when exposed to the atmosphere are used as the observation sample, and the sample is processed by cross-section processing. Observation (cross-sectional observation) was performed on the cross section.

[実施例1]
(断面加工)
観察対象試料として酸化物粒子を使用し、先ず、その試料と熱硬化性エポキシ樹脂(Gatan社製 G2)とを十分に混合して混合物を作製した。次に、スライドガラス表面にニトフロン粘着テープ(日東電工株式会社製)を貼り、その上に作製した混合物を載せて、もう一枚のスライドガラスで挟み込み、ホットプレートの上で120℃、5分間の条件で樹脂を硬化させた。
[Example 1]
(Cross section processing)
Oxide particles were used as a sample to be observed, and first, the sample and a thermosetting epoxy resin (G2 manufactured by Gatan) were sufficiently mixed to prepare a mixture. Next, a nitroflon adhesive tape (manufactured by Nitto Denko Corporation) is pasted on the surface of the slide glass, the mixture prepared thereon is placed, sandwiched between another slide glass, and 120 ° C. for 5 minutes on the hot plate. The resin was cured under conditions.

その後、硬化させて樹脂包埋した試料を8mm×10mm程度の大きさにカミソリで切断した後、ワックス(JEOL社製 マウンティングワックス)を塗布したクロスセクションポリッシャ用試料台に貼り付け、クロスセクションポリッシャ(日本電子株式会社製 SM−09010)を用い、アルゴンイオンビームの加速電圧を5kVに設定して断面加工を行った。   After that, the cured and resin-embedded sample is cut into a size of about 8 mm × 10 mm with a razor and then attached to a cross section polisher sample table coated with wax (JEOL mounting wax), and the cross section polisher ( Cross-section processing was performed using SM-09010 manufactured by JEOL Ltd. and setting the acceleration voltage of the argon ion beam to 5 kV.

(電子顕微鏡による断面観察)
その後、走査電子顕微鏡(SEM)用の試料台に、断面加工した試料をクロスセクションポリッシャ用試料台に載せた状態のままで取り付け、速やかにSEM鏡筒に移動させてSEMによる断面観察を行った。
(Section observation with electron microscope)
After that, the cross-section processed sample was mounted on the scanning electron microscope (SEM) sample stage while it was mounted on the cross-section polisher sample stage, and was quickly moved to the SEM column for cross-sectional observation by SEM. .

ここで、電子顕微鏡用試料台としては、図2に模式図を示したように、直径15mm、高さ10mmの円筒形状であって、その本体胴部の上面に、深さ5mmの凹部を形成させ、また本体胴部側面(本体胴部上面から2.5mmの高さ位置)にその側面から凹部までを貫通する貫通孔を1つ形成させた試料台を用いた。この電子顕微鏡用試料台への観察対象試料の取り付けは、その試料台の本体胴部上面に形成された凹部に、断面加工した試料を載置させたままのクロスセクションポリッシャ用試料台を載置固定することによって取り付けた。なお、この試料台の本体胴部下面には、その下面から凹部に向かって孔部を設け、SEMの鏡筒内の試料ステージに装着可能な試料ホルダーに取り付けられる台座に固定させるようにした。試料台と台座との固定は、台座に垂直に立設された軸を、試料台の本体胴部下面に設けた孔部に挿入して行った。   Here, as shown in the schematic diagram of FIG. 2, the electron microscope sample stage has a cylindrical shape with a diameter of 15 mm and a height of 10 mm, and a concave portion with a depth of 5 mm is formed on the upper surface of the main body trunk. In addition, a sample stage was used in which one through-hole penetrating from the side surface to the concave portion was formed on the side surface of the main body (a height position of 2.5 mm from the upper surface of the main body). The sample to be observed is attached to the electron microscope sample stage by placing the cross section polisher sample stage with the cross-section processed sample placed in the recess formed on the upper surface of the main body of the sample stage. Attached by fixing. A hole was provided in the lower surface of the main body of the sample base from the lower surface toward the recess, and was fixed to a pedestal attached to a sample holder that can be mounted on the sample stage in the SEM column. The sample stage and the pedestal were fixed by inserting a shaft erected perpendicularly to the pedestal into a hole provided in the lower surface of the main body of the sample stage.

試料の断面観察は、SEM(日立ハイテクノロジーズ株式会社製 S−4700)を用いて、加速電圧1kV、作動距離6.1mmの条件で行った。   The cross section of the sample was observed using SEM (S-4700, manufactured by Hitachi High-Technologies Corporation) under the conditions of an acceleration voltage of 1 kV and a working distance of 6.1 mm.

(断面観察結果)
図7に、断面観察により得られたSEM像を示す。図7の観察写真図から明らかなように、得られた粒子断面には、試料である酸化物粒子が変質した状態は全く観察されず、正確な断面観察を行うことができた。
(Section observation result)
FIG. 7 shows an SEM image obtained by cross-sectional observation. As is clear from the observation photograph of FIG. 7, the obtained particle cross section was not observed at all in the state where the oxide particles as the sample were altered, and an accurate cross section observation could be performed.

このように、上述した電子顕微鏡用試料台を用いることによって、酸化物粒子の変質を防ぐことができ、本来の粒子断面の状態を的確に捉えて、精度の高い断面観察を行うことができることが分かった。   As described above, by using the above-described electron microscope sample stage, it is possible to prevent the oxide particles from being altered, and to accurately grasp the state of the original particle cross section and to perform high-precision cross-section observation. I understood.

[比較例1]
(断面加工)
実施例1と同様に、観察対象試料として酸化物粒子を使用してクロスセクションポリッシャによる断面加工を行った。
[Comparative Example 1]
(Cross section processing)
In the same manner as in Example 1, cross-section processing using a cross-section polisher was performed using oxide particles as an observation target sample.

(電子顕微鏡による断面観察)
次に、比較例1では、断面加工した試料をクロスセクションポリッシャ用試料台から精密ピンセットを用いて取り外し、既存のSEM観察試料台に両面テープで貼り付けて載せ換え、速やかにSEM鏡筒に移動させてSEMにより試料の断面形状を観察した。断面観察は、実施例1と同様に、SEM(日立ハイテクノロジーズ株式会社製 S−4700)を用いて、加速電圧1kV、作動距離6.1mmの条件で行った。
(Section observation with electron microscope)
Next, in Comparative Example 1, the cross-section processed sample is removed from the cross section polisher sample table using precision tweezers, attached to the existing SEM observation sample table with double-sided tape, and quickly moved to the SEM column. The cross-sectional shape of the sample was observed by SEM. Similarly to Example 1, the cross-sectional observation was performed using SEM (S-4700, manufactured by Hitachi High-Technologies Corporation) under the conditions of an acceleration voltage of 1 kV and a working distance of 6.1 mm.

(断面観察結果)
図8に、断面観察により得られたSEM像を示す。図8の観察写真図から明らかなように、得られた粒子断面には試料である酸化物粒子の変質箇所(図8中の丸囲み部)が複数観察されていることが分かる。このため、本来の酸化物粒子の状態を的確に捉えることができず、精度の高い断面観察を行うことができなかった。
(Section observation result)
FIG. 8 shows an SEM image obtained by cross-sectional observation. As is apparent from the observation photograph of FIG. 8, it can be seen that a plurality of altered portions (circled portions in FIG. 8) of the oxide particles as the sample are observed in the obtained particle cross section. For this reason, the state of the original oxide particles could not be accurately grasped, and high-precision cross-section observation could not be performed.

この試料の変質は、試料が大気中の水分と反応したために生じたと考える。すなわち、断面加工用試料台から電子顕微鏡用試料台に断面加工した試料を載せ換える作業を数分間に亘って行ったことにより、大気中の水分と反応する時間が生じてしまい、その結果として、試料の変質を引き起こしてしまったものと考えられる。   This alteration of the sample is considered to have occurred because the sample reacted with moisture in the atmosphere. That is, by performing the work of replacing the cross-section processed sample from the cross-section processing sample stage to the electron microscope sample stage over a period of several minutes, a time to react with moisture in the atmosphere occurs, and as a result, It is thought that the sample has been altered.

10 電子顕微鏡用試料台、11 試料台本体、11a 本体胴部上面、11b 本体胴部側面、11c 本体胴部下面、12 固定部材、13 凹部、14 貫通孔、15 孔部、20 台座、21 軸、30 断面加工用試料台、40 観察対象試料   DESCRIPTION OF SYMBOLS 10 Sample stand for electron microscopes, 11 Sample stand main body, 11a Main body trunk | drum upper surface, 11b Main body trunk | drum side surface, 11c Main body trunk | drum lower surface, 12 Fixing member, 13 Recessed part, 14 Through-hole, 15 hole part, 20 Base, 21 axis 30 Sample stage for cross-section processing, 40 Sample to be observed

Claims (7)

断面加工を行った後の試料の断面観察を行うための電子顕微鏡用の試料台であって、
本体胴部上面に所定の深さの凹部を有するとともに、本体胴部側面に該側面から該凹部までを貫通する少なくとも1つの貫通孔が形成された試料台本体と、
上記貫通孔に挿入される固定部材とを備え、
上記断面加工を行った試料を載置した断面加工用試料台が、上記試料台本体の凹部に載置され、上記貫通孔を貫通した上記固定部材により固定されて取り付けられることを特徴とする電子顕微鏡観察用試料台。
A sample stage for an electron microscope for performing cross-sectional observation of a sample after performing cross-section processing,
A sample base body having a recess of a predetermined depth on the upper surface of the main body body, and at least one through-hole penetrating from the side surface to the recess is formed on the side surface of the main body body;
A fixing member inserted into the through hole,
A cross-section processing sample stage on which the cross-section processed sample is placed is placed in a concave portion of the sample base body, and is fixed and attached by the fixing member penetrating the through hole. Sample stage for microscope observation.
電子顕微鏡の鏡筒内の試料ステージに装着可能な試料ホルダーに取り付けられる台座と、
上記台座に対して垂直に固定された軸とをさらに備え、
上記試料台本体には、本体胴部下面から上記凹部に向かって、該本体胴部下面に対して垂直に孔部が形成されており、該孔部に上記軸が挿入されることにより該試料台本体が上記台座に固定されることを特徴とする請求項1記載の電子顕微鏡用試料台。
A pedestal attached to a sample holder that can be mounted on a sample stage in a barrel of an electron microscope;
A shaft fixed perpendicular to the pedestal,
A hole is formed in the sample base body perpendicularly to the bottom surface of the main body from the bottom surface of the main body toward the concave portion, and the shaft is inserted into the hole so that the sample is inserted. The sample base for an electron microscope according to claim 1, wherein the base body is fixed to the pedestal.
上記試料台本体は、上記軸に挿入された状態で該軸の円周方向に回転可能であることを特徴とする請求項2記載の電子顕微鏡用試料台。   3. The sample stage for an electron microscope according to claim 2, wherein the sample stage main body is rotatable in a circumferential direction of the shaft while being inserted into the shaft. 上記試料台本体の凹部の深さは、該凹部に載置される上記断面加工用試料台の高さ方向の長さよりも短く、該断面加工用試料台を載置したときに該断面加工用試料台の上部が該凹部から突出することを特徴とする請求項1乃至請求項3の何れか1項記載の電子顕微鏡用試料台。   The depth of the recess of the sample table main body is shorter than the length in the height direction of the sample table for cross-section processing placed in the recess, and when the sample table for cross-section processing is placed, The sample stage for an electron microscope according to any one of claims 1 to 3, wherein an upper part of the sample stage protrudes from the recess. 上記断面加工用試料台は、クロスセクッションポリッシャ用の試料台であり、該試料台に樹脂包埋された試料を載置して、該試料の断面を削ることを特徴とする請求項1乃至請求項4の何れか1項記載の電子顕微鏡用試料台。   The sample table for cross-section processing is a sample table for a cross cushion polisher, and a sample embedded with a resin is placed on the sample table, and the cross section of the sample is cut. The sample stand for electron microscopes of any one of Claim 4. 上記断面観察においては、走査電子顕微鏡を用いて、断面加工した試料の二次電子像を観察することを特徴とする請求項1乃至請求項5の何れか1項記載の電子顕微鏡用試料台。   6. The electron microscope sample stage according to claim 1, wherein in the cross-sectional observation, a secondary electron image of the cross-section processed sample is observed using a scanning electron microscope. 観察対象の試料の断面加工を行い、加工して得られた該試料の断面を電子顕微鏡を用いて観察する試料の断面観察方法であって、
上記電子顕微鏡の試料台は、
本体胴部上面に所定の深さの凹部を有するとともに、本体胴部側面に該側面から該凹部まで貫通する少なくとも1つの貫通孔が形成された試料台本体と、
上記貫通孔に挿入される固定部材とを備え、
上記断面加工を行った試料を断面加工用試料台に載置させた状態で、該断面加工用試料台を上記試料台本体の凹部に載置し、上記貫通孔を貫通した上記固定部材により固定して、該試料の断面を電子顕微鏡により観察することを特徴とする試料の断面観察方法。
A sample cross-sectional observation method of performing cross-sectional processing of a sample to be observed and observing a cross-section of the sample obtained by processing using an electron microscope,
The sample stage of the electron microscope is
A sample base main body having a concave portion of a predetermined depth on the upper surface of the main body body, and at least one through-hole penetrating from the side surface to the concave portion on the side surface of the main body body;
A fixing member inserted into the through hole,
With the cross-section processed sample placed on the cross-section processing sample base, the cross-section processing sample base is placed in the concave portion of the sample base main body and fixed by the fixing member penetrating the through hole. And observing the cross section of the sample with an electron microscope.
JP2013014142A 2013-01-29 2013-01-29 Sample stage for electron microscope observation and cross-sectional observation method of sample Active JP6024485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014142A JP6024485B2 (en) 2013-01-29 2013-01-29 Sample stage for electron microscope observation and cross-sectional observation method of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014142A JP6024485B2 (en) 2013-01-29 2013-01-29 Sample stage for electron microscope observation and cross-sectional observation method of sample

Publications (2)

Publication Number Publication Date
JP2014146493A true JP2014146493A (en) 2014-08-14
JP6024485B2 JP6024485B2 (en) 2016-11-16

Family

ID=51426574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014142A Active JP6024485B2 (en) 2013-01-29 2013-01-29 Sample stage for electron microscope observation and cross-sectional observation method of sample

Country Status (1)

Country Link
JP (1) JP6024485B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187479A (en) * 2016-03-30 2017-10-12 Jx金属株式会社 Manufacturing method of analysis sample and analysis method of particulate matter sample
KR101878753B1 (en) * 2012-12-20 2018-07-16 삼성전자주식회사 Sample stage used in microscopy for vertical loading and scanning probe microscopy using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215762U (en) * 1985-07-12 1987-01-30
JP2003100245A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Sample holder for focused ion beam machining observation device
JP2011204367A (en) * 2010-03-24 2011-10-13 Sumitomo Metal Mining Co Ltd Sample stand for electron microscope
JP2012202834A (en) * 2011-03-25 2012-10-22 Tokyo Electric Power Co Inc:The Observation method for microstructure of polymeric material
JP2013011540A (en) * 2011-06-30 2013-01-17 Hitachi High-Technologies Corp Sample creation device, creation method, and charged particle beam device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215762U (en) * 1985-07-12 1987-01-30
JP2003100245A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Sample holder for focused ion beam machining observation device
JP2011204367A (en) * 2010-03-24 2011-10-13 Sumitomo Metal Mining Co Ltd Sample stand for electron microscope
JP2012202834A (en) * 2011-03-25 2012-10-22 Tokyo Electric Power Co Inc:The Observation method for microstructure of polymeric material
JP2013011540A (en) * 2011-06-30 2013-01-17 Hitachi High-Technologies Corp Sample creation device, creation method, and charged particle beam device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878753B1 (en) * 2012-12-20 2018-07-16 삼성전자주식회사 Sample stage used in microscopy for vertical loading and scanning probe microscopy using the same
JP2017187479A (en) * 2016-03-30 2017-10-12 Jx金属株式会社 Manufacturing method of analysis sample and analysis method of particulate matter sample

Also Published As

Publication number Publication date
JP6024485B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US9129774B2 (en) Method of using a phase plate in a transmission electron microscope
US9507139B2 (en) Specimen holder, specimen preparation device, and positioning method
JP2007324128A (en) Sample carrier, and sample holder
JP2010003617A (en) Sample stand, sample rotating holder, construction method of sample stand, and sample stand construction method, and test piece analyzing method
JP4654216B2 (en) Sample holder for charged particle beam equipment
JP2012146659A (en) Particle beam device for processing and/or analyzing sample, and method
JP6024485B2 (en) Sample stage for electron microscope observation and cross-sectional observation method of sample
CN109075003A (en) Charged particle beam apparatus and specimen holder
US20080073521A1 (en) Standard specimen for a charged particle beam apparatus, specimen preparation method thereof, and charged particle beam apparatus
WO2014195998A1 (en) Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method
WO2021059401A1 (en) Sample holder, method for using sample holder, projection amount adjustment jig, projection amount adjustment method and charged particle beam device
JP2008014899A (en) Sample preparing method
EP2797100A1 (en) Method of using a phase plate in a transmission electron microscope
US9734985B2 (en) Analytical apparatus, sample holder and analytical method
EP3023763A1 (en) Specimen preparation device
US10269534B2 (en) Mask position adjustment method of ion milling, electron microscope capable of adjusting mask position, mask adjustment device mounted on sample stage and sample mask component of ion milling device
JP2011204367A (en) Sample stand for electron microscope
JP2009192341A (en) Preparation method of sliced sample for transmission electron microscope, and sample stand used therefor
JP2010146957A (en) Sample holder
US9947506B2 (en) Sample holder and focused ion beam apparatus
WO2015136635A1 (en) Sample observation method and charged particle beam apparatus
JP2007139633A (en) Method of preparing sample for scanning electron microscope
JP2021144855A (en) Sample holder and analysis method
JP2017187288A (en) Method for analyzing abnormal portion on surface of laminate
JP2016033899A (en) Observation method and analytical method of particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6024485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150