CN106374116A - High-entropy alloy composite coating and process on metal bipolar plate of fuel cell - Google Patents
High-entropy alloy composite coating and process on metal bipolar plate of fuel cell Download PDFInfo
- Publication number
- CN106374116A CN106374116A CN201611087311.1A CN201611087311A CN106374116A CN 106374116 A CN106374116 A CN 106374116A CN 201611087311 A CN201611087311 A CN 201611087311A CN 106374116 A CN106374116 A CN 106374116A
- Authority
- CN
- China
- Prior art keywords
- entropy alloy
- bipolar plate
- composite coating
- metal bipolar
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 58
- 239000000956 alloy Substances 0.000 title claims abstract description 58
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 40
- 239000002184 metal Substances 0.000 title claims abstract description 40
- 238000000576 coating method Methods 0.000 title claims abstract description 38
- 239000011248 coating agent Substances 0.000 title claims abstract description 35
- 239000002131 composite material Substances 0.000 title claims abstract description 31
- 239000000446 fuel Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000008569 process Effects 0.000 title claims description 9
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 18
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 13
- 230000007704 transition Effects 0.000 claims abstract description 11
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 23
- 238000004544 sputter deposition Methods 0.000 claims description 17
- 229910002804 graphite Inorganic materials 0.000 claims description 14
- 239000010439 graphite Substances 0.000 claims description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000002161 passivation Methods 0.000 claims description 5
- 229910001325 element alloy Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000013077 target material Substances 0.000 claims 2
- 230000007797 corrosion Effects 0.000 abstract description 19
- 238000005260 corrosion Methods 0.000 abstract description 19
- 238000005516 engineering process Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 238000013329 compounding Methods 0.000 abstract 1
- 229910001220 stainless steel Inorganic materials 0.000 description 12
- 239000010935 stainless steel Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 229910000619 316 stainless steel Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8892—Impregnation or coating of the catalyst layer, e.g. by an ionomer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域technical field
本发明涉及燃料电池技术领域,具体地说,特别涉及到一种燃料电池金属双极板上的高熵合金复合涂层及其制备方法。The invention relates to the technical field of fuel cells, in particular to a high-entropy alloy composite coating on a metal bipolar plate of a fuel cell and a preparation method thereof.
背景技术Background technique
质子交换膜燃料电池(PEMFC)作为一种清洁能源日益受到各国的关注,并投入巨资加以研究开发。PEMFC可以不经过燃烧直接将氢气中的化学能转变为电能,唯一的产物是水,对环境十分友好,电池组发电效率可达50%以上。PEMFC还具有工作温度低、启动速度快等优点,是理想的移动电源和独立电源装置,在交通工具、电子产品、国防军事和固定电站等领域具有广泛的应用前景。As a kind of clean energy, proton exchange membrane fuel cell (PEMFC) has attracted more and more attention from various countries, and has invested huge sums of money in research and development. PEMFC can directly convert the chemical energy in hydrogen into electrical energy without burning, and the only product is water, which is very friendly to the environment, and the power generation efficiency of the battery pack can reach more than 50%. PEMFC also has the advantages of low operating temperature and fast start-up speed. It is an ideal mobile power supply and independent power supply device. It has broad application prospects in the fields of transportation, electronic products, national defense and military, and fixed power stations.
双极板是质子交换膜燃料电池的关键部件之一。它占电池堆体积的80%、质量的70%和成本的29%,其主要功能是在电池中起到集导电、散热、均匀分散反应介质和冷却剂作用,具有支持膜电极、防止反应介质内漏和外漏等多重功能。因此,理想的双极板材料应具有高的电导率和良好的耐腐蚀性,具有高机械强度、高气密性、化学稳定性好及易加工成型等特点。目前,PEMFC双极板材料主要有三类:石墨材料、复合材料及金属材料。石墨双极板导电良好、易加工,但材料脆性大、机械性能差、加工效率低,难以实现商业化大批量生产。复合材料双极板以碳粉和树脂为主要原料、经模压等方式制备而成,其成本低廉,但是复合材料双极板还存在导电性和气体渗透等问题。金属双极板具有高的强度和导电、导热性能,可以采用金属薄板冲压、滚压等大批量生产方式生产,是公认的燃料电池商业化的首选。Bipolar plates are one of the key components of proton exchange membrane fuel cells. It accounts for 80% of the volume of the battery stack, 70% of the mass and 29% of the cost. Its main function is to collect electricity, dissipate heat, and evenly disperse the reaction medium and coolant in the battery. Multiple functions such as internal leakage and external leakage. Therefore, the ideal bipolar plate material should have high electrical conductivity and good corrosion resistance, and has the characteristics of high mechanical strength, high air tightness, good chemical stability and easy processing and molding. At present, there are three main types of PEMFC bipolar plate materials: graphite materials, composite materials and metal materials. Graphite bipolar plates have good electrical conductivity and are easy to process, but the material is brittle, has poor mechanical properties, and low processing efficiency, making it difficult to achieve commercial mass production. Composite bipolar plates are made of carbon powder and resin as the main raw materials, and are prepared by molding, etc. The cost is low, but there are still problems such as electrical conductivity and gas permeation in composite bipolar plates. Metal bipolar plates have high strength, electrical conductivity, and thermal conductivity, and can be produced by mass production methods such as sheet metal stamping and rolling, and are recognized as the first choice for the commercialization of fuel cells.
PEMFC的工作环境呈弱酸性,且含有Cl-、F-、SO4 2-等离子,对金属双极板(如不锈钢)具有较强的腐蚀作用,因此,需要对金属双极板进行表面改性处理来提高其耐腐蚀性和降低接触电阻。以不锈钢薄板作为双极板的材料为例,现已公开的技术有在双极板表面涂覆贵金属、氮化物、氧化物、碳化物、碳基薄膜等。The working environment of PEMFC is weakly acidic and contains Cl - , F - , SO 4 2- plasma, which has a strong corrosion effect on metal bipolar plates (such as stainless steel). Therefore, it is necessary to modify the surface of metal bipolar plates treatment to improve its corrosion resistance and reduce contact resistance. Taking stainless steel thin plate as the material of the bipolar plate as an example, the disclosed technologies include coating precious metals, nitrides, oxides, carbides, carbon-based films, etc. on the surface of the bipolar plate.
贵金属涂层虽然能满足燃料电池使用要求,但由于其成本高而不适合燃料电池极板低成本、大批量生产。中国专利申请号200810086373.X用电弧离子镀的方法在不锈钢基材表面镀0.1~5μm的CrN薄膜。中国专利申请号02155187.1质子交换膜燃料电池金属双极板,采用气相沉积、喷涂热解等方法在金属基体表面制备0.1~50μm金属氧化物涂层。中国专利申请号200810010110.0采用高能微弧火花合金化技术在不锈钢双极板表面制备了TiC陶瓷涂层。然而,上述方法虽能使腐蚀电位发生正移、腐蚀电流降低,提高了耐腐蚀性能,但是其导电性、疏水性等还有待进一步提高。Although noble metal coatings can meet the requirements of fuel cells, they are not suitable for low-cost and mass production of fuel cell plates due to their high cost. Chinese patent application number 200810086373.X uses arc ion plating to plate a 0.1-5 μm CrN film on the surface of a stainless steel substrate. Chinese Patent Application No. 02155187.1 Metal bipolar plates for proton exchange membrane fuel cells, using vapor deposition, spraying pyrolysis and other methods to prepare 0.1-50 μm metal oxide coatings on the surface of metal substrates. Chinese patent application No. 200810010110.0 uses high-energy micro-arc spark alloying technology to prepare TiC ceramic coating on the surface of stainless steel bipolar plate. However, although the above method can positively shift the corrosion potential, reduce the corrosion current, and improve the corrosion resistance, its conductivity and hydrophobicity still need to be further improved.
近年来,碳基薄膜由于其优异的耐腐蚀性、导电性受到了越来越多研究人员的关注。Mori等人【Moyi Y,Ueda M,Hashimoto M,Aoi Y,Tanase S,SakaiT.Surf.Coat.Technol.2008(202):4094-4101】采用电子回旋共振(ECR)等离子体溅射技术制备了非晶碳膜,Fu等人【Yu Fu,Guoqiang Lin,Ming Hou.International JournalofHydrogen Energy.2009,34(1):405-409】采用电弧离子镀方法制备了Cr-C碳基薄膜,中国专利申请号201110235087.7采用非平衡磁控溅射离子镀方法在不锈钢表面制备了高sp2杂化致密碳镀层,耐腐蚀性能及导电性能都得到显著提高,然而上述方法,由于工艺固有特点的限制,会在涂层中或多或少存在难以避免的针孔现象等缺陷,在燃料电池环境下,长时间运行会引起涂层点蚀,进而引起涂层脱落失效。In recent years, carbon-based thin films have attracted more and more researchers' attention due to their excellent corrosion resistance and electrical conductivity. Mori et al [Moyi Y, Ueda M, Hashimoto M, Aoi Y, Tanase S, Sakai T.Surf.Coat.Technol.2008(202):4094-4101] prepared by electron cyclotron resonance (ECR) plasma sputtering technology Amorphous carbon film, Fu et al [Yu Fu, Guoqiang Lin, Ming Hou. International Journal of Hydrogen Energy.2009,34(1):405-409] prepared Cr-C carbon-based film by arc ion plating method, Chinese patent application No. 201110235087.7 used the unbalanced magnetron sputtering ion plating method to prepare a high sp2 hybrid dense carbon coating on the surface of stainless steel, and the corrosion resistance and electrical conductivity were significantly improved. There are more or less unavoidable pinholes and other defects in the layer. In the fuel cell environment, long-term operation will cause pitting corrosion of the coating, which will cause the coating to fall off and fail.
发明内容Contents of the invention
本发明的目的在于针对现有技术中的不足,提供一种燃料电池金属双极板上的高熵合金复合涂层及其制备方法,以解决现有技术中存在的问题。The object of the present invention is to address the deficiencies in the prior art and provide a high-entropy alloy composite coating on the metal bipolar plate of the fuel cell and its preparation method to solve the problems in the prior art.
本发明所解决的技术问题可以采用以下技术方案来实现:The technical problem solved by the present invention can adopt following technical scheme to realize:
一种燃料电池金属双极板上的高熵合金复合涂层,在金属双极板基底表面上设有高熵合金层、多元合金-碳的过渡层和最外层的非晶碳层,故它是由三层所组成的复合涂层。A high-entropy alloy composite coating on a metal bipolar plate of a fuel cell is provided with a high-entropy alloy layer, a multi-element alloy-carbon transition layer and an outermost amorphous carbon layer on the base surface of the metal bipolar plate. It is a composite coating composed of three layers.
进一步的,所述复合涂层的总厚度为0.1~5μm。Further, the total thickness of the composite coating is 0.1-5 μm.
进一步的,所述高熵合金层由5到7种合金元素构成,各元素原子百分含量在5%~35%之间,其合金元素可为Al、Ti、Ta、Zr、W、Cr、Ru、Nb、Mn、Fe、Mo、Ni等。Further, the high-entropy alloy layer is composed of 5 to 7 alloy elements, and the atomic percentage of each element is between 5% and 35%. The alloy elements can be Al, Ti, Ta, Zr, W, Cr, Ru, Nb, Mn, Fe, Mo, Ni, etc.
进一步的,溅射所述高熵合金层的靶材可以采用高熵合金靶材,也可以采用几个单元素金属靶材、2元合金靶材、3元合金靶材组合使用,通过调节溅射参数制备高熵合金底层,溅射电源为直流电源或为射频电源。Further, the target for sputtering the high-entropy alloy layer can be a high-entropy alloy target, or a combination of several single-element metal targets, 2-element alloy targets, and 3-element alloy targets can be used. By adjusting the sputtering The high-entropy alloy bottom layer is prepared according to the sputtering parameters, and the sputtering power source is a DC power source or a radio frequency power source.
一种燃料电池金属双极板上的高熵合金复合涂层的制备方法,包括如下步骤:A method for preparing a high-entropy alloy composite coating on a fuel cell metal bipolar plate, comprising the steps of:
1)离子溅射清洗金属基板;1) Ion sputtering to clean the metal substrate;
2)制备高熵合金打底层;2) preparing a high-entropy alloy primer;
3)制备高熵合金-碳混合过渡层;3) Preparation of high-entropy alloy-carbon mixed transition layer;
4)沉积最外层的非晶碳层。4) Depositing the outermost amorphous carbon layer.
进一步的,所述步骤1)的具体工艺如下:Further, the specific process of the step 1) is as follows:
将所述金属双极板基板经过超声清洗后,放入非平衡磁控溅射设备真空腔体内,抽真空至炉腔真空低于2.5×10-5torr,通入氩气,在基体上加偏压-300~-700V,用高能离子轰击基板表面,以去除其表面的钝化膜。Put the metal bipolar plate substrate into the vacuum chamber of the unbalanced magnetron sputtering equipment after ultrasonic cleaning, evacuate until the vacuum of the furnace chamber is lower than 2.5×10 -5 torr, pass in argon gas, and add The bias voltage is -300~-700V, and the surface of the substrate is bombarded with high-energy ions to remove the passivation film on the surface.
进一步的,所述步骤2)的具体工艺如下:Further, the specific process of the step 2) is as follows:
制备高熵合金打底层的方法为直流溅射法或射频溅射法;若采用直流溅射法,则其电流为0.1~10A;若采用射频溅射法,则其功率为50~600W,工作气压保持在4.0×10-4~9.0×10-4torr,基体偏压为0~-200V,在金属双极板的表面沉积一层微纳米级的高熵合金打底层。The method for preparing the bottom layer of high-entropy alloy is DC sputtering method or radio frequency sputtering method; if DC sputtering method is used, the current is 0.1-10A; if radio frequency sputtering method is used, the power is 50-600W. The air pressure is maintained at 4.0×10 -4 to 9.0×10 -4 torr, the bias voltage of the substrate is 0 to -200V, and a layer of micro-nano high-entropy alloy primer is deposited on the surface of the metal bipolar plate.
进一步的,所述步骤3)的具体工艺如下:Further, the specific process of the step 3) is as follows:
金属靶电流逐渐减小,或射频源功率逐渐减小,石墨靶电流逐步开启,电流维持在0~10A,从而在高熵合金打底层的基础上沉积高熵合金-碳混合过渡层,以增强膜层之间界面结合强度。The current of the metal target is gradually reduced, or the power of the radio frequency source is gradually reduced, and the current of the graphite target is gradually turned on, and the current is maintained at 0-10A, so that a high-entropy alloy-carbon mixed transition layer is deposited on the basis of the high-entropy alloy primer layer to enhance Interfacial bonding strength between film layers.
进一步的,所述步骤4)的具体工艺如下:Further, the specific process of the step 4) is as follows:
关闭金属靶电源,石墨靶电流维持在0.1~10A,基体偏压在0~-200V,沉积最外层的非晶碳层。Turn off the power supply of the metal target, maintain the current of the graphite target at 0.1-10A, and the bias voltage of the substrate at 0-200V, and deposit the outermost amorphous carbon layer.
与现有其它技术相比,本发明利用非平衡磁控溅射技术在不锈钢双极板表面沉积了高熵合金复合涂层,充分利用了高熵合金打底层和非晶碳膜外层的协同作用,通过调整镀膜工艺参数,可以提高燃料电池金属双极板的耐腐蚀性和导电性能,延长燃料电池使用寿命,为燃料电池产业化提供技术支撑。Compared with other existing technologies, the present invention utilizes unbalanced magnetron sputtering technology to deposit a high-entropy alloy composite coating on the surface of the stainless steel bipolar plate, making full use of the synergy between the high-entropy alloy primer layer and the outer layer of the amorphous carbon film Function, by adjusting the coating process parameters, the corrosion resistance and electrical conductivity of the metal bipolar plate of the fuel cell can be improved, the service life of the fuel cell can be extended, and technical support can be provided for the industrialization of the fuel cell.
附图说明Description of drawings
图1为本发明制备的高熵合金复合涂层与碳纸间接触电阻随压力变化曲线。Fig. 1 is the change curve of the contact resistance between the high-entropy alloy composite coating and carbon paper prepared by the present invention as a function of pressure.
图2为本发明制备的高熵合金复合涂层在模拟燃料电池阴极环境下的腐蚀电流极化曲线。Fig. 2 is the corrosion current polarization curve of the high-entropy alloy composite coating prepared in the present invention under a simulated fuel cell cathode environment.
具体实施方式detailed description
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。In order to make the technical means, creative features, goals and effects achieved by the present invention easy to understand, the present invention will be further described below in conjunction with specific embodiments.
实施例1Example 1
利用非平衡磁控溅射设备,该设备上配备4个直流源,分别安装2个AlCrTaTiZr高熵合金靶和2个石墨靶。将316不锈钢基板试样经过清洗、干燥后放入镀膜机真空室内,抽真空至2.5×10-5torr,通入氩气,加偏压至-500V,对基板试样表面进行离子清洗,以清除不锈钢基板表面的钝化膜;然后调整偏压至-100V,高熵合金靶电流5A,在基板表面上先沉积高熵合金底层;然后逐渐减小高熵合金靶电流,同时开启石墨靶电流,并逐渐增大至6A,偏压为-80V,沉积多元合金-碳混合过渡层;最后关闭高熵合金靶电流,石墨靶电流保持6A,偏压为-60V,沉积最外面的非晶碳层。经过测试,所制备的高熵合金复合镀层总厚度为3.2μm;当压强为1.5MPa时,镀膜不锈钢板与碳纸之间的接触电阻为8.8mΩcm2;在70℃,0.5M H2SO4+3ppm HF,通入空气的模拟燃料电池阴极环境中,电化学动电位扫描腐蚀电位为0.23V,腐蚀电流为1.37μAcm-2。Using unbalanced magnetron sputtering equipment, the equipment is equipped with 4 DC sources, respectively installed 2 AlCrTaTiZr high-entropy alloy targets and 2 graphite targets. After cleaning and drying the 316 stainless steel substrate sample, put it into the vacuum chamber of the coating machine, evacuate to 2.5×10 -5 torr, pass in argon gas, and apply a bias voltage to -500V to perform ion cleaning on the surface of the substrate sample to Remove the passivation film on the surface of the stainless steel substrate; then adjust the bias voltage to -100V, the high-entropy alloy target current is 5A, and deposit the bottom layer of the high-entropy alloy on the substrate surface; then gradually reduce the high-entropy alloy target current and turn on the graphite target current at the same time , and gradually increased to 6A, with a bias of -80V, to deposit a multi-element alloy-carbon mixed transition layer; finally, turn off the high-entropy alloy target current, keep the graphite target current at 6A, with a bias of -60V, and deposit the outermost amorphous carbon layer. After testing, the total thickness of the prepared high-entropy alloy composite coating is 3.2μm; when the pressure is 1.5MPa, the contact resistance between the coated stainless steel plate and carbon paper is 8.8mΩcm 2 ; at 70°C, 0.5MH 2 SO 4 + 3ppm HF, in the simulated fuel cell cathode environment with air, the electrochemical kinetic potential scanning corrosion potential is 0.23V, and the corrosion current is 1.37μAcm -2 .
实施例2Example 2
利用非平衡磁控溅射设备,该设备上配备2个射频源、2个直流源,其中射频源上安装AlCrFeMnNi高熵合金靶,直流源上安装2个石墨靶。将316不锈钢基板试样经过清洗、干燥后放入镀膜机真空室内,抽真空至2.5×10-5torr,通入氩气,加偏压至-450V,对试样表面进行离子清洗,以清除不锈钢基板表面的钝化膜;然后调整偏压至-120V,高熵合金靶功率300W,在基板表面上先沉积高熵合金底层;然后逐渐减小高熵合金靶功率,同时开启石墨靶电流,并逐渐增大至3A,偏压为-60V,沉积多元合金-碳混合过渡层;最后关闭射频源,石墨靶电流保持3A,偏压为-60V,沉积最外面的非晶碳层。经过测试,所制备的高熵合金复合镀层总厚度为1.3μm;当压强为1.5MPa时,镀膜不锈钢板与碳纸之间的接触电阻为3.5mΩcm2;在70℃,0.5M H2SO4+3ppm HF,通入空气的模拟燃料电池阴极环境中,电化学动电位扫描腐蚀电位为0.20V,腐蚀电流为3.34μAcm-2。Using unbalanced magnetron sputtering equipment, the equipment is equipped with 2 radio frequency sources and 2 DC sources, among which AlCrFeMnNi high-entropy alloy targets are installed on the radio frequency sources, and 2 graphite targets are installed on the DC sources. After cleaning and drying the 316 stainless steel substrate sample, put it into the vacuum chamber of the coating machine, evacuate to 2.5×10 -5 torr, pass in argon gas, and apply a bias voltage to -450V to perform ion cleaning on the surface of the sample to remove The passivation film on the surface of the stainless steel substrate; then adjust the bias to -120V, the power of the high-entropy alloy target is 300W, and deposit the bottom layer of the high-entropy alloy on the surface of the substrate; then gradually reduce the power of the high-entropy alloy target, and at the same time turn on the graphite target current, And gradually increase to 3A, the bias voltage is -60V, deposit the multi-element alloy-carbon mixed transition layer; finally turn off the radio frequency source, keep the graphite target current at 3A, the bias voltage is -60V, deposit the outermost amorphous carbon layer. After testing, the total thickness of the prepared high-entropy alloy composite coating is 1.3μm; when the pressure is 1.5MPa, the contact resistance between the coated stainless steel plate and carbon paper is 3.5mΩcm 2 ; at 70°C, 0.5MH 2 SO 4 + 3ppm HF, in the simulated fuel cell cathode environment with air, the electrochemical kinetic potential scanning corrosion potential is 0.20V, and the corrosion current is 3.34μAcm -2 .
实施例3Example 3
利用非平衡磁控溅射设备,该设备上配备2个射频源、2个直流源,其中2个射频源上分别安装Ta-Nb靶、Ti-W靶,2个直流源上分别安装Zr靶、石墨靶。将316不锈钢基板试样经过清洗、干燥后放入镀膜机真空室内,抽真空至2.5×10-5torr,通入氩气,加偏压至-550V,对基板试样表面进行离子清洗,以清除不锈钢基板表面的钝化膜;然后调整偏压至-80V,Ta-Nb靶、Ti-W靶上分别加功率300W和280W,Zr靶电流为4A,在基板表面上先沉积ZrTaNbTiW高熵合金底层;然后逐渐减小Ta-Nb靶、Ti-W靶功率,降低Zr靶电流,同时开启石墨靶电流,并逐渐增大至5A,偏压为-40V,沉积多元合金-碳混合过渡层;最后关闭Ta-Nb靶、Ti-W靶、Zr靶,石墨靶电流保持5A,偏压为-40V,沉积最外面的非晶碳层。经过测试,所制备的高熵合金复合镀层总厚度为2.3μm;当压强为1.5MPa时,镀膜不锈钢板与碳纸之间的接触电阻为11.0mΩcm2;在70℃,0.5M H2SO4+3ppm HF,通入空气的模拟燃料电池阴极环境中,电化学动电位扫描腐蚀电位为0.12V,腐蚀电流为4.34μAcm-2。Using unbalanced magnetron sputtering equipment, the equipment is equipped with 2 RF sources and 2 DC sources, among which Ta-Nb targets and Ti-W targets are respectively installed on the 2 RF sources, and Zr targets are respectively installed on the 2 DC sources , Graphite target. After cleaning and drying the 316 stainless steel substrate sample, put it into the vacuum chamber of the coating machine, evacuate to 2.5×10 -5 torr, pass in argon gas, and apply a bias voltage to -550V to perform ion cleaning on the surface of the substrate sample to Remove the passivation film on the surface of the stainless steel substrate; then adjust the bias voltage to -80V, apply a power of 300W and 280W to the Ta-Nb target and Ti-W target respectively, and the current of the Zr target is 4A, and deposit ZrTaNbTiW high-entropy alloy on the substrate surface first The bottom layer; then gradually reduce the power of the Ta-Nb target and Ti-W target, reduce the current of the Zr target, and at the same time turn on the current of the graphite target, and gradually increase it to 5A, with a bias voltage of -40V, to deposit a multi-element alloy-carbon mixed transition layer; Finally, the Ta-Nb target, Ti-W target, and Zr target were turned off, the current of the graphite target was maintained at 5A, and the bias voltage was -40V, and the outermost amorphous carbon layer was deposited. After testing, the total thickness of the prepared high-entropy alloy composite coating is 2.3μm; when the pressure is 1.5MPa, the contact resistance between the coated stainless steel plate and carbon paper is 11.0mΩcm 2 ; at 70°C, 0.5MH 2 SO 4 + 3ppm HF, in the simulated fuel cell cathode environment with air, the electrochemical kinetic potential scanning corrosion potential is 0.12V, and the corrosion current is 4.34μAcm -2 .
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Variations and improvements all fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611087311.1A CN106374116B (en) | 2016-12-01 | 2016-12-01 | High-entropy alloy composite coating and process on metal bipolar plate of fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611087311.1A CN106374116B (en) | 2016-12-01 | 2016-12-01 | High-entropy alloy composite coating and process on metal bipolar plate of fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106374116A true CN106374116A (en) | 2017-02-01 |
CN106374116B CN106374116B (en) | 2019-09-06 |
Family
ID=57892533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611087311.1A Expired - Fee Related CN106374116B (en) | 2016-12-01 | 2016-12-01 | High-entropy alloy composite coating and process on metal bipolar plate of fuel cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106374116B (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108914060A (en) * | 2018-07-10 | 2018-11-30 | 深圳森丰真空镀膜有限公司 | A kind of preparation method of fuel battery double plates surface protection coating |
CN109560290A (en) * | 2018-12-26 | 2019-04-02 | 浙江锋源氢能科技有限公司 | A kind of metal double polar plates and preparation method thereof and fuel cell |
DE102017128058A1 (en) | 2017-11-28 | 2019-05-29 | RUHR-UNIVERSITäT BOCHUM | Electrochemical electrode with multinary metal alloy as reduction catalyst |
CN110343930A (en) * | 2019-08-22 | 2019-10-18 | 西安工业大学 | A kind of Flouride-resistani acid phesphatase high-entropy alloy, cladding tubes and preparation method thereof |
CN110970626A (en) * | 2018-09-28 | 2020-04-07 | 武汉众宇动力系统科技有限公司 | Fuel cell bipolar plate and coating thereof |
CN111441025A (en) * | 2020-05-13 | 2020-07-24 | 江苏金晟元特种阀门股份有限公司 | Corrosion-resistant high-entropy alloy film, preparation method and application in seawater environment |
CN112993293A (en) * | 2019-12-14 | 2021-06-18 | 中国科学院大连化学物理研究所 | Metal bipolar plate of fuel cell and preparation method thereof |
CN113097522A (en) * | 2021-03-29 | 2021-07-09 | 纳狮新材料有限公司 | Bipolar plate and method for producing the same |
CN113652642A (en) * | 2021-08-12 | 2021-11-16 | 南京航空航天大学 | A kind of gradient ceramic high-entropy alloy coating and preparation method thereof |
CN113737142A (en) * | 2021-06-23 | 2021-12-03 | 上海大学 | Preparation method of composite gradient carbon-based coating of proton exchange membrane fuel cell titanium bipolar plate |
WO2022013317A1 (en) | 2020-07-14 | 2022-01-20 | Nanofilm Technologies International Limited | Carbon coated hydrogen fuel cell bipolar plates |
CN114457311A (en) * | 2021-12-30 | 2022-05-10 | 南京航空航天大学 | A kind of high entropy alloy nanocrystalline coating for proton exchange membrane fuel cell bipolar plate and preparation method |
CN114597436A (en) * | 2022-03-28 | 2022-06-07 | 中国科学院兰州化学物理研究所 | A kind of protective coating for metal bipolar plate and preparation method thereof |
CN114657436A (en) * | 2022-03-25 | 2022-06-24 | 北京航空航天大学 | A TiAlMoNbW high-entropy alloy target and its preparation process |
CN114703458A (en) * | 2022-03-02 | 2022-07-05 | 燕山大学 | Application of CoCrFeNi high-entropy alloy doped amorphous carbon films in the preparation of materials under heavy load conditions |
CN115000444A (en) * | 2022-06-21 | 2022-09-02 | 上海电气集团股份有限公司 | Multilayer composite carbon coating, preparation method and application thereof, fuel cell bipolar plate and fuel cell |
CN115020734A (en) * | 2022-05-19 | 2022-09-06 | 中国空间技术研究院 | Fuel cell metal bipolar plate composite coating and preparation method thereof |
CN115029663A (en) * | 2022-07-04 | 2022-09-09 | 中汽创智科技有限公司 | Metal polar plate composite coating, metal polar plate and preparation method thereof, and fuel cell |
CN115044870A (en) * | 2022-05-24 | 2022-09-13 | 西安交通大学 | Amorphous refractory high-entropy alloy coating and preparation method thereof |
CN115961222A (en) * | 2022-12-27 | 2023-04-14 | 松山湖材料实验室 | Refractory high-entropy amorphous alloy film and preparation method thereof |
CN116083870A (en) * | 2023-04-07 | 2023-05-09 | 西南交通大学 | Three-phase nano composite high-entropy film and preparation method and application thereof |
US20230183851A1 (en) * | 2021-12-14 | 2023-06-15 | Lanzhou Institute Of Chemical Physics, Chinese Academy Of Sciences | High-entropy carbide ceramic material, carbide ceramic coating and preparation methods and use thereof |
CN116334514A (en) * | 2023-03-29 | 2023-06-27 | 烟台大学 | A kind of anti-fatigue gradient nano-Cr coating for cladding pipe and its preparation method |
WO2023139214A1 (en) | 2022-01-20 | 2023-07-27 | Nanofilm Vacuum Coating (Shanghai) Co., Ltd. | Carbon coated electrodes |
CN118086854A (en) * | 2024-04-29 | 2024-05-28 | 艾瑞森表面技术(苏州)股份有限公司 | Preparation method of metal bipolar plate coating |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102443730A (en) * | 2010-10-13 | 2012-05-09 | 陈瑞凯 | Hydrogen-storage alloy |
CN102931421A (en) * | 2012-11-06 | 2013-02-13 | 上海交通大学 | Fuel cell metal bipolar plate with conductive and anti-corrosion plating and preparation method thereof |
CN104204274A (en) * | 2012-02-24 | 2014-12-10 | 梯尔镀层有限公司 | Coating with conductive and corrosion resistance characteristics |
-
2016
- 2016-12-01 CN CN201611087311.1A patent/CN106374116B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102443730A (en) * | 2010-10-13 | 2012-05-09 | 陈瑞凯 | Hydrogen-storage alloy |
CN104204274A (en) * | 2012-02-24 | 2014-12-10 | 梯尔镀层有限公司 | Coating with conductive and corrosion resistance characteristics |
CN102931421A (en) * | 2012-11-06 | 2013-02-13 | 上海交通大学 | Fuel cell metal bipolar plate with conductive and anti-corrosion plating and preparation method thereof |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017128058A1 (en) | 2017-11-28 | 2019-05-29 | RUHR-UNIVERSITäT BOCHUM | Electrochemical electrode with multinary metal alloy as reduction catalyst |
CN108914060A (en) * | 2018-07-10 | 2018-11-30 | 深圳森丰真空镀膜有限公司 | A kind of preparation method of fuel battery double plates surface protection coating |
CN110970626A (en) * | 2018-09-28 | 2020-04-07 | 武汉众宇动力系统科技有限公司 | Fuel cell bipolar plate and coating thereof |
CN110970626B (en) * | 2018-09-28 | 2021-05-25 | 武汉众宇动力系统科技有限公司 | Fuel cell bipolar plate and coating thereof |
CN109560290A (en) * | 2018-12-26 | 2019-04-02 | 浙江锋源氢能科技有限公司 | A kind of metal double polar plates and preparation method thereof and fuel cell |
CN109560290B (en) * | 2018-12-26 | 2023-10-27 | 浙江锋源氢能科技有限公司 | Metal bipolar plate, preparation method thereof and fuel cell |
CN110343930A (en) * | 2019-08-22 | 2019-10-18 | 西安工业大学 | A kind of Flouride-resistani acid phesphatase high-entropy alloy, cladding tubes and preparation method thereof |
CN112993293A (en) * | 2019-12-14 | 2021-06-18 | 中国科学院大连化学物理研究所 | Metal bipolar plate of fuel cell and preparation method thereof |
CN111441025B (en) * | 2020-05-13 | 2022-05-27 | 江苏金晟元特种阀门股份有限公司 | Corrosion-resistant high-entropy alloy film, preparation method and application thereof in seawater environment |
CN111441025A (en) * | 2020-05-13 | 2020-07-24 | 江苏金晟元特种阀门股份有限公司 | Corrosion-resistant high-entropy alloy film, preparation method and application in seawater environment |
CN114006003A (en) * | 2020-07-14 | 2022-02-01 | 纳峰真空镀膜(上海)有限公司 | Carbon-coated hydrogen fuel cell bipolar plate |
WO2022013317A1 (en) | 2020-07-14 | 2022-01-20 | Nanofilm Technologies International Limited | Carbon coated hydrogen fuel cell bipolar plates |
EP4300637A3 (en) * | 2020-07-14 | 2024-05-15 | Nanofilm Technologies International Limited | Carbon coated hydrogen fuel cell bipolar plates |
EP4300637A2 (en) | 2020-07-14 | 2024-01-03 | Nanofilm Technologies International Limited | Carbon coated hydrogen fuel cell bipolar plates |
CN113097522A (en) * | 2021-03-29 | 2021-07-09 | 纳狮新材料有限公司 | Bipolar plate and method for producing the same |
CN113737142A (en) * | 2021-06-23 | 2021-12-03 | 上海大学 | Preparation method of composite gradient carbon-based coating of proton exchange membrane fuel cell titanium bipolar plate |
CN113652642A (en) * | 2021-08-12 | 2021-11-16 | 南京航空航天大学 | A kind of gradient ceramic high-entropy alloy coating and preparation method thereof |
US20230183851A1 (en) * | 2021-12-14 | 2023-06-15 | Lanzhou Institute Of Chemical Physics, Chinese Academy Of Sciences | High-entropy carbide ceramic material, carbide ceramic coating and preparation methods and use thereof |
CN114457311A (en) * | 2021-12-30 | 2022-05-10 | 南京航空航天大学 | A kind of high entropy alloy nanocrystalline coating for proton exchange membrane fuel cell bipolar plate and preparation method |
WO2023139214A1 (en) | 2022-01-20 | 2023-07-27 | Nanofilm Vacuum Coating (Shanghai) Co., Ltd. | Carbon coated electrodes |
CN114703458A (en) * | 2022-03-02 | 2022-07-05 | 燕山大学 | Application of CoCrFeNi high-entropy alloy doped amorphous carbon films in the preparation of materials under heavy load conditions |
CN114703458B (en) * | 2022-03-02 | 2023-04-07 | 燕山大学 | Application of CoCrFeNi high-entropy alloy doped amorphous carbon film in preparation of material under heavy-load working condition |
CN114657436A (en) * | 2022-03-25 | 2022-06-24 | 北京航空航天大学 | A TiAlMoNbW high-entropy alloy target and its preparation process |
CN114597436A (en) * | 2022-03-28 | 2022-06-07 | 中国科学院兰州化学物理研究所 | A kind of protective coating for metal bipolar plate and preparation method thereof |
CN115020734A (en) * | 2022-05-19 | 2022-09-06 | 中国空间技术研究院 | Fuel cell metal bipolar plate composite coating and preparation method thereof |
CN115044870A (en) * | 2022-05-24 | 2022-09-13 | 西安交通大学 | Amorphous refractory high-entropy alloy coating and preparation method thereof |
CN115044870B (en) * | 2022-05-24 | 2024-04-16 | 西安交通大学 | Amorphous refractory high-entropy alloy coating and preparation method thereof |
CN115000444A (en) * | 2022-06-21 | 2022-09-02 | 上海电气集团股份有限公司 | Multilayer composite carbon coating, preparation method and application thereof, fuel cell bipolar plate and fuel cell |
CN115000444B (en) * | 2022-06-21 | 2023-12-29 | 上海电气集团股份有限公司 | Multilayer composite carbon coating, preparation method and application thereof, fuel cell bipolar plate and fuel cell |
CN115029663A (en) * | 2022-07-04 | 2022-09-09 | 中汽创智科技有限公司 | Metal polar plate composite coating, metal polar plate and preparation method thereof, and fuel cell |
CN115961222A (en) * | 2022-12-27 | 2023-04-14 | 松山湖材料实验室 | Refractory high-entropy amorphous alloy film and preparation method thereof |
CN115961222B (en) * | 2022-12-27 | 2024-06-07 | 松山湖材料实验室 | Refractory high entropy amorphous alloy film and preparation method thereof |
CN116334514A (en) * | 2023-03-29 | 2023-06-27 | 烟台大学 | A kind of anti-fatigue gradient nano-Cr coating for cladding pipe and its preparation method |
CN116083870A (en) * | 2023-04-07 | 2023-05-09 | 西南交通大学 | Three-phase nano composite high-entropy film and preparation method and application thereof |
CN118086854A (en) * | 2024-04-29 | 2024-05-28 | 艾瑞森表面技术(苏州)股份有限公司 | Preparation method of metal bipolar plate coating |
CN118086854B (en) * | 2024-04-29 | 2024-06-28 | 艾瑞森表面技术(苏州)股份有限公司 | Preparation method of metal bipolar plate coating |
Also Published As
Publication number | Publication date |
---|---|
CN106374116B (en) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106374116B (en) | High-entropy alloy composite coating and process on metal bipolar plate of fuel cell | |
CN110684946B (en) | Metal bipolar plate high-conductivity corrosion-resistant protective coating and preparation method and application thereof | |
CN102800871B (en) | Fuel cell metal bipolar plate carbon chromium gradient coating and preparation method | |
CN102931421B (en) | Fuel cell metal bipolar plate with conductive and anti-corrosion plating and preparation method thereof | |
CN100595951C (en) | A kind of bipolar plate for fuel cell and its surface carbon chromium thin film preparation method | |
CN101484606B (en) | Method for producing an electrically conducting layer | |
CN101800318B (en) | Metal bipolar plate for proton exchange membrane fuel cell and preparation method thereof | |
CN110284102A (en) | A kind of metal carbides crystal composite coating and preparation method thereof | |
CN104766980B (en) | Acid medium flue cell bipolar plate protection coating and preparing method thereof | |
CN102130341A (en) | A kind of fuel cell bipolar plate and its surface carbon-titanium nanocomposite film preparation method | |
CN114481048B (en) | High-conductivity corrosion-resistant amorphous/nanocrystalline composite coexisting coating and preparation method and application thereof | |
CN106129422B (en) | Improve the densification of fuel battery metal double polar plate overlay coating and corrosion resistant method | |
CN112993298A (en) | Double-functional coating of fuel cell metal bipolar plate | |
CN112803033B (en) | Film for fuel cell metal bipolar plate and preparation method thereof | |
CN108060398A (en) | A kind of fuel cell composite Nano coating and its plating method | |
Solovyev et al. | Scale‐up of solid oxide fuel cells with magnetron sputtered electrolyte | |
CN114665114A (en) | Multilayer composite carbon coating and preparation method and application thereof | |
CN113206267A (en) | Preparation method of fuel cell metal polar plate coating | |
CN115029663A (en) | Metal polar plate composite coating, metal polar plate and preparation method thereof, and fuel cell | |
CN110880608B (en) | A metal bipolar plate composite film layer for hydrogen fuel cell and its preparation method | |
CN107937871A (en) | A kind of fuel battery double plates composite coating and preparation method thereof | |
CN109301259B (en) | A kind of proton exchange membrane fuel cell bipolar plate and preparation method thereof | |
CN109023282B (en) | A preparation method for preparing CrMoTiN nitride film nano-coating on the surface of bipolar plate | |
CN112993293A (en) | Metal bipolar plate of fuel cell and preparation method thereof | |
CN116716578A (en) | Multilayer gradient coating Cr/CrN/(Cr, ti) for proton exchange membrane fuel cell metal bipolar plate 2 AlC and construction method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190906 |
|
CF01 | Termination of patent right due to non-payment of annual fee |