JP7396192B2 - Pedestal of sample stand for electron microscope and method for observing sample cross section - Google Patents

Pedestal of sample stand for electron microscope and method for observing sample cross section Download PDF

Info

Publication number
JP7396192B2
JP7396192B2 JP2020082618A JP2020082618A JP7396192B2 JP 7396192 B2 JP7396192 B2 JP 7396192B2 JP 2020082618 A JP2020082618 A JP 2020082618A JP 2020082618 A JP2020082618 A JP 2020082618A JP 7396192 B2 JP7396192 B2 JP 7396192B2
Authority
JP
Japan
Prior art keywords
sample
pedestal
electron microscope
cross
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020082618A
Other languages
Japanese (ja)
Other versions
JP2021177468A (en
Inventor
博史 高須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020082618A priority Critical patent/JP7396192B2/en
Publication of JP2021177468A publication Critical patent/JP2021177468A/en
Application granted granted Critical
Publication of JP7396192B2 publication Critical patent/JP7396192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子顕微鏡用試料台の台座、および試料断面の観察方法に関する。 The present invention relates to a pedestal for an electron microscope sample holder and a method for observing a cross section of a sample.

電子材料等では、異常箇所の発生により特性が低下するため、異常箇所の分析が重要となる。この分析では、電子顕微鏡を用いて試料(電子材料等)の表面観察を行うだけでなく、例えば試料内部を分析する目的で断面観察が行われる。 In electronic materials, the characteristics deteriorate due to the occurrence of abnormalities, so it is important to analyze the abnormalities. In this analysis, not only the surface of a sample (electronic material, etc.) is observed using an electron microscope, but also a cross-sectional observation is performed for the purpose of analyzing the inside of the sample, for example.

断面観察を行うため、分析対象となる試料はミクロトームや収束イオンビーム装置(FIB)などを用いて断面加工されて分析試料に加工される。断面加工を行う前には、予め試料表面を観察して異常箇所を特定し、断面加工箇所を確認する必要がある。断面加工された分析試料は、走査電子顕微鏡用の試料台へ載せて、断面観察を行う。 In order to perform cross-sectional observation, a sample to be analyzed is cross-sectionally processed using a microtome, a focused ion beam device (FIB), or the like, and processed into an analysis sample. Before carrying out cross-section processing, it is necessary to observe the sample surface in advance to identify abnormalities and to confirm the cross-section processing points. The cross-sectionally processed analysis sample is placed on a sample stage for a scanning electron microscope, and the cross-section is observed.

ところで、分析試料においては断面観察の後に追加工を施して再度断面観察を行うことがある。この場合、一旦、試料台からカーボンペースト等により固定された分析試料を取り外して、加工装置で追加工を施した後に、分析試料を試料台に再度固定する必要がある。この試料台からの分析試料の付け外しは、作業効率を低下させるのみならず、分析試料断面の汚染、場合によっては分析試料の紛失といった問題を引き起こすこともある。 Incidentally, after cross-sectional observation of an analytical sample, additional processing may be performed and cross-sectional observation may be performed again. In this case, it is necessary to once remove the analysis sample fixed with carbon paste or the like from the sample stage, perform additional processing using a processing device, and then fix the analysis sample on the sample stage again. Attaching and removing the analysis sample from the sample stage not only reduces work efficiency, but also causes problems such as contamination of the cross section of the analysis sample and, in some cases, loss of the analysis sample.

そこで、試料台を、台座を介して走査電子顕微鏡に試料台ごと取り付けられる台座が、各種提案されている。台座に取り付けられた試料台は、台座から取り外して他の加工装置に取り付けることができるので、試料台から分析試料を取り外す必要がなく、試料観察の効率を向上させることができる。 Therefore, various types of pedestals have been proposed that allow the sample holder to be attached to a scanning electron microscope via the pedestal. Since the sample stage attached to the pedestal can be removed from the pedestal and attached to another processing device, there is no need to remove the analysis sample from the sample stage, and the efficiency of sample observation can be improved.

このような走査電子顕微鏡と他の加工装置とで試料台を共用できる台座が、例えば特許文献1に提案されている。特許文献1では、断面加工用の試料台を取り付け可能な凹部を備える電子顕微鏡用の試料台が開示されている。このような電子顕微鏡用の試料台によれば、断面加工装置において断面加工用の試料台に固定した試料に断面加工を行った後に、断面加工した試料を取り外すことなく、そのまま断面加工用の試料台ごと電子顕微鏡に装入することができる。 For example, Patent Document 1 proposes a pedestal that can share a sample holder with such a scanning electron microscope and other processing equipment. Patent Document 1 discloses a sample stand for an electron microscope that includes a recessed portion to which a sample stand for cross-section processing can be attached. According to such a specimen stage for an electron microscope, after performing cross-section processing on a sample fixed on the sample stage for cross-section processing in a cross-section processing device, the cross-section processing device can directly process the sample for cross-section processing without removing the cross-section processed sample. The entire stand can be loaded into an electron microscope.

特開2014-146493号公報Japanese Patent Application Publication No. 2014-146493

上記の通り、試料台ごとミクロトームやFIBなどの断面加工装置による断面加工と、走査電子顕微鏡による断面観察が行える、試料台を共用できる走査電子顕微鏡の台座は、各種提案されている。 As mentioned above, various scanning electron microscope pedestals have been proposed that allow the sample holder to be used in common, allowing cross-sectional processing using a cross-sectional processing device such as a microtome or FIB, and cross-sectional observation using a scanning electron microscope.

ところで、走査電子顕微鏡に使用されるレンズ(いわゆる電子レンズ)には、例えばアウトレンズ方式、インレンズ方式もしくはセミインレンズ(シュノーケル)方式などがある。アウトレンズ方式は大型試料や磁性材料の観察に適している。インレンズ方式は試料サイズが制約を受けるものの高分解能の観察が可能となる。セミインレンズ方式はアウトレンズ方式並みの大型試料の観察を可能とするとともにインレンズ方式並みの高分解能の観察を可能とすることができる。 Incidentally, lenses used in scanning electron microscopes (so-called electron lenses) include, for example, an out-lens type, an in-lens type, and a semi-in-lens (snorkel) type. The out-lens method is suitable for observing large samples and magnetic materials. Although the in-lens method is limited by sample size, it allows for high-resolution observation. The semi-in-lens method enables observation of large samples comparable to the out-lens method, and also enables observation with high resolution comparable to the in-lens method.

しかし、走査電子顕微鏡でも、特にセミインレンズ方式およびインレンズ方式の場合、上記の断面観察の後に追加工を施して再度断面観察を行うような作業において、試料台と台座との脱着を繰り返して測定したときに、観察される像が歪み、高分解能を維持できなくなることがあった。 However, even with scanning electron microscopes, especially in the case of semi-in-lens and in-lens methods, the sample stage and pedestal must be repeatedly attached and detached during operations such as carrying out additional processing and performing cross-sectional observation again after the above-mentioned cross-sectional observation. During measurement, the observed image was sometimes distorted, making it impossible to maintain high resolution.

そこで、本発明は、走査電子顕微鏡を用いて試料の断面観察を繰り返し行うときに、走査電子顕微鏡の高い分解能を維持する技術を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a technique for maintaining the high resolution of a scanning electron microscope when repeatedly observing the cross section of a sample using the scanning electron microscope.

本発明の第1の態様は、
試料を載置する試料台を電子顕微鏡の試料装着部に支持固定するための台座であって、
円柱状の台座本体と、
前記台座本体の一方の面に設けられ、前記試料台を装着可能な試料台取付孔と、
前記台座本体の他方の面に設けられ、前記電子顕微鏡の試料装着部に前記台座を取り付けるための台座取付孔と、を備え、
前記台座本体は、非磁性であって導電性を有する物質から形成される、
電子顕微鏡用試料台の台座である。
The first aspect of the present invention is
A pedestal for supporting and fixing a sample holder on which a sample is placed to a sample mounting part of an electron microscope,
A cylindrical pedestal body,
a sample stand mounting hole provided on one surface of the pedestal main body and into which the sample stand can be attached;
a pedestal attachment hole provided on the other surface of the pedestal body for attaching the pedestal to a sample mounting section of the electron microscope;
The pedestal body is made of a non-magnetic and conductive material.
This is a pedestal for a sample stage for an electron microscope.

本発明の第2の態様は、第1の態様において、
前記台座本体の側面に設けられ、ネジ孔として、前記側面から前記試料台取付孔まで貫通する貫通孔を備え、
前記貫通孔にネジを挿入することで、前記試料台取付孔に装着される前記試料台をネジ固定できるように構成される。
A second aspect of the present invention includes, in the first aspect,
a through hole provided on a side surface of the pedestal main body and penetrating from the side surface to the sample mount mounting hole as a screw hole;
By inserting a screw into the through hole, the sample stand mounted in the sample stand mounting hole can be fixed with a screw.

本発明の第3の態様は、第1又は第2の態様において、
前記試料台が、前記試料を載置する載置面を有する載置部と、前記載置部に対して垂直に設けられ、前記試料台取付孔に挿入可能な軸部と、を備える。
A third aspect of the present invention is, in the first or second aspect,
The sample stage includes a mounting part having a mounting surface on which the sample is placed, and a shaft part that is provided perpendicularly to the mounting part and can be inserted into the sample stage attachment hole.

本発明の第4の態様は、第1~第3の態様のいずれかにおいて、
前記台座本体は、アルミニウム、アルミニウム合金、銅および真鍮の少なくとも1つから形成される。
A fourth aspect of the present invention is any one of the first to third aspects,
The pedestal body is made of at least one of aluminum, aluminum alloy, copper, and brass.

本発明の第5の態様は、第1~第4の態様のいずれかにおいて、
前記台座本体は、前記他方の面に切り欠きが形成されて、前記他方の面に対して傾斜する傾斜面を有し、
前記他方の面に設けられる前記台座取付孔を第1の台座取付孔としたとき、前記傾斜面に第2の台座取付孔が設けられている。
A fifth aspect of the present invention is any one of the first to fourth aspects,
The pedestal main body has a notch formed in the other surface and has an inclined surface that is inclined with respect to the other surface,
When the pedestal attachment hole provided on the other surface is used as a first pedestal attachment hole, a second pedestal attachment hole is provided on the inclined surface.

本発明の第6の態様は、第1~第5の態様のいずれかにおいて、
前記電子顕微鏡がセミインレンズ式またはインレンズ式の走査電子顕微鏡である。
A sixth aspect of the present invention is any one of the first to fifth aspects,
The electron microscope is a semi-in-lens or in-lens scanning electron microscope.

本発明の第7の態様は、
電子顕微鏡を用いた試料断面の観察方法であって、
試料を試料台に載置し、前記試料に断面加工を施すことで分析試料を作製する工程と、
円柱状の台座本体と、前記台座本体の一方の面に設けられ、前記試料台を装着可能な試料台取付孔と、前記台座本体の他方の面に設けられ、前記電子顕微鏡の試料装着部に前記台座を取り付けるための台座取付孔と、を備える電子顕微鏡用試料台の台座を準備する工程と、
前記分析試料が載置された前記試料台を前記台座の前記試料台取付孔に装着して支持固定する工程と、
前記分析試料の断面を観察する工程と、を有し、
前記台座本体は、非磁性であって導電性を有する物質から形成される、
試料断面の観察方法である。
The seventh aspect of the present invention is
A method for observing a cross section of a sample using an electron microscope, the method comprising:
placing a sample on a sample stage and performing cross-sectional processing on the sample to prepare an analysis sample;
a cylindrical pedestal body; a sample holder mounting hole provided on one surface of the pedestal body to which the sample holder can be mounted; a step of preparing a pedestal for an electron microscope sample holder, which includes a pedestal attachment hole for attaching the pedestal;
attaching the sample stand on which the analysis sample is mounted to the sample stand attachment hole of the pedestal and supporting and fixing it;
Observing a cross section of the analysis sample,
The pedestal body is made of a non-magnetic and conductive material.
This is a method for observing the cross section of a sample.

本発明の第8の態様は、第7の態様において、
前記台座は、前記台座本体の側面にネジ孔として前記側面から前記試料台取付孔まで貫通する貫通孔を備え、
前記貫通孔に、非磁性であって導電性を有する物質から形成されるネジを挿入することで前記試料台をネジ固定する。
An eighth aspect of the present invention is, in the seventh aspect,
The pedestal is provided with a through hole as a screw hole on a side surface of the pedestal body that penetrates from the side surface to the sample stage mounting hole,
The sample stage is fixed by screwing a screw made of a non-magnetic and conductive substance into the through-hole.

本発明の第9の態様は、第7又は第8の態様において、
前記台座本体は、アルミニウム、アルミニウム合金、銅および真鍮の少なくとも1つから形成される。
A ninth aspect of the present invention is, in the seventh or eighth aspect,
The pedestal body is made of at least one of aluminum, aluminum alloy, copper, and brass.

本発明の第10の態様は、第7~第9の態様のいずれかにおいて、
前記電子顕微鏡がセミインレンズ式またはインレンズ式の走査電子顕微鏡である。
A tenth aspect of the present invention is any one of the seventh to ninth aspects,
The electron microscope is a semi-in-lens or in-lens scanning electron microscope.

本発明によれば、走査電子顕微鏡を用いて試料の断面観察を繰り返し行うときに、走査電子顕微鏡の高い分解能を維持することができる。 According to the present invention, the high resolution of the scanning electron microscope can be maintained when repeatedly observing the cross section of a sample using the scanning electron microscope.

図1は、本発明の一実施形態にかかる台座の概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a pedestal according to an embodiment of the present invention. 図2Aは、本発明の一実施形態にかかる台座の上面図である。FIG. 2A is a top view of a pedestal according to an embodiment of the present invention. 図2Bは、本発明の一実施形態にかかる台座の側面図である。FIG. 2B is a side view of a pedestal according to an embodiment of the invention. 図3は、本発明の他の実施形態にかかる台座の概略構成を示す斜視図である。FIG. 3 is a perspective view showing a schematic configuration of a pedestal according to another embodiment of the present invention. 図4Aは、本発明の他の実施形態にかかる台座の底面図である。FIG. 4A is a bottom view of a pedestal according to another embodiment of the present invention. 図4Bは、本発明の他の実施形態にかかる台座の側面図である。FIG. 4B is a side view of a pedestal according to another embodiment of the invention. 図5は、台座に装着する試料台の概略構成を示す斜視図である。FIG. 5 is a perspective view showing a schematic configuration of a sample stage mounted on a base.

<本発明者の知見>
本発明者は、試料台および台座を繰り返し使用したときに走査電子顕微鏡の分解能を高く維持できない原因について検討を行った。その結果、レンズに対して金属粉が付着するためであることが分かった。例えば、セミインレンズ方式では、強励磁のレンズ磁界を試料側に漏れさせるため、磁化した金属粉がレンズに付着することで像が歪んだものと推測された。
<Inventor's knowledge>
The present inventor investigated the reason why the resolution of a scanning electron microscope cannot be maintained at a high level when the sample stage and pedestal are repeatedly used. As a result, it was found that this was due to metal powder adhering to the lens. For example, in the semi-in-lens method, the strongly excited lens magnetic field leaks to the sample side, so it was assumed that the image was distorted due to magnetized metal powder adhering to the lens.

しかし、試料台は、試料を載置する関係上、例えば真鍮などの非磁性材料で形成されるため、金属粉は試料台に由来するものではないことが確認された。そこで、本発明者は、金属粉の由来についてさらに検討を行った。その結果、金属粉は、台座の表面に施されためっき層に由来することが分かった。台座においては、試料が直接接触しないこと、そして、試料台を繰り返し取り付けたときに試料台取付孔が変形しないようある程度の強度が求められることから、例えばニッケルなどで表面にめっき処理が施される。一般に、アルミニウムからなる試料台を、ニッケルめっきが施された台座に取り付ける場合、台座に比べて強度の低い試料台が摩耗しやすく、試料台に由来する金属粉が多くなると考えられる。しかし、本発明者の検討によると、試料台を台座に取り付けることを繰り返すと、試料台だけでなく、めっき層も摩耗して、ニッケルなどの磁性を有する金属粉が生じ、レンズに付着することが分かった。 However, since the sample stage is made of a non-magnetic material such as brass in order to place the sample on it, it was confirmed that the metal powder did not originate from the sample stage. Therefore, the inventor further investigated the origin of the metal powder. As a result, it was found that the metal powder was derived from the plating layer applied to the surface of the pedestal. For the pedestal, the sample is not in direct contact with the sample, and a certain level of strength is required to prevent the sample holder mounting hole from deforming when the sample holder is repeatedly attached, so the surface is plated with, for example, nickel. . Generally, when attaching a sample stand made of aluminum to a nickel-plated pedestal, the sample holder, which has lower strength than the pedestal, is likely to wear out easily, and it is thought that metal powder originating from the sample holder will increase. However, according to the inventor's research, if the sample stand is repeatedly attached to the pedestal, not only the sample stand but also the plating layer will wear out, producing magnetic metal powder such as nickel, which will adhere to the lens. I understand.

このことから、本発明者は、台座を非磁性であって、かつ導電性を有する材料で構成して検討したところ、試料台を繰り返し取り付けた場合であっても、磁性を有する金属粉が発生しないので、走査電子顕微鏡の高分解能を維持できることを見出した。本発明は、これらの知見に基づいてなされたものである。 Based on this, the present inventor investigated constructing the pedestal with a non-magnetic and conductive material, and found that even when the sample holder is repeatedly attached, magnetic metal powder is generated. It was discovered that the high resolution of scanning electron microscopy can be maintained because it does not. The present invention has been made based on these findings.

<本発明の一実施形態>
以下、本発明の一実施形態について図面を用いて説明する。以下では、まず、台座に取り付ける試料台について説明した後、台座、および、台座を用いた試料の断面観察方法について説明する。図1は、本発明の一実施形態にかかる台座の概略構成を示す斜視図である。図2Aは、本発明の一実施形態にかかる台座の上面図であって、図1において台座を上方から見たときの図である。図2Bは、本発明の一実施形態にかかる台座の側面図である。図5は、台座に装着する試料台の概略構成を示す斜視図である。
<One embodiment of the present invention>
Hereinafter, one embodiment of the present invention will be described using the drawings. In the following, first, a sample stand attached to a pedestal will be described, and then a pedestal and a method for observing a cross section of a sample using the pedestal will be described. FIG. 1 is a perspective view showing a schematic configuration of a pedestal according to an embodiment of the present invention. FIG. 2A is a top view of a pedestal according to an embodiment of the present invention, when the pedestal is viewed from above in FIG. 1. FIG. 2B is a side view of a pedestal according to an embodiment of the invention. FIG. 5 is a perspective view showing a schematic configuration of a sample stage mounted on a base.

(試料台)
本実施形態の台座に装着する試料台は、例えば図5に示すような構造を有する台(いわゆるピンスタブ)である。具体的には、試料台20は、試料を載置する載置面を有する載置部21と、載置部21に対して垂直に設けられる軸部22と、を備えて構成される。載置部21には、試料、もしくは、試料に断面加工を施した分析試料などを載置できるような平坦な載置面(図5中の上面)がある。載置部21の載置面とは反対側の面には、軸部22が載置部21に対して垂直に設けられる。軸部22は、載置部21の中心に設けられる。
(sample stand)
The sample stage mounted on the base of this embodiment is, for example, a stage having a structure as shown in FIG. 5 (so-called pin stub). Specifically, the sample stage 20 includes a mounting section 21 having a mounting surface on which a sample is placed, and a shaft section 22 provided perpendicularly to the mounting section 21. The mounting section 21 has a flat mounting surface (upper surface in FIG. 5) on which a sample or an analysis sample obtained by subjecting the sample to cross-section processing can be mounted. A shaft portion 22 is provided perpendicularly to the mounting portion 21 on a surface of the mounting portion 21 opposite to the mounting surface. The shaft portion 22 is provided at the center of the mounting portion 21 .

(台座)
本実施形態の台座は、試料を載置した試料台を電子顕微鏡の測定部へ導入するためのものであり、試料台を支持固定できるとともに、測定部の試料装着部へ装着できるように構成される。具体的には、図1、図2Aおよび図2Bに示すように、台座10は、台座本体11と、台座本体11の一方の面11aに設けられる試料台取付孔12と、台座本体11の他方の面11bに設けられる台座取付孔13と、を備えて構成される。以下、一方の面11aを試料台面11a、他方の面11bを台座面11bともいう。
(pedestal)
The pedestal of this embodiment is for introducing a sample holder on which a sample is placed into the measurement section of an electron microscope, and is configured so that it can support and fix the sample holder and can be attached to the sample mounting section of the measurement section. Ru. Specifically, as shown in FIGS. 1, 2A, and 2B, the pedestal 10 includes a pedestal main body 11, a sample mount mounting hole 12 provided on one surface 11a of the pedestal main body 11, and a sample mount mounting hole 12 provided on the other side of the pedestal main body 11. and a pedestal attachment hole 13 provided in the surface 11b. Hereinafter, one surface 11a will also be referred to as sample stage surface 11a, and the other surface 11b will also be referred to as pedestal surface 11b.

台座本体11は、円柱形状を有する。上述したように試料台20を繰り返し取り付けたときに、磁性を有する金属粉を生じさせないよう、非磁性であって導電性を有する物質から形成される。このような物質としては、特に限定されないが、アルミニウム、アルミニウム合金、銅および真鍮の少なくとも1つであることが好ましい。 The base body 11 has a cylindrical shape. As described above, the sample stage 20 is made of a non-magnetic and conductive material so as not to generate magnetic metal powder when the sample stage 20 is repeatedly attached. Such a material is not particularly limited, but is preferably at least one of aluminum, aluminum alloy, copper, and brass.

台座本体11は、試料台取付孔12に試料台20を取り付けることで試料台20を支持固定することができる。試料台取付孔12の形状は、試料台20を嵌め込めることができれば特に限定されない。好ましくは、試料台20の軸部22を挿入および固定可能な、嵌合用の微小な隙間を有する形状およびサイズであるとよい。 The pedestal main body 11 can support and fix the sample holder 20 by attaching the sample holder 20 to the sample holder attachment hole 12 . The shape of the sample stage attachment hole 12 is not particularly limited as long as the sample stage 20 can be fitted therein. Preferably, the shape and size have a small fitting gap into which the shaft portion 22 of the sample stage 20 can be inserted and fixed.

台座本体11は、台座取付孔13により、電子顕微鏡の測定部における試料装着部に取り付け可能となっている。例えば、試料装着部の凸状ネジ部に台座取付孔13をネジ込むことにより、台座本体11を固定することができる。なお、本実施形態では、試料台取付孔12と台座取付孔13とが連結しているが、連結していなくてもよく、別々に設けられていてもよい。 The pedestal main body 11 can be attached to a sample mounting section in a measurement section of an electron microscope through a pedestal attachment hole 13. For example, the pedestal main body 11 can be fixed by screwing the pedestal attachment hole 13 into the convex screw portion of the sample mounting part. In addition, in this embodiment, although the sample stage attachment hole 12 and the pedestal attachment hole 13 are connected, they do not need to be connected and may be provided separately.

また、台座本体11は、試料台面11aと台座面11bとが平行で、それぞれの面が平坦であるとよい。このような台座本体11によれば、試料を傾斜させることなく水平に載置することができる。 Further, in the pedestal main body 11, the sample pedestal surface 11a and the pedestal surface 11b are preferably parallel and each surface is flat. According to such a pedestal main body 11, the sample can be placed horizontally without tilting.

台座本体11の側面には、ネジ孔として、側面から試料台取付孔12まで貫通する貫通孔14が設けられることが好ましい。貫通孔14にネジを挿入し、ネジの先端を、試料台取付孔12から挿入した試料台20の軸部22に押し当てることにより、試料台20を台座本体11に確実に固定することができる。 It is preferable that a through hole 14 is provided in the side surface of the pedestal body 11 as a screw hole that penetrates from the side surface to the sample stage attachment hole 12. By inserting a screw into the through hole 14 and pressing the tip of the screw against the shaft portion 22 of the sample stand 20 inserted through the sample stand attachment hole 12, the sample stand 20 can be reliably fixed to the stand main body 11. .

締め付けに使用するネジの材質は、非磁性であって導電性を有する物質、例えば真鍮およびチタンであることが好ましい。例えば、ネジを真鍮で構成することにより、締め付けを繰り返したときにネジの損耗を抑制するとともに、仮に損耗が生じたとしても、その金属粉が磁性を持たないので、電子顕微鏡による断面観察の分解能を低下させるおそれがない。また、ネジの材質は台座本体11の材質と同一とすることがより好ましい。例えば、台座本体11が真鍮で形成される場合であれば、真鍮製のネジを用いるとよい。ネジと台座本体11とを同一の材質で構成することにより、硬度の違いによるネジまたは台座本体11の損耗を抑制することができる。 The material of the screw used for tightening is preferably a non-magnetic and electrically conductive material, such as brass and titanium. For example, by constructing screws from brass, it is possible to suppress the wear and tear of the screws when they are repeatedly tightened, and even if wear does occur, the metal powder does not have magnetism, which improves the resolution of cross-sectional observation using an electron microscope. There is no risk of deterioration. Further, it is more preferable that the material of the screw is the same as the material of the base body 11. For example, if the pedestal main body 11 is made of brass, brass screws may be used. By constructing the screw and the pedestal main body 11 from the same material, wear and tear on the screw or the pedestal main body 11 due to differences in hardness can be suppressed.

(断面観察方法)
続いて、上述した台座を用いて試料の断面観察を行う方法について説明する。
(Cross-sectional observation method)
Next, a method for observing the cross section of a sample using the above-mentioned pedestal will be explained.

まず、観察対象となる試料を準備する。この試料を図5に示す試料台20に載置し、ミクロトームや集束イオンビーム装置などの断面加工装置で切断する。例えば、デュアルビーム集束イオンビーム装置では、装置に備えられた断面加工用の台座の孔に試料台20の軸部22を挿入して止めネジ等で固定する。そして、集束イオンビームによる試料の切削加工を行う。これにより断面が露出した分析試料を得る。 First, a sample to be observed is prepared. This sample is placed on a sample stage 20 shown in FIG. 5, and cut with a cross-section processing device such as a microtome or a focused ion beam device. For example, in a dual beam focused ion beam device, the shaft portion 22 of the sample stage 20 is inserted into a hole in a pedestal for cross-section processing provided in the device and fixed with a set screw or the like. Then, the sample is cut using a focused ion beam. As a result, an analysis sample with an exposed cross section is obtained.

続いて、分析試料が載置された試料台20を台座10に取り付ける。具体的には、試料台20の軸部22を試料台20の試料台取付孔12に挿入した後、貫通孔14からネジを挿入して、試料台20の軸部22にネジの先端を押し当てることで、試料台20を台座10に固定する。 Subsequently, the sample stand 20 on which the analysis sample is placed is attached to the pedestal 10. Specifically, after inserting the shaft portion 22 of the sample stage 20 into the sample stage mounting hole 12 of the sample stage 20, a screw is inserted through the through hole 14, and the tip of the screw is pushed into the shaft portion 22 of the sample stage 20. By applying this, the sample stage 20 is fixed to the pedestal 10.

続いて、試料台20を固定した台座10を走査電子顕微鏡における測定部に導入し、試料装着部へ取り付ける。例えば、試料装着部の凸状ネジ部へ台座10の台座取付孔13をネジ込むことにより、台座10を試料装着部へ固定する。 Subsequently, the pedestal 10 with the sample holder 20 fixed thereon is introduced into the measurement section of the scanning electron microscope and attached to the sample mounting section. For example, the pedestal 10 is fixed to the sample mount by screwing the pedestal attachment hole 13 of the pedestal 10 into the convex screw portion of the sample mount.

続いて、走査電子顕微鏡により分析試料の断面を観察する。観察の結果、分析試料の断面にさらに加工を施す必要があるようであれば、台座10から試料台20を取り外し、断面加工装置に装入するとよい。その後、再度、上述した手順により分析試料を走査電子顕微鏡に装入して観察を行う。 Next, the cross section of the analysis sample is observed using a scanning electron microscope. As a result of the observation, if it is necessary to further process the cross section of the analysis sample, it is preferable to remove the sample stage 20 from the pedestal 10 and insert it into the cross section processing apparatus. Thereafter, the analysis sample is again loaded into the scanning electron microscope and observed using the procedure described above.

本実施形態では、台座本体11を、非磁性であって導電性を有する物質で構成しているので、台座10に試料台20を取り付けることを繰り返した場合であっても、取り付けに伴う損耗による磁性粉の発生を防止することができる。そのため、走査電子顕微鏡がセミインレンズ式またはインレンズ式であっても、台座10を繰り返し使用したときに発生することがある分解能の低下を抑制し、測定精度を高く維持することができる。 In this embodiment, the pedestal main body 11 is made of a non-magnetic and electrically conductive material, so even if the sample holder 20 is repeatedly attached to the pedestal 10, the wear and tear caused by the attachment may cause damage. Generation of magnetic powder can be prevented. Therefore, even if the scanning electron microscope is a semi-in-lens type or an in-lens type, a decrease in resolution that may occur when the pedestal 10 is repeatedly used can be suppressed, and measurement accuracy can be maintained at a high level.

なお、試料に追加工を施す場合は、台座10から試料台20を取り外して試料に追加工を施すとよい。その後、上述した手順により試料を走査電子顕微鏡に装入して断面観察を行うとよい。 In addition, when performing additional processing on the sample, it is preferable to remove the sample stage 20 from the pedestal 10 and perform the additional processing on the sample. Thereafter, it is preferable to load the sample into a scanning electron microscope and observe the cross section according to the procedure described above.

以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be modified in various ways without departing from the gist of the present invention.

上述の実施形態では、台座本体11の台座取付孔13が設けられる面11b(台座面11b)が一様に平坦である場合を説明したが、本発明はこれに限定されない。例えば、図3、図4Aおよび図4Bに示すように、台座10を構成してもよい。図3は、本発明の他の実施形態にかかる台座の概略構成を示す斜視図である。図4Aは、台座の底面図、図4Bは台座の側面図を示す。なお、図3、図4Aおよび図4Bでは、図1、図2Aおよび図2Bと同一または相当する部分には同一の符号を付している。 In the above-described embodiment, a case has been described in which the surface 11b (pedestal surface 11b) of the pedestal main body 11 on which the pedestal attachment hole 13 is provided is uniformly flat, but the present invention is not limited to this. For example, the pedestal 10 may be configured as shown in FIGS. 3, 4A, and 4B. FIG. 3 is a perspective view showing a schematic configuration of a pedestal according to another embodiment of the present invention. FIG. 4A shows a bottom view of the pedestal, and FIG. 4B shows a side view of the pedestal. In addition, in FIG. 3, FIG. 4A, and FIG. 4B, the same code|symbol is attached|subjected to the same or corresponding part as FIG. 1, FIG. 2A, and FIG. 2B.

図3、図4Aおよび図4Bに示すように、台座本体11は、台座取付孔13が設けられる他方の面11b(台座面11b)側に切り欠けが形成されて、台座面11bに対して傾斜する傾斜面15を有し、台座面11bに設けられる台座取付孔13を第1の台座取付孔13aとしたとき、傾斜面15に第2の台座取付孔13bが設けられていることが好ましい。 As shown in FIGS. 3, 4A, and 4B, the pedestal main body 11 has a notch formed on the other surface 11b (pedestal surface 11b) side where the pedestal attachment hole 13 is provided, and is inclined with respect to the pedestal surface 11b. When the pedestal mounting hole 13 provided in the pedestal surface 11b is the first pedestal mounting hole 13a, it is preferable that the slanted surface 15 has a second pedestal mounting hole 13b.

台座本体11において、傾斜面15を設け、その傾斜面15に第2の台座取付孔13bを設けることにより、試料台20を台座10に対して傾斜した状態で取り付けることが可能となり、試料を異なる角度から観察することができる。図3では、傾斜面の角度を45°としているが、その角度は特に限定されず適宜変更することができる。 By providing the inclined surface 15 in the pedestal main body 11 and providing the second pedestal attachment hole 13b in the inclined surface 15, it is possible to attach the sample holder 20 in an inclined state with respect to the pedestal 10, and it is possible to attach different samples. It can be observed from any angle. In FIG. 3, the angle of the inclined surface is 45°, but the angle is not particularly limited and can be changed as appropriate.

以下、本発明をさらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be explained based on more detailed examples, but the present invention is not limited to these examples.

(実施例1)
まず、試料台として、図5に示すような構造を有するピンスタブを準備した。また、台座として、アルミニウムから形成され、図1に示す構造を有する台座を準備した。
(Example 1)
First, a pin stub having a structure as shown in FIG. 5 was prepared as a sample stage. Further, as a pedestal, a pedestal made of aluminum and having the structure shown in FIG. 1 was prepared.

続いて、試料を試料台の載置面に載置し、収束イオンビーム装置(FIB)を用いて断面加工を行った。これにより、試料の断面を露出させ、分析試料を得た。なお、断面加工に用いた装置は、デュアルビーム装置(日本エフイーアイ株式会社製「Quanta200 3D」)を使用した。 Subsequently, the sample was placed on the mounting surface of the sample stage, and its cross section was processed using a focused ion beam device (FIB). This exposed the cross section of the sample and obtained an analysis sample. The device used for cross-section processing was a dual beam device (“Quanta200 3D” manufactured by Japan FI Co., Ltd.).

続いて、分析試料を載置した試料台を、その軸部を台座の試料台取付孔に嵌め込み、挿入孔にネジを入れることで、台座に支持固定した。そして、試料台を固定した台座を、電界放出型走査電子顕微鏡(FE-SEM、株式会社日立製作所製「S-4700」)における測定部の試料装着部に取り付けた。その後、FE-SEMにて、分析試料の断面観察を行った。このとき、当該FE-SEMがセミインレンズ方式であるためレンズ磁界を分析試料側に漏れさせて断面観察を行うことになった。 Subsequently, the sample stand on which the analysis sample was placed was supported and fixed to the stand by fitting the shaft portion into the sample stand attachment hole of the stand and inserting a screw into the insertion hole. Then, the pedestal on which the sample holder was fixed was attached to the sample mounting part of the measurement part of a field emission scanning electron microscope (FE-SEM, "S-4700" manufactured by Hitachi, Ltd.). Thereafter, the cross section of the analysis sample was observed using FE-SEM. At this time, since the FE-SEM is of a semi-in-lens type, cross-sectional observation was performed by leaking the lens magnetic field to the analysis sample side.

本実施例では、上述した試料の断面加工、試料台の台座への取り付け、断面観察を繰り返し行ったが、いずれの断面観察でも高い分解能を得られることが確認された。 In this example, the above-described cross-sectional processing of the sample, attachment of the sample stand to the pedestal, and cross-sectional observation were repeatedly performed, and it was confirmed that high resolution could be obtained in all cross-sectional observations.

(比較例1)
比較例1では、使用する台座を、台座本体の表面にNiめっきが施されたものに変更した以外は実施例1と同様に、断面観察を繰り返し行った。なお、当該台座での固定方式は、本発明の貫通孔にネジを挿入し、ネジの先端を試料台の軸部に押し当てる方式では無く、試料台取付孔の内径が試料台の軸の外径より若干小さくなっており、台座本体上部に試料台取付孔を横断して刻まれた複数のスリットによって内径と外径の差を吸収するような構成による方式であった。
(Comparative example 1)
In Comparative Example 1, cross-sectional observations were repeated in the same manner as in Example 1, except that the pedestal used was changed to one in which the surface of the pedestal main body was plated with Ni. Note that the fixing method on the pedestal is not a method of inserting a screw into the through hole of the present invention and pressing the tip of the screw against the shaft of the sample stage, but rather a method in which the inner diameter of the sample stage mounting hole is outside the axis of the specimen stage. The diameter of the specimen is slightly smaller than the diameter of the specimen, and the difference between the inner diameter and the outer diameter is absorbed by a plurality of slits cut across the sample mounting hole in the upper part of the pedestal body.

しかし、比較例1では、台座を繰り返し使用したところ、30回程度を超えたときに、観察像が歪み、高い分解能を得られないことが確認された。この原因について調査したところ、試料台と台座との接触によりNiめっき層が摩耗して金属粉が生じ、その金属粉がレンズ磁界を分析試料側に漏れさせたときに磁化されて、レンズに付着したためであることが分かった。 However, in Comparative Example 1, when the pedestal was used repeatedly, it was confirmed that the observed image was distorted and high resolution could not be obtained when the pedestal was used more than about 30 times. When we investigated the cause of this, we found that the Ni plating layer was abraded due to contact between the sample stand and the pedestal, producing metal powder, which became magnetized when the lens magnetic field leaked to the analysis sample side and adhered to the lens. I found out that it was because of this.

以上説明したように、台座本体を非磁性であって導電性を有する物質で形成し、台座に磁性物質が含まれないようにすることで、台座を繰り返し用いた場合であっても断面観察にて高い分解能を維持することができる。 As explained above, by forming the pedestal body from a non-magnetic and conductive material so that the pedestal does not contain any magnetic material, cross-sectional observation is possible even when the pedestal is used repeatedly. can maintain high resolution.

10 台座
11 台座本体
11a 試料台面
11b 台座面
12 試料台取付孔
13 台座取付孔
13a 第1の台座取付孔
13b 第2の台座取付孔
14 貫通孔
20 試料台
21 載置部
22 軸部
10 Pedestal 11 Pedestal main body 11a Sample stage surface 11b Pedestal surface 12 Sample stage mounting hole 13 Pedestal mounting hole 13a First pedestal mounting hole 13b Second pedestal mounting hole 14 Through hole 20 Sample stage 21 Mounting part 22 Shaft part

Claims (9)

試料を載置する試料台を電子顕微鏡の試料装着部に支持固定するための台座であって、
円柱状の台座本体と、
前記台座本体の一方の面に設けられ、前記試料台を装着可能な試料台取付孔と、
前記台座本体の他方の面に設けられ、前記電子顕微鏡の試料装着部に前記台座を取り付けるための台座取付孔と、を備え、
前記台座本体は、非磁性であって導電性を有する物質から形成され、
前記台座本体は、前記他方の面に切り欠きが形成されて、前記他方の面に対して傾斜する傾斜面を有し、
前記他方の面に設けられる前記台座取付孔を第1の台座取付孔としたとき、前記傾斜面に第2の台座取付孔が設けられている、
電子顕微鏡用試料台の台座。
A pedestal for supporting and fixing a sample holder on which a sample is placed to a sample mounting part of an electron microscope,
A cylindrical pedestal body,
a sample stand mounting hole provided on one surface of the pedestal main body and into which the sample stand can be attached;
a pedestal attachment hole provided on the other surface of the pedestal body for attaching the pedestal to a sample mounting section of the electron microscope;
The pedestal main body is made of a non-magnetic and conductive material ,
The pedestal main body has a notch formed in the other surface and has an inclined surface that is inclined with respect to the other surface,
When the pedestal attachment hole provided on the other surface is a first pedestal attachment hole, a second pedestal attachment hole is provided on the inclined surface;
Pedestal of sample stage for electron microscope.
前記台座本体の側面に設けられ、ネジ孔として、前記側面から前記試料台取付孔まで貫通する貫通孔を備え、
前記貫通孔にネジを挿入することで、前記試料台取付孔に装着される前記試料台をネジ固定できるように構成される、
請求項1に記載の電子顕微鏡用試料台の台座。
a through hole provided on a side surface of the pedestal main body and penetrating from the side surface to the sample mount mounting hole as a screw hole;
configured to be able to fix the sample stand attached to the sample stand attachment hole with a screw by inserting a screw into the through hole;
A pedestal for an electron microscope sample holder according to claim 1.
前記試料台が、前記試料を載置する載置面を有する載置部と、前記載置部に対して垂直に設けられ、前記試料台取付孔に挿入可能な軸部と、を備える、
請求項1または2に記載の電子顕微鏡用試料台の台座。
The sample stage includes a mounting part having a mounting surface on which the sample is placed, and a shaft part that is provided perpendicularly to the mounting part and can be inserted into the sample stage mounting hole.
A pedestal for an electron microscope sample holder according to claim 1 or 2.
前記台座本体は、アルミニウム、アルミニウム合金、銅および真鍮の少なくとも1つから形成される、
請求項1~3のいずれか1項に記載の電子顕微鏡用試料台の台座。
The pedestal body is formed from at least one of aluminum, aluminum alloy, copper, and brass.
A pedestal for an electron microscope sample holder according to any one of claims 1 to 3.
前記電子顕微鏡がセミインレンズ式またはインレンズ式の走査電子顕微鏡である、
請求項1~のいずれか1項に記載の電子顕微鏡用試料台の台座。
The electron microscope is a semi-in-lens or in-lens scanning electron microscope,
A pedestal for an electron microscope sample holder according to any one of claims 1 to 4 .
電子顕微鏡を用いた試料断面の観察方法であって、
試料を試料台に載置し、前記試料に断面加工を施すことで分析試料を作製する工程と、
円柱状の台座本体と、前記台座本体の一方の面に設けられ、前記試料台を装着可能な試料台取付孔と、前記台座本体の他方の面に設けられ、前記電子顕微鏡の試料装着部に前記台座を取り付けるための台座取付孔と、を備える電子顕微鏡用試料台の台座を準備する工程と、
前記分析試料が載置された前記試料台を前記台座の前記試料台取付孔に装着して支持固定する工程と、
前記分析試料の断面を観察する工程と、を有し、
前記台座本体は、非磁性であって導電性を有する物質から形成される、
試料断面の観察方法。
A method for observing a cross section of a sample using an electron microscope, the method comprising:
placing a sample on a sample stage and performing cross-sectional processing on the sample to prepare an analysis sample;
a cylindrical pedestal body; a sample holder mounting hole provided on one surface of the pedestal body to which the sample holder can be mounted; a step of preparing a pedestal for an electron microscope sample holder, which includes a pedestal attachment hole for attaching the pedestal;
attaching the sample stand on which the analysis sample is mounted to the sample stand attachment hole of the pedestal and supporting and fixing it;
Observing a cross section of the analysis sample,
The pedestal body is made of a non-magnetic and conductive material.
How to observe a cross section of a sample.
前記台座は、前記台座本体の側面にネジ孔として前記側面から前記試料台取付孔まで貫通する貫通孔を備え、
前記貫通孔に、非磁性であって導電性を有する物質から形成されるネジを挿入することで前記試料台をネジ固定する、
請求項に記載の試料断面の観察方法。
The pedestal is provided with a through hole as a screw hole on a side surface of the pedestal body that penetrates from the side surface to the sample stage mounting hole,
fixing the sample stage with a screw by inserting a screw made of a non-magnetic and conductive substance into the through hole;
The method for observing a cross section of a sample according to claim 6 .
前記台座本体は、アルミニウム、アルミニウム合金、銅および真鍮の少なくとも1つから形成される、
請求項またはに記載の試料断面の観察方法。
The pedestal body is formed from at least one of aluminum, aluminum alloy, copper, and brass.
The method for observing a cross section of a sample according to claim 6 or 7 .
前記電子顕微鏡がセミインレンズ式またはインレンズ式の走査電子顕微鏡である、
請求項6~8のいずれか1項に記載の試料断面の観察方法。
The electron microscope is a semi-in-lens or in-lens scanning electron microscope,
The method for observing a cross section of a sample according to any one of claims 6 to 8 .
JP2020082618A 2020-05-08 2020-05-08 Pedestal of sample stand for electron microscope and method for observing sample cross section Active JP7396192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020082618A JP7396192B2 (en) 2020-05-08 2020-05-08 Pedestal of sample stand for electron microscope and method for observing sample cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020082618A JP7396192B2 (en) 2020-05-08 2020-05-08 Pedestal of sample stand for electron microscope and method for observing sample cross section

Publications (2)

Publication Number Publication Date
JP2021177468A JP2021177468A (en) 2021-11-11
JP7396192B2 true JP7396192B2 (en) 2023-12-12

Family

ID=78409616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020082618A Active JP7396192B2 (en) 2020-05-08 2020-05-08 Pedestal of sample stand for electron microscope and method for observing sample cross section

Country Status (1)

Country Link
JP (1) JP7396192B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014820A (en) 2006-07-06 2008-01-24 Fujifilm Corp Sample stand

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014820A (en) 2006-07-06 2008-01-24 Fujifilm Corp Sample stand

Also Published As

Publication number Publication date
JP2021177468A (en) 2021-11-11

Similar Documents

Publication Publication Date Title
JP5208449B2 (en) Sample carrier and sample holder
Li et al. Recent advances in FIB–TEM specimen preparation techniques
US10816476B2 (en) XPS and Raman sample analysis system and method
JP4923716B2 (en) Sample analysis apparatus and sample analysis method
US9952272B2 (en) Fixture for in situ electromigration testing during X-ray microtomography
JP2013235778A (en) Sample table for scanning type electron microscope, and method for locating sample on scanning type electron microscope
JP7396192B2 (en) Pedestal of sample stand for electron microscope and method for observing sample cross section
Herbig et al. Removal of hydrocarbon contamination and oxide films from atom probe specimens
Li The focused-ion-beam microscope—more than a precision ion milling machine
Ramachandra et al. Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy
US6872955B1 (en) SEM sample holder apparatus for implementing enhanced examination of multiple samples
KR20100051902A (en) A holder apparatus for specimen in scanning elctron microscope
JP6161337B2 (en) Sample holder tip, and sample holder having the sample holder tip
CN108169264A (en) A kind of method using awkward silence at a meeting scanning electron microscope observation magnetic material
JP2009192341A (en) Preparation method of sliced sample for transmission electron microscope, and sample stand used therefor
JP2008014899A (en) Sample preparing method
JP5135551B2 (en) Sample holder
Pourbabak et al. Twin‐jet electropolishing for damage‐free transmission electron microscopy specimen preparation of metallic microwires
JPH097536A (en) Specimen fixture
JP6024485B2 (en) Sample stage for electron microscope observation and cross-sectional observation method of sample
EP3226279B1 (en) Sample holder and focused ion beam apparatus
Kaplonek et al. ADVANCED DESKTOP SEM USED FOR MEASUREMENT AND ANALYSIS OF THE ABRASIVE TOOL'S ACTIVE SURFACE.
CN111999329A (en) Sample table for imaging of cryoelectron microscope
JP7389349B2 (en) Sample holder and analysis method
Oh et al. Optimal Conditions for Defect Analysis Using Electron Channeling Contrast Imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7396192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150