JP2010146957A - Sample holder - Google Patents

Sample holder Download PDF

Info

Publication number
JP2010146957A
JP2010146957A JP2008325774A JP2008325774A JP2010146957A JP 2010146957 A JP2010146957 A JP 2010146957A JP 2008325774 A JP2008325774 A JP 2008325774A JP 2008325774 A JP2008325774 A JP 2008325774A JP 2010146957 A JP2010146957 A JP 2010146957A
Authority
JP
Japan
Prior art keywords
sample
sample holder
fib
holder
turntable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008325774A
Other languages
Japanese (ja)
Other versions
JP5135551B2 (en
Inventor
Genichi Shigesato
元一 重里
Shunsuke Taniguchi
俊介 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008325774A priority Critical patent/JP5135551B2/en
Publication of JP2010146957A publication Critical patent/JP2010146957A/en
Application granted granted Critical
Publication of JP5135551B2 publication Critical patent/JP5135551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shared sample holder by which a sample is machined from multi-directions without removing the sample, and which is used in a focused ion beam machining device and a transmission electron microscope. <P>SOLUTION: The sample holder at least includes: a sample holder body; a circular arc-shaped rotating table having a projection for rotating operation, a sample stand for mounting the sample and having a hole for fitting to the projection of the rotating table; a sample stand pressing means for pressing the sample stand mounted on the sample holder body from above the sample stand; and a fixing means for fixing the sample stand pressing means on the sample holder. The sample holder body includes a cutout part for FIB machining formed on a part of an incident side of an FIB, an electron beam passage hole for TEM observation, a circular arc-shaped groove along the passage hole formed so as to fit to the circular arc-shaped rotating table. The sample stand is fixed on the sample holder by the sample stand pressing means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、集束イオンビーム加工装置と透過型電子顕微鏡に用いる共用試料ホルダーに関する。   The present invention relates to a common sample holder used for a focused ion beam processing apparatus and a transmission electron microscope.

透過型電子顕微鏡(以下、TEMと略す。)観察に用いる薄膜試料の作製方法として、集束イオンビーム加工装置(以下、FIBと略す。)を利用した方法が広く用いられている。特に、特許文献1〜3に記載されているように、大きな試料から数μm〜数十μm程度の微細な部分を摘出し、専用の試料台に接着後、摘出した試料片を薄膜化する方法(以下、マイクロサンプリング法と称す。)は、観察したい部分を狙って薄膜試料にすることが可能であり、現在広く用いられている。   As a method for manufacturing a thin film sample used for transmission electron microscope (hereinafter abbreviated as TEM) observation, a method using a focused ion beam processing apparatus (hereinafter abbreviated as FIB) is widely used. In particular, as described in Patent Documents 1 to 3, a method of extracting a small part of several μm to several tens of μm from a large sample and bonding the sample to a dedicated sample stage, and then thinning the extracted sample piece (Hereinafter referred to as a microsampling method) can be used as a thin film sample aiming at a portion to be observed, and is currently widely used.

FIBにより加工した試料は、加工終了後、TEMで観察するために、TEM内に挿入される。FIBとTEMで別の試料ホルダーを使うと、FIB用の試料ホルダーからTEM用の試料ホルダーに試料を移し替える必要があり、試料が非常に小さく壊れ易いために、この移し替え作業中に試料を破損する恐れがある。したがって、FIBで試料を加工する際に用いる試料ホルダーと、TEMでの観察に用いる試料ホルダーは、同一である方が望ましく、そのような共用ホルダーが広く用いられている。   The sample processed by FIB is inserted into the TEM for observation with the TEM after the processing is completed. If different sample holders are used for FIB and TEM, it is necessary to transfer the sample from the FIB sample holder to the TEM sample holder, and the sample is very small and easily broken. There is a risk of damage. Therefore, it is desirable that the sample holder used when processing the sample with FIB and the sample holder used for observation with TEM are the same, and such a shared holder is widely used.

FIBで作製した試料には、集束イオンビームの入射方向と平行な筋状の表面凹凸が付くことが多い(例えば特許文献1、2を参照)。このような筋状の表面凹凸は、TEMによる組織観察時に邪魔になるため、できる限り低減することが望ましい。筋状の表面凹凸を低減するために最も有効な方法は、ある方向から試料を加工した後、最初の加工方向と直交する方向から加工することである(図1を参照)。さらには、最初の加工方向とそれに直交する方向だけでなく、多方向から加工することで、試料の表面凹凸はさらに低減する。また、1方向からのみ加工した場合、集束イオンビーム源に近い試料部分と、遠い試料部分で、試料厚みが異なる。このような試料厚みの違いを低減するためには、ある方向から試料を加工した後、最初の加工方向とのなす角が180°の方向から加工すると良い(図1を参照)。したがって、FIBにおける試料加工では、できるだけ広い角度範囲で加工できることが望ましい。   Samples produced by FIB often have streaky surface irregularities parallel to the incident direction of the focused ion beam (see, for example, Patent Documents 1 and 2). Such streak-like surface irregularities are obstructive when observing the structure with a TEM, and are desirably reduced as much as possible. The most effective method for reducing streak-like surface irregularities is to process a sample from a certain direction and then from a direction orthogonal to the initial processing direction (see FIG. 1). Furthermore, the surface unevenness of the sample is further reduced by processing from multiple directions as well as the initial processing direction and the direction orthogonal thereto. When processing is performed only from one direction, the sample thickness is different between the sample portion close to the focused ion beam source and the sample portion far from the focused ion beam source. In order to reduce such a difference in thickness of the sample, it is preferable to process the sample from a certain direction and then process from the direction where the angle with the first processing direction is 180 ° (see FIG. 1). Therefore, in the sample processing in FIB, it is desirable that processing can be performed in as wide an angle range as possible.

しかしながら、現在、広く用いられているFIB用の試料ホルダーでは、加工方向を変えるためには、試料を一度試料ホルダーから取り外し、角度を変えて、再度取り付けなければならず、作業効率が悪い上、試料を破損することが多い。   However, in the currently used FIB sample holder, in order to change the processing direction, the sample must be once removed from the sample holder, changed in angle, and reattached. The sample is often damaged.

試料を取り外すことなく、多方向からの加工を可能にした方法の一例として、特許文献2のFIB用試料ホルダーや、特許文献3に提案された試料リテイナーがある。しかしながら、特許文献2に提案されている試料ホルダーは、FIB専用の試料ホルダーであり、TEM用試料ホルダーではない。実際の試料作製及び観察の過程では、FIB加工後、TEM観察し、再度FIB加工し、TEM観察すると言う過程を何度も繰り返すことが多く、その度にFIB試料ホルダーから試料を取り外し、TEM用試料ホルダーに試料を移す作業を必要とする前記FIB用試料ホルダーは、作業効率の点で好ましくない上、試料を移す際に、ハンドリングミスにより試料を破損する確率が高い。   As an example of a method that enables processing from multiple directions without removing the sample, there is a FIB sample holder of Patent Document 2 and a sample retainer proposed in Patent Document 3. However, the sample holder proposed in Patent Document 2 is a FIB dedicated sample holder, not a TEM sample holder. In the actual sample preparation and observation process, after the FIB processing, the TEM observation, the FIB processing, and the TEM observation are often repeated many times. Each time, the sample is removed from the FIB sample holder and used for TEM. The FIB sample holder that requires the operation of transferring the sample to the sample holder is not preferable in terms of work efficiency, and has a high probability of damaging the sample due to a handling error when the sample is transferred.

特許文献3の試料リテイナーは、FIB用の試料ホルダー又はTEM用の試料ホルダーの先端に取り付けて使用するため、FIB加工後TEM観察する際、及び、TEM観察後、再度FIB加工する際、試料リテイナーを取り外して、付け替える作業を必要とするため、やはり作業効率の点で好ましくない。さらには、加工方向は0〜90°の範囲でしか変化させることができないため、厚さが均一な試料を作製することは難しい。   The sample retainer of Patent Document 3 is used by being attached to the tip of an FIB sample holder or a TEM sample holder. Therefore, when performing TEM observation after FIB processing, and when performing FIB processing again after TEM observation, It is also not preferable in terms of work efficiency. Furthermore, since the processing direction can be changed only in the range of 0 to 90 °, it is difficult to produce a sample having a uniform thickness.

特開平11−258129号公報JP 11-258129 A 特開2007−220344号公報JP 2007-220344 A 特開2003−149103号公報JP 2003-149103 A

そこで、本発明は、FIBによりTEM観察に用いる試料を作製するに当たり、試料を取り外すことなく、0〜180°の角度範囲の多方向からの加工を可能にする、FIBとTEMの共用試料ホルダーを提供することを目的とする。   Therefore, the present invention provides a common sample holder for FIB and TEM that enables processing from multiple directions in an angle range of 0 to 180 ° without removing the sample when preparing a sample to be used for TEM observation by FIB. The purpose is to provide.

本発明の主旨とするところは、以下の通りである。
(1) 集束イオンビーム(FIB)加工装置と透過型電子顕微鏡(TEM)の試料ホルダーとして共用できる試料ホルダーであって、試料ホルダー本体と、回転操作のための突起を有する円弧状回転台と、試料を搭載する試料台であって前記回転台の突起に嵌合するための穴を有する試料台と、前記試料ホルダー本体に装着された前記試料台を当該試料台の上から押さえる試料台押さえ手段と、前記試料台が前記円弧状回転台に連動して回転可能なように前記試料台押さえ手段を試料ホルダーに固定する固定手段と、を少なくとも有すると共に、試料ホルダー本体に、FIBが入射する側の一部に形成されたFIB加工用の切り欠き部と、TEM観察用の電子線通過穴と、該通過穴に沿った円弧状の溝と、が前記円弧状回転台を嵌合可能に形成されており、試料台押さえ手段によって、前記試料ホルダーに前記試料台を固定することを特徴とする、試料ホルダー。
(2) 前記突起の直径が0.1〜1.0mmであり、突起の高さが0.3〜3mmである(1)に記載の試料ホルダー。
The gist of the present invention is as follows.
(1) A sample holder that can be used as a sample holder for a focused ion beam (FIB) processing apparatus and a transmission electron microscope (TEM), a sample holder main body, an arcuate turntable having a protrusion for rotating operation, A sample stage on which a sample is mounted and having a hole for fitting to a protrusion of the rotating table, and a sample stage pressing means for pressing the sample stage mounted on the sample holder body from above the sample stage And a fixing means for fixing the sample table pressing means to the sample holder so that the sample table can rotate in conjunction with the arcuate rotary table, and the side on which the FIB enters the sample holder main body A notch portion for FIB processing formed in a part of this, an electron beam passage hole for TEM observation, and an arcuate groove along the passage hole are formed so that the arcuate turntable can be fitted. A sample holder, characterized in that the sample table is fixed to the sample holder by a sample table pressing means.
(2) The sample holder according to (1), wherein the diameter of the protrusion is 0.1 to 1.0 mm and the height of the protrusion is 0.3 to 3 mm.

本発明の試料ホルダーを用いることで、TEM観察に用いる試料をFIBにより作製するに当たり、表面の筋状凹凸が少なく、厚さが均一な試料を効率良く作製することができる。また、試料の取り外し作業や移し替え作業が不要であることから、作業効率が高く、しかも、試料の周囲に試料ホルダー本体が配置されているため、試料の破損を防止することができる。   By using the sample holder of the present invention, when a sample used for TEM observation is manufactured by FIB, a sample with less surface streaks and a uniform thickness can be efficiently manufactured. In addition, since there is no need to remove or transfer the sample, the work efficiency is high, and the sample holder body is disposed around the sample, so that the sample can be prevented from being damaged.

以下、本発明の実施の形態について、添付図面に基づいて説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図2は、本実施形態の試料ホルダーの先端部の一例を示す平面図である。材質は、通常のFIB用試料ホルダーと同様に、真鍮等で良い。図2に示すように、本実施形態において、試料ホルダーは、試料ホルダー本体1と、円弧状回転台2と、試料台16と、本実施形態の試料台押さえ手段の一例としての押さえ板20とを含む。通常のFIB用試料ホルダーと同様に、集束イオンビームが試料に入射できるように、試料ホルダ本体1の入射する側の一部が切り欠いてある。切り欠き部分の角度5は、60〜120°程度が良い。小さ過ぎる(60°未満)と、加工できる試料の領域が小さくなり過ぎる。逆に、大き過ぎる(120°超)と、試料ホルダーの強度が弱くなる。また、試料押さえ固定用ネジ穴9は、後述する押さえ板20をネジによって試料台に固定するための穴である。   FIG. 2 is a plan view showing an example of the tip portion of the sample holder of the present embodiment. The material may be brass or the like, similar to a normal FIB sample holder. As shown in FIG. 2, in this embodiment, the sample holder includes a sample holder main body 1, an arcuate rotating table 2, a sample table 16, and a pressing plate 20 as an example of the sample table pressing means of this embodiment. including. Similar to a normal FIB sample holder, a part of the incident side of the sample holder main body 1 is notched so that the focused ion beam can be incident on the sample. The angle 5 of the notch is preferably about 60 to 120 °. If it is too small (less than 60 °), the area of the sample that can be processed becomes too small. Conversely, if it is too large (over 120 °), the strength of the sample holder will be weak. Further, the sample presser fixing screw hole 9 is a hole for fixing a presser plate 20, which will be described later, to the sample stage with screws.

また、該切り欠き部の奥に、TEM観察時に電子線が通過できるように、電子線通過穴10が設けられている。そして、試料ホルダーの該電子線通過穴10周囲の少なくとも一部に円弧状の溝4が刻まれてあり、その溝に円弧状回転台2が嵌め込んである。円弧状回転台2は、溝4に沿って動かすことができる。円弧状回転台2には突起3が付いており、突起3に略扇型状の試料台16を嵌め込んで固定する(図4を参照)。   In addition, an electron beam passage hole 10 is provided in the back of the notch so that an electron beam can pass during TEM observation. An arc-shaped groove 4 is carved into at least a part of the periphery of the electron beam passage hole 10 of the sample holder, and the arc-shaped turntable 2 is fitted into the groove. The arcuate turntable 2 can be moved along the groove 4. The arc-shaped turntable 2 is provided with a projection 3, and a substantially fan-shaped sample table 16 is fitted and fixed to the projection 3 (see FIG. 4).

溝4の外周部の円弧の大きさは、試料台16の大きさによって決まる。試料台16の大きさは、半径が1mm未満だと取り扱いが難しい。逆に、半径が3mm超だと、通常の汎用TEMの試料室に試料ホルダーを挿入することが難しい。したがって、試料台16の大きさは、半径1〜3mmが望ましい。ここでいう、半径とは、円弧を円周の一部として含む円の半径をいい、例えば略扇形状の試料台16における半径Rは、図4に示す通りである。このような試料台16を嵌め込むのであるから、前記円弧の大きさも外側の弧の半径1〜3mmであることが望ましい。   The size of the arc on the outer periphery of the groove 4 is determined by the size of the sample table 16. The sample stage 16 is difficult to handle if the radius is less than 1 mm. On the other hand, if the radius exceeds 3 mm, it is difficult to insert the sample holder into the sample chamber of a normal general-purpose TEM. Therefore, the size of the sample stage 16 is desirably a radius of 1 to 3 mm. Here, the radius means a radius of a circle including an arc as a part of the circumference. For example, the radius R in the substantially fan-shaped sample stage 16 is as shown in FIG. Since such a sample stage 16 is fitted, it is desirable that the size of the arc is also 1 to 3 mm in radius of the outer arc.

円弧状の溝4の深さは、試料ホルダー本体1の厚さにもよるが、0.1〜2mm程度が望ましい。0.1mm未満だと円弧状回転台2を嵌め込んで固定することが難しく、2mm超だと試料ホルダー本体1の厚みが厚くなり過ぎ、TEM観察に支障をきたす可能性が高くなる。また、円弧状の溝4は、試料ホルダー本体1を貫通すると円弧状回転台2を乗せることが難しくなるので、試料ホルダー本体1を貫通しない深さとすることが好ましい。   The depth of the arc-shaped groove 4 is preferably about 0.1 to 2 mm, although it depends on the thickness of the sample holder body 1. If it is less than 0.1 mm, it is difficult to fit and fix the arcuate turntable 2, and if it is more than 2 mm, the thickness of the sample holder main body 1 becomes too thick, and the possibility of hindering TEM observation increases. Moreover, since it becomes difficult to place the arcuate turntable 2 when the arc-shaped groove 4 penetrates the sample holder main body 1, it is preferable that the arc-shaped groove 4 has a depth that does not penetrate the sample holder main body 1.

円弧状の溝4の幅8は、0.1〜2.0mm程度が望ましい。0.1mm未満だと取り扱いが難しく、円弧状回転台2を嵌め込んで固定することが難しくなる可能性が高い。2.0mm超だと、TEM観察時の電子線通過穴10が小さくなり、観察範囲が小さくなるため好ましくない。   The width 8 of the arcuate groove 4 is preferably about 0.1 to 2.0 mm. If it is less than 0.1 mm, handling is difficult, and there is a high possibility that it is difficult to fit and fix the arcuate turntable 2. If it exceeds 2.0 mm, the electron beam passage hole 10 at the time of TEM observation becomes small and the observation range becomes small, which is not preferable.

円弧状の溝4の内側の試料ホルダー部分6の幅は、0.1〜2.0mm程度が望ましい。0.1mm未満だと、試料ホルダーの強度が弱くなるため、好ましくない。2.0mm超だと、TEM観察時の電子線通過穴10が小さくなり、観察範囲が小さくなるため、好ましくない。   The width of the sample holder portion 6 inside the arc-shaped groove 4 is preferably about 0.1 to 2.0 mm. If it is less than 0.1 mm, the strength of the sample holder becomes weak, which is not preferable. If it exceeds 2.0 mm, the electron beam passage hole 10 at the time of TEM observation becomes small and the observation range becomes small.

図3に、円弧状回転台2の形状を示す。円弧状回転台2の頂角11の大きさは、90〜180°程度が望ましい。90°未満だと、円弧状回転台2の面積が小さくなり、試料台の装着及び固定が難しい。180°超だと、円弧状回転台2がイオンビームの経路に重なるため、試料の加工方向を180°変化させることができない。   FIG. 3 shows the shape of the arcuate turntable 2. The size of the apex angle 11 of the arcuate turntable 2 is desirably about 90 to 180 °. If it is less than 90 °, the area of the arcuate turntable 2 becomes small, and it is difficult to mount and fix the sample table. If it exceeds 180 °, the arcuate turntable 2 overlaps the path of the ion beam, so that the processing direction of the sample cannot be changed by 180 °.

円弧状回転台2の厚み15は、厚過ぎると固定し難いため、溝4の深さと同じかそれ以下であることが望ましく、0.1〜2mmであれば良い。   Since the thickness 15 of the arcuate turntable 2 is difficult to fix if it is too thick, it is preferably equal to or less than the depth of the groove 4 and may be 0.1 to 2 mm.

円弧状回転台2に付いている突起3の高さ14は、0.3〜3mmが望ましい。0.3mm未満だと取り扱いが難しく、3mm超になるとTEMやFIBの試料室に挿入することが難しくなる可能性が高い。   The height 14 of the protrusion 3 attached to the arcuate turntable 2 is preferably 0.3 to 3 mm. If it is less than 0.3 mm, it is difficult to handle, and if it exceeds 3 mm, it is likely to be difficult to insert it into the TEM or FIB sample chamber.

突起3の直径は、0.1〜1.0mmが望ましい。0.1mm未満だと取り扱いが難しくなる可能性が高い。1.0mm超だと円弧状回転台2の幅よりも大きくなり過ぎるおそれがあり、円弧状回転台2を溝4に嵌め込むことができなくなる可能性がある。但し、突起の形状は、円柱状に限られず、例えば三角柱や四角柱のような多角柱、断面が楕円状、その他の形状のものなど、取り扱いが容易な形状であればよい。この場合、突起の断面の形状の大きさは、直径0.1〜1.0mmの円の内部の形状に収まる。   The diameter of the protrusion 3 is preferably 0.1 to 1.0 mm. If it is less than 0.1 mm, handling is likely to be difficult. If it exceeds 1.0 mm, the width of the arcuate turntable 2 may become too large, and the arcuate turntable 2 may not be fitted in the groove 4. However, the shape of the protrusion is not limited to a cylindrical shape, and may be any shape that can be easily handled, for example, a polygonal column such as a triangular column or a quadrangular column, an elliptical cross section, or other shapes. In this case, the size of the shape of the cross-section of the protrusion is within the shape of a circle having a diameter of 0.1 to 1.0 mm.

図4に、本実施形態の試料ホルダーに試料台16を装着した状態を示す。試料ホルダーに装着された試料台16上であって、切り欠き部から照射したFIBと、TEM観察時の電子線とが照射可能な位置に、試料18は装着される。図5には、試料台16の上から押さえ板20を装着し、試料押さえ固定用ネジ穴19にネジ21を嵌合して固定した状態を示す。試料台16は、通常FIBで加工する際に用いる略半円状もしくは略扇型の金属板で良い。必要に応じて略半円状もしくは略扇型の一部に三角形状の部分が付いているものでも良い。試料台16の厚さは0.01〜0.2mmが望ましい。厚さが0.01mm未満だと、ピンセット等での取り扱いが難しい上、試料ホルダーの強度が弱くなり、曲がる恐れがある。試料台の厚さが0.2mm超だと、本発明の試料ホルダーにしっかりと固定することが難しくなる。   FIG. 4 shows a state in which the sample stage 16 is mounted on the sample holder of the present embodiment. The sample 18 is mounted on the sample table 16 mounted on the sample holder at a position where the FIB irradiated from the notch and the electron beam at the time of TEM observation can be irradiated. FIG. 5 shows a state in which the presser plate 20 is mounted from above the sample stage 16 and the screw 21 is fitted and fixed to the sample presser fixing screw hole 19. The sample stage 16 may be a substantially semicircular or substantially fan-shaped metal plate that is usually used when processing with FIB. If necessary, a substantially semicircular or substantially fan-shaped part with a triangular portion may be used. The thickness of the sample stage 16 is desirably 0.01 to 0.2 mm. If the thickness is less than 0.01 mm, handling with tweezers or the like is difficult, and the strength of the sample holder is weakened, which may cause bending. When the thickness of the sample stage is more than 0.2 mm, it is difficult to firmly fix the sample stage to the sample holder of the present invention.

本実施形態の試料ホルダーに装着するために、試料台16は、突起3を嵌め込む穴17を有することが必要である。穴17の直径は、例えば0.15〜1.1mm程度が好ましい。試料台16を本発明の試料ホルダーに装着するには、試料台の穴17を円弧状回転台2の突起3に嵌め込むようにして、試料台を置き、その上から押さえ板20を被せ、ネジ21で固定する。押さえ板20を試料に被せる際に、回転台の突起3が邪魔にならないように、押さえ板20には、試料ホルダーの円弧状の溝4と同じ曲率の円弧状の穴22があいている。   In order to attach to the sample holder of this embodiment, the sample stage 16 needs to have a hole 17 into which the protrusion 3 is fitted. The diameter of the hole 17 is preferably about 0.15 to 1.1 mm, for example. In order to attach the sample table 16 to the sample holder of the present invention, the sample table is placed so that the hole 17 of the sample table is fitted into the protrusion 3 of the arcuate rotary table 2, and the pressing plate 20 is placed thereon, and the screw 21. Secure with. An arc-shaped hole 22 having the same curvature as the arc-shaped groove 4 of the sample holder is formed in the pressing plate 20 so that the protrusion 3 of the turntable does not get in the way when the pressing plate 20 is put on the sample.

試料台16を回転させるには、ねじ21を一旦緩め、突起3をピンセット等で掴んで円弧状回転台2と一緒に回転させる。この方法では、試料押さえ板20は外す必要がなく、試料台16は円弧状回転台2に装着されたままで、試料台16を回転させることができるため、ハンドリングミスによる試料の破損を殆ど無くすことができる。   In order to rotate the sample stage 16, the screw 21 is once loosened, the protrusion 3 is grasped with tweezers or the like, and is rotated together with the arcuate turntable 2. In this method, it is not necessary to remove the sample holding plate 20, and the sample table 16 can be rotated while the sample table 16 is still mounted on the arcuate rotary table 2, so that almost no damage to the sample due to a handling mistake is eliminated. Can do.

(実施例1)
表1に示す化学組成を有する鋼を作製し、幅3mm、長さ5mm、厚さ1mmに切り出して、FIB加工装置に挿入し、タングステン製の針を使って、マイクロサンプリング法により試料の一部を抽出した。抽出した試料は、タングステン製の針の先端に接着してある。抽出した試料の大きさは、幅5μm、長さ10μm、高さ15μmである。
Example 1
A steel having the chemical composition shown in Table 1 was prepared, cut into a width of 3 mm, a length of 5 mm, and a thickness of 1 mm, inserted into a FIB processing apparatus, and a part of the sample was obtained by microsampling using a tungsten needle. Extracted. The extracted sample is adhered to the tip of a tungsten needle. The extracted sample has a width of 5 μm, a length of 10 μm, and a height of 15 μm.

Figure 2010146957
Figure 2010146957

真鍮を加工して、図6に示す先端部を有する試料ホルダー、図7に示す円弧状回転台、及び、図8に示す押さえ板を作製した。さらに、Mo製の半円状試料台に穴を打ち抜き、図9に示す試料台を作製した。前記円弧状回転台を前記試料ホルダーの溝に嵌め込み、回転台の突起に前記試料台の穴を嵌め込むようにして、試料台を回転台の上に被せ、その上から押さえ板を被せて、ネジで固定した。このようにして、試料台を固定した試料ホルダーを、FIB加工装置内に挿入し、先に抽出しておいた試料を、試料台の上に載せ、タングステンの化学蒸着により固定した。抽出した試料を試料台の上に載せた状態を図10に示す。試料台に固定した試料を、図10に示した方向からのGaイオンビームで加工し、ビーム入射側の試料厚さを約0.1μmにした。この時、ビーム入射側と反対側の試料の厚さは約0.3μmであった(図11を参照)。次に、試料押さえのネジを緩め、円弧状回転台を180°回転させて、Gaイオンビームが試料の反対側から入射する状態にして、再度押さえ板をネジで固定し、反対側の試料厚みも0.1μmになるように加工した(図12を参照)。次いで、試料押さえのネジを再度緩め、円弧状回転台を90°回転させて、Gaイオンビームが、最初の加工方向と直行する方向から入射するようにし、Gaイオンビームで試料をさらに0.01μm程度薄くした。   Brass was processed to prepare a sample holder having a tip shown in FIG. 6, an arcuate turntable shown in FIG. 7, and a pressing plate shown in FIG. Furthermore, a hole was punched into a semicircular sample table made of Mo, and a sample table shown in FIG. 9 was produced. Fit the arc-shaped turntable into the groove of the sample holder, fit the hole of the sample table into the protrusion of the turntable, cover the sample table on the turntable, cover the pressing plate from above, and screw Fixed. In this way, the sample holder to which the sample stage was fixed was inserted into the FIB processing apparatus, and the previously extracted sample was placed on the sample stage and fixed by chemical vapor deposition of tungsten. FIG. 10 shows a state where the extracted sample is placed on the sample stage. The sample fixed on the sample stage was processed with a Ga ion beam from the direction shown in FIG. 10, and the sample thickness on the beam incident side was set to about 0.1 μm. At this time, the thickness of the sample on the side opposite to the beam incident side was about 0.3 μm (see FIG. 11). Next, loosen the sample holding screw, rotate the arcuate turntable 180 ° so that the Ga ion beam is incident from the opposite side of the sample, and fix the holding plate again with the screw. Was also processed to 0.1 μm (see FIG. 12). Next, the sample holding screw is loosened again, and the arcuate turntable is rotated 90 ° so that the Ga ion beam is incident from a direction perpendicular to the first processing direction, and the sample is further 0.01 μm with the Ga ion beam. Thinned about.

この方法で作製した試料をTEMで観察し、試料厚さ及び試料表面の筋状凹凸の有無を調べた。TEM観察は、FIB加工した試料を搭載した試料ホルダーをそのままTEMに装着して、実施した。観察に用いた加速電圧は200kVである。試料厚さは、電子線エネルギー損失分光法(以下、EELS)の弾性散乱強度Ieと非弾性散乱強度Inから、次式により求めた。
t=λ・ln{(Ie+In)/Ie}
但し、tは試料厚さ、λは材料中の電子線の有効平均自由工程である。λは、R.F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope Second Edition、Plenum Publishing Corporation (1996年)に記載の値(0.074μm)を用いて計算した。試料厚さの測定は、図13のa、b、c、dに示すように、試料の4箇所で行った。結果を表2に示す。
The sample produced by this method was observed with a TEM to examine the sample thickness and the presence or absence of streak irregularities on the sample surface. The TEM observation was performed with the sample holder on which the FIB processed sample was mounted mounted on the TEM as it was. The acceleration voltage used for the observation is 200 kV. The sample thickness was determined by the following equation from the elastic scattering intensity Ie and the inelastic scattering intensity In of electron beam energy loss spectroscopy (hereinafter referred to as EELS).
t = λ · ln {(Ie + In) / Ie}
Where t is the sample thickness and λ is the effective mean free path of the electron beam in the material. λ is R.I. F. Egerton, Electron Energy Loss Spectroscopic in the Electron Microscope Second Edition, calculated using the value (0.074 μm) described in Plenum Publishing Corporation (1996). The sample thickness was measured at four locations on the sample as shown in a, b, c, and d of FIG. The results are shown in Table 2.

比較例として、市販のFIB用試料ホルダーを用いて、1方向からの加工により作製した試料をTEM観察した結果を表2に示す。用いた試料ホルダーの概略図を図14に示す。図15に示した半円状の試料台を試料搭載部23に乗せ、その上から試料押さえ板26を被せ、バネ25で押さえ板を固定し、試料にFIB加工を施した。試料搭載部23は、段差24を有する。   As a comparative example, Table 2 shows the result of TEM observation of a sample prepared by processing from one direction using a commercially available FIB sample holder. A schematic view of the sample holder used is shown in FIG. The semicircular sample stage shown in FIG. 15 was placed on the sample mounting portion 23, covered with a sample pressing plate 26, fixed with a spring 25, and subjected to FIB processing. The sample mounting portion 23 has a step 24.

Figure 2010146957
Figure 2010146957

次に、図6〜8に示した本発明の試料ホルダーを用いて、円弧状回転台ごと試料を回転させた場合の、ハンドリングミスによる試料破損確率を調べた。調査は90°の回転を50回、180°の回転を50回行って、確率を計算した。結果を表3に示す。本発明の試料ホルダーを使うと、ハンドリングミスによる試料破損は皆無である。一方、図14に示した市販のFIB用試料ホルダーを用いた場合、試料の加工方向を変えるためには、一旦試料台を試料ホルダーから外し、試料台の方向を変更して再度装着することになる。図14に示した試料ホルダーでは、バネ25及び試料押さえ板26を外し、試料台を試料ホルダーから外し、試料台の方向を任意の方向に変更して再度試料ホルダーに装着する。このようにして、試料台の方向を、90°及び180°変更した場合の試料破損確率を調査した。その結果を表3に比較例として示す。本発明の試料ホルダーを使うと、ハンドリングミスによる試料破損は皆無であったのに対し、市販のFIB用試料ホルダーで試料台を回転させた場合、約39%の確率で試料が破損した。   Next, using the sample holder of the present invention shown in FIGS. 6 to 8, the sample breakage probability due to a handling mistake when the sample was rotated together with the arcuate turntable was examined. In the investigation, 90 ° rotation was performed 50 times and 180 ° rotation was performed 50 times, and the probability was calculated. The results are shown in Table 3. When the sample holder of the present invention is used, there is no sample damage due to handling mistakes. On the other hand, when the commercially available FIB sample holder shown in FIG. 14 is used, in order to change the processing direction of the sample, the sample stage is once removed from the sample holder, the direction of the sample stage is changed, and the sample holder is mounted again. Become. In the sample holder shown in FIG. 14, the spring 25 and the sample pressing plate 26 are removed, the sample stage is removed from the sample holder, the direction of the sample stage is changed to an arbitrary direction, and the sample holder is mounted again. Thus, the sample breakage probability when the direction of the sample stage was changed by 90 ° and 180 ° was investigated. The results are shown in Table 3 as a comparative example. When the sample holder of the present invention was used, there was no sample damage due to handling mistakes, but when the sample stage was rotated with a commercially available FIB sample holder, the sample was broken with a probability of about 39%.

Figure 2010146957
Figure 2010146957

(実施例2)
試料ホルダー先端部、及び円弧状回転台の形状を様々に変えて、実施例1と同様の試料作製を行った。TEMで試料厚さ及び試料表面の筋状凹凸の有無及び試料台回転時のハンドリングミスによる試料破損確率を調べた。試料破損確立の調査は、前記実施例1と全く同じ方法で行った。結果を表4に示す。試料厚さの均一性は、最も厚い試料部分と、最も薄い試料部分の試料厚さの差が0.1μm以下であるかどうかで判断した。本発明の条件範囲内において、試料厚さはほぼ均一であり、筋状表面凹凸による試料破損は皆無であった。また、本発明を適用した試料ホルダーを使用した場合には、ハンドリングミスによる試料破損確率は非常に低く、特に突起の高さが0.3〜3.0mmであり、突起の直径が0.1〜1.0mmの範囲にある場合には、試料破損は皆無であった。
(Example 2)
Sample preparation similar to Example 1 was performed by changing the shape of the tip of the sample holder and the shape of the arcuate turntable in various ways. Using TEM, the sample thickness, the presence or absence of streaks on the sample surface, and the probability of sample breakage due to handling mistakes during sample stage rotation were investigated. The investigation on the establishment of sample breakage was carried out in exactly the same manner as in Example 1. The results are shown in Table 4. The uniformity of the sample thickness was judged by whether or not the difference in sample thickness between the thickest sample portion and the thinnest sample portion was 0.1 μm or less. Within the condition range of the present invention, the sample thickness was almost uniform, and there was no sample breakage due to streaky surface irregularities. In addition, when the sample holder to which the present invention is applied is used, the probability of sample breakage due to a handling mistake is very low. In particular, the height of the protrusion is 0.3 to 3.0 mm, and the diameter of the protrusion is 0.1. When it was in the range of -1.0 mm, there was no sample breakage.

Figure 2010146957
Figure 2010146957

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

FIBによる試料加工時の加工方向(イオンビーム入射方向)を示す図である。It is a figure which shows the processing direction (ion beam incident direction) at the time of the sample processing by FIB. 本発明の試料ホルダーの形状を示す一例の図である。It is a figure of an example which shows the shape of the sample holder of this invention. 本発明の試料ホルダーの円弧状回転台の一例の図である。It is a figure of an example of the circular-arc-shaped turntable of the sample holder of this invention. 本発明の試料ホルダー(試料を装着した状態)を示す図である。It is a figure which shows the sample holder (state which mounted | wore the sample) of this invention. 本発明の試料ホルダー(試料及び押さえ板を装着した状態)を示す図である。It is a figure which shows the sample holder (state which mounted | wore the sample and the press plate) of this invention. 実施例1で用いた本発明の試料ホルダーの形状を示す図である。It is a figure which shows the shape of the sample holder of this invention used in Example 1. FIG. 実施例1で用いた本発明の試料ホルダーの円弧状回転台の形状を示す図である。It is a figure which shows the shape of the circular turntable of the sample holder of this invention used in Example 1. FIG. 実施例1で用いた本発明の試料ホルダーの押さえ板の形状を示す図である。It is a figure which shows the shape of the holding plate of the sample holder of this invention used in Example 1. FIG. 実施例1記載の比較例に用いた試料台の形状を示す図である。6 is a diagram showing the shape of a sample table used in a comparative example described in Example 1. FIG. 実施例1記載のGaイオンビームによる試料加工方法を示す図である。2 is a diagram illustrating a sample processing method using a Ga ion beam described in Example 1. FIG. 実施例1記載のGaイオンビームによる試料加工方法を示す図である。2 is a diagram illustrating a sample processing method using a Ga ion beam described in Example 1. FIG. 実施例1記載のGaイオンビームによる試料加工方法を示す図である。2 is a diagram illustrating a sample processing method using a Ga ion beam described in Example 1. FIG. 実施例1及び2に記載の試料厚さ測定箇所を示す図である。It is a figure which shows the sample thickness measurement location as described in Example 1 and 2. FIG. 実施例1記載の比較例の試料ホルダー及び押さえ板を示す図である。It is a figure which shows the sample holder and holding plate of the comparative example of Example 1. FIG. 実施例1記載の比較例の試料台を示す図である。6 is a view showing a sample stage of a comparative example described in Example 1. FIG.

符号の説明Explanation of symbols

0 試料
1 試料ホルダー本体
2 円弧状回転台
3 円弧状回転台の突起
4 円弧状溝
5 試料ホルダーの切り欠き部の頂角
6 円弧状溝の内側の試料ホルダー部分
7 円弧の半径
8 円弧状溝の幅
9 試料押さえ固定用ネジ穴
10 TEM観察用電子線通過穴
11 円弧状回転台の頂角
12 円弧状回転台の半径
13 円弧状回転台の幅
14 円弧状回転台の突起の高さ
15 円弧状回転台の厚さ
16 試料台
17 試料台の穴
18 試料
19 試料押さえ固定用ネジ穴
20 押さえ板
21 試料押さえ固定用ネジ
22 押さえ板の穴
23 試料搭載部
24 段差
25 押さえ板固定用バネ
26 押さえ板
0 Sample 1 Sample holder body 2 Arc-shaped turntable 3 Projection of arc-shaped turntable 4 Arc-shaped groove 5 Vertical angle of notch of sample holder 6 Sample holder portion inside arc-shaped groove 7 Arc radius 8 Arc-shaped groove 9 TEM observation electron beam passage hole 11 TEM observation electron beam passage hole 11 Apex angle of arcuate turntable 12 Radius of arcuate turntable 13 Width of arcuate turntable 14 Height of protrusion of arcuate turntable 15 Thickness of the arc-shaped rotary table 16 Sample table 17 Sample table hole 18 Sample 19 Sample presser fixing screw hole 20 Presser plate 21 Sample presser fixing screw 22 Presser plate hole 23 Sample mounting portion 24 Step 25 Presser plate fixing spring 26 Presser plate

Claims (2)

集束イオンビーム(FIB)加工装置と透過型電子顕微鏡(TEM)の試料ホルダーとして共用できる試料ホルダーであって、
試料ホルダー本体と、回転操作のための突起を有する円弧状回転台と、試料を搭載する試料台であって前記回転台の突起に嵌合するための穴を有する試料台と、前記試料ホルダー本体に装着された前記試料台を当該試料台の上から押さえる試料台押さえ手段と、前記試料台が前記円弧状回転台に連動して回転可能なように前記試料台押さえ手段を試料ホルダーに固定する固定手段と、を少なくとも有すると共に、
試料ホルダー本体に、FIBが入射する側の一部に形成されたFIB加工用の切り欠き部と、TEM観察用の電子線通過穴と、該通過穴に沿った円弧状の溝と、が前記円弧状回転台を嵌合可能に形成されており、試料台押さえ手段によって、前記試料ホルダーに前記試料台を固定することを特徴とする、試料ホルダー。
A sample holder that can be shared as a sample holder for a focused ion beam (FIB) processing apparatus and a transmission electron microscope (TEM),
A sample holder main body, an arcuate turntable having a protrusion for rotating operation, a sample stand for mounting a sample and having a hole for fitting into the protrusion of the turntable, and the sample holder main body A sample table pressing means for pressing the sample table mounted on the sample table from above, and the sample table pressing means fixed to the sample holder so that the sample table can rotate in conjunction with the arcuate rotating table. And at least fixing means,
The specimen holder main body has a notch for FIB processing formed in a part on the side where the FIB is incident, an electron beam passage hole for TEM observation, and an arc-shaped groove along the passage hole. A sample holder, which is formed so that an arcuate turntable can be fitted thereto, and the sample stage is fixed to the sample holder by a sample stage pressing means.
前記突起の直径が0.1〜1.0mmであり、突起の高さが0.3〜3mmである、請求項1に記載の試料ホルダー。
The sample holder according to claim 1, wherein the diameter of the protrusion is 0.1 to 1.0 mm, and the height of the protrusion is 0.3 to 3 mm.
JP2008325774A 2008-12-22 2008-12-22 Sample holder Expired - Fee Related JP5135551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008325774A JP5135551B2 (en) 2008-12-22 2008-12-22 Sample holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325774A JP5135551B2 (en) 2008-12-22 2008-12-22 Sample holder

Publications (2)

Publication Number Publication Date
JP2010146957A true JP2010146957A (en) 2010-07-01
JP5135551B2 JP5135551B2 (en) 2013-02-06

Family

ID=42567131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325774A Expired - Fee Related JP5135551B2 (en) 2008-12-22 2008-12-22 Sample holder

Country Status (1)

Country Link
JP (1) JP5135551B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646566A (en) * 2012-05-04 2012-08-22 上海集成电路研发中心有限公司 Scanning electron microscope (SEM) sample fixture used in on line SEM observing and SEM sample observing method
JP2018141791A (en) * 2012-10-18 2018-09-13 カール ツァイス マイクロスコーピー ゲーエムベーハーCarl Zeiss Microscopy GmbH Particle beam system and method of processing tem-sample

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333405A (en) * 2003-05-12 2004-11-25 Jeol Ltd Sample holder, observation apparatus, and method of rotating sample
JP2007188905A (en) * 2007-04-23 2007-07-26 Hitachi High-Technologies Corp Sample holder for charged particle beam device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333405A (en) * 2003-05-12 2004-11-25 Jeol Ltd Sample holder, observation apparatus, and method of rotating sample
JP2007188905A (en) * 2007-04-23 2007-07-26 Hitachi High-Technologies Corp Sample holder for charged particle beam device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646566A (en) * 2012-05-04 2012-08-22 上海集成电路研发中心有限公司 Scanning electron microscope (SEM) sample fixture used in on line SEM observing and SEM sample observing method
JP2018141791A (en) * 2012-10-18 2018-09-13 カール ツァイス マイクロスコーピー ゲーエムベーハーCarl Zeiss Microscopy GmbH Particle beam system and method of processing tem-sample

Also Published As

Publication number Publication date
JP5135551B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
US6995380B2 (en) End effector for supporting a microsample
US8283642B2 (en) Ion beam sample preparation apparatus and methods
US20060017016A1 (en) Method for the removal of a microscopic sample from a substrate
EP2708870B1 (en) Ion beam shield
JP2008020450A (en) Method for separating minute sample from work piece
EP2930736A1 (en) Sample holding micro vice and sample holding system for coupled transmission electron microscopy (TEM) and atom-probe tomography (APT) analyses
JP4654216B2 (en) Sample holder for charged particle beam equipment
US8653489B2 (en) Ion beam sample preparation apparatus and methods
JP2013235778A (en) Sample table for scanning type electron microscope, and method for locating sample on scanning type electron microscope
JP5135551B2 (en) Sample holder
JP4784888B2 (en) Method for preparing sample for atom probe analysis by FIB and apparatus for implementing the same
US8759765B2 (en) Method for processing samples held by a nanomanipulator
JPH1064473A (en) Observing system for evaluation/treatment of sample
JPH08304243A (en) Sample having cross sectional thin-film, its manufacture, and its holder
US12090624B2 (en) Sample stand and method for manufacturing sample stand
JP2008014899A (en) Sample preparing method
JP6024485B2 (en) Sample stage for electron microscope observation and cross-sectional observation method of sample
JP2004179038A (en) Fixing method of sample for transmission electron microscope and sample table
US10741360B2 (en) Method for producing a TEM sample
JP2008159294A (en) Specimen mount for auger spectral analysis
JP2009192341A (en) Preparation method of sliced sample for transmission electron microscope, and sample stand used therefor
KR0150675B1 (en) Method of making samples with tem
JP7396192B2 (en) Pedestal of sample stand for electron microscope and method for observing sample cross section
EP1612836A2 (en) Method for the removal of a microscopic sample from a substrate
JP2021144855A (en) Sample holder and analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5135551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees