JP2014141732A - Corrosion-resistant and conductive nano-carbon coating method using stainless steel as base material, and fuel cell separation plate formed thereby - Google Patents

Corrosion-resistant and conductive nano-carbon coating method using stainless steel as base material, and fuel cell separation plate formed thereby Download PDF

Info

Publication number
JP2014141732A
JP2014141732A JP2013025532A JP2013025532A JP2014141732A JP 2014141732 A JP2014141732 A JP 2014141732A JP 2013025532 A JP2013025532 A JP 2013025532A JP 2013025532 A JP2013025532 A JP 2013025532A JP 2014141732 A JP2014141732 A JP 2014141732A
Authority
JP
Japan
Prior art keywords
stainless steel
base material
corrosion resistance
layer
metal nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013025532A
Other languages
Japanese (ja)
Other versions
JP5833587B2 (en
Inventor
Youngha Jun
ジョン、ヨンハ
Jaimoo Yoo
ユウ、ジェム
Kiho Yeo
ヨ、キホ
Euichul Shin
シン、ウイチョル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J & L Tech Co Ltd
J&L Tech CO Ltd
Original Assignee
J & L Tech Co Ltd
J&L Tech CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J & L Tech Co Ltd, J&L Tech CO Ltd filed Critical J & L Tech Co Ltd
Publication of JP2014141732A publication Critical patent/JP2014141732A/en
Application granted granted Critical
Publication of JP5833587B2 publication Critical patent/JP5833587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for producing a nano-carbon coating layer having corrosion resistance and conductivity with respect to a stainless steel base material, and to provide the processed stainless steel base material.SOLUTION: A nano-carbon coating method includes steps for: etching an oxide film of a stainless steel base material; depositing a metal nitride buffer layer on the surface where the oxide film of the base material is etched; and depositing a conductive carbon layer so as to have nano-size thickness on the metal nitride buffer layer.

Description

本発明は、ステンレス鋼を母材とし、伝導性と耐食性を兼ね備える特殊表面処理方法、詳細には、ナノカーボンコーティング方法に関する。また、それに基づいて製作されるPEMFC(Polymer Electrolyte Membrane Fuel Cell)分離板、伝導性及び耐食性に優れた電極材等の製造に関する。   The present invention relates to a special surface treatment method using stainless steel as a base material and having both conductivity and corrosion resistance, and more particularly to a nanocarbon coating method. Moreover, it is related with manufacture of the electrode material etc. which were excellent in electroconductivity and corrosion resistance, the PEMFC (Polymer Electrolyte Membrane Fuel Cell) separator manufactured based on it.

ステンレス鋼は、非常に頻繁に用いられる材料であり、これに対する物性の補完または特定物性の強化により、より多様に利用されうる素材である。とりわけ、燃料電池分離板の母材として注目されており、耐食性をさらに強化すると、電極材としても使用することができる。そのほか、物性の補強を必要とする場合が、多様な活用レベルにおいて求められることもある。   Stainless steel is a material that is used very frequently, and is a material that can be used more widely by complementing physical properties or strengthening specific physical properties. In particular, it has been attracting attention as a base material for a fuel cell separator, and can be used as an electrode material if the corrosion resistance is further enhanced. In addition, cases where physical properties need to be reinforced may be required at various utilization levels.

燃料電池は、水素と酸素が触媒の存在のもとで反応し、水とエネルギーを生成する燃焼反応に基づく環境にやさしい再生可能エネルギー源の一つである。特に公害物質なく電気エネルギーを生成することが可能であり、発生する熱を合わせると非常に効率が高いという長所も持ち合わせる。   A fuel cell is one of environmentally friendly renewable energy sources based on a combustion reaction in which hydrogen and oxygen react in the presence of a catalyst to produce water and energy. In particular, it is possible to generate electrical energy without pollutants, and it has the advantage of being very efficient when combined with the generated heat.

このような燃料電池の必須部品として、燃料電池分離板があり、燃料電池分離板が備えるべき物性としては、強度・耐食性・気体遮断性・伝導性及びサイズ精密度等が挙げられる。また、燃料電池そのものの実用性を考慮した際、燃料電池分離板は、量産に適した製造工程設定が求められる。   An essential part of such a fuel cell is a fuel cell separator, and physical properties that the fuel cell separator should have include strength, corrosion resistance, gas barrier properties, conductivity, size accuracy, and the like. In consideration of the practicality of the fuel cell itself, the fuel cell separator plate is required to have a manufacturing process setting suitable for mass production.

現在、前記のような条件に合わせて開発されている燃料電池分離板は、カーボン材に樹脂コーティングを施したものと、金属材に表面処理方法を施した二つの母材を中心にして、競争発展を遂げている。
特許文献1は、ステンレス鋼材にフッ素を含んだカーボンコーティングを利用した技術を開示し、特許文献2は、ステンレス鋼材にCr中間層をコーティングすることにより伝導性を高めた後、カーボン層をコーティングする技術を開示している。このような技術はまた、カーボン層の厚さが0.5μm〜は2μmの比較的厚い膜であり、実際量産に適用することは困難である。
Currently, fuel cell separators that have been developed to meet the above-mentioned conditions are competitive, centering on two base materials that have a carbon material coated with a resin and a metal material that has been surface treated. Has developed.
Patent Document 1 discloses a technique using a carbon coating containing fluorine on a stainless steel material, and Patent Document 2 coats a carbon layer after enhancing conductivity by coating a Cr intermediate layer on the stainless steel material. The technology is disclosed. Such a technique is also a relatively thick film having a carbon layer thickness of 0.5 μm to 2 μm, and is difficult to apply to actual mass production.

ステンレス鋼を母材とした場合、耐食性に加えて伝導性にも優れていなければならず、この二つの特性は事実上両立することが困難な面がある。これまでは、概してステンレス鋼の母材に対して窒化処理を施すことによって表面改質を行うことが研究の主流を成していたが、費用面や物性面において実用化するほど満足できる結果を得ることができずにいる。   When stainless steel is used as a base material, it must have excellent conductivity in addition to corrosion resistance, and it is difficult to make these two properties practically compatible. Until now, the mainstream of research has been to improve the surface by nitriding a stainless steel base material, but the results have been satisfactory enough for practical use in terms of cost and physical properties. I can't get.

費用面を度外視して物性の改善にのみ集中して、ステンレス鋼に金箔を施すゴールドコーティングを試みたりもしたが、これもやはり実用化することは困難である。   Attempts were made to apply gold coating on stainless steel, focusing on improving the physical properties with a focus on cost, but this is also difficult to put into practical use.

図1は、ステンレス鋼に対するカーボンコーティングの温度に伴う接触抵抗と腐食電流測定結果を表す。これら二つの物理量が全て低くなければならない燃料電池分離板は、陽子を最適化するコーティング温度を選択する必要がある。また、図2は、カーボンコーティングの膜の厚さに伴う接触抵抗と腐食電流の測定結果を表す。膜の厚さが増すほど接触抵抗と腐食電流が低くなることがわかる。しかし、膜を厚くすることは、生産性を低下させ量産に問題となるため、膜の厚さを薄くしながらも優れた特性を維持する方法が必要となる。   FIG. 1 shows the contact resistance and corrosion current measurement results with the temperature of the carbon coating on stainless steel. Fuel cell separators, where these two physical quantities must all be low, need to select a coating temperature that optimizes protons. FIG. 2 shows the measurement results of contact resistance and corrosion current with the thickness of the carbon coating film. It can be seen that the contact resistance and the corrosion current decrease as the thickness of the film increases. However, increasing the thickness of the film lowers the productivity and causes a problem in mass production. Therefore, a method for maintaining excellent characteristics while reducing the thickness of the film is required.

なお、ステンレス鋼の場合、耐食性向上のために添加されたCrが酸化物層で表面を覆い自然皮膜を形成するので、これによるコーティング層の密着力低下ならびに伝導性低下も、表面処理において改善される必要がある。   In addition, in the case of stainless steel, Cr added to improve corrosion resistance covers the surface with an oxide layer to form a natural film, so the decrease in adhesion and conductivity of the coating layer is also improved in the surface treatment. It is necessary to

また、カーボンコーティングの場合も、コーティングを厚くすることによって希望する物性を備えた場合は、量産性と低い生産コストが求められる燃料電池分離板の特性上、現実性が低いという問題がある。   Also, in the case of carbon coating, if the desired physical properties are provided by increasing the thickness of the coating, there is a problem that the practicality is low due to the characteristics of the fuel cell separator that requires mass productivity and low production cost.

大韓民国登録特許第10−1000697号Korean Registered Patent No. 10-1000697 JP2010−287542AJP2010-287542A

Andrew,S.,Mike,A.,Michael,K.,Ken,N.,Colin,Q.,“Industrial Ion Sources and Their Application for DLC Coating,”presented at the SVC 42nd Annual Technical Conference,USA,April 17−22,1999Andrew, S.M. Mike, A .; Michael, K .; Ken, N .; Colin, Q .; , “Industrial Ion Sources and Theair Application for DLC Coating,” Presented at the SVC 42nd Annual Technical Conference, USA, April 17-22, 1999. Robertson,J.,“Diamond−like amorphous carbon,“Materials Science and Engineering R 37:129−281,2002Robertson, J .; , “Diamond-like amorphous carbon,“ Materials Science and Engineering R 37: 129-281, 2002.

そこで、本発明は、ステンレス鋼母材にカーボンコーティングを施すことによって特性を向上させるものの、耐食性と伝導性の向上はもちろんのこと、コーティング層の密着力を高めつつコーティング層を非常に薄いナノサイズの薄膜とすることで、生産性と生産コストを現実のものとすることが可能な耐食性及び伝導性ナノカーボンコーティング方法、ならびにそれによる燃料電池分離板等の活用物品及びその製造方法を提供することを課題とする。   Therefore, although the present invention improves the characteristics by applying a carbon coating to the stainless steel base material, the coating layer is made to be a very thin nanosize while improving the adhesion of the coating layer as well as improving the corrosion resistance and conductivity. To provide a corrosion-resistant and conductive nanocarbon coating method capable of making the productivity and production cost real by using a thin film, and an article utilizing such as a fuel cell separator and a method for manufacturing the same. Is an issue.

前記課題を解決するため、本発明は、ステンレス鋼母材の表面に形成されている酸化物皮膜を、プラズマエッチングで食刻することで表層を活性化させると同時に、伝導性の低下問題を予防し、酸化物皮膜が食刻された面にCrN、TiNといった金属窒化物をナノサイズの厚さで覆い、これにカーボン層をナノサイズの厚さでコーティングすることで、伝導性と耐食性全てに優れたコーティング層を高い生産性をもって製造する。   In order to solve the above problems, the present invention activates the surface layer by etching the oxide film formed on the surface of the stainless steel base material by plasma etching, and at the same time, prevents the problem of reduced conductivity. In addition, by covering the surface on which the oxide film is etched with a metal nitride such as CrN or TiN with a nano-sized thickness, and coating this with a carbon layer with a nano-sized thickness, both conductivity and corrosion resistance are achieved. An excellent coating layer is produced with high productivity.

すなわち、ステンレス鋼母材の酸化物皮膜を食刻するステップ;酸化物皮膜が食刻された前記母材の表面に、金属窒化物バッファ層をナノサイズの厚さで蒸着するステップ;前記のバッファ層の上に伝導性カーボン層をナノサイズの厚さで蒸着するステップ;を有することを特徴とする。   That is, a step of etching an oxide film of a stainless steel base material; a step of depositing a metal nitride buffer layer with a nano-size thickness on the surface of the base material on which the oxide film has been etched; Depositing a conductive carbon layer on the layer in a nano-sized thickness.

ここで、ステンレス鋼母材の酸化物皮膜の食刻は、プラズマエッチングによって実施してもよい。   Here, the etching of the oxide film of the stainless steel base material may be performed by plasma etching.

また、前記金属窒化物バッファ層の形成は、金属ターゲットと窒素ガスをチェンバーに供給し、メタルアーク(metal arc)に電圧を印加して母材にはバイアス電圧を印加することで、300〜500℃にて実施してもよい。   The metal nitride buffer layer may be formed by supplying a metal target and nitrogen gas to the chamber, applying a voltage to a metal arc and applying a bias voltage to the base material. You may implement at ° C.

また、伝導性カーボン層のコーティングは、イオン銃に電圧を印加し、母材にバイアス電圧で印加し、温度を200〜600℃にて実施してもよい。   The conductive carbon layer may be coated by applying a voltage to the ion gun and applying a bias voltage to the base material at a temperature of 200 to 600 ° C.

また、前記のバイアス電圧は0〜−800VのDC、ACまたは周波数が0.1kHz〜500kHzであるパルス電圧であり、伝導性カーボン層の厚さは1〜150nmで蒸着してもよい。   The bias voltage may be DC, AC of 0 to −800 V, or a pulse voltage having a frequency of 0.1 kHz to 500 kHz, and the conductive carbon layer may be deposited with a thickness of 1 to 150 nm.

また、 酸化物皮膜を食刻するステップ;金属窒化物バッファ層を蒸着するステップ;及び伝導性カーボン層をナノサイズの厚さに蒸着するステップ;は、各工程チェンバーを構成することで実施され、各工程チェンバーをインラインで配列し、前記のステップがin situで進められることを特徴とする耐食性及び伝導性を備えたナノカーボンコーティング層の製造方法を提供する。   Etching the oxide film; depositing a metal nitride buffer layer; and depositing a conductive carbon layer to a nano-sized thickness; are performed by configuring each process chamber; Provided is a method for producing a nanocarbon coating layer having corrosion resistance and conductivity, wherein the process chambers are arranged in-line, and the above-described steps are performed in situ.

また、 酸化物皮膜を食刻するステップは、イオン銃を利用したプラズマエッチングによって実施され、イオン銃と母材表面との間隔を狭めることができるよう、イオン銃の位置を移動式で構成することで食刻率を向上させるもよい。   The step of etching the oxide film is performed by plasma etching using an ion gun, and the position of the ion gun is configured to be movable so that the distance between the ion gun and the base material surface can be reduced. You can improve the etching rate.

また、本発明は、ステンレス鋼母材の酸化物皮膜が食刻され、その状態において金属窒化物バッファ層が蒸着し、その上に再度伝導性カーボン層がナノサイズの厚さで蒸着していることを特徴とする耐食性及び伝導性を備えるよう補強されたステンレス鋼を提供する。   Further, according to the present invention, an oxide film of a stainless steel base material is etched, and in that state, a metal nitride buffer layer is vapor-deposited, and a conductive carbon layer is vapor-deposited again with a nano-size thickness thereon. A stainless steel reinforced to provide corrosion resistance and conductivity is provided.

ここで、前記の金属窒化物膜にはCrN、またはTiNが含まれ、その厚さは1〜20nmであってもよい。   Here, the metal nitride film includes CrN or TiN, and the thickness thereof may be 1 to 20 nm.

また、前記の伝導性カーボン層は、1〜150nmであってもよい。   The conductive carbon layer may be 1 to 150 nm.

また、耐食性及び伝導性を備えるよう補強されたステンレス鋼は、燃料電池分離板または電極材に適用してもよい。   Further, the stainless steel reinforced to have corrosion resistance and conductivity may be applied to the fuel cell separator or electrode material.

また、本発明は、イオン銃を設置することで、ステンレス鋼母材の酸化膜をプラズマで食刻する第1チェンバー;前記の第1チェンバーにおいて、酸化膜食刻工程を終えた後、ステンレス鋼母材の表面に金属窒化膜をコーティングするために、メタルアークを設置した第2チェンバー;及び前記第2チェンバーにおいて、金属窒化膜コーティングが施されたステンレス鋼母材の表面に、伝導性カーボン層をナノサイズの厚さでコーティングするため、イオン銃を設置した第3チェンバー;をインラインで配列し、プラズマ食刻工程と金属窒化膜コーティング工程と伝導性カーボン層のコーティング工程が一括してin situで行われることを特徴とする耐食性及び伝導性を備えたナノカーボンコーティング層の製造装置を提供する。   The present invention also provides a first chamber in which an oxide film of a stainless steel base material is etched with plasma by installing an ion gun; after the oxide film etching process is finished in the first chamber, the stainless steel A second chamber provided with a metal arc for coating the surface of the base metal with a metal nitride film; and a conductive carbon layer on the surface of the stainless steel base material coated with the metal nitride film in the second chamber. In order to coat with a nano-sized thickness, a third chamber equipped with an ion gun is arranged in-line, and the plasma etching process, the metal nitride film coating process, and the conductive carbon layer coating process are performed in situ. An apparatus for producing a nanocarbon coating layer having corrosion resistance and conductivity is provided.

本発明によると、ステンレス鋼母材の酸化物自然皮膜をプラズマで食刻した後、コーティング処理することとなるため、コーティング処理による伝導性向上効果が卓越しており、食刻された面に耐食性向上のためのCrNまたはTiNをナノサイズでコーティングし、その上にカーボン層を再度ナノサイズの厚さでコーティングすることで、接触抵抗を低く維持しつつ、腐蝕電流を大きく下げることができ、コーティングの厚さがナノサイズと非常に薄いためインライン工程が可能となり、生産性もまた非常に優れるという効果を奏する。それに伴い、量産性のある燃料電池分離板、電極材、または補強された特殊ステンレス鋼材を提供することができる。   According to the present invention, since the oxide natural film of the stainless steel base material is etched with plasma and then coated, the conductivity improvement effect by the coating process is outstanding, and the etched surface has corrosion resistance. By coating CrN or TiN with nano-size for improvement, and coating the carbon layer with nano-size again on it, the corrosion current can be greatly reduced while maintaining low contact resistance. Since the thickness of the material is very small, nano-size, an in-line process is possible, and the productivity is also excellent. Accordingly, a fuel cell separator plate, electrode material, or reinforced special stainless steel material can be provided.

カーボンコーティング材のコーティング温度に伴う接触抵抗と腐蝕電流の変化を示すグラフGraph showing change in contact resistance and corrosion current with coating temperature of carbon coating material カーボンコーティング材のコーティン膜の厚さに伴う接触抵抗と、腐蝕電流の変化を示すグラフGraph showing contact resistance and corrosion current change with coating thickness of carbon coating material ステンレス鋼母材に対する表面処理及びコーティング層構成を示す層状断面を示す説明図Explanatory drawing which shows the layered cross section which shows the surface treatment and coating layer structure with respect to stainless steel base material イオン銃を利用したカーボン層コーティングの説明図Illustration of carbon layer coating using ion gun 母材のプラズマエッチング、金属窒化物層コーティング及びナノカーボン層コーティングをインラインで構成したものを示す説明図Explanatory drawing showing in-line composition of base metal plasma etching, metal nitride layer coating and nanocarbon layer coating コーティング工程が完成した試験片の接触抵抗と腐蝕電流を、従来の技術と対比して表したグラフA graph showing the contact resistance and corrosion current of a test piece that has undergone a coating process compared to conventional technology コーティング工程が完成した試験片の接触抵抗の測定方法の説明図Explanatory drawing of the method for measuring the contact resistance of the test piece after the coating process is completed 母材の酸化膜をプラズマエッチングによって食刻する過程において、イオン銃と母材との間の間隔に伴う食刻率を表したグラフGraph showing the etching rate associated with the distance between the ion gun and the base material in the process of etching the base material oxide film by plasma etching 食刻工程の前後の相異を示した写真Photograph showing the difference between before and after the etching process

以下、本発明の望ましい実施例について、添付図面を参照して詳細に説明を行う。なお、本発明は、その趣旨から逸脱しない範囲で、従来公知の技術を援用して、適宜設計変形可能である。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the present invention can be appropriately designed and modified by using conventionally known techniques without departing from the spirit of the present invention.

本発明は、ステンレス鋼を母材として、耐食性と伝導性をさらに強化することのできるコーティング層を形成することで、燃料電池分離板に使用、あるいは電極材またはステンレス鋼そのものの物性を補強した特殊ステンレス鋼の製作を可能とする。   The present invention uses a stainless steel as a base material to form a coating layer that can further enhance corrosion resistance and conductivity, so that it can be used for a fuel cell separator or a special material that reinforces the physical properties of an electrode material or stainless steel itself. Enables production of stainless steel.

このため、ステンレス鋼固有の自然酸化皮膜層をプラズマ食刻によって取り除いた後、その食刻された面に金属窒化物層を1〜20nm程度に薄く積層することで、ステンレス鋼の耐食性をより強化する。前記のプラズマ食刻工程により、ステンレス鋼の表面を覆っていた酸化膜が取り除かれ、伝導性をさらに向上させると同時に、表面全般にかけて数nm前後の微細な凸凹が形成されることで活性化され、その後のコーティング工程において膜の蒸着率と密着率を向上させる。   For this reason, after removing the natural oxide film layer inherent to stainless steel by plasma etching, the metal nitride layer is thinly laminated to about 1 to 20 nm on the etched surface to further enhance the corrosion resistance of stainless steel. To do. The plasma etching process removes the oxide film that covered the surface of the stainless steel, further improving conductivity, and at the same time, it is activated by forming fine irregularities of around several nanometers over the entire surface. In the subsequent coating process, the deposition rate and adhesion rate of the film are improved.

活性化された表面上にCrN、TiNといった耐食性に優れた金属窒化膜を1〜20nmほど非常に薄くコーティングすることで、伝導性の強化に伴い弱化する可能性のある耐食性を補強する。金属窒化膜は、酸化膜と異なり伝導性を備えているため、伝導性を損なわなくとも耐食性を向上させることができる。   The activated surface is coated with a metal nitride film having excellent corrosion resistance, such as CrN or TiN, as thin as 1 to 20 nm to reinforce the corrosion resistance that may weaken as the conductivity is enhanced. Since the metal nitride film has conductivity unlike the oxide film, the corrosion resistance can be improved without impairing the conductivity.

次に、その上に1〜150nmの伝導性ナノカーボンコーティング層(300)を形成し、耐食性を維持した状態でその伝導性をさらに強化する。全体的な工程を終えた後は、図3のような層状を形成する。   Next, a conductive nanocarbon coating layer (300) having a thickness of 1 to 150 nm is formed thereon, and the conductivity is further enhanced while maintaining the corrosion resistance. After the entire process is completed, a layer shape as shown in FIG. 3 is formed.

前記の食刻工程とカーボンコーティング工程は、プラズマ食刻効率はもちろんのこと、高エネルギーイオンを生成して優れた膜質と高い生産性(蒸着率)を提供するイオン銃を利用して実施され、ナノサイズの厚さの薄い膜でも十分に要求される物性を備えた緻密な薄膜を製作することができる。   The etching process and the carbon coating process are performed using an ion gun that generates high-energy ions to provide excellent film quality and high productivity (deposition rate) as well as plasma etching efficiency. Even a thin film having a nano-size thickness can be used to produce a dense thin film having sufficiently required physical properties.

すなわち、ステンレス鋼母材に耐食性及び伝導性全てを向上させるナノカーボンコーティングは、イオン銃を含むインラインコーティングシステムによって構成されることで、量産性を獲得することとなる(図6参照)。
インラインコーティングシステムを通して、プラズマ食刻ステップ、金属窒化膜コーティングステップ及び伝導性ナノカーボンコーティン層(300)の形成ステップが全ていin situ工程で行われる。インラインコーティングシステムで構成することのできるのは、本発明のプラズマ食刻工程とカーボンコーティング工程が、全て高効率イオン銃を利用しているためであり、それによってナノサイズの厚さで十分な物性を現しているためである。これは、従来のPVD工程を利用して伝導性カーボンをコーティングした場合、膜質が緻密でなく剥離するリスクがあるため、500nm〜数μm程度の厚膜で形成しなければならなかったため、5時間以上という長時間を要し、インラインシステムのような量産システムが無意味だった状況を、本発明が改善したものである。とりわけ、燃料電池分離板といった製造コストを低く抑えることが、該当技術商用化の鍵となる場合、量産性のある製造工程及びシステムの開発は、技術的かつ経済的に大きな意義をもつ。
That is, the nanocarbon coating that improves all of the corrosion resistance and conductivity of the stainless steel base material is configured by an in-line coating system including an ion gun, thereby obtaining mass productivity (see FIG. 6).
Through the inline coating system, the plasma etching step, the metal nitride coating step, and the conductive nanocarbon coating layer (300) formation step are all performed in situ. The in-line coating system can be configured because the plasma etching process and the carbon coating process of the present invention all utilize a high-efficiency ion gun, thereby making it possible to obtain sufficient physical properties with a nano-sized thickness. It is because it shows. This is because, when conductive carbon is coated using a conventional PVD process, the film quality is not dense and there is a risk of peeling, so it has to be formed with a thick film of about 500 nm to several μm for 5 hours. The present invention has improved the situation where a long time as described above is required and a mass production system such as an inline system is meaningless. In particular, when keeping the manufacturing cost of the fuel cell separator plate low is the key to commercialization of the technology, the development of a mass production process and system has great technical and economic significance.

本発明で用るイオン銃は、これまでのCVD工程とは異なり、高い接合力及び蒸着率が得られる。経済性及び量産性を備えることができるように、コーティングの厚さを大幅に下げつつも、接合力及び微細組織の密度を高めるため、700eV程度に高い粒子エネルギーを与えることのできるイオン銃を用いた[非特許文献1]。これまでのPACVD工程の場合、粒子エネルギーが2〜3eVと低かった点を考慮した際、本発明のイオン銃による高エネルギー粒子生成は、工程の効率性と膜質の品質を大きく向上させる(非特許文献2)。   Unlike the conventional CVD process, the ion gun used in the present invention can obtain a high bonding force and a high deposition rate. An ion gun that can give a particle energy as high as 700 eV is used to increase the bonding force and the density of the microstructure while greatly reducing the coating thickness so that it can be economically and mass-produced. [Non-Patent Document 1]. In the case of the conventional PACVD process, when considering that the particle energy was as low as 2 to 3 eV, the high energy particle generation by the ion gun of the present invention greatly improves the efficiency of the process and the quality of the film quality (non-patent Reference 2).

以下は、本発明の一つの実施例として、上述した内容に基づき、燃料電池分離板を製造する方法を細部にわたる条件の提示と共に、詳細に説明するものである。   In the following, as one embodiment of the present invention, a method for manufacturing a fuel cell separator will be described in detail together with presentation of detailed conditions based on the above-described contents.

まず、燃料電池分離板の母材として加工されたステンレス鋼を準備しきれいに洗浄する。洗浄は蒸留水、イソプロピルアルコール等の薬品を利用する公知技術に基づいて実施することができる。   First, stainless steel processed as a base material for the fuel cell separator is prepared and cleaned cleanly. Washing can be performed based on a known technique using chemicals such as distilled water and isopropyl alcohol.

次に、洗浄した母材をチェンバーに入れ、ステンレス鋼の表面に形成されているクロム酸化物等の自然酸化膜をプラズマエッチングによって食刻する。プラズマエッチングを行うためにイオン銃を準備し、これにAr等の非活性ガスまたは窒素(N2)を入れて、0.1〜5kW電力(パルス電力、AC電力、またはDC電力で可能。)を印加して放電されたプラズマを利用して、イオンによって母材表面に衝撃を与え、ステンレス鋼の表面に自然に形成されている酸化膜を食刻によって取り除き、表面そのものを活性化させる。この際、母材側にバイアス電圧を印加してイオンを引き寄せることで、前記の食刻作用を効率的に行うことができる。母材基板の両面を同時に食刻することができるよう、図6のように、イオン銃を母材の上面と裏面側に全て配置し、食刻工程の場合、食刻率が母材の表面とイオン銃との距離にしたがって図9の通り変化するため、イオン銃を母材の近くに移動させて食刻するよう、イオン銃を移動式で構成した(図6参照)。   Next, the cleaned base material is put in a chamber, and a natural oxide film such as chromium oxide formed on the surface of stainless steel is etched by plasma etching. An ion gun is prepared for plasma etching, and an inert gas such as Ar or nitrogen (N 2) is put into the ion gun, and 0.1 to 5 kW power (possible with pulse power, AC power, or DC power). Using the plasma discharged by application, the base material surface is bombarded by ions, the oxide film naturally formed on the stainless steel surface is removed by etching, and the surface itself is activated. At this time, the etching action can be efficiently performed by applying a bias voltage to the base material side to attract ions. In order to be able to etch both sides of the base material substrate at the same time, as shown in FIG. 6, ion guns are all arranged on the top and back sides of the base material, and in the etching process, the etching rate is the surface of the base material. 9 changes according to the distance between the ion gun and the ion gun, so that the ion gun is configured to be movable so that the ion gun is moved near the base material and etched (see FIG. 6).

すなわち、食刻率y≒300/xである。xは、イオン銃と母材の表面との間の距離であり、本実施例においてイオン銃とサンプルとの間の距離を10cmから3cmに縮めた場合、およそ4倍の食刻率増大効果がみられた。   That is, the etching rate y≈300 / x. x is the distance between the ion gun and the surface of the base material. In this embodiment, when the distance between the ion gun and the sample is reduced from 10 cm to 3 cm, the effect of increasing the etching rate is about four times. It was seen.

本実施例において、酸化層除去のためのプラズマ食刻工程は、250W DC電力をイオン銃に印加し、−100Vのバイアス電圧を母材に印加し、約5分間進行した。図9は、このような食刻工程実施前と実施後、母材面のFESEM分析結果を提示し、食刻後の表面が平らになったことを示す。また、食刻後表面照度を測定したところ、およそ20%の改善効果があることが確認された。   In this example, the plasma etching process for removing the oxide layer was performed for about 5 minutes by applying 250 W DC power to the ion gun and applying a bias voltage of −100 V to the base material. FIG. 9 presents the FESEM analysis results of the base material surface before and after such an etching process, and shows that the surface after the etching has become flat. Further, when the surface illuminance was measured after the etching, it was confirmed that there was an improvement effect of about 20%.

プラズマ食刻工程を終えた後、それによって活性化した母材表面に耐食性を強化するためにバッファ層を形成する。すなわち、CrNまたはTiN系金属窒化物層をナノサイズで被覆する。前記工程はPVD、PECVD等、一般的に前記皮膜を形成する際に用いられる工程を利用することができ、工程温度を室温〜500℃、望ましい温度としては300〜500℃、工程圧力を10−2〜10−5torrで維持する。本実施例においては、該当する金属ターゲットと窒素ガスをチェンバーに供給し、メタルアークを利用したPECVDで進行し、CrNまたはTiNといった金属窒化膜を1〜20nm程度の非常に薄い膜でかぶせ、コーティング時間は電力、圧力、温度といった他の工程変数と関連して、多少変動可能ではあるものの、できるだけ一つの母材当たり10〜30秒、最大5分を超えないように設定することが望ましい。 After the plasma etching process is finished, a buffer layer is formed on the surface of the base material activated thereby to enhance the corrosion resistance. That is, the CrN or TiN-based metal nitride layer is coated with a nano size. The process can use a process generally used for forming the film, such as PVD, PECVD, etc., the process temperature is room temperature to 500 ° C., the desired temperature is 300 to 500 ° C., and the process pressure is 10 − Maintain between 2 and 10-5 torr. In the present embodiment, a corresponding metal target and nitrogen gas are supplied to the chamber, the process proceeds by PECVD using a metal arc, and a metal nitride film such as CrN or TiN is covered with a very thin film of about 1 to 20 nm, coating Although the time may vary somewhat in relation to other process variables such as power, pressure, and temperature, it is desirable to set the time so that it does not exceed 10 to 30 seconds and a maximum of 5 minutes as much as possible.

本実施例において、金属窒化膜形成のため、メタルアークに印加した電圧はDC電圧であり10〜30V、電流は30〜200Aと定め、母材には0〜100Vのバイアス電圧を印加した。前記の条件でそれ以上高いバイアス電圧を印加すると、スパッタリングが発生することがあるため、注意を要する。金属窒化膜の形成は、酸化膜を食刻したステンレス鋼母材に対して耐食性を向上させ、CrNやTiNを形成した場合、それ自体が伝導性をもち、その後形成する高伝導性層と合わせて全体的に物性を改善する。   In this example, in order to form a metal nitride film, the voltage applied to the metal arc was a DC voltage of 10 to 30 V, the current was set to 30 to 200 A, and a bias voltage of 0 to 100 V was applied to the base material. Note that sputtering may occur when a higher bias voltage is applied under the above-described conditions. The formation of a metal nitride film improves the corrosion resistance of a stainless steel base material etched with an oxide film, and when CrN or TiN is formed, the metal nitride film itself has conductivity and is combined with a high conductivity layer to be formed thereafter. Improve overall physical properties.

次に、カーボンソースとして、炭化水素系列のガスを供給、もしくはグラファイトターゲットを利用し、PVDまたはPECVD工程によって伝導性カーボン層を蒸着する。本実施例の場合、イオン銃を利用した方法で形成した。0.1〜5kW電力(パルス電力、AC電力、またはDC電力で可能。)をイオン銃に印加し、ヒーターを利用して工程温度を200〜1000℃、望ましい温度としては300〜600℃、炭化水素ガスを供給して工程圧力を10−2〜10−5torrで維持しつつ、伝導性カーボン層の厚さを1〜150nm、望ましい厚さとしては5〜100nmで蒸着する。
伝導性カーボン層の蒸着過程を、図4に模式的に表した。この際、母材にはバイアス電圧を印加することが望ましい。バイアス電圧は、0〜−800Vの(−)電圧をDC、ACまたはパルス周波数(0.1kHz〜500kHz)で印加することができ、こうしたバイアス電圧は、伝導性ナノカーボンコーティングの際、金属分離板に蓄積された電荷を防ぎ、金属分離板と黒鉛状カーボンの接合力を向上させる効果がある。
Next, a hydrocarbon-based gas is supplied as a carbon source, or a conductive carbon layer is deposited by a PVD or PECVD process using a graphite target. In the case of this example, it was formed by a method using an ion gun. Apply 0.1 to 5 kW power (possible with pulse power, AC power, or DC power) to the ion gun, and use a heater to set the process temperature to 200 to 1000 ° C., preferably 300 to 600 ° C., carbonization While supplying hydrogen gas and maintaining the process pressure at 10 −2 to 10 −5 torr, the conductive carbon layer is deposited at a thickness of 1 to 150 nm, preferably 5 to 100 nm.
The vapor deposition process of the conductive carbon layer is schematically shown in FIG. At this time, it is desirable to apply a bias voltage to the base material. As the bias voltage, a (−) voltage of 0 to −800 V can be applied at DC, AC, or a pulse frequency (0.1 kHz to 500 kHz), and the bias voltage is applied to the metal separator plate during the conductive nanocarbon coating. This prevents the electric charge accumulated in the metal and improves the bonding force between the metal separator and the graphitic carbon.

このような工程を通して、カーボンそのものが保有しているエネルギー、温度条件から分かるように、外部から加えられる熱エネルギー、そして母材に印加される電気的エネルギーによって、カーボン層は蒸着と同時に結晶化し、in situで伝導性黒鉛状カーボン層を形成する。伝導性を表す伝導性ナノカーボンコーティング層(300)は、非常に薄いナノサイズの厚さで形成されるため、工程を進行する時間が非常に短く、時間当たり360個のコーティング工程が実施されることもあり、量産時1枚あたり2$未満の費用で燃料電池分離板を生産することができる。   Through this process, as can be seen from the energy and temperature conditions of the carbon itself, the carbon layer is crystallized at the same time as the deposition by the thermal energy applied from the outside and the electrical energy applied to the base material, A conductive graphitic carbon layer is formed in situ. Since the conductive nanocarbon coating layer (300) representing conductivity is formed with a very thin nano-sized thickness, the time for proceeding the process is very short, and 360 coating processes are performed per hour. In some cases, it is possible to produce a fuel cell separator at a cost of less than $ 2 per piece during mass production.

従来、カーボン層の厚さを500nm以上としていたことに比べ、本実施例においては、耐食性のためのCrN層と伝導性のためのカーボン層を含んで厚さを60nm以下とすることで、全体的にさらに薄い厚さのコーティング層を形成し、それに応じて生産性を向上させたことが確認される。   Compared to the conventional thickness of the carbon layer of 500 nm or more, in this example, the thickness of the carbon layer including the CrN layer for corrosion resistance and the carbon layer for conductivity is 60 nm or less. In particular, it was confirmed that a thinner coating layer was formed and the productivity was improved accordingly.

また、このように製造されて燃料電池分離板に対して接触抵抗と腐食電流を測定し、本実施例と対比するよう、ステンレス鋼母材の自然皮膜を食刻せずに、CrNやTiNバッファ層がない状態で直接伝導性カーボン層を50nmの厚さで蒸着した試験片を比較例として製作し、接触抵抗と腐食電流を測定した。
その結果、図6に示されるように、左側の比較例の試験片においては、接触抵抗が13.2mΩcm2@10kgf/cm2であり、腐食電流が9.13μA/cm2であるが、本実施例の場合は、接触抵抗が13.7mΩcm2@10kgf/cm2であり、腐食電流が0.42μA/cm2であり、接触抵抗は同等の水準に維持しつつも、腐食電流を大幅に下げたことが確認される。これは、本発明による燃料電池分離板が、良好な伝導性と優れた耐食性を備え、量産性を満足させることができるということを意味する。
Further, the contact resistance and the corrosion current are measured with respect to the fuel cell separator manufactured as described above, and compared with the present embodiment, the natural coating of the stainless steel base material is not etched and the CrN or TiN buffer is not etched. A test piece in which a direct conductive carbon layer was deposited with a thickness of 50 nm without a layer was fabricated as a comparative example, and contact resistance and corrosion current were measured.
As a result, as shown in FIG. 6, in the test piece of the left comparative example, the contact resistance is 13.2 mΩcm 2 @ 10 kgf / cm 2 and the corrosion current is 9.13 μA / cm 2. In the case of the example, the contact resistance is 13.7 mΩcm 2 @ 10 kgf / cm 2 , the corrosion current is 0.42 μA / cm 2 , and the corrosion resistance is greatly increased while maintaining the contact resistance at the same level. It is confirmed that it has been lowered. This means that the fuel cell separator according to the present invention has good conductivity and excellent corrosion resistance and can satisfy mass productivity.

図7では、本実施例において製作した燃料電池分離板の接触抵抗を測定する方法を説明している。試験片面積cm2当たり10kgの荷重を加えた状態で上下部の集電体(current collector)の電流を流し両端の電圧を測定して、分離板とGDL(gas diffusion layer)間の接触抵抗を求めた。接触抵抗の測定は、分離板がGDLの間に位置した状態で接触抵抗を測定した後、GDLのもつ接触抵抗を別途に測定して二つの値の差を求める。 FIG. 7 illustrates a method for measuring the contact resistance of the fuel cell separator manufactured in this embodiment. A current of the upper and lower current collectors was applied with a load of 10 kg per cm 2 of the test piece area, the voltage at both ends was measured, and the contact resistance between the separation plate and the GDL (gas diffusion layer) was measured. Asked. The contact resistance is measured by measuring the contact resistance with the separation plate positioned between the GDLs, and then separately measuring the contact resistance of the GDL to obtain the difference between the two values.

本実施例においてナノカーボンコーティングを適用して燃料電池分離板の製造を説明したものと同様に、耐食性電極材と特殊ステンレス鋼を製作することができ、もちろんそのほか他の物品にも適用することができる。
もつ
In the present example, a corrosion-resistant electrode material and special stainless steel can be manufactured in the same manner as described for the manufacture of the fuel cell separator by applying the nanocarbon coating. Of course, it can also be applied to other articles. it can.
Have

本発明によると、伝導性と耐食性の増強されたステンレス鋼材を、高い量産性で得られ、燃料電池分離板、電極材などに利用できるので、産業上有用である。 According to the present invention, a stainless steel material having enhanced conductivity and corrosion resistance can be obtained with high mass productivity and can be used for a fuel cell separator, an electrode material, and the like, which is industrially useful.

100 母材
200 金属窒化物層
300 (伝導性)ナノカーボン層
400 プラズマソース
100 Base material 200 Metal nitride layer 300 (Conductive) nanocarbon layer 400 Plasma source

Claims (12)

ステンレス鋼母材の酸化物皮膜を食刻するステップと、
前記母材の酸化物皮膜が食刻された表面に、金属窒化物バッファ層を蒸着するステップと、
前記金属窒化物バッファ層の上に伝導性カーボン層をナノサイズの厚さで蒸着するステップと、を有する
ことを特徴とする耐食性及び伝導性を備えたナノカーボンコーティング層の製造方法。
Etching the oxide film of the stainless steel base material;
Depositing a metal nitride buffer layer on the surface of the matrix oxide film etched;
Depositing a conductive carbon layer on the metal nitride buffer layer in a nano-sized thickness. A method for producing a nanocarbon coating layer having corrosion resistance and conductivity.
ステンレス鋼母材の酸化物皮膜の食刻を、プラズマエッチングによって実施する
請求項1に記載の耐食性及び伝導性を備えたナノカーボンコーティング層の製造方法。
The method for producing a nanocarbon coating layer having corrosion resistance and conductivity according to claim 1, wherein etching of the oxide film of the stainless steel base material is performed by plasma etching.
前記金属窒化物バッファ層の形成を、金属ターゲットと窒素ガスをチェンバーに供給し、メタルアークに電圧を印加し母材にバイアス電圧を印加して、温度300〜500℃で実施する
請求項1または2に記載の耐食性及び伝導性を備えたナノカーボンコーティング層の製造方法。
The metal nitride buffer layer is formed at a temperature of 300 to 500 ° C by supplying a metal target and nitrogen gas to a chamber, applying a voltage to a metal arc, and applying a bias voltage to a base material. 2. A method for producing a nanocarbon coating layer having corrosion resistance and conductivity according to 2.
伝導性カーボン層のコーティングを、イオン銃に電圧を印加し、母材にバイアス電圧を印加して、温度200〜600℃で実施する
請求項1ないし3のいずれかに記載の耐食性及び伝導性を備えたナノカーボンコーティング層の製造方法。
The coating of the conductive carbon layer is performed at a temperature of 200 to 600 ° C. by applying a voltage to the ion gun and applying a bias voltage to the base material. The corrosion resistance and conductivity according to claim 1. A method for producing a provided nanocarbon coating layer.
前記バイアス電圧を、0〜−800VのDC、AC、または、周波数が0.1kHz〜500kHzのパルス電圧とし、伝導性カーボン層の厚さを、1〜150nmに蒸着する
請求項4に記載の耐食性及び伝導性を備えたナノカーボンコーティング層の製造方法。
The corrosion resistance according to claim 4, wherein the bias voltage is DC, AC of 0 to −800 V, or a pulse voltage having a frequency of 0.1 kHz to 500 kHz, and the thickness of the conductive carbon layer is deposited to 1 to 150 nm. And a method of manufacturing a nanocarbon coating layer having conductivity.
前記酸化物皮膜を食刻するステップ、前記金属窒化物バッファ層を蒸着するステップ、前記伝導性カーボン層をナノサイズの厚さで蒸着するステップを、インラインで配列した各チェンバーで、一括してin situで行う
請求項1ないし5のいずれかに記載の耐食性及び伝導性を備えたナノカーボンコーティング層の製造方法。
The step of etching the oxide film, the step of depositing the metal nitride buffer layer, and the step of depositing the conductive carbon layer with a nano-sized thickness are collectively performed in each chamber arranged in-line. The method for producing a nanocarbon coating layer having corrosion resistance and conductivity according to any one of claims 1 to 5, wherein the method is performed in situ.
酸化物皮膜を食刻するステップを、イオン銃を利用したプラズマエッチングによって実施し、イオン銃の位置を移動可能な構成とすることでイオン銃と前記母材表面との間隔を調整可能にして、食刻率を調整可能とする
請求項1ないし6のいずれかに記載の耐食性及び伝導性を備えたナノカーボンコーティング層の製造方法。
The step of etching the oxide film is performed by plasma etching using an ion gun, and the position of the ion gun can be moved to adjust the distance between the ion gun and the base material surface. The method for producing a nanocarbon coating layer having corrosion resistance and conductivity according to any one of claims 1 to 6, wherein the etching rate can be adjusted.
ステンレス鋼母材の酸化物皮膜が食刻され、その食刻表面に金属窒化物バッファ層が蒸着され、その金属窒化物バッファ層に伝導性カーボン層がナノサイズの厚さで蒸着されている
ことを特徴とする耐食性及び伝導性を備えたステンレス鋼。
A stainless steel matrix oxide film is etched, a metal nitride buffer layer is deposited on the etched surface, and a conductive carbon layer is deposited on the metal nitride buffer layer in a nano-sized thickness. Stainless steel with corrosion resistance and conductivity.
前記の金属窒化物膜に、CrNまたはTiNが含まれ、その厚さが1〜20nmである
請求項8に記載の耐食性及び伝導性を備えたステンレス鋼。
The stainless steel having corrosion resistance and conductivity according to claim 8, wherein the metal nitride film contains CrN or TiN and has a thickness of 1 to 20 nm.
前記の伝導性カーボン層が、1〜150nmである
請求項8または9に記載の耐食性及び伝導性を備えたステンレス鋼。
The stainless steel having corrosion resistance and conductivity according to claim 8 or 9, wherein the conductive carbon layer has a thickness of 1 to 150 nm.
前記ステンレス鋼が、燃料電池分離板または電極材である
請求項10に記載の耐食性及び伝導性を備えたステンレス鋼。
The stainless steel having corrosion resistance and conductivity according to claim 10, wherein the stainless steel is a fuel cell separator or an electrode material.
イオン銃を有し、ステンレス鋼母材の酸化膜をプラズマで食刻する第1チェンバーと、
前記の酸化膜食刻工程を終えたステンレス鋼母材の表面に、金属窒化膜をコーティングするメタルアークを有する第2チェンバーと、
前記の金属窒化膜コーティングが施されたステンレス鋼母材の表面に、伝導性カーボン層をナノサイズの厚さでコーティングするイオン銃を有する第3チェンバーとをインラインで配列し、
前記のプラズマ食刻工程と金属窒化膜コーティング工程と伝導性カーボン層のコーティング工程を、連続的にin situで行う
ことを特徴とする耐食性及び伝導性を備えたナノカーボンコーティング層の製造装置。
A first chamber having an ion gun and etching an oxide film of a stainless steel base material with plasma;
A second chamber having a metal arc for coating a metal nitride film on the surface of the stainless steel base material after the oxide film etching step;
A third chamber having an ion gun for coating a conductive carbon layer with a nano-sized thickness on the surface of the stainless steel base material coated with the metal nitride film, and arranged in-line;
The apparatus for producing a nanocarbon coating layer having corrosion resistance and conductivity, wherein the plasma etching step, the metal nitride film coating step, and the conductive carbon layer coating step are continuously performed in situ.
JP2013025532A 2013-01-22 2013-02-13 Corrosion-resistant and conductive nanocarbon coating method using stainless steel as a base material, and fuel cell separator manufacturing method using the same Active JP5833587B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130006803A KR101446411B1 (en) 2013-01-22 2013-01-22 Method for manufacturing corrosion resistant and conductive nano carbon coating and fuel cell bipolar plate thereby
KR10-2013-0006803 2013-01-22

Publications (2)

Publication Number Publication Date
JP2014141732A true JP2014141732A (en) 2014-08-07
JP5833587B2 JP5833587B2 (en) 2015-12-16

Family

ID=51064516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013025532A Active JP5833587B2 (en) 2013-01-22 2013-02-13 Corrosion-resistant and conductive nanocarbon coating method using stainless steel as a base material, and fuel cell separator manufacturing method using the same

Country Status (3)

Country Link
JP (1) JP5833587B2 (en)
KR (1) KR101446411B1 (en)
DE (1) DE102013203080A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163189A1 (en) * 2015-04-08 2016-10-13 トヨタ車体 株式会社 Fuel cell stack
JP2018514647A (en) * 2015-03-20 2018-06-07 アペラン Metal strip or sheet with chromium nitride coating, bipolar plate and associated manufacturing method
JP7448522B2 (en) 2019-03-22 2024-03-12 日鉄ケミカル&マテリアル株式会社 Composite material and its manufacturing method, as well as separators, cells and stacks for fuel cells using the composite material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101713718B1 (en) * 2015-02-23 2017-03-08 현대자동차 주식회사 Coating method of seperator for fuel cell and seperator for fuel cell
KR101582446B1 (en) * 2015-07-03 2016-01-04 재단법인 하이브리드 인터페이스기반 미래소재 연구단 A fabrication method of DLC/Ti electrode with multi-interface layers for water treatment
KR102429014B1 (en) * 2017-08-16 2022-08-03 현대자동차 주식회사 Separator for fuel cell and coating method of separator for fuel cell
CN111933965A (en) * 2020-07-24 2020-11-13 苏州敦胜新能源科技有限公司 High-temperature fuel cell bipolar plate oxidation-resistant coating
DE102022203401A1 (en) 2022-04-06 2023-10-12 Robert Bosch Gesellschaft mit beschränkter Haftung Method for cleaning at least one upper side of a substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225713A (en) * 1985-03-30 1986-10-07 旭硝子株式会社 Transparent electroconductive film and making thereof
JPH11501696A (en) * 1995-04-19 1999-02-09 コリア インスティテュート オブ サイエンス アンド テクノロジー Surface modification of polymers, metals or ceramics
JP2001316800A (en) * 2000-02-25 2001-11-16 Sumitomo Electric Ind Ltd Amorphous carbon coated member
JP2006521461A (en) * 2002-12-31 2006-09-21 日本板硝子株式会社 Coater with substrate cleaning apparatus and coating deposition method using such a coater
JP2010287542A (en) * 2009-06-15 2010-12-24 Nissan Motor Co Ltd Conductive member, method of manufacturing the same, separator for fuel cell using this, and solid polymer fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369497B2 (en) 2008-06-02 2013-12-18 日産自動車株式会社 Fuel cell separator
KR101000697B1 (en) 2008-07-17 2010-12-10 현대자동차주식회사 Metal bipolar plate for fuel cell and method for creating surface layer of the same
KR101246242B1 (en) 2011-06-23 2013-03-21 (주)신원이앤씨 Apparatus jetting to decentralize fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225713A (en) * 1985-03-30 1986-10-07 旭硝子株式会社 Transparent electroconductive film and making thereof
JPH11501696A (en) * 1995-04-19 1999-02-09 コリア インスティテュート オブ サイエンス アンド テクノロジー Surface modification of polymers, metals or ceramics
JP2001316800A (en) * 2000-02-25 2001-11-16 Sumitomo Electric Ind Ltd Amorphous carbon coated member
JP2006521461A (en) * 2002-12-31 2006-09-21 日本板硝子株式会社 Coater with substrate cleaning apparatus and coating deposition method using such a coater
JP2010287542A (en) * 2009-06-15 2010-12-24 Nissan Motor Co Ltd Conductive member, method of manufacturing the same, separator for fuel cell using this, and solid polymer fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514647A (en) * 2015-03-20 2018-06-07 アペラン Metal strip or sheet with chromium nitride coating, bipolar plate and associated manufacturing method
WO2016163189A1 (en) * 2015-04-08 2016-10-13 トヨタ車体 株式会社 Fuel cell stack
JP2016201205A (en) * 2015-04-08 2016-12-01 トヨタ自動車株式会社 Fuel cell stack
US10026971B2 (en) 2015-04-08 2018-07-17 Toyota Shatai Kabushiki Kaisha Fuel cell stack
JP7448522B2 (en) 2019-03-22 2024-03-12 日鉄ケミカル&マテリアル株式会社 Composite material and its manufacturing method, as well as separators, cells and stacks for fuel cells using the composite material

Also Published As

Publication number Publication date
KR101446411B1 (en) 2014-10-07
DE102013203080A1 (en) 2014-07-24
KR20140094736A (en) 2014-07-31
JP5833587B2 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5833587B2 (en) Corrosion-resistant and conductive nanocarbon coating method using stainless steel as a base material, and fuel cell separator manufacturing method using the same
US20160138171A1 (en) Method for manufacturing corrosion resistant and conductive nano carbon coating layer and fuel cell bipolar plate thereby using stainless steel substrate
CN102388494B (en) Titanium-based material, method of manufacturing titanium-based material, and fuel cell separator
CN110684946B (en) Metal bipolar plate high-conductivity corrosion-resistant protective coating and preparation method and application thereof
CN106374116A (en) High-entropy alloy composite coating on metal bipolar plate of fuel cell and process
US11114674B2 (en) Proton conductive two-dimensional amorphous carbon film for gas membrane and fuel cell applications
CN101092688A (en) Ion plating modified method for bipolar plate of stainless steel for fuel cell in type of proton exchange membrane
JP2010248572A (en) Titanium-based material and production method of the same, and fuel cell separator
CN106129422B (en) Improve the densification of fuel battery metal double polar plate overlay coating and corrosion resistant method
JP2011198764A (en) Metal separator plate for fuel cell and method of manufacturing same
CN104577144A (en) Fuel-cell bipolar plate with nitrified and enhanced surface and preparation method thereof
KR101209791B1 (en) Metal separator of fuel cell and method for treating surface of the same
Solovyev et al. Scale‐up of solid oxide fuel cells with magnetron sputtered electrolyte
CN113249683A (en) MAX phase solid solution composite coating with high conductivity, corrosion resistance and long service life, and preparation method and application thereof
JP7320862B2 (en) Membrane and manufacturing process
JP3837451B2 (en) Method for producing carbon nanotube
CN112820890B (en) Preparation method and structure of anticorrosive conductive coating and fuel cell polar plate
KR100897323B1 (en) Method for coating thin film on material by Plasma-enhanced chemical vapor deposition and physical vapor deposition
KR101396009B1 (en) Fuel cell bipolar plate for transporting and manufacturing method thereof
JP2004217975A (en) Carbon thin film and manufacturing method therefor
KR20140122114A (en) Metal separator for fuel cell and manufacturing method of the same
CN109301259B (en) Proton exchange membrane fuel cell bipolar plate and preparation method thereof
CN110970626B (en) Fuel cell bipolar plate and coating thereof
CN115411285A (en) Fuel cell bipolar plate containing anticorrosive film and preparation method thereof
KR101396063B1 (en) Method for manufacturing graphitic carbon nano dot

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150401

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R150 Certificate of patent or registration of utility model

Ref document number: 5833587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250