JP2014133680A - Glass plate for thin film solar cell - Google Patents

Glass plate for thin film solar cell Download PDF

Info

Publication number
JP2014133680A
JP2014133680A JP2013002307A JP2013002307A JP2014133680A JP 2014133680 A JP2014133680 A JP 2014133680A JP 2013002307 A JP2013002307 A JP 2013002307A JP 2013002307 A JP2013002307 A JP 2013002307A JP 2014133680 A JP2014133680 A JP 2014133680A
Authority
JP
Japan
Prior art keywords
glass plate
film solar
solar cell
thin film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013002307A
Other languages
Japanese (ja)
Other versions
JP6128418B2 (en
Inventor
Shoichi Tanida
正一 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013002307A priority Critical patent/JP6128418B2/en
Publication of JP2014133680A publication Critical patent/JP2014133680A/en
Application granted granted Critical
Publication of JP6128418B2 publication Critical patent/JP6128418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass plate that contributes to improvement in conversion efficiency of a thin film solar cell.SOLUTION: A glass plate for a thin film solar cell in this invention is produced by a floating method and has a bvalue to be 7 or more in a coloring test using silver.

Description

本発明は、薄膜太陽電池用ガラス板に関し、特にCIS系太陽電池等のカルコパイライト型太陽電池、CdTe系太陽電池に好適なガラス板に関する。   The present invention relates to a glass plate for a thin film solar cell, and more particularly to a glass plate suitable for a chalcopyrite solar cell such as a CIS solar cell and a CdTe solar cell.

太陽電池は、バルク型太陽電池と薄膜太陽電池に大別される。薄膜太陽電池は、厚さ数ミクロン程度の半導体薄膜を光電変換膜とする太陽電池であり、バルク型太陽電池に比べて、半導体材料が少量で済むため、製造費当たりの発電効率に優れている。特に、化合物半導体太陽電池(例えば、カルコパイライト型太陽電池、CdTe系太陽電池等)は、薄膜シリコン太陽電池に比べて、製造プロセスの自由度が高いため、更に製造費当たりの発電効率に優れている(例えば、特許文献1参照)。   Solar cells are roughly classified into bulk type solar cells and thin film solar cells. A thin film solar cell is a solar cell that uses a semiconductor thin film with a thickness of several microns as a photoelectric conversion film. Compared with a bulk type solar cell, a small amount of semiconductor material is required, and power generation efficiency per manufacturing cost is excellent. . In particular, compound semiconductor solar cells (for example, chalcopyrite solar cells, CdTe solar cells, etc.) have a higher degree of freedom in the manufacturing process than thin-film silicon solar cells, and are therefore superior in power generation efficiency per manufacturing cost. (For example, refer to Patent Document 1).

化合物半導体太陽電池は、一般的に、ガラス板上に、モリブデン等の電極と、CIS、CIGS等の化合物半導体層と、CdS、ZnS等のバッファ層と、ZnO、AZO(アルミニウムドープ酸化亜鉛)、ITO(スズドープ酸化インジウム)等の透明導電膜とを順次積層した構造を有している。   A compound semiconductor solar cell generally has an electrode such as molybdenum, a compound semiconductor layer such as CIS and CIGS, a buffer layer such as CdS and ZnS, a ZnO, AZO (aluminum-doped zinc oxide), It has a structure in which a transparent conductive film such as ITO (tin-doped indium oxide) is sequentially laminated.

特開平8−330614号公報JP-A-8-330614

ところで、カルコパイライト型太陽電池、CdTe系太陽電池等の薄膜太陽電池では、光電変換膜を高温で成膜すると、光電変換膜の結晶品位を高めることができる。光電変換膜の結晶品位が高い場合、薄膜太陽電池の変換効率が向上することが知られている。   By the way, in a thin film solar cell such as a chalcopyrite solar cell or a CdTe solar cell, when the photoelectric conversion film is formed at a high temperature, the crystal quality of the photoelectric conversion film can be improved. It is known that when the crystal quality of the photoelectric conversion film is high, the conversion efficiency of the thin film solar cell is improved.

その一方で、光電変換膜を高温で成膜すると、ガラス板上に形成されるモリブデン等の電極が酸化し易くなり、その影響で変換効率が低下し易くなる。   On the other hand, when the photoelectric conversion film is formed at a high temperature, an electrode such as molybdenum formed on the glass plate is likely to be oxidized, and the conversion efficiency is likely to be lowered due to the influence.

結果として、従来まで、薄膜太陽電池の変換効率を十分に高めることが困難であった。   As a result, it has been difficult to sufficiently increase the conversion efficiency of thin film solar cells.

本発明は、上記事情に鑑みなされたものであり、その技術的課題は、薄膜太陽電池の変換効率向上に資するガラス板を創案することである。   This invention is made | formed in view of the said situation, The technical subject is creating the glass plate which contributes to the conversion efficiency improvement of a thin film solar cell.

本発明者等は、鋭意検討した結果、ガラス板の表層の酸化還元状態を規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の薄膜太陽電池用ガラス板は、フロート法で製板されてなり、銀での発色試験を行った時に、b値が7以上になることを特徴とする。ここで、「銀での発色試験」は、ガラス板の表層の酸化還元状態を評価するためのものであり、b値は、酸化還元状態の指標となる。「銀での発色試験」は、まずガラス板のトップ面側に銀ペーストを6μm厚になるように塗布した後、(歪点−15)℃にて1時間焼成し、次に簡易型分光色差計(例えば、日本電色工業株式会社製NF333)を用いて、ガラス板のボトム面(Sn浴に接していた方の面)側からb値を測定することで行うことができる。本発明では、銀での発色試験を行うが、その理由は、銀ペーストが入手し易く、簡便に試験し得るからである。なお、他の金属材料でも、銀と同様の傾向を示すと考えられる。 As a result of intensive studies, the present inventors have found that the above technical problem can be solved by regulating the redox state of the surface layer of the glass plate, and propose the present invention. That is, the glass plate for a thin film solar cell of the present invention is formed by a float process, and has a b * value of 7 or more when a color development test with silver is performed. Here, the “color development test with silver” is for evaluating the redox state of the surface layer of the glass plate, and the b * value is an index of the redox state. In the “color development test with silver”, first, a silver paste was applied to the top surface side of a glass plate so as to have a thickness of 6 μm, then baked at (distortion point −15) ° C. for 1 hour, and then simplified spectral color difference. Using a meter (for example, NF333 manufactured by Nippon Denshoku Industries Co., Ltd.), the b * value can be measured from the bottom surface (the surface in contact with the Sn bath) side of the glass plate. In the present invention, a color development test is performed with silver because the silver paste is easily available and can be easily tested. In addition, it is thought that another metal material shows the same tendency as silver.

本発明のガラス板は、フロート法で製板されてなる。フロート法は、還元雰囲気のフロートバス内で製板する方法である。このため、フロート法で製板すれば、ガラス板の表層に還元層を形成することができる。この還元層は、光電変換膜の成膜時にモリブデン等の電極と相互作用し、電極の酸化を抑制することができる。結果として、薄膜太陽電池の変換効率を高めることが可能になる。   The glass plate of the present invention is made by a float process. The float process is a method of making a plate in a float bath in a reducing atmosphere. For this reason, if it manufactures with a float glass process, a reduction layer can be formed in the surface layer of a glass plate. This reduction layer interacts with an electrode such as molybdenum when the photoelectric conversion film is formed, and can suppress oxidation of the electrode. As a result, the conversion efficiency of the thin film solar cell can be increased.

銀での発色試験におけるb値を高めるには、(1)フロートバス内の水素濃度を高める方法、(2)フロートバス内におけるガラスリボンの滞在時間を長くする方法、(3)フロートバス内の温度を高める方法、(4)ガラス板の歪点を低下させる方法等が挙げられる。これらの方法を適宜選択することにより、b値を高めることが可能になる。但し、ガラス板の歪点を低下させると、ガラス板の耐熱性が低下し易くなる。結果として、光電変換膜を高温で成膜し難くなり、光電変換膜の結晶品位が低下し易くなる。 In order to increase the b * value in the color development test with silver, (1) a method for increasing the hydrogen concentration in the float bath, (2) a method for increasing the residence time of the glass ribbon in the float bath, (3) in the float bath And (4) a method for reducing the strain point of the glass plate. The b * value can be increased by appropriately selecting these methods. However, when the strain point of the glass plate is lowered, the heat resistance of the glass plate is likely to be lowered. As a result, it becomes difficult to form the photoelectric conversion film at a high temperature, and the crystal quality of the photoelectric conversion film is easily lowered.

第二に、本発明の薄膜太陽電池用ガラス板は、銀での発色試験を行った時に、b値が14以上になることが好ましい。 Second, the glass plate for a thin film solar cell of the present invention preferably has a b * value of 14 or more when a color development test with silver is performed.

第三に、本発明の薄膜太陽電池用ガラス板は、銀での発色試験を行った時に、b値が30以下になることが好ましい。b値が高過ぎると、成膜時に、光電変換膜中の金属イオンがガラス板中の金属イオン(特にアルカリ金属イオン)とイオン交換反応を引き起こして、ガラス板中に拡散し易くなり、結果として、拡散した金属イオンは、還元層により還元されて、金属原子コロイドになり、ガラス板を着色させる。スーパーストレートタイプ、タンデムタイプの薄膜太陽電池では、ガラス板の着色により、太陽光がガラス板に吸収されて、変換効率が低下し易くなる。 Third, the glass plate for a thin film solar cell of the present invention preferably has a b * value of 30 or less when a color development test with silver is performed. When the b * value is too high, the metal ions in the photoelectric conversion film cause an ion exchange reaction with the metal ions (particularly alkali metal ions) in the glass plate during film formation, and are easily diffused into the glass plate. As a result, the diffused metal ions are reduced by the reduction layer to become metal atom colloids, which color the glass plate. In the super straight type and tandem type thin film solar cells, sunlight is absorbed by the glass plate due to the coloring of the glass plate, and the conversion efficiency tends to decrease.

第四に、本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、NaO 1〜15%、KO 0〜9%を含有することが好ましい。 Fourth, the glass plate for a thin-film solar cell of the present invention has a glass composition, in mass%, Na 2 O 1~15%, preferably contains K 2 O 0~9%.

第五に、本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、SiO 45〜65%、Al 1〜20%、MgO+CaO+SrO+BaO 1〜40%、NaO+KO 1〜20%を含有することが好ましい。ここで、「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量を指す。「NaO+KO」は、NaOとKOの合量を指す。 Fifth, a glass plate for thin-film solar cell of the present invention has a glass composition, in mass%, SiO 2 45~65%, Al 2 O 3 1~20%, MgO + CaO + SrO + BaO 1~40%, Na 2 O + K 2 O It is preferable to contain 1 to 20%. Here, “MgO + CaO + SrO + BaO” refers to the total amount of MgO, CaO, SrO and BaO. “Na 2 O + K 2 O” refers to the total amount of Na 2 O and K 2 O.

第六に、本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、SiO 45〜60%、Al 8超〜20%、B 0〜15%未満、MgO+CaO+SrO+BaO 1〜40%、NaO+KO 1〜20%を含有し、且つ歪点が590℃超であることが好ましい。ここで、「歪点」は、ASTM C336−71に基づいて測定した値を指す。 Sixth, a glass plate for thin-film solar cell of the present invention has a glass composition, in mass%, SiO 2 45~60%, Al 2 O 3 8 super to 20% B 2 O 3 less than 0 to 15%, It is preferable that MgO + CaO + SrO + BaO 1 to 40%, Na 2 O + K 2 O 1 to 20% and the strain point be higher than 590 ° C. Here, the “strain point” refers to a value measured based on ASTM C336-71.

第七に、本発明の薄膜太陽電池用ガラス板は、実質的に未研磨の表面を有することが好ましく、トップ面全体が実質的に未研磨であることが更に好ましく、両表面全体が実質的に未研磨であることが特に好ましい。ここで、「実質的に未研磨」とは、表面の研磨量が1.0μm未満の場合を指す。   Seventh, the glass plate for a thin-film solar cell of the present invention preferably has a substantially unpolished surface, more preferably the entire top surface is substantially unpolished, and the entire surface is substantially the same. In particular, it is particularly preferably unpolished. Here, “substantially unpolished” refers to the case where the surface polishing amount is less than 1.0 μm.

第八に、本発明の薄膜太陽電池用ガラス板は、化学強化処理が行われていることが好ましい。   Eighth, it is preferable that the glass plate for thin film solar cells of the present invention is subjected to a chemical strengthening treatment.

第九に、本発明の薄膜太陽電池用ガラス板は、化学強化処理が行われていないことが好ましい。   Ninthly, it is preferable that the glass plate for thin film solar cells of the present invention is not subjected to chemical strengthening treatment.

第十に、本発明の薄膜太陽電池用ガラス板は、カルコパイライト型太陽電池に用いることが好ましい。   10thly, it is preferable to use the glass plate for thin film solar cells of this invention for a chalcopyrite solar cell.

第十一に、本発明の薄膜太陽電池用ガラス板は、CdTe系太陽電池に用いることが好ましい。   Eleventh, the glass plate for a thin film solar cell of the present invention is preferably used for a CdTe solar cell.

本発明の薄膜太陽電池用ガラス板において、銀での発色試験を行った時のb値は7以上であり、好ましくは8超、10以上、14以上、15以上、17以上、19以上、21以上、特に23〜30である。b値が小さ過ぎると、光電変換膜の成膜時に、ガラス板の還元層が、モリブデン等の電極と相互作用し難くなるため、電極の酸化を抑制し難くなる。なお、b値が大き過ぎると、光電変換膜の成膜時にガラス板が着色し易くなる。 In the glass plate for a thin film solar cell of the present invention, the b * value when the color development test with silver is 7 or more, preferably more than 8, 10 or more, 14 or more, 15 or more, 17 or more, 19 or more, 21 or more, especially 23-30. If the b * value is too small, the reduction layer of the glass plate does not easily interact with an electrode such as molybdenum when the photoelectric conversion film is formed, and thus it is difficult to suppress oxidation of the electrode. If the b * value is too large, the glass plate is likely to be colored when the photoelectric conversion film is formed.

フロート法で製板する際に、フロートバス内の水素濃度は1%超、1.5%以上、1.9%以上、3%以上、4%以上、4.5%以上、特に5%以上が好ましい。水素濃度が低過ぎると、b値が小さくなり、電極の酸化を抑制し難くなる。 When making a plate by the float process, the hydrogen concentration in the float bath is over 1%, 1.5% or more, 1.9% or more, 3% or more, 4% or more, 4.5% or more, especially 5% or more Is preferred. If the hydrogen concentration is too low, the b * value becomes small and it becomes difficult to suppress oxidation of the electrode.

フロート法で製板する際に、0℃、1atmにおける水素ガスの流量は、フロートバスの空間1m当たり、0.4m/時間以上、0.5m/時間以上、特に0.6m/時間以上が好ましい。水素ガスの流量が少な過ぎると、b値が小さくなり、電極の酸化を抑制し難くなる。 When manufacturing the plate by a float process, 0 ° C., the flow rate of the hydrogen gas in 1atm is space 1 m 3 per float bath, 0.4 m 3 / time or more, 0.5 m 3 / time or more, particularly 0.6 m 3 / More than time is preferred. If the flow rate of the hydrogen gas is too small, the b * value becomes small and it becomes difficult to suppress the oxidation of the electrode.

フロート法で製板する際に、フロートバス内でのガラスリボンの滞在時間は10分間以上、13分間以上、特に15分間以上が好ましい。ガラスリボンの滞在時間が短過ぎると、b値が小さくなり、電極の酸化を抑制し難くなる。 When making a plate by the float process, the residence time of the glass ribbon in the float bath is preferably 10 minutes or more, 13 minutes or more, particularly preferably 15 minutes or more. If the staying time of the glass ribbon is too short, the b * value becomes small and it becomes difficult to suppress the oxidation of the electrode.

フロート法で製板する際に、フロートバス内の温度は1120℃以上、1150℃以上、特に1160℃以上が好ましい。フロートバス内の温度が低過ぎると、b値が小さくなり、電極の酸化を抑制し難くなる。 When making a plate by the float process, the temperature in the float bath is preferably 1120 ° C. or higher, 1150 ° C. or higher, particularly 1160 ° C. or higher. If the temperature in the float bath is too low, the b * value becomes small and it becomes difficult to suppress oxidation of the electrode.

本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、NaO 1〜15%、KO 0〜9%を含有することが好ましく、SiO 45〜65%、Al 1〜20%、NaO+KO 1〜20%、MgO+CaO+SrO+BaO 1〜40%を含有することが好ましい。上記のように、各成分の含有量を規制した理由を下記に示す。 The glass plate for a thin-film solar cell of the present invention preferably contains Na 2 O 1-15% and K 2 O 0-9% in terms of glass composition, SiO 2 45-65%, Al 2. O 3 1~20%, Na 2 O + K 2 O 1~20%, preferably contains 1~40% MgO + CaO + SrO + BaO. The reason why the content of each component is regulated as described above is shown below.

SiOは、ガラスネットワークを形成する成分である。SiOの含有量は45〜65%、45〜60%、45〜54%、特に49〜52%が好ましい。SiOの含有量が多過ぎると、高温粘度が不当に高くなり、溶融性や成形性が低下し易くなることに加えて、熱膨張係数が低くなり過ぎて、薄膜太陽電池の電極、光電変換膜の熱膨張係数に整合させ難くなる。一方、SiOの含有量が少な過ぎると、耐失透性が低下し易くなる。更に、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなり、結果として、高温の成膜工程で、ガラス板に割れが発生し易くなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 45 to 65%, 45 to 60%, 45 to 54%, particularly 49 to 52%. When the content of SiO 2 is too large, the high-temperature viscosity becomes unduly high and the meltability and moldability are liable to decrease, and the thermal expansion coefficient becomes too low, so that the electrode of the thin film solar cell, photoelectric conversion It becomes difficult to match the thermal expansion coefficient of the film. On the other hand, if the content of SiO 2 is too small, devitrification resistance is liable to decrease. Furthermore, since the thermal expansion coefficient becomes too high, the thermal shock resistance of the glass plate is likely to be lowered, and as a result, the glass plate is easily cracked in a high-temperature film forming process.

Alは、歪点を高める成分であると共に、耐候性、化学的耐久性を高める成分である。Alの含有量は1〜20%、5〜18%、8超〜18%、10超〜15%、11超〜14.5%、特に11.5〜14%が好ましい。Alの含有量が多過ぎると、高温粘度が不当に高くなり、溶融性や成形性が低下し易くなる。一方、Alの含有量が少な過ぎると、歪点が低下し易くなる。 Al 2 O 3 is a component that increases the strain point and also increases weather resistance and chemical durability. The content of Al 2 O 3 is preferably 1 to 20%, 5 to 18%, more than 8 to 18%, more than 10 to 15%, more than 11 to 14.5%, particularly preferably 11.5 to 14%. When the content of Al 2 O 3 is too large, the high temperature viscosity becomes unduly high, the meltability and the formability tends to decrease. On the other hand, when the content of Al 2 O 3 is too small, the strain point tends to decrease.

SiO−Alは、ガラスネットワークを構成する成分の内、主要構成成分のSiOと歪点を高める寄与が大きいAlの差である。SiO−Alの含有量が多過ぎると、歪点が低下し易くなる。一方、SiO−Alの含有量が少な過ぎると、耐失透性が低下し易くなる。よって、SiO−Alの含有量は28〜50%、30〜45%未満、32〜43%、特に34〜40%が好ましい。 SiO 2 —Al 2 O 3 is a difference between SiO 2 as a main component and Al 2 O 3 that greatly contributes to increase the strain point among components constituting the glass network. When the content of SiO 2 -Al 2 O 3 is too large, the strain point tends to decrease. On the other hand, if the content of SiO 2 -Al 2 O 3 is too small, devitrification resistance is liable to decrease. Therefore, the content of SiO 2 —Al 2 O 3 is preferably 28 to 50%, less than 30 to 45%, 32 to 43%, particularly preferably 34 to 40%.

NaOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、NaOは、カルコパイライト結晶の成長に効果的な成分であり、変換効率を高めるために重要な成分である。NaOの含有量は1〜15%、2.5〜13%、4〜11%、特に4.3超〜9%が好ましい。NaOの含有量が多過ぎると、歪点が低下し易くなることに加えて、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、高温の成膜工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。 Na 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Na 2 O is an effective component for the growth of chalcopyrite crystals and is an important component for increasing the conversion efficiency. The content of Na 2 O is preferably 1 to 15%, 2.5 to 13%, 4 to 11%, particularly more than 4.3 to 9%. When the content of Na 2 O is too large, in addition to the strain point tends to decrease, the thermal expansion coefficient becomes too high, the thermal shock resistance of the glass plate is liable to lower. As a result, the glass plate is likely to undergo thermal shrinkage or thermal deformation or cracks are likely to occur during the high temperature film formation process.

Oは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、KOは、カルコパイライト結晶の成長に効果的な成分であり、変換効率を高めるために重要な成分である。しかし、Alを10%超含むガラス系において、KOの含有量が多過ぎると、KAlSiO系の失透結晶が析出し易くなる。また、KOの含有量が多過ぎると、歪点が低下し易くなり、また熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、高温の成膜工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。よって、KOの含有量は0〜9%、0.1〜8%、特に1〜7%が好ましい。 K 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. K 2 O is an effective component for the growth of chalcopyrite crystals and is an important component for increasing the conversion efficiency. However, in a glass system containing more than 10% Al 2 O 3 , if the content of K 2 O is too large, KAlSiO-based devitrified crystals are likely to precipitate. If the content of K 2 O is too large, easily strain point is lowered, also too high thermal expansion coefficient, the thermal shock resistance of the glass plate is liable to lower. As a result, the glass plate is likely to undergo thermal shrinkage or thermal deformation or cracks are likely to occur during the high temperature film formation process. Therefore, the content of K 2 O is preferably 0 to 9%, 0.1 to 8%, particularly preferably 1 to 7%.

NaO+KOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、NaO+KOは、カルコパイライト結晶の成長に効果的な成分であり、変換効率を高めるために重要な成分である。NaO+KOの含有量は1〜20%、2〜20%、4〜18%、4.3超〜15%、特に7〜12%が好ましい。NaO+KOの含有量が多過ぎると、歪点が低下し易くなることに加えて、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、高温の成膜工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。一方、NaO+KOの含有量が少な過ぎると、上記効果を享受し難くなる。 Na 2 O + K 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Na 2 O + K 2 O is an effective component for the growth of chalcopyrite crystals and is an important component for increasing the conversion efficiency. The content of Na 2 O + K 2 O is preferably 1 to 20%, 2 to 20%, 4 to 18%, more than 4.3 to 15%, and particularly preferably 7 to 12%. When the content of Na 2 O + K 2 O is too large, in addition to the strain point tends to decrease, the thermal expansion coefficient becomes too high, the thermal shock resistance of the glass plate is liable to lower. As a result, the glass plate is likely to undergo thermal shrinkage or thermal deformation or cracks are likely to occur during the high temperature film formation process. On the other hand, when the content of Na 2 O + K 2 O is too small, it becomes difficult to enjoy the above-mentioned effects.

MgOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、MgOは、アルカリ土類酸化物の中では、ガラス板を割れ難くする効果が大きい成分である。しかし、MgOは、ZrOと共存する場合に、ZrO系の失透結晶を著しく析出させることにより、液相粘度を著しく低下させる成分である。また、CaOと共存する場合に、CaMgSiO系の失透結晶を析出させ易い成分である。よって、MgOの含有量は0〜10%、0〜3.7%未満、0.01〜3%、0.02〜2%、特に0.03〜0.5%が好ましい。 MgO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Moreover, MgO is a component with a large effect which makes a glass plate hard to break among alkaline-earth oxides. However, when MgO coexists with ZrO 2 , it is a component that remarkably lowers the liquid phase viscosity by precipitating ZrO 2 -based devitrified crystals. Further, when coexisting with CaO, it is a component that easily deposits a CaMgSiO-based devitrified crystal. Therefore, the content of MgO is preferably 0 to 10%, 0 to less than 3.7%, 0.01 to 3%, 0.02 to 2%, particularly 0.03 to 0.5%.

CaOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、CaOは、アルカリ土類酸化物の中では、ガラス板を割れ難くする効果が大きい成分である。CaOの含有量は0〜10%、0.1〜9%、2.9超〜8%、3〜7.5%、特に4.2〜6%が好ましい。CaOの含有量が多過ぎると、耐失透性が低下し易くなり、ガラス板に成形し難くなる。   CaO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Moreover, CaO is a component with a large effect which makes a glass plate hard to break among alkaline-earth oxides. The content of CaO is preferably 0 to 10%, 0.1 to 9%, more than 2.9 to 8%, 3 to 7.5%, and particularly preferably 4.2 to 6%. When there is too much content of CaO, devitrification resistance will fall easily and it will become difficult to shape | mold into a glass plate.

MgO+CaOは、アルカリ土類金属酸化物の中では、高温粘度を低下させることにより、ガラス溶解窯内の上昇流、下降流、バッチ投入口方向への後退流の移動速度を高めて、ガラスを均質化させる2成分の総和である。また、MgO+CaOは、アルカリ土類金属酸化物の中では、ガラス板の割れ難さを最も維持し得ると共に、密度を最も低下させる2成分の総和である。密度を低下させると、薄膜太陽電池の支持部材のコストを低廉化することができる。MgO+CaOの含有量は0〜10%、0.1〜9.9%、2.9超〜9.5%、特に3.4超〜9.4%未満が好ましい。MgO+CaOの含有量が多過ぎると、耐失透性、特にZrO系の失透結晶が析出し易くなる。なお、MgO+CaOの含有量が少な過ぎると、ガラス溶解窯内での溶融ガラスの移動速度が低下して、溶融ガラスが均質化されず、結果として、溶融性や成形性が低下する傾向がある。ここで、「MgO+CaO」は、MgOとCaOの合量を指す。 MgO + CaO, among alkaline earth metal oxides, increases the moving speed of the upward flow, downward flow, and backward flow toward the batch inlet in the glass melting furnace by reducing the high-temperature viscosity, making the glass homogeneous Is the sum of the two components to be converted. Moreover, MgO + CaO is the total of the two components that can most maintain the difficulty of breaking the glass plate and reduce the density most among the alkaline earth metal oxides. When the density is lowered, the cost of the support member of the thin film solar cell can be reduced. The content of MgO + CaO is preferably 0 to 10%, 0.1 to 9.9%, more than 2.9 to 9.5%, particularly more than 3.4 to less than 9.4%. When the content of MgO + CaO is too large, devitrification resistance, tends to particularly devitrification crystals ZrO 2 system is deposited. In addition, when there is too little content of MgO + CaO, the moving speed of the molten glass in a glass melting furnace will fall, a molten glass will not be homogenized, and there exists a tendency for a meltability and a moldability to fall as a result. Here, “MgO + CaO” refers to the total amount of MgO and CaO.

質量比CaO/MgOは、アルカリ土類酸化物の内、高温粘度を低下させる効果が大きいMgOとCaOの比である。耐失透性の観点から見ると、ZrO系の失透結晶を特に発生させ易いMgOに対して、MgOと比較してZrO系の失透結晶を発生させ難いCaOの比である。質量比CaO/MgOは、ZrO系の失透結晶の析出を抑制しつつ、高温粘度を低下させるために、1超、2超、2.5超、特に3.4超が好ましい。 The mass ratio CaO / MgO is a ratio of MgO and CaO having a large effect of reducing the high temperature viscosity among the alkaline earth oxides. From the point of view of resistance to devitrification, against easy MgO especially to generate devitrification crystals ZrO 2 system, which is the ratio of hard CaO which caused the devitrification crystals ZrO 2 system as compared with MgO. The mass ratio CaO / MgO is preferably more than 1, more than 2, more than 2.5, particularly more than 3.4 in order to reduce the high temperature viscosity while suppressing the precipitation of ZrO 2 -based devitrified crystals.

SrOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、SrOは、ZrOと共存する場合に、ZrO系の失透結晶を析出し難くする成分である。SrOの含有量は0〜20%、0.1〜15%、4超〜15%、5〜14%、7超〜13%、特に9.2〜12.5%が好ましい。SrOの含有量が多過ぎると、長石族の失透結晶が析出し易くなり、また原料コストが高騰する。 SrO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Also, SrO, when coexisting with ZrO 2, is a component that hardly deposited devitrification crystals ZrO 2 system. The content of SrO is preferably 0 to 20%, 0.1 to 15%, more than 4 to 15%, 5 to 14%, more than 7 to 13%, particularly preferably 9.2 to 12.5%. If the content of SrO is too large, feldspar group devitrified crystals are likely to precipitate, and the raw material cost increases.

CaO+SrOの含有量は0〜30%、0.1〜25%、6.92〜23%、8〜21%、特に9〜20%が好ましい。CaO+SrOの含有量が多過ぎると、耐失透性が低下し易くなる。なお、CaO+SrOの含有量が少な過ぎると、ガラス溶解窯内での溶融ガラスの移動速度が低下して、溶融ガラスが均質化されず、結果として、溶融性や成形性が低下する傾向がある。   The content of CaO + SrO is preferably 0 to 30%, 0.1 to 25%, 6.92 to 23%, 8 to 21%, particularly preferably 9 to 20%. When there is too much content of CaO + SrO, devitrification resistance will fall easily. In addition, when there is too little content of CaO + SrO, the moving speed of the molten glass in a glass melting furnace will fall, a molten glass will not be homogenized, and there exists a tendency for a meltability and a moldability to fall as a result.

BaOは、高温粘度を低下させて、溶融性や成形性を高める成分である。BaOの含有量は0〜20%、0.1〜15%、2超〜14%未満、2超〜8%未満、特に2超〜5%未満が好ましい。BaOの含有量が多過ぎると、バリウム長石族の失透結晶が析出し易くなり、また原料コストが高騰する。更に、密度が増大して、支持部材のコストが高騰し易くなる。なお、BaOの含有量が少な過ぎると、高温粘度が高くなり、溶融性や成形性が低下する傾向がある。   BaO is a component that lowers the high-temperature viscosity and improves the meltability and moldability. The BaO content is preferably 0 to 20%, 0.1 to 15%, more than 2 to less than 14%, more than 2 to less than 8%, particularly preferably more than 2 to less than 5%. When there is too much content of BaO, the devitrification crystal | crystallization of a barium feldspar group will become easy to precipitate, and raw material cost will rise. Furthermore, the density increases, and the cost of the support member is likely to increase. In addition, when there is too little content of BaO, high temperature viscosity will become high and there exists a tendency for a meltability and a moldability to fall.

MgO+CaO+SrO+BaOは、歪点を低下させずに、高温粘度を低下させる成分である。MgO+CaO+SrO+BaOの含有量が多過ぎると、耐失透性が低下し易くなり、また原料コストが高騰する。一方、MgO+CaO+SrO+BaOの含有量が少な過ぎると、高温粘度が高くなり過ぎる。よって、MgO+CaO+SrO+BaOの含有量は1〜40%、15〜40%、17超〜40%、18〜30%、特に19〜25%が好ましい。   MgO + CaO + SrO + BaO is a component that lowers the high temperature viscosity without lowering the strain point. When there is too much content of MgO + CaO + SrO + BaO, devitrification resistance will fall easily and raw material cost will rise. On the other hand, when the content of MgO + CaO + SrO + BaO is too small, the high temperature viscosity becomes too high. Therefore, the content of MgO + CaO + SrO + BaO is preferably 1 to 40%, 15 to 40%, more than 17 to 40%, 18 to 30%, and particularly preferably 19 to 25%.

更に、下記の成分含有量、成分比を有することが好ましい。   Furthermore, it is preferable to have the following component content and component ratio.

は、ガラスの粘度を下げることにより、溶融温度や成形温度を低下させる成分であるが、歪点を低下させる成分であり、また溶融時の成分揮発に伴い、炉耐火物材料を消耗させる成分である。よって、Bの含有量は0〜15%未満、0〜1.5%、0〜1%未満、特に0〜0.1%未満が好ましい。 B 2 O 3 is a component that lowers the melting temperature and molding temperature by lowering the viscosity of the glass, but it is a component that lowers the strain point, and with the component volatilization at the time of melting, the furnace refractory material is changed. It is a component to be consumed. Therefore, the content of B 2 O 3 is preferably 0 to less than 15%, 0 to 1.5%, 0 to less than 1%, particularly preferably less than 0 to 0.1%.

LiOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、LiOは、NaOやKOと同様にして、カルコパイライト結晶の成長に効果的な成分である。しかし、LiOは、原料コストが高いことに加えて、歪点を大幅に低下させる成分である。よって、LiOの含有量は0〜10%、0〜2%、0〜1%未満、特に0〜0.1%未満が好ましい。 Li 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Li 2 O is an effective component for the growth of chalcopyrite crystals in the same manner as Na 2 O and K 2 O. However, Li 2 O is a component that significantly lowers the strain point in addition to the high raw material cost. Therefore, the content of Li 2 O is preferably 0 to 10%, 0 to 2%, 0 to less than 1%, particularly preferably 0 to less than 0.1%.

質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)は、高温粘度を低下させる効果が大きい成分の総量(MgO、CaO、SrO、BaO、LiO、NaO及びKOの総量)に対して、カルコパイライト結晶の析出に有用なNaOの含有量の比である。質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)は0.005〜0.5、0.05〜0.4、0.1〜0.38、0.137〜0.355、0.140〜0.300、特に0.158超〜0.250が好ましい。質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が大き過ぎると、高歪点を維持し難くなり、また溶融性や成形性が低下し易くなる。一方、質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が小さ過ぎると、薄膜太陽電池の変換効率が低下し易くなる。また、質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が小さ過ぎると、高温粘度を低下させるために、LiOやKOの含有量を増加せざるを得ず、結果として、原料コストが高騰する。なお、KOの含有量を優先的に増加させると、Alを10%超含むガラス系では、KAlSiO系の失透結晶が析出し易くなる。更に、質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が小さ過ぎても、高歪点を維持し難くなり、また耐失透性が低下して、液相粘度が低下し易くなる。 The mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is the total amount of components having a large effect of reducing the high-temperature viscosity (MgO, CaO, SrO, BaO, Li 2 O, Na 2 O and K 2 O total amount). ) To Na 2 O content useful for precipitation of chalcopyrite crystals. The mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is 0.005 to 0.5, 0.05 to 0.4, 0.1 to 0.38, 0.137 to 0.355,. 140 to 0.300, especially more than 0.158 to 0.250 are preferable. If the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too large, it will be difficult to maintain a high strain point, and meltability and moldability will tend to be reduced. On the other hand, if the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too small, the conversion efficiency of the thin-film solar cell tends to decrease. In addition, if the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too small, the high-temperature viscosity is lowered, so the content of Li 2 O and K 2 O must be increased, and as a result Raw material costs will soar. Note that when the content of K 2 O is preferentially increased, KAlSiO-based devitrified crystals are likely to precipitate in a glass system containing more than 10% Al 2 O 3 . Furthermore, even if the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too small, it is difficult to maintain a high strain point, and devitrification resistance is lowered, and the liquid phase viscosity is likely to be lowered. .

ZnOは、高温粘度を低下させる成分である。ZnOの含有量が多過ぎると、耐失透性が低下し易くなる。よって、ZnOの含有量は0〜10%、特に0〜5%が好ましい。   ZnO is a component that lowers the high temperature viscosity. When there is too much content of ZnO, devitrification resistance will fall easily. Therefore, the content of ZnO is preferably 0 to 10%, particularly preferably 0 to 5%.

ZrOは、高温粘度を上げずに、歪点を高める成分である。しかし、ZrOの含有量が多過ぎると、密度が高くなり易く、またガラス板が割れ易くなり、更にはZrO系の失透結晶が析出し易くなり、ガラス板に成形し難くなる。よって、ZrOの含有量は0〜15%、0〜10%、0〜7%、0.1〜6.5%、特に2〜6%が好ましい。 ZrO 2 is a component that increases the strain point without increasing the high-temperature viscosity. However, if the content of ZrO 2 is too large, the density tends to increase, the glass plate tends to break, ZrO 2 -based devitrified crystals tend to precipitate, and it becomes difficult to form the glass plate. Therefore, the content of ZrO 2 is preferably 0 to 15%, 0 to 10%, 0 to 7%, 0.1 to 6.5%, particularly preferably 2 to 6%.

ガラス中のFeはFe2+又はFe3+の状態で存在するが、両イオンともガラスの着色の原因になる。よって、Feの含有量は0.001〜0.07%、特に0.005〜0.05%が好ましい。ここで、「Fe」は、価数によらず全Fe量をFe量に換算した値を指す。 Fe in the glass exists in the state of Fe 2+ or Fe 3+ , but both ions cause glass coloring. Therefore, the content of Fe 2 O 3 is preferably 0.001 to 0.07%, particularly preferably 0.005 to 0.05%. Here, “Fe 2 O 3 ” refers to a value obtained by converting the total Fe amount to the Fe 2 O 3 amount regardless of the valence.

TiOは、紫外線による着色を防止すると共に、耐候性を高める成分である。しかし、TiOの含有量が多過ぎると、ガラスが失透したり、ガラスが茶褐色に着色し易くなる。よって、TiOの含有量は0〜10%、0〜1%未満、特に0〜0.1%未満が好ましい。 TiO 2 is a component that prevents coloring by ultraviolet rays and enhances weather resistance. However, when the content of TiO 2 is too large, or glass is devitrified, glass tends colored brown. Therefore, the content of TiO 2 is preferably 0 to 10%, 0 to less than 1%, particularly preferably 0 to less than 0.1%.

は、耐失透性を高める成分、特にZrO系の失透結晶の析出を抑制する成分であり、またガラス板を割れ難くする成分である。しかし、Pの含有量が多過ぎると、ガラスが乳白色に分相し易くなる。よって、Pの含有量は0〜10%、0〜1%未満、0〜0.2%、特に0〜0.1%未満が好ましい。 P 2 O 5 is a component that enhances devitrification resistance, particularly a component that suppresses precipitation of ZrO 2 -based devitrification crystals, and a component that makes it difficult to break the glass plate. However, when the content of P 2 O 5 is too large, easily glass phase separation milky. Therefore, the content of P 2 O 5 is preferably 0 to 10%, 0 to less than 1%, 0 to 0.2%, particularly preferably 0 to less than 0.1%.

SOは、清澄剤として作用する成分であり、その含有量は0〜1%、特に0〜0.2%が好ましい。なお、フロート法で製板すると、安価にガラス板を大量生産し得るが、この場合、清澄剤として芒硝を用いることが好ましい。 SO 3 is a component that acts as a fining agent, and its content is preferably 0 to 1%, particularly preferably 0 to 0.2%. In addition, if it manufactures by a float process, a glass plate can be mass-produced cheaply, but in this case, it is preferable to use mirabilite as a clarifier.

Asは、清澄剤として作用する成分であるが、フロート法で製板する場合、ガラスを着色させる成分であり、また環境的負荷が懸念される成分である。Asの含有量は0〜1%、特に0〜0.1%未満が好ましい。 As 2 O 3 is a component that acts as a fining agent, but is a component that colors glass when it is made by the float process, and is a component that is concerned about the environmental burden. The content of As 2 O 3 is preferably 0 to 1%, particularly preferably less than 0 to 0.1%.

Sbは、清澄剤として作用する成分であるが、フロート法で製板する場合、ガラスを着色させる成分であり、また環境的負荷が懸念される成分である。Sbの含有量は0〜1%、特に0〜0.1%未満が好ましい。 Sb 2 O 3 is a component that acts as a refining agent, but is a component that colors glass when it is made by a float process, and it is a component that is concerned about the environmental burden. The content of Sb 2 O 3 is preferably 0 to 1%, particularly preferably less than 0 to 0.1%.

SnOは、清澄剤として作用する成分であるが、耐失透性を低下させる成分である。SnOの含有量は0〜1%、特に0〜0.1%未満が好ましい。 SnO 2 is a component that acts as a fining agent, but is a component that reduces devitrification resistance. The SnO 2 content is preferably 0 to 1%, particularly preferably 0 to less than 0.1%.

上記成分以外にも、溶解性、清澄性、成形性を高めるために、F、Cl、CeOを合量で各々1%まで添加してもよい。また、化学的耐久性を高めるために、Nb、HfO、Ta、Y、Laを各々3%まで添加してもよい。 In addition to the above components, F, Cl, and CeO 2 may be added up to 1% in total in order to enhance solubility, clarity, and moldability. In order to increase chemical durability, Nb 2 O 5 , HfO 2 , Ta 2 O 5 , Y 2 O 3 , and La 2 O 3 may be added up to 3% each.

本発明の薄膜太陽電池用ガラス板において、歪点は580℃以上、590℃超、600超〜650℃、605超〜650℃、特に610超〜650℃が好ましい。歪点が低過ぎると、高温の成膜工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。   In the glass plate for a thin film solar cell of the present invention, the strain point is preferably 580 ° C. or higher, more than 590 ° C., more than 600 to 650 ° C., more than 605 to 650 ° C., particularly preferably more than 610 to 650 ° C. If the strain point is too low, the glass plate is likely to undergo thermal shrinkage or thermal deformation or cracks in the high-temperature film-forming process.

本発明の薄膜太陽電池用ガラス板において、熱膨張係数は70〜100×10−7/℃、特に80〜90×10−7/℃が好ましい。このようにすれば、電極、光電変換膜の熱膨張係数に整合させ易くなる。なお、熱膨張係数が高過ぎると、ガラス板の耐熱衝撃性が低下し易くなり、結果として、高温の成膜工程で、ガラス板に割れが発生し易くなる。ここで、「熱膨張係数」は、ディラトメーターにより30〜380℃における平均熱膨張係数を測定した値を指す。 In the glass plate for a thin film solar cell of the present invention, the thermal expansion coefficient is preferably 70 to 100 × 10 −7 / ° C., particularly preferably 80 to 90 × 10 −7 / ° C. If it does in this way, it will become easy to match with the thermal expansion coefficient of an electrode and a photoelectric conversion film. If the thermal expansion coefficient is too high, the thermal shock resistance of the glass plate tends to be lowered, and as a result, the glass plate is likely to be cracked in a high-temperature film forming process. Here, the “thermal expansion coefficient” refers to a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer.

本発明の薄膜太陽電池用ガラス板において、104.0dPa・sにおける温度は1200℃以下、特に1180℃以下が好ましい。このようにすれば、低温でガラス板を成形し易くなる。なお、「104.0dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 In the glass plate for a thin-film solar cell of the present invention, the temperature at 10 4.0 dPa · s is preferably 1200 ° C. or less, particularly preferably 1180 ° C. or less. If it does in this way, it will become easy to shape | mold a glass plate at low temperature. The “temperature at 10 4.0 dPa · s” can be measured by a platinum ball pulling method.

本発明の薄膜太陽電池用ガラス板において、102.5dPa・sにおける温度は1520℃以下、特に1460℃以下が好ましい。このようにすれば、低温でガラス原料を溶解し易くなる。なお、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 In the glass plate for a thin film solar cell of the present invention, the temperature at 10 2.5 dPa · s is preferably 1520 ° C. or less, particularly preferably 1460 ° C. or less. If it does in this way, it will become easy to melt | dissolve a glass raw material at low temperature. The “temperature at 10 2.5 dPa · s” can be measured by a platinum ball pulling method.

本発明の薄膜太陽電池用ガラス板は、上記のガラス組成範囲になるように、調合したガラス原料を連続溶融炉に投入し、ガラス原料を加熱溶融した後、得られた溶融ガラスを脱泡した上で、フロートバスに供給し、板状に成形、徐冷することにより、作製することができる。   The glass plate for a thin film solar cell of the present invention was prepared by introducing the prepared glass raw material into a continuous melting furnace so as to be in the above glass composition range, heating and melting the glass raw material, and then defoaming the obtained molten glass. Above, it can produce by supplying to a float bath, shape | molding in plate shape, and slow-cooling.

本発明の薄膜太陽電池用ガラス板は、実質的に未研磨の表面を有することが好ましい。このようにすれば、還元層による効果を的確に享受し得ると共に、ガラス板の製造コストを低廉化することができる。   The glass plate for a thin film solar cell of the present invention preferably has a substantially unpolished surface. If it does in this way, while being able to enjoy the effect by a reduction layer exactly, the manufacturing cost of a glass plate can be reduced.

本発明の薄膜太陽電池用ガラス板は、化学強化処理、特にイオン交換処理が行われていることが好ましい。このようにすれば、薄膜太陽電池の設置後に、雹や降雪等に対する耐衝撃性、耐圧性を高めることができる。なお、生産コストの観点からは、化学強化処理、特にイオン交換処理が行われていないことが好ましい。   The glass plate for a thin film solar cell of the present invention is preferably subjected to chemical strengthening treatment, particularly ion exchange treatment. If it does in this way, after installation of a thin film solar cell, the impact resistance with respect to a hail, snowfall, etc. and pressure | voltage resistance can be improved. From the viewpoint of production cost, it is preferable that chemical strengthening treatment, particularly ion exchange treatment is not performed.

以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。   Hereinafter, based on an Example, this invention is demonstrated in detail. The following examples are merely illustrative. The present invention is not limited to the following examples.

次のようにして、試料No.1〜5を作製した。まず表1に記載のガラス組成になるように調合したガラスバッチを溶解窯にて溶融し、所望のb値が得られるように、表2に記載の製造条件を適宜調整しつつ、フロートバスにて1.8mm厚に成形した。続いて、得られたガラス板について、歪点を測定すると共に、銀での発色試験を行った。 Sample no. 1-5 were produced. First, a glass batch prepared to have the glass composition shown in Table 1 was melted in a melting furnace, and the float bath was adjusted while appropriately adjusting the production conditions shown in Table 2 so that a desired b * value was obtained. To 1.8 mm thickness. Subsequently, the obtained glass plate was subjected to a color development test with silver while measuring a strain point.

歪点は、ASTM C336−71に基づいて測定した値である。   The strain point is a value measured based on ASTM C336-71.

以下のように、銀での発色試験を行った。まずガラス板のトップ面側に銀ペーストを6μm厚になるように塗布した後、600℃にて1時間焼成した。次に、簡易型分光色差計(日本電色工業株式会社製NF333)を用いて、ガラス板のボトム面側からb値を測定した。 The color development test with silver was performed as follows. First, a silver paste was applied to the top surface side of the glass plate so as to have a thickness of 6 μm, and then baked at 600 ° C. for 1 hour. Next, b * value was measured from the bottom surface side of the glass plate using a simple spectral color difference meter (NF333 manufactured by Nippon Denshoku Industries Co., Ltd.).

表2から明らかなように、試料No.1〜3は、b値が大きいため、表層の還元層により電極の酸化を抑制し得ると考えられる。一方、試料No.4、5は、b値が小さいため、表層の還元層により電極の酸化を抑制し難いと考えられる。 As apparent from Table 2, the sample No. 1 to 3 have a large b * value, and it is considered that oxidation of the electrode can be suppressed by the reduction layer on the surface layer. On the other hand, sample No. Nos. 4 and 5 have small b * values, so it is difficult to suppress oxidation of the electrode by the reduction layer on the surface layer.

本実施例では、表1に記載のガラス組成を有するガラス板を用いたが、例えば、表3に記載のガラス組成を有するガラス板でも同様の傾向を示すと考えられる。なお、試料a〜hでは、歪点以外に、熱膨張係数、104.0dPa・sにおける温度、102.5dPa・sにおける温度も評価した。 In this example, a glass plate having the glass composition shown in Table 1 was used. For example, a glass plate having the glass composition shown in Table 3 is considered to show the same tendency. In addition, in samples a to h, in addition to the strain point, a coefficient of thermal expansion, a temperature at 10 4.0 dPa · s, and a temperature at 10 2.5 dPa · s were also evaluated.

熱膨張係数は、ディラトメーターにより30〜380℃における平均熱膨張係数を測定した値である。なお、測定試料として、直径5.0mm、長さ20mmの円柱試料を用いた。   A thermal expansion coefficient is the value which measured the average thermal expansion coefficient in 30-380 degreeC with the dilatometer. A cylindrical sample having a diameter of 5.0 mm and a length of 20 mm was used as a measurement sample.

104.0dPa・sにおける温度、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。なお、104.0dPa・sにおける温度は成形温度に相当し、102.5dPa・sにおける温度は溶融温度に相当している。 Temperature at 10 4.0 dPa · s, temperature at 10 2.5 dPa · s is a value measured by a platinum ball pulling method. The temperature at 10 4.0 dPa · s corresponds to the molding temperature, and the temperature at 10 2.5 dPa · s corresponds to the melting temperature.

Claims (11)

フロート法で製板されてなり、銀での発色試験を行った時に、b値が7以上になることを特徴とする薄膜太陽電池用ガラス板。 A glass plate for a thin-film solar cell, which is made by a float process and has a b * value of 7 or more when a color development test with silver is performed. 銀での発色試験を行った時に、b値が14以上になることを特徴とする請求項1に記載の薄膜太陽電池用ガラス板。 The glass plate for a thin-film solar cell according to claim 1, wherein a b * value is 14 or more when a color development test with silver is performed. 銀での発色試験を行った時に、b値が30以下になることを特徴とする請求項1又は2に記載の薄膜太陽電池用ガラス板。 The glass plate for a thin-film solar cell according to claim 1 or 2, wherein a b * value is 30 or less when a color development test with silver is performed. ガラス組成として、質量%で、NaO 1〜15%、KO 0〜9%を含有することを特徴とする請求項1〜3の何れか一項に記載の薄膜太陽電池用ガラス板。 As a glass composition, in mass%, Na 2 O 1~15%, the glass plate for a thin film solar cell according to any one of claims 1 to 3, characterized in that it contains K 2 O 0 to 9% . ガラス組成として、質量%で、SiO 45〜65%、Al 1〜20%、NaO+KO 1〜20%、MgO+CaO+SrO+BaO 1〜40%を含有することを特徴とする請求項1〜3の何れか一項に記載の薄膜太陽電池用ガラス板。 As a glass composition, in mass%, SiO 2 45~65%, Al 2 O 3 1~20%, claim 1, characterized in that it contains Na 2 O + K 2 O 1~20 %, MgO + CaO + SrO + BaO 1~40% The glass plate for thin film solar cells as described in any one of -3. ガラス組成として、質量%で、SiO 45〜60%、Al 8超〜20%、B 0〜15未満%、NaO+KO 1〜20%、MgO+CaO+SrO+BaO 1〜40%を含有し、且つ歪点が590℃超であることを特徴とする請求項1〜3の何れか一項に記載の薄膜太陽電池用ガラス板。 As a glass composition, in mass%, SiO 2 45~60%, Al 2 O 3 8 super ~20%, B 2 O 3 0~15 less than%, Na 2 O + K 2 O 1~20%, MgO + CaO + SrO + BaO 1~40% The glass plate for thin film solar cells according to any one of claims 1 to 3, wherein the glass plate has a strain point of more than 590 ° C. 実質的に未研磨の表面を有することを特徴とする請求項1〜6の何れか一項に記載の薄膜太陽電池用ガラス板。   The glass plate for a thin-film solar cell according to any one of claims 1 to 6, which has a substantially unpolished surface. 化学強化処理が行われていることを特徴とする請求項1〜7の何れか一項に記載の薄膜太陽電池用ガラス板。   The glass plate for thin film solar cells according to any one of claims 1 to 7, wherein a chemical strengthening treatment is performed. 化学強化処理が行われていないことを特徴とする請求項1〜7の何れか一項に記載の薄膜太陽電池用ガラス板。   The chemical strengthening process is not performed, The glass plate for thin film solar cells as described in any one of Claims 1-7 characterized by the above-mentioned. カルコパイライト型太陽電池に用いることを特徴とする請求項1〜9の何れか一項に記載の薄膜太陽電池用ガラス板。   It uses for a chalcopyrite type solar cell, The glass plate for thin film solar cells as described in any one of Claims 1-9 characterized by the above-mentioned. CdTe系太陽電池に用いることを特徴とする請求項1〜9の何れか一項に記載の薄膜太陽電池用ガラス板。   It uses for a CdTe type | system | group solar cell, The glass plate for thin film solar cells as described in any one of Claims 1-9 characterized by the above-mentioned.
JP2013002307A 2013-01-10 2013-01-10 Glass plate for thin film solar cell Active JP6128418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002307A JP6128418B2 (en) 2013-01-10 2013-01-10 Glass plate for thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002307A JP6128418B2 (en) 2013-01-10 2013-01-10 Glass plate for thin film solar cell

Publications (2)

Publication Number Publication Date
JP2014133680A true JP2014133680A (en) 2014-07-24
JP6128418B2 JP6128418B2 (en) 2017-05-17

Family

ID=51412264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002307A Active JP6128418B2 (en) 2013-01-10 2013-01-10 Glass plate for thin film solar cell

Country Status (1)

Country Link
JP (1) JP6128418B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043285A1 (en) * 2014-09-19 2016-03-24 旭硝子株式会社 Glass substrate and cigs solar cell
WO2016043287A1 (en) * 2014-09-19 2016-03-24 旭硝子株式会社 Glass substrate, method for producing same, and cigs solar cell
JP2016147792A (en) * 2015-02-13 2016-08-18 旭硝子株式会社 Glass substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053032A (en) * 2008-08-28 2010-03-11 Schott Ag Method for manufacturing sheet glass
JP2010118505A (en) * 2008-11-13 2010-05-27 Nippon Electric Glass Co Ltd Glass substrate for solar cell
WO2010073799A1 (en) * 2008-12-25 2010-07-01 旭硝子株式会社 Glass substrate and process for producing same
JP2012250902A (en) * 2011-05-10 2012-12-20 Nippon Electric Glass Co Ltd Glass plate for thin film solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053032A (en) * 2008-08-28 2010-03-11 Schott Ag Method for manufacturing sheet glass
JP2010118505A (en) * 2008-11-13 2010-05-27 Nippon Electric Glass Co Ltd Glass substrate for solar cell
WO2010073799A1 (en) * 2008-12-25 2010-07-01 旭硝子株式会社 Glass substrate and process for producing same
JP2012250902A (en) * 2011-05-10 2012-12-20 Nippon Electric Glass Co Ltd Glass plate for thin film solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043285A1 (en) * 2014-09-19 2016-03-24 旭硝子株式会社 Glass substrate and cigs solar cell
WO2016043287A1 (en) * 2014-09-19 2016-03-24 旭硝子株式会社 Glass substrate, method for producing same, and cigs solar cell
JP5951152B1 (en) * 2014-09-19 2016-07-13 旭硝子株式会社 Glass substrate and CIGS solar cell
JPWO2016043287A1 (en) * 2014-09-19 2017-06-29 旭硝子株式会社 GLASS SUBSTRATE, ITS MANUFACTURING METHOD, AND CIGS SOLAR CELL
JP2016147792A (en) * 2015-02-13 2016-08-18 旭硝子株式会社 Glass substrate

Also Published As

Publication number Publication date
JP6128418B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP6191138B2 (en) Glass
JP5915892B2 (en) Glass plate for thin film solar cell
JP5733811B2 (en) Manufacturing method of glass substrate for solar cell
JP5610563B2 (en) Glass substrate for solar cell
EP2456727A1 (en) Fusion formable silica and sodium containing glasses
JP2008222542A (en) Glass substrate for solar battery
JP2013505889A (en) Aluminosilicate glass with high heat resistance and low working temperature
JP5664891B2 (en) Glass substrate
JP6048490B2 (en) Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
KR101554532B1 (en) Glass plate for thin film solar cell
JP6254345B2 (en) Glass substrate for solar cell
JP6497576B2 (en) Glass plate for solar cell
JP6128418B2 (en) Glass plate for thin film solar cell
JP6090705B2 (en) Glass plate for thin film solar cell
JP6040699B2 (en) Glass plate for thin film solar cell
JP2014094859A (en) Glass plate for thin film solar cell
JP2014097916A (en) Glass plate for thin film solar cell and method of producing the same
JP2011088794A (en) Glass plate for solar cell
JPWO2015076208A1 (en) Glass plate
JP2013063910A (en) Glass substrate for solar cell
JP2015231936A (en) Glass for solar battery
JP5831850B2 (en) Glass substrate for solar cell
JP6593726B2 (en) Glass plate for solar cell
JP2014084237A (en) Glass plate for thin film solar cell
JP6593724B2 (en) Glass plate for solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170330

R150 Certificate of patent or registration of utility model

Ref document number: 6128418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150