JP2014132600A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2014132600A
JP2014132600A JP2011088071A JP2011088071A JP2014132600A JP 2014132600 A JP2014132600 A JP 2014132600A JP 2011088071 A JP2011088071 A JP 2011088071A JP 2011088071 A JP2011088071 A JP 2011088071A JP 2014132600 A JP2014132600 A JP 2014132600A
Authority
JP
Japan
Prior art keywords
region
active region
sub
semiconductor device
threshold voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011088071A
Other languages
Japanese (ja)
Inventor
Takayuki Hashimoto
貴之 橋本
Masahiro Masunaga
昌弘 増永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2011088071A priority Critical patent/JP2014132600A/en
Priority to PCT/JP2012/059641 priority patent/WO2012141121A1/en
Publication of JP2014132600A publication Critical patent/JP2014132600A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49177Combinations of different arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve a problem that, although a bouncing voltage is generated at switching in a power system active element having an insulation gate, such as a power MOSFET, used for a power supply or a power conversion device and the like, this bouncing voltage becomes noise for a power-supplied circuit, such as a digital signal processing circuit, which may be a factor of malfunction of a logic circuit and the like.SOLUTION: In a semiconductor device that has a power system active element having an insulation gate such as a power MOSFET, a sub active cell region having a threshold voltage lower than that of the other region and having a relatively narrow occupied area is provided in an active cell region.

Description

本発明は、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはMISFET(Metal Insulator Semiconductor Field Effect Transistor)等の半導体装置(または半導体集積回路装置)におけるデバイス構造に適用して有効な技術に関する。   The present invention relates to a semiconductor device (or a semiconductor integrated circuit device effective in a semiconductor integrated circuit device) that is effective in a semiconductor device (or a semiconductor integrated circuit device) such as a power MOSFET (Metal Oxide Field Effect Transistor) or a MISFET (Metal Insulator Semiconductor Field Effect Transistor).

日本特開2003−133557号公報(特許文献1)または、これに対応する米国特許第6806548号公報(特許文献2)には、電源回路のスイッチング等に使用するトレンチゲート(Trench Gate)型の縦チャネル(Vertical Channel)パワーMOSFETにおいて、半導体チップ内に組み込んだSBD(Schottky Barrier Diode)の占有面積を削減する技術が開示されている。   Japanese Patent Application Laid-Open No. 2003-133557 (Patent Document 1) or US Pat. No. 6,806,548 (Patent Document 2) corresponding thereto discloses a trench gate type vertical gate used for power supply circuit switching and the like. In a channel (vertical channel) power MOSFET, a technique for reducing the area occupied by a SBD (Schottky Barrier Diode) incorporated in a semiconductor chip is disclosed.

日本特開2006−24690号公報(特許文献3)または、これに対応する米国特許第6967374号公報(特許文献4)には、電源回路のスイッチング等に使用され、スーパジャンクション(Super−Junction)構造を有するプレーナ(Planar)型のバーティカル(Vertical)パワーMOSFETにおいて、ソフトスイッチング方式に適合した特性を有するSBDを半導体チップ内に組み込む技術が開示されている。   Japanese Patent Application Laid-Open No. 2006-24690 (Patent Document 3) or US Pat. No. 6,967,374 (Patent Document 4) corresponding thereto discloses a super-junction structure used for switching a power supply circuit. A technique of incorporating an SBD having characteristics suitable for a soft switching system into a semiconductor chip in a planar type vertical power MOSFET having the above structure is disclosed.

特開2003−133557号公報JP 2003-133557 A 米国特許第6806548号公報US Pat. No. 6,806,548 特開2006−24690号公報JP 2006-24690 A 米国特許第6967374号公報US Pat. No. 6,967,374

電源または電力変換機器等に使用されるパワーMOSFET等の絶縁ゲートを有するパワー系能動素子は、スイッチングの際に跳ね上がり電圧が発生する。この跳ね上がり電圧は、ディジタル信号処理回路等の被電源供給回路へのノイズとなり、論理回路等の誤動作の原因になる等の問題がある。この問題は、単体のパワーMOSFET等のみの問題ではなく、同様の構造を適用しているIGBT(Insulated Gate Bipolar Transistor)および、CMOS(Complementary Metal Oxide Semiconductor)等とこれらのパワー能動デバイスを単一のチップ上に集積した集積回路装置に於いても重要な問題である。   A power system active element having an insulated gate such as a power MOSFET used for a power source or a power conversion device generates a jumping voltage during switching. This jumping voltage causes noise to a power supply circuit such as a digital signal processing circuit and causes a malfunction of a logic circuit or the like. This problem is not limited to a single power MOSFET or the like, but an IGBT (Insulated Gate Bipolar Transistor) and CMOS (Complementary Metal Oxide Semiconductor), etc., to which a similar structure is applied, and these power active devices can be combined into a single unit. This is an important problem even in an integrated circuit device integrated on a chip.

本願発明は、これらの課題を解決するためになされたものである。   The present invention has been made to solve these problems.

本発明の目的は、信頼性の高い半導体装置を提供することにある。   An object of the present invention is to provide a highly reliable semiconductor device.

本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。   The following is a brief description of an outline of typical inventions disclosed in the present application.

すなわち、本願の一つの発明は、パワーMOSFET等の絶縁ゲートを有するパワー系能動素子を有する半導体装置に於いて、アクティブセル領域に他の領域よりも閾値電圧が低く、且つ、占有面積が比較的狭い副アクティブセル領域を設けるものである。   That is, according to one aspect of the present invention, in a semiconductor device having a power system active element having an insulated gate such as a power MOSFET, the active cell region has a lower threshold voltage than other regions, and the occupied area is relatively small. A narrow sub-active cell region is provided.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。   The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.

すなわち、パワーMOSFET等の絶縁ゲートを有するパワー系能動素子を有する半導体装置に於いて、アクティブセル領域に他の領域よりも閾値電圧が低く、且つ、占有面積が比較的狭い副アクティブセル領域を設けることにより、オンになる際に副アクティブセル領域が先にオンするため、跳ね上がり電圧の発生を低減することができる。   That is, in a semiconductor device having a power system active element having an insulated gate such as a power MOSFET, a sub-active cell region having a threshold voltage lower than other regions and a relatively small occupation area is provided in the active cell region. As a result, since the sub-active cell region is turned on first when it is turned on, generation of a jumping voltage can be reduced.

本願の各実施の形態の半導体装置の主要な応用分野であるコンピュータ用のDC−DCコンバータの回路構成を示す模式回路図である。It is a schematic circuit diagram which shows the circuit structure of the DC-DC converter for computers which is the main application field of the semiconductor device of each embodiment of this application. 本願の一実施の形態の半導体装置の一例であるパワーMOSFETの半導体チップ全体上面図である。It is the whole semiconductor chip top view of power MOSFET which is an example of the semiconductor device of one embodiment of this application. 図2のX−X’断面に対応するチップ模式断面図である。It is a chip | tip schematic cross section corresponding to the X-X 'cross section of FIG. 本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況(単一リング状分布)を示す半導体チップ全体上面模式図である。It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition (single ring-shaped distribution) of the subactive area | region inside the active area | region in the semiconductor chip upper surface of the power MOSFET which is an example of the semiconductor device of the said one Embodiment of this application. 図4の主及び副アクティブ領域境界周辺切り出し領域R3のA−A’断面に対応する半導体チップの部分断面図である。FIG. 5 is a partial cross-sectional view of a semiconductor chip corresponding to an A-A ′ cross section of a main and sub active region boundary peripheral cutout region R <b> 3 of FIG. 4. 図5の主アクティブ領域の単位セル領域20mの詳細断面図である。FIG. 6 is a detailed cross-sectional view of a unit cell region 20m of the main active region of FIG. 図5の副アクティブ領域の単位セル領域20sの詳細断面図である。FIG. 6 is a detailed cross-sectional view of a unit cell region 20s of the sub-active region of FIG. 図2のゲート電極引き出し部切り出し領域R1の拡大上面図である。FIG. 3 is an enlarged top view of a gate electrode lead-out region R1 in FIG. 2. 図5に対応する部分の製造工程途中(エピタキシャル成長工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of a wafer during a manufacturing process (epitaxial growth process) of a part corresponding to FIG. 5. 図5に対応する部分の製造工程途中(トレンチ形成工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of the wafer during the manufacturing process (trench formation process) of the part corresponding to FIG. 5. 図5に対応する部分の製造工程途中(ゲート絶縁膜形成及びポリシリコン電極埋め込み工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of a wafer during a manufacturing process (gate insulating film formation and polysilicon electrode embedding process) of a part corresponding to FIG. 5. 図5に対応する部分の製造工程途中(主アクティブ領域のP型ボディ領域導入工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of a wafer in the middle of a manufacturing process (a P-type body region introduction step for a main active region) corresponding to FIG. 5. 図5に対応する部分の製造工程途中(副アクティブ領域のP型ボディ領域導入工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of a wafer during a manufacturing process of a portion corresponding to FIG. 5 (P-type body region introduction step of a sub-active region). 図5に対応する部分の製造工程途中(N型ソース領域導入工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of the wafer in the middle of the manufacturing process (N-type source region introduction process) of the part corresponding to FIG. 5. 図5に対応する部分の製造工程途中(層間絶縁膜成膜およびコンタクトホール形成工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of the wafer in the middle of the manufacturing process (interlayer insulating film formation and contact hole formation step) of the portion corresponding to FIG. 5. 図5に対応する部分の製造工程途中(コンタクトホール延長工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of a wafer during a manufacturing process (contact hole extending process) of a part corresponding to FIG. 5. 図5に対応する部分の製造工程途中(P型ボディコンタクト領域導入工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of a wafer in the middle of the manufacturing process (P-type body contact region introducing step) corresponding to FIG. 5. 図5に対応する部分の製造工程途中(メタル膜成膜およびメタルソース電極等パターニング工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of the wafer in the middle of the manufacturing process of the part corresponding to FIG. 5 (metal film formation and metal source electrode patterning process). 図5に対応する部分の製造工程途中(バックグラインディング工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of a wafer during a manufacturing process (back grinding process) of a portion corresponding to FIG. 5. 図5に対応する部分の製造工程途中(裏面メタル電極成膜工程)におけるウエハの部分断面図である。FIG. 6 is a partial cross-sectional view of the wafer during the manufacturing process (back surface metal electrode film forming step) of the portion corresponding to FIG. 5. 本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブセル構造の変形例1(副アクティブ領域においてゲート絶縁膜を相対的に薄くした構造)に関する図7に対応する副アクティブ領域の単位セル領域20sの詳細断面図である。FIG. 7 shows a subactive region corresponding to FIG. 7 relating to the first modification of the active cell structure of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application (a structure in which the gate insulating film is relatively thin in the subactive region). It is a detailed sectional view of a unit cell region 20s. 本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例1(複数リング状分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。The active region on the upper surface of the semiconductor chip of the power MOSFET corresponding to FIG. 4 relating to the modification 1 (multiple ring-shaped distribution) regarding the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device of the one embodiment of the present application It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition of an internal subactive region. 本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例2(ドット状分散分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。The active region on the upper surface of the semiconductor chip of the power MOSFET corresponding to FIG. 4 relating to the modification 2 (dot dispersion distribution) relating to the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device of the one embodiment of the present application It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition of an internal subactive region. 本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例3(2次元単連結集中分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。On the upper surface of the semiconductor chip of the power MOSFET corresponding to FIG. 4 relating to the modification 3 (two-dimensional single-connection concentrated distribution) relating to the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device of the one embodiment of the present application It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition of the subactive area | region inside an active area | region. 本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例4(複数単連結分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。The active region on the upper surface of the semiconductor chip of the power MOSFET corresponding to FIG. 4 relating to the modification 4 (multiple single connection distribution) regarding the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device of the one embodiment of the present application It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition of an internal subactive region. 本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例5(2次元単連結端部集中分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。The power MOSFET semiconductor chip corresponding to FIG. 4 relating to the modification 5 (two-dimensional single-connected end concentration distribution) regarding the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition of the subactive area | region inside the active area | region in an upper surface. 本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例6(ゲート延在方向線状分散分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。The power MOSFET semiconductor chip corresponding to FIG. 4 relating to the modification 6 (the linear dispersion distribution in the gate extending direction) regarding the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition of the subactive area | region inside the active area | region in an upper surface. 本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例6(ゲート直交方向線状分散分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。The upper surface of the semiconductor chip of the power MOSFET corresponding to FIG. 4 relating to the modified example 6 (linear dispersion distribution in the gate orthogonal direction) regarding the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device of the one embodiment of the present application FIG. 2 is a schematic top view of the entire semiconductor chip showing the distribution of sub-active areas inside the active area in FIG. 本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのチップ全体構造の変形例を説明するための図1に対応するコンピュータ用のDC−DCコンバータの回路構成を示す模式回路図である。It is a schematic circuit diagram which shows the circuit structure of the DC-DC converter for computers corresponding to FIG. 1 for demonstrating the modification of the whole chip | tip structure of the power MOSFET which is an example of the semiconductor device of the said one Embodiment of this application. . 図29のロウサイドSWパワーMOSFET(Qhl)に関する図2に対応するパワーMOSFETの半導体チップ全体上面図である。FIG. 30 is an overall top view of the power MOSFET semiconductor chip corresponding to FIG. 2 for the low-side SW power MOSFET (Qhl) of FIG. 29; 図30に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況(図26に対応する2次元単連結端部集中分布)を示す半導体チップ全体上面模式図である。FIG. 31 is a schematic top view of the entire semiconductor chip showing the distribution of sub-active regions inside the active region on the top surface of the semiconductor chip of the power MOSFET corresponding to FIG. 30 (two-dimensional single-connected end concentration distribution corresponding to FIG. 26); 図30及び図31のゲート電極引き出し部切り出し領域R1に対応するチップ局所拡大上面図である。FIG. 32 is a chip local enlarged top view corresponding to the gate electrode lead-out region cutout region R1 of FIGS. 30 and 31; 本願に於いて説明する各実施の形態等の適用対象である他の能動デバイスの一例であるIGBT(Insulated gate Bipolar Transistor)の端子配置図である。It is a terminal arrangement diagram of an IGBT (Insulated gate Bipolar Transistor) which is an example of another active device to which the embodiments and the like described in the present application are applied. 図6に対応する本願に於いて説明する各実施の形態等の適用対象である他の能動デバイスの一例であるIGBTの単位セル断面図である。FIG. 7 is a unit cell cross-sectional view of an IGBT which is an example of another active device to which the embodiments and the like described in the present application corresponding to FIG. 6 are applied. 図1における回路要素の主要部を単一チップ上に集積した集積化電源素子のチップ上面レイアウト図である。FIG. 2 is a chip top view layout diagram of an integrated power supply element in which main parts of the circuit elements in FIG. 1 are integrated on a single chip. 図38のY−Y’断面に対応するチップ部分模式断面図である。FIG. 39 is a chip partial schematic cross-sectional view corresponding to the Y-Y ′ cross section of FIG. 38. 本願の各実施の形態の半導体装置の有効性を説明するための跳ね上がり電圧及び電力損失の副アクティブ領域の占有率依存性を示す効果説明図である。It is an effect explanatory view which shows the occupancy rate dependency of the jumping voltage and power loss for demonstrating the effectiveness of the semiconductor device of each embodiment of this application of the subactive region. 本願の一実施の形態の半導体装置の一例であるパワーMOSFETの半導体チップのパッケージ図面である。It is a package drawing of the semiconductor chip of power MOSFET which is an example of the semiconductor device of one embodiment of this application.

〔実施の形態の概要〕
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。
[Outline of Embodiment]
First, an outline of a typical embodiment of the invention disclosed in the present application will be described.

1.以下を含む半導体装置:
(a)第1の主面及び第2の主面を有する半導体基板;
(b)前記半導体基板内に設けられ、第1導電型を有するドリフト領域;
(c)前記第1の主面上に設けられたアクティブ領域;
(d)平面的に見て、前記アクティブ領域内に設けられた多数の単位セル領域、
ここで、各単位セル領域は、以下を有する:
(d1)前記ドリフト領域の前記第1の主面側の前記半導体基板内に設けられ、前記第1導電型と反対導電型の第2導電型を有するボディ領域;
(d2)前記ボディ領域に接するように前記第1の主面側の前記半導体基板の表面領域に設けられたゲート絶縁膜;
(d3)前記ゲート絶縁膜を介して前記半導体基板の前記表面領域に設けられたゲート電極;
(d4)前記ゲート電極上に設けられた層間絶縁膜;
(d5)前記半導体基板の前記第1の主面側表面に、前記ゲート絶縁膜に接するように設けられ、前記第1導電型を有するソース領域;
(d7)前記層間絶縁膜を覆うように、前記半導体基板の前記第1の主面上に設けられたメタルソース電極、
ここで更に、前記アクティブ領域は、以下を有する:
(c1)第1の閾値電圧および第1の占有面積を有する主アクティブ領域;
(c2)前記第1の閾値電圧よりも低い第2の閾値電圧および前記第1の占有面積よりも狭い第2の占有面積を有する副アクティブ領域。
1. Semiconductor devices including:
(A) a semiconductor substrate having a first main surface and a second main surface;
(B) a drift region provided in the semiconductor substrate and having a first conductivity type;
(C) an active region provided on the first main surface;
(D) a plurality of unit cell regions provided in the active region in plan view;
Here, each unit cell region has the following:
(D1) a body region provided in the semiconductor substrate on the first main surface side of the drift region and having a second conductivity type opposite to the first conductivity type;
(D2) a gate insulating film provided in a surface region of the semiconductor substrate on the first main surface side so as to be in contact with the body region;
(D3) a gate electrode provided in the surface region of the semiconductor substrate via the gate insulating film;
(D4) an interlayer insulating film provided on the gate electrode;
(D5) A source region having the first conductivity type provided on the first main surface side surface of the semiconductor substrate so as to be in contact with the gate insulating film;
(D7) a metal source electrode provided on the first main surface of the semiconductor substrate so as to cover the interlayer insulating film,
Here further, the active area comprises:
(C1) a main active region having a first threshold voltage and a first occupied area;
(C2) A sub-active region having a second threshold voltage lower than the first threshold voltage and a second occupied area smaller than the first occupied area.

2.前記1項の半導体装置において、前記第1の占有面積と前記第2の占有面積との和に占める前記第2の占有面積の比率は、1%以上、且つ、20%以下である。   2. In the semiconductor device according to the item 1, the ratio of the second occupied area to the sum of the first occupied area and the second occupied area is 1% or more and 20% or less.

3.前記1項の半導体装置において、前記第1の占有面積と前記第2の占有面積との和に占める前記第2の占有面積の比率は、5%以上、且つ、20%以下である。   3. In the semiconductor device according to the item 1, the ratio of the second occupied area to the sum of the first occupied area and the second occupied area is 5% or more and 20% or less.

4.前記1から3項のいずれか一つの半導体装置において、前記第1の閾値電圧と前記第2の閾値電圧の差は、前記主アクティブ領域と前記副アクティブ領域における前記ボディ領域の不純物濃度に起因する。   4). 4. In the semiconductor device according to any one of items 1 to 3, the difference between the first threshold voltage and the second threshold voltage is caused by an impurity concentration of the body region in the main active region and the sub active region. .

5.前記1から4項のいずれか一つの半導体装置において、前記第1の閾値電圧と前記第2の閾値電圧の差は、前記主アクティブ領域と前記副アクティブ領域における前記ゲート絶縁膜の厚さの差に起因する。   5. 5. In the semiconductor device according to any one of 1 to 4, the difference between the first threshold voltage and the second threshold voltage is a difference in thickness of the gate insulating film in the main active region and the sub active region. caused by.

6.前記1から5項のいずれか一つの半導体装置において、前記副アクティブ領域の平面形状は、単一又は複数のリング形状である。   6). 6. In the semiconductor device according to any one of 1 to 5, the planar shape of the sub active region is a single or a plurality of ring shapes.

7.前記1から5項のいずれか一つの半導体装置において、前記副アクティブ領域の平面形状は、複数のドット形状である。   7). 6. In the semiconductor device as described above in any one of 1 to 5, the planar shape of the sub active region is a plurality of dot shapes.

8.前記1から5項のいずれか一つの半導体装置において、前記副アクティブ領域は、2次元単連結領域として単一の領域を形成する。   8). 6. In the semiconductor device according to any one of 1 to 5, the sub-active region forms a single region as a two-dimensional single connection region.

9.前記1から5項のいずれか一つの半導体装置において、前記副アクティブ領域は、複数の線状領域である。   9. 6. In the semiconductor device according to any one of 1 to 5, the sub-active region is a plurality of linear regions.

10.前記1から9項のいずれか一つの半導体装置において、前記第2の閾値電圧の値は、前記第1の閾値電圧の値の45%以上、且つ、85%以下である。   10. 10. In the semiconductor device as described above in any one of 1 to 9, the value of the second threshold voltage is 45% or more and 85% or less of the value of the first threshold voltage.

11.前記1から9項のいずれか一つの半導体装置において、前記第2の閾値電圧の値は、前記第1の閾値電圧の値の55%以上、且つ、75%以下である。   11. In the semiconductor device according to any one of Items 1 to 9, the value of the second threshold voltage is 55% or more and 75% or less of the value of the first threshold voltage.

12.前記1から11項のいずれか一つの半導体装置において、更に、以下を含む:
(e)前記半導体基板の前記第1の主面上に設けられたゲートパッド;
(f)前記ゲートパッドと、前記主アクティブ領域内の各ゲート電極間の第1の電流通路;
(g)前記ゲートパッドと、前記副アクティブ領域内の各ゲート電極間の第2の電流通路、
ここで、前記第2の電流通路の抵抗値は、前記第1の電流通路の抵抗値よりも大きい。
12 The semiconductor device according to any one of 1 to 11 further includes the following:
(E) a gate pad provided on the first main surface of the semiconductor substrate;
(F) a first current path between the gate pad and each gate electrode in the main active region;
(G) a second current path between the gate pad and each gate electrode in the sub-active region;
Here, the resistance value of the second current path is larger than the resistance value of the first current path.

〔本願における記載形式、基本的用語、用法の説明〕
1.本願において、実施の態様の記載は、必要に応じて、便宜上複数のパートおよびセクションに分けて記載する場合もあるが、特にそうでない旨明示した場合を除き、これらは相互に独立別個のものではなく、単一の例の各部分、一方が他方の一部詳細または一部または全部の変形例等である。また、原則として、同様の部分は繰り返しを省略する。また、実施の態様における各構成要素は、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、必須のものではない。
[Description format, basic terms, usage in this application]
1. In the present application, the description of the embodiment may be divided into a plurality of parts and sections for convenience, if necessary. However, unless otherwise specified, they are not independent from each other. Rather, each part of a single example, one of which is a partial detail of the other or a part or all of a modification. Moreover, as a general rule, the same part is not repeated. In addition, each component in the embodiment is not indispensable unless specifically stated otherwise, unless it is theoretically limited to the number, and obviously not in context.

更に、本願において、「半導体装置」というときは、主に、各種トランジスタ(能動素子)単体、またはそれらを中心に、抵抗、コンデンサ等を半導体チップ等(たとえば単結晶シリコン基板)上に集積したものをいう。ここで、各種トランジスタの代表的なものとしては、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)に代表されるMISFET(Metal Insulator Semiconductor Field Effect Transistor)を例示することができる。このとき、各種単体トランジスタの代表的なものとしては、パワーMOSFETやIGBT(Insulated Gate Bipolar Transistor)を例示することができる。なお、本願で説明するパワーMOSFET等のパワー系能動素子は、特に断らない限り、ノーマリオフ(Normally−Off)型である。   Further, in the present application, the term “semiconductor device” mainly refers to various transistors (active elements) alone, or a device in which resistors, capacitors, etc. are integrated on a semiconductor chip or the like (for example, a single crystal silicon substrate). Say. Here, as a representative of various transistors, a MISFET (Metal Insulator Semiconductor Effect Transistor) typified by a MOSFET (Metal Oxide Field Effect Transistor) can be exemplified. At this time, typical examples of various single transistors include power MOSFETs and IGBTs (Insulated Gate Bipolar Transistors). Note that power active elements such as power MOSFETs described in the present application are normally-off type unless otherwise specified.

なお、本願において、「半導体能動素子」とは、トランジスタ、ダイオード等を指す。   In the present application, “semiconductor active element” refers to a transistor, a diode, or the like.

また、「MOS」という表現と「MIS」という表現を使い分けるのは煩雑であり、特にそうでない旨、明示した場合を除き、絶縁膜として酸化物以外を用いたものを含めて、「MOS」という表現を使用するものとする。   Also, it is cumbersome to use the expression “MOS” and the expression “MIS” separately, and unless otherwise specified, the word “MOS” is used, including the case where an insulating film other than an oxide is used. The expression shall be used.

2.同様に実施の態様等の記載において、材料、組成等について、「AからなるX」等といっても、特にそうでない旨明示した場合および文脈から明らかに、そうでない場合を除き、A以外の要素を主要な構成要素のひとつとするものを排除するものではない。たとえば、成分についていえば、「Aを主要な成分として含むX」等の意味である。たとえば、「シリコン部材」等といっても、純粋なシリコンに限定されるものではなく、SiGe合金やその他シリコンを主要な成分とする多元合金、その他の添加物等を含む部材も含むものであることはいうまでもない。同様に、「酸化シリコン膜」、「酸化シリコン系絶縁膜」等と言っても、比較的純粋な非ドープ酸化シリコン(Undoped Silicon Dioxide)だけでなく、FSG(Fluorosilicate Glass)、TEOSベース酸化シリコン(TEOS-based silicon oxide)、SiOC(Silicon Oxicarbide)またはカーボンドープ酸化シリコン(Carbon-doped Silicon oxide)またはOSG(Organosilicate glass)、PSG(Phosphorus Silicate Glass)、BPSG(Borophosphosilicate Glass)等の熱酸化膜、CVD酸化膜、SOG(Spin ON Glass)、ナノクラスタリングシリカ(Nano-Clustering Silica:NCS)等の塗布系酸化シリコン、これらと同様な部材に空孔を導入したシリカ系Low-k絶縁膜(ポーラス系絶縁膜)、およびこれらを主要な構成要素とする他のシリコン系絶縁膜との複合膜等を含むことは言うまでもない。   2. Similarly, in the description of the embodiment and the like, the material, composition, etc. may be referred to as “X consisting of A”, etc., except when clearly stated otherwise and clearly from the context, except for A It does not exclude what makes an element one of the main components. For example, as for the component, it means “X containing A as a main component”. For example, “silicon member” is not limited to pure silicon, but also includes SiGe alloys, other multi-component alloys containing silicon as a main component, and members containing other additives. Needless to say. Similarly, “silicon oxide film”, “silicon oxide insulating film”, etc. are not only relatively pure undoped silicon oxide (FS), but also FSG (Fluorosilicate Glass), TEOS-based silicon oxide ( Thermal oxide films such as TEOS-based silicon oxide), SiOC (Silicon Oxicarbide) or Carbon-doped Silicon oxide or OSG (Organosilicate glass), PSG (Phosphorus Silicate Glass), BPSG (Borophosphosilicate Glass), CVD Oxide film, SOG (Spin ON Glass), nano-clustering silica (Nano-Clustering Silica: NCS) and other coating-type silicon oxide, silica-based low-k insulating film (porous insulating) Needless to say, a film) and a composite film with other silicon-based insulating films including these as main constituent elements are included.

また、酸化シリコン系絶縁膜と並んで、半導体分野で常用されているシリコン系絶縁膜としては、窒化シリコン系絶縁膜がある。この系統の属する材料としては、SiN,SiCN,SiNH,SiCNH等がある。ここで、「窒化シリコン」というときは、特にそうでない旨明示したときを除き、SiNおよびSiNHの両方を含む。同様に、「SiCN」というときは、特にそうでない旨明示したときを除き、SiCNおよびSiCNHの両方を含む。   In addition to silicon oxide insulating films, silicon nitride insulating films that are commonly used in the semiconductor field include silicon nitride insulating films. Materials belonging to this system include SiN, SiCN, SiNH, SiCNH, and the like. Here, “silicon nitride” includes both SiN and SiNH unless otherwise specified. Similarly, “SiCN” includes both SiCN and SiCNH, unless otherwise specified.

なお、SiCは、SiNと類似の性質を有するが、SiONは、むしろ、酸化シリコン系絶縁膜に分類すべき場合が多い。   Note that SiC has similar properties to SiN, but SiON is often rather classified as a silicon oxide insulating film.

3.同様に、図形、位置、属性等に関して、好適な例示をするが、特にそうでない旨明示した場合および文脈から明らかにそうでない場合を除き、厳密にそれに限定されるものではないことは言うまでもない。   3. Similarly, suitable examples of graphics, positions, attributes, and the like are given, but it is needless to say that the present invention is not strictly limited to those cases unless explicitly stated otherwise, and unless otherwise apparent from the context.

4.さらに、特定の数値、数量に言及したときも、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、その特定の数値を超える数値であってもよいし、その特定の数値未満の数値でもよい。   4). In addition, when a specific number or quantity is mentioned, a numerical value exceeding that specific number will be used unless specifically stated otherwise, unless theoretically limited to that number, or unless otherwise clearly indicated by the context. There may be a numerical value less than the specific numerical value.

5.「ウエハ」というときは、通常は半導体装置(半導体集積回路装置、電子装置も同じ)をその上に形成する単結晶シリコンウエハを指すが、エピタキシャルウエハ、SOI基板、LCDガラス基板等の絶縁基板と半導体層等の複合ウエハ等も含むことは言うまでもない。   5. “Wafer” usually refers to a single crystal silicon wafer on which a semiconductor device (same as a semiconductor integrated circuit device and an electronic device) is formed, but an insulating substrate such as an epitaxial wafer, an SOI substrate, an LCD glass substrate, and the like. Needless to say, a composite wafer such as a semiconductor layer is also included.

6.IGBTの構造は、通常の縦型パワーMOSFETのドレイン側にドリフト領域と反対導電型の半導体領域を介在させたものとなっている。従って、ゲートおよびソースに関しては、構造的に縦型パワーMOSFETとほぼ同一であるが、実用上は、バイポーラトランジスタとの端子対応の関係で、ソース端子に対応する部分は、エミッタ端子と呼ばれている。しかし、本願では、物理的実態に対応して、特に断らない限り、縦型パワーMOSFETのソースに対応するIGBTの各要素をそのまま「ソース領域」、「ソース電極」、「ソース端子」と呼ぶことにする。   6). The structure of the IGBT is such that a semiconductor region opposite to the drift region is interposed on the drain side of a normal vertical power MOSFET. Therefore, the gate and the source are structurally almost the same as the vertical power MOSFET, but in practice, the portion corresponding to the terminal with the bipolar transistor is called the emitter terminal. Yes. However, in the present application, unless otherwise specified, each element of the IGBT corresponding to the source of the vertical power MOSFET is referred to as a “source region”, “source electrode”, and “source terminal”. To.

7.本願において、「第1の閾値電圧」、「第2の閾値電圧」等というときの「閾値電圧」等の値は、特にそうでない旨、断らないときは、それが対象とする集合における平均値を指すものとする。   7). In the present application, values such as “threshold voltage” when referred to as “first threshold voltage”, “second threshold voltage”, etc. mean that this is not the case, and unless otherwise stated, the average value in the target set Shall be pointed to.

なお、「閾値電圧」等の値について、その「大小」をいうときは、その値そのものではなく、その正負符号が同一であることを前提として、それらの絶対値を比較している。   In addition, when referring to the value of “threshold voltage” or the like, the absolute value is compared on the assumption that the sign is the same, not the value itself.

〔実施の形態の詳細〕
実施の形態について更に詳述する。各図中において、同一または同様の部分は同一または類似の記号または参照番号で示し、説明は原則として繰り返さない。
[Details of the embodiment]
The embodiment will be further described in detail. In the drawings, the same or similar parts are denoted by the same or similar symbols or reference numerals, and description thereof will not be repeated in principle.

また、添付図面においては、却って、煩雑になる場合または空隙との区別が明確である場合には、断面であってもハッチング等を省略する場合がある。これに関連して、説明等から明らかである場合等には、平面的に閉じた孔であっても、背景の輪郭線を省略する場合がある。更に、断面でなくとも、空隙でないことを明示するために、ハッチングを付すことがある。   In the accompanying drawings, hatching or the like may be omitted even in a cross section when it becomes complicated or when the distinction from the gap is clear. In relation to this, when it is clear from the description etc., the contour line of the background may be omitted even if the hole is planarly closed. Furthermore, even if it is not a cross section, it may be hatched to clearly indicate that it is not a void.

なお、コンピュータ電源等に使用されるDC−DCコンバータに関する本願発明者等による先行特許出願としては、たとえば日本特開2009−22106号公報(または、これに対応する米国特許公開2009−15224号公報)、日本特開2010−16035号公報(または、これに対応する米国特許公開2010−1790号公報)等がある。   For example, Japanese Patent Application Laid-Open No. 2009-22106 (or corresponding US Patent Publication No. 2009-15224) discloses a prior patent application by the present inventors regarding a DC-DC converter used for a computer power supply or the like. Japanese Unexamined Patent Publication No. 2010-16035 (or corresponding US Patent Publication No. 2010-1790).

1.本願の各実施の形態の半導体装置の主要な応用分野等の説明(主に図1)
以下の実施の形態で説明するパワーMOSFET等は、主にDC−DCコンバータ等におけるロウサイドスイッチに適合したものを例示するが、これらは、他の用途にも有効であることはいうまでもない。
1. Description of main application fields and the like of the semiconductor device of each embodiment of the present application (mainly FIG. 1)
The power MOSFET and the like described in the following embodiments are exemplified mainly for low-side switches in a DC-DC converter or the like, but it goes without saying that these are also effective for other applications. .

図1は本願の各実施の形態の半導体装置の主要な応用分野であるコンピュータ用のDC−DCコンバータの回路構成を示す模式回路図である。これに基づいて、本願の各実施の形態の半導体装置の主要な応用分野等を説明する。   FIG. 1 is a schematic circuit diagram showing a circuit configuration of a DC-DC converter for a computer, which is a main application field of the semiconductor device of each embodiment of the present application. Based on this, main application fields of the semiconductor device of each embodiment of the present application will be described.

図1に示すように、PC(Personal Computer)等におけるマイクロプロセッサ等への電源供給は、通常、90から300ボルト程度の交流から減圧整流された17ボルト程度の直流を定電圧源(直流電源Vin)として、DC−DCコンバータ50等のVRM(Voltage Regulator MOdule)を用いて、例えば、1ボルト程度の低電圧(電流的には、例えば20アンペア程度)にして行われる。この電流量は、100アンペアを超えることもある。制御回路部53から、たとえば200kHz程度(典型的な範囲としては、300kHz程度から500kHz程度、過去および近い将来に適用される範囲としては、20kHz程度から1MHz程度)のスイッチング信号が送出され、ハイサイドドライバ51およびロウサイドドライバ52を通じて、相補的なパルス信号が、それぞれハイサイドSWパワーMOSFET(Qhh)およびロウサイドSWパワーMOSFET(Qhl)を駆動する。ハイサイドSWパワーMOSFET(Qhh)がオンのときは、ハイサイドSWパワーMOSFET(Qhh)を通して電流が供給され、出力平滑用インダクタ54、出力平滑用コンデンサ55等から構成された平滑回路を経由して、電源出力端子Vddおよび接地端子Vssからマイクロプロセッサ等へ供給される。一方、ハイサイドSWパワーMOSFET(Qhh)がオフと時は、ロウサイドSWパワーMOSFET(Qhl)がオンとなり、ロウサイドSWパワーMOSFET(Qhl)から出力平滑用インダクタ54へ抜ける電流経路を通して電流が供給される。このとき電圧の制御は、ハイサイドSWパワーMOSFET(Qhh)がオンとなる時間の長さにより制御される。従って、ハイサイドSWパワーMOSFET(Qhh)には、大電流供給の観点から、できるだけ低いオン抵抗特性が求められる。   As shown in FIG. 1, a power supply to a microprocessor or the like in a PC (Personal Computer) or the like is normally a constant voltage source (DC power supply Vin ) Using a VRM (Voltage Regulator Module) such as the DC-DC converter 50, for example, at a low voltage of about 1 volt (currently, for example, about 20 amperes). This amount of current may exceed 100 amperes. For example, a switching signal of about 200 kHz (a typical range is about 300 kHz to about 500 kHz, and a range applied in the past and the near future is about 20 kHz to about 1 MHz) is sent from the control circuit unit 53 to the high side. Complementary pulse signals drive the high-side SW power MOSFET (Qhh) and the low-side SW power MOSFET (Qhl) through the driver 51 and the low-side driver 52, respectively. When the high-side SW power MOSFET (Qhh) is on, a current is supplied through the high-side SW power MOSFET (Qhh) and passes through a smoothing circuit including an output smoothing inductor 54, an output smoothing capacitor 55, and the like. The power supply output terminal Vdd and the ground terminal Vss are supplied to the microprocessor or the like. On the other hand, when the high-side SW power MOSFET (Qhh) is off, the low-side SW power MOSFET (Qhl) is on, and current is supplied through the current path from the low-side SW power MOSFET (Qhl) to the output smoothing inductor 54. . At this time, the voltage is controlled by the length of time during which the high-side SW power MOSFET (Qhh) is turned on. Accordingly, the high-side SW power MOSFET (Qhh) is required to have as low on-resistance characteristics as possible from the viewpoint of supplying a large current.

一方、ロウサイドSWパワーMOSFET(Qhl)の方は、ハイサイドSWパワーMOSFET(Qhh)がオフの時にのみオンする同期整流スイッチであるため、早いスイッチングスピードが要求される。しかし、急峻なスイッチング動作は、跳ね上がり電圧を強める要素となるという問題がある。   On the other hand, since the low-side SW power MOSFET (Qhl) is a synchronous rectification switch that is turned on only when the high-side SW power MOSFET (Qhh) is off, a fast switching speed is required. However, there is a problem that the steep switching operation becomes a factor that increases the jumping voltage.

そこで、この例では、ロウサイドSWパワーMOSFET(Qhl)を内部的に、大部分を占める標準的閾値電圧の部分Qhlmと、比較的小さな部分を占める相対的に低い閾値電圧の部分Qhlsとに分割することによって、ロウサイドSWパワーMOSFET(Qhl)はオンする場合の急峻な立ち上がりを緩和して、跳ね上がり電圧を抑制している。   Therefore, in this example, the low-side SW power MOSFET (Qhl) is internally divided into a standard threshold voltage portion Qhlm that occupies most and a relatively low threshold voltage portion Qhls that occupies a relatively small portion. Thus, the low-side SW power MOSFET (Qhl) alleviates the steep rise when turning on, and suppresses the jumping voltage.

また、図38に図1に示した回路の実際の半導体装置のパッケージ構成例のチップ配置およびワイヤボンディング配置の一例を示す。このパッケージ構成例はノンリード表面実装パッケージの1つであるQFN(Quad Flat Non−leaded package パッケージを採用した実施例である。   FIG. 38 shows an example of the chip arrangement and wire bonding arrangement of the package configuration example of the actual semiconductor device of the circuit shown in FIG. This package configuration example is an embodiment employing a QFN (Quad Flat Non-leaded package package) which is one of non-lead surface mount packages.

具体的には、ハイサイドSWパワーMOSFET(Qhh)の半導体チップ102、ロウサイドSWパワーMOSFET(Qhl)の半導体チップ103と、そして、ハイサイドドライバ51およびロウサイドドライバ52の機能を備えたドライバIC(106)とをレジンで固めて1個のシステムインパッゲージ101として搭載し、このシステムインパッケージ101外の制御回路部53からのスイッチング信号が端子を介してドライバIC(106)に送られるようになっている。パッケージのタブ(ダイパッド)115,116,117は3つに分かれており、ハイサイドMOSFET(102)には、ソースパッド118及びゲートパッド119が設けられ、ドライバIC(106)の対応するボンディングパッドBPとそれぞれワイヤによる配線107,108を介して接続されている。また、ローサイドMOSFET(103)とは、ワイヤによる配線123及びタブ116を介して接続されている。ローサイドMOSFET(103)には、ソースパッド120,122及びゲートパッド121が設けられ、ドライバIC(106)とそれぞれワイヤによる配線109,110を介して接続されている。また、ワイヤによる配線124を介してパワーグラウンド端子127に接続されている。
また、ドライバIC(106)が搭載されているタブ117の電位はロジックグラウンド端子128を介してロジックグラウンドに接続されている。また、このような構成において、ワイヤ123、124による配線の代わりに金属クリップで接続することも可能である。このように、システムインパッケージの構成を採用することで配線の寄生インダクタンスを低減して、更なる高効率化を実現することが出来る。
Specifically, a semiconductor chip 102 of a high-side SW power MOSFET (Qhh), a semiconductor chip 103 of a low-side SW power MOSFET (Qhl), and a driver IC having functions of a high-side driver 51 and a low-side driver 52 ( 106) with a resin and mounted as one system-in-package gauge 101 so that a switching signal from the control circuit unit 53 outside the system-in-package 101 is sent to the driver IC (106) via a terminal. It has become. The package tabs (die pads) 115, 116, 117 are divided into three, and the high side MOSFET (102) is provided with a source pad 118 and a gate pad 119, and a corresponding bonding pad BP of the driver IC (106). Are connected via wires 107 and 108, respectively. The low-side MOSFET (103) is connected via a wire 123 and a tab. The low-side MOSFET (103) is provided with source pads 120 and 122 and a gate pad 121, and is connected to the driver IC (106) via wirings 109 and 110 using wires, respectively. Further, it is connected to the power ground terminal 127 via a wire 124.
The potential of the tab 117 on which the driver IC (106) is mounted is connected to the logic ground via the logic ground terminal 128. In such a configuration, it is also possible to connect with a metal clip instead of wiring with the wires 123 and 124. In this way, by adopting the system-in-package configuration, it is possible to reduce the parasitic inductance of the wiring and realize further high efficiency.

2.本願の各実施の形態の半導体装置の半導体チップの構造の概要説明(主に図2から図8)
このセクションでは、セクション1で説明したロウサイドスイッチ等に特に適合したパワーMOSFETの構造(図1のロウサイドSWパワーMOSFETQhlに対応したのも)の概要を説明する。
2. Outline description of structure of semiconductor chip of semiconductor device of each embodiment of the present application (mainly FIG. 2 to FIG. 8)
In this section, an outline of the structure of the power MOSFET particularly adapted to the low-side switch described in section 1 (also corresponding to the low-side SW power MOSFET Qhl in FIG. 1) will be described.

図2は本願の各実施の形態の半導体装置の一例であるパワーMOSFETの半導体チップ全体上面図である。図3は図2のX−X’断面に対応するチップ模式断面図である。図4は本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況(単一リング状分布)を示す半導体チップ全体上面模式図である。図5は図4の主及び副アクティブ領域境界周辺切り出し領域R3のA−A’断面に対応する半導体チップの部分断面図である。図6は図5の主アクティブ領域の単位セル領域20mの詳細断面図である。図7は図5の副アクティブ領域の単位セル領域20sの詳細断面図である。図8は図2のゲート電極引き出し部切り出し領域R1の拡大上面図である。これらに基づいて、本願の各実施の形態の半導体装置の半導体チップの構造の概要を説明する。   FIG. 2 is an overall top view of a semiconductor chip of a power MOSFET which is an example of a semiconductor device according to each embodiment of the present application. FIG. 3 is a chip schematic cross-sectional view corresponding to the X-X ′ cross section of FIG. 2. FIG. 4 is a schematic top view of the entire semiconductor chip showing the distribution of sub-active regions (single ring distribution) inside the active region on the top surface of the semiconductor chip of the power MOSFET that is an example of the semiconductor device according to the embodiment of the present application. is there. FIG. 5 is a partial cross-sectional view of the semiconductor chip corresponding to the A-A ′ cross section of the main and sub active region boundary peripheral cutout region R <b> 3 of FIG. 4. FIG. 6 is a detailed sectional view of the unit cell region 20m of the main active region of FIG. FIG. 7 is a detailed cross-sectional view of the unit cell region 20s of the sub-active region of FIG. FIG. 8 is an enlarged top view of the gate electrode lead-out region cutout region R1 of FIG. Based on these, the outline of the structure of the semiconductor chip of the semiconductor device of each embodiment of the present application will be described.

まず、半導体チップの上面構造を説明する。図2に示すように、半導体チップ2(チップサイズは、たとえば、縦3ミリメートル、横5ミリメートル程度)の周辺端部には、端部を周回するリング状のガードリング27(たとえば、アルミニウム系メタル電極膜30と同一層で構成されている)が設けられており、その内側のほとんど全ての部分は、ゲート配線部24とメタルソース電極15(これらも、たとえば、アルミニウム系メタル電極膜30と同一層で構成されている)が占有している。ゲート配線部24の一部は、ボンディングワイヤ等を取り付けるためのゲートパッド部25となっており、メタルソース電極15の中央付近は、同様にボンディングワイヤ等を取り付けるためのソースパッド部26となっている。また、半導体チップ2の上面主要部のメタルソース電極15下は、主に、たとえば平面的に帯状の単位セル領域20(単位セルの繰返し周期、すなわち、単位セルの幅は、たとえば0.4マイクロメートル程度)を敷き詰めたアクティブ領域12(アクティブセル領域)となっており、たとえば線状のトレンチ5内には、ゲートポリシリコン膜(すなわちゲート電極7)が埋め込まれている。   First, the upper surface structure of the semiconductor chip will be described. As shown in FIG. 2, a ring-shaped guard ring 27 (for example, an aluminum-based metal) that circulates the end is provided at the peripheral end of the semiconductor chip 2 (for example, the chip size is about 3 mm in length and about 5 mm in width). The electrode film 30 is composed of the same layer as the electrode film 30, and almost all of the inner part of the gate film part 24 and the metal source electrode 15 (these are also the same as the aluminum metal electrode film 30, for example) Is composed of one layer). A part of the gate wiring portion 24 is a gate pad portion 25 for attaching a bonding wire or the like, and the vicinity of the center of the metal source electrode 15 is similarly a source pad portion 26 for attaching a bonding wire or the like. Yes. In addition, below the metal source electrode 15 in the main part of the upper surface of the semiconductor chip 2, mainly, for example, a planar band-shaped unit cell region 20 (the repetition cycle of the unit cell, that is, the width of the unit cell is, for example, 0.4 micron). For example, a gate polysilicon film (that is, the gate electrode 7) is embedded in the linear trench 5 in the active region 12 (active cell region).

次に、図2のX−X’断面を図3に示す。図3に示すように、半導体チップ2の下半部は、たとえば比較的高濃度のN型半導体基板領域1s(たとえばN型単結晶シリコン基板)となっており、N型半導体基板領域1sの表面1a(第1の主面)側すなわち裏面1bの反対側には、要求される耐圧に応じた厚さのN−エピタキシャル領域1eが設けられており、その主要部はN−ドリフト領域3に対応している。半導体チップ2の周辺部は、主にエッジターミネーション領域28となっており、半導体チップ2の内部領域は、ほとんどアクティブ領域12が占有しており、このアクティブ領域12には、平面的に帯状(立体的には直方体)の単位セル領域20(幅すなわち繰返し周期は、たとえば、400nm程度)が敷き詰められている。   Next, FIG. 3 shows an X-X ′ cross section of FIG. 2. As shown in FIG. 3, the lower half of the semiconductor chip 2 is, for example, a relatively high concentration N-type semiconductor substrate region 1s (for example, an N-type single crystal silicon substrate), and the surface of the N-type semiconductor substrate region 1s. On the 1a (first main surface) side, that is, on the opposite side of the back surface 1b, an N-epitaxial region 1e having a thickness corresponding to the required breakdown voltage is provided, and the main part corresponds to the N-drift region 3. doing. The peripheral portion of the semiconductor chip 2 is mainly an edge termination region 28, and the active region 12 is almost occupied by the internal region of the semiconductor chip 2, and the active region 12 has a strip shape (three-dimensional) in plan view. Specifically, a unit cell region 20 (width, that is, a repetition period is, for example, about 400 nm) of a rectangular parallelepiped is spread.

次に、アクティブ領域12内の大域的構造を説明するための図2に対応するチップ平面図を図4に示す。図4に示すように、アクティブ領域12内には、他の領域とすなわち主アクティブ領域12mと比較して、閾値電圧が低く設定された副アクティブ領域12sが設けられている。たとえば、その形状は、リング状である。   Next, a chip plan view corresponding to FIG. 2 for explaining the global structure in the active region 12 is shown in FIG. As shown in FIG. 4, the active region 12 is provided with a sub-active region 12s whose threshold voltage is set lower than other regions, that is, the main active region 12m. For example, the shape is a ring shape.

次に、図4の主及び副アクティブ領域境界周辺切り出し領域R3のA−A’断面に対応するチップ局所断面図で図5に示す。図5に示すように、N型半導体基板領域1sの裏面1b(第2の主面)側には、裏面メタル電極4(ドレイン電極)が設けられており、N型半導体基板領域1sの表面1a(第1の主面)側のN−ドリフト領域3の表面領域には、P型ボディ領域9が設けられている。チップ2の半導体表面には、P型ボディ領域9を貫通する多数のトレンチ5が設けられており、各トレンチ5内には、ゲート絶縁膜6を介して、トレンチゲート電極7aが埋め込まれている。トレンチ5間の半導体表面内には、N型ソース領域11が設けられており、ソースコンタクト部29aの下端部の半導体領域には、P型ボディコンタクト領域14が設けられている。チップ2の表面1a(第1の主面)側の半導体表面上には、酸化シリコン系絶縁膜等の層間絶縁膜8が設けられており、その上には、メタルソース電極15等の電極膜が設けられており、ソースコンタクト部29a等を介して、P型ボディコンタクト領域14およびN型ソース領域11と電気的に接続されている。   Next, FIG. 5 shows a chip local cross-sectional view corresponding to the A-A ′ cross section of the main and sub active region boundary peripheral cutout region R <b> 3 in FIG. 4. As shown in FIG. 5, a back surface metal electrode 4 (drain electrode) is provided on the back surface 1b (second main surface) side of the N-type semiconductor substrate region 1s, and the front surface 1a of the N-type semiconductor substrate region 1s. A P-type body region 9 is provided in the surface region of the N-drift region 3 on the (first main surface) side. A large number of trenches 5 penetrating the P-type body region 9 are provided on the semiconductor surface of the chip 2, and a trench gate electrode 7 a is embedded in each trench 5 via a gate insulating film 6. . An N-type source region 11 is provided in the semiconductor surface between the trenches 5, and a P-type body contact region 14 is provided in the semiconductor region at the lower end portion of the source contact portion 29a. An interlayer insulating film 8 such as a silicon oxide insulating film is provided on the semiconductor surface on the surface 1a (first main surface) side of the chip 2, and an electrode film such as a metal source electrode 15 is provided thereon. And is electrically connected to the P-type body contact region 14 and the N-type source region 11 through the source contact portion 29a and the like.

先に説明したように、アクティブ領域12は、主アクティブ領域12mと副アクティブ領域12sを有し、この例では、主アクティブ領域12mのP型ボディ領域9mと副アクティブ領域12sのP型ボディ領域9sの不純物濃度を異ならせることによって、閾値電圧を異ならせている。すなわち、副アクティブ領域12sのP型ボディ領域9sの不純物濃度が相対的に低く設定されている。従って、単位セル領域20の構造(不純物濃度まで含めたデバイス構造)は、主アクティブ領域12mの単位セル領域20mと副アクティブ領域12sの単位セル領域20sで異なることとなる。   As described above, the active region 12 includes the main active region 12m and the sub active region 12s. In this example, the P type body region 9m of the main active region 12m and the P type body region 9s of the sub active region 12s. The threshold voltages are made different by changing the impurity concentration of each. That is, the impurity concentration of the P-type body region 9s of the sub-active region 12s is set relatively low. Therefore, the structure of the unit cell region 20 (device structure including the impurity concentration) is different between the unit cell region 20m of the main active region 12m and the unit cell region 20s of the sub active region 12s.

次に、図5の主アクティブ領域12mの単位セル領域20mの詳細断面構造を図6に示す。図6に示すように、半導体チップ2のN型半導体基板領域1sの裏面1b側には、裏面メタル電極4(たとえば、ドレイン電極)が設けられており、N型半導体基板領域1sの表面1a側には、N−ドリフト領域3(第1導電型を有するドリフト領域)が設けられている。N−ドリフト領域3の表面1a側には、(第2導電型を有する)P型ボディ領域9m(9)が設けられており、N−ドリフト領域3の表面1a側の半導体表面領域内には、ソース領域11およびP型ボディコンタクト領域14が設けられている。また、半導体基板2の表面1a(第1の主面)側から、P型ボディ領域9を貫通して、N−ドリフト領域3に達するトレンチ5が設けられており、トレンチ5内には、ゲート絶縁膜6を介して、ポリシリコン等のトレンチゲート電極7aが埋め込まれている。半導体基板2の表面1a上には、層間絶縁膜8が設けられており、その上にはアルミニウム系メタル膜等から構成されたメタルソース電極15が設けられており、ソースコンタクト部29aを介して、ソース領域11およびP型ボディコンタクト領域14と電気的に接続されている。   Next, FIG. 6 shows a detailed cross-sectional structure of the unit cell region 20m of the main active region 12m of FIG. As shown in FIG. 6, a back surface metal electrode 4 (for example, a drain electrode) is provided on the back surface 1b side of the N-type semiconductor substrate region 1s of the semiconductor chip 2, and the front surface 1a side of the N-type semiconductor substrate region 1s. Is provided with an N- drift region 3 (a drift region having the first conductivity type). A P-type body region 9m (9) (having the second conductivity type) is provided on the surface 1a side of the N-drift region 3, and in the semiconductor surface region on the surface 1a side of the N-drift region 3, Source region 11 and P-type body contact region 14 are provided. A trench 5 is provided from the surface 1a (first main surface) side of the semiconductor substrate 2 so as to penetrate the P-type body region 9 and reach the N-drift region 3. A trench gate electrode 7a such as polysilicon is embedded through the insulating film 6. An interlayer insulating film 8 is provided on the surface 1a of the semiconductor substrate 2, and a metal source electrode 15 composed of an aluminum-based metal film or the like is provided on the interlayer insulating film 8, via a source contact portion 29a. The source region 11 and the P-type body contact region 14 are electrically connected.

次に、図5の副アクティブ領域12sの単位セル領域20sの詳細断面構造を図7に示す。図7に示すように、幾何学的構造は、図6と同じであるが、不純物濃度まで含めたデバイス構造が、主アクティブ領域12mの単位セル領域20mと副アクティブ領域12sの単位セル領域20sで異なっている。すなわち、副アクティブ領域12sのP型ボディ領域9sの不純物濃度が、主アクティブ領域12mの単位セル領域20mのP型ボディ領域9mの不純物濃度と比較して低く設定されている。   Next, FIG. 7 shows a detailed cross-sectional structure of the unit cell region 20s of the sub-active region 12s of FIG. As shown in FIG. 7, the geometric structure is the same as in FIG. 6, but the device structure including the impurity concentration is the unit cell region 20m of the main active region 12m and the unit cell region 20s of the sub active region 12s. Is different. That is, the impurity concentration of the P-type body region 9s of the sub-active region 12s is set lower than the impurity concentration of the P-type body region 9m of the unit cell region 20m of the main active region 12m.

次に、図8に図2のゲート電極引き出し部切り出し領域R1の詳細平面構造(主アクティブ領域12mおよび副アクティブ領域12sに於いて同じ)を示す。図8に示すように、トレンチゲート電極7aを構成するゲートポリシリコン膜7は、トレンチ5の外部に於いては、ゲート引き出しポリシリコン配線部7bを構成しており、ゲートコンタクト部29bにおいて、メタルゲート配線部24(アルミニウム系メタル電極膜30の一部)と電気的に接続されている。   Next, FIG. 8 shows a detailed plan structure of the gate electrode lead-out region R1 in FIG. 2 (the same applies to the main active region 12m and the sub active region 12s). As shown in FIG. 8, the gate polysilicon film 7 constituting the trench gate electrode 7a constitutes a gate lead-out polysilicon wiring portion 7b outside the trench 5, and a metal is formed in the gate contact portion 29b. It is electrically connected to the gate wiring portion 24 (a part of the aluminum-based metal electrode film 30).

3.本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETの製造プロセスの説明(主に図9から図20)
このセクションでは、セクション2の構造に対するデバイスの製造方法の一例を説明する。この例では、閾値電圧を低くすべき部分のP型ボディ領域の同土を相対的に薄くすることによって、閾値電圧を下げている。
3. Description of a manufacturing process of a power MOSFET which is an example of the semiconductor device according to the embodiment of the present application (mainly FIGS. 9 to 20)
In this section, an example of a device manufacturing method for the structure of Section 2 is described. In this example, the threshold voltage is lowered by relatively thinning the same portion of the P-type body region where the threshold voltage should be lowered.

図9は図5に対応する部分の製造工程途中(エピタキシャル成長工程)におけるウエハの部分断面図である。図10は図5に対応する部分の製造工程途中(トレンチ形成工程)におけるウエハの部分断面図である。図11は図5に対応する部分の製造工程途中(ゲート絶縁膜形成及びポリシリコン電極埋め込み工程)におけるウエハの部分断面図である。図12は図5に対応する部分の製造工程途中(主アクティブ領域のP型ボディ領域導入工程)におけるウエハの部分断面図である。図13は図5に対応する部分の製造工程途中(副アクティブ領域のP型ボディ領域導入工程)におけるウエハの部分断面図である。図14は図5に対応する部分の製造工程途中(N型ソース領域導入工程)におけるウエハの部分断面図である。図15は図5に対応する部分の製造工程途中(層間絶縁膜成膜およびコンタクトホール形成工程)におけるウエハの部分断面図である。図16は図5に対応する部分の製造工程途中(コンタクトホール延長工程)におけるウエハの部分断面図である。図17は図5に対応する部分の製造工程途中(P型ボディコンタクト領域導入工程)におけるウエハの部分断面図である。図18は図5に対応する部分の製造工程途中(メタル膜成膜およびメタルソース電極等パターニング工程)におけるウエハの部分断面図である。図19は図5に対応する部分の製造工程途中(バックグラインディング工程)におけるウエハの部分断面図である。図20は図5に対応する部分の製造工程途中(裏面メタル電極成膜工程)におけるウエハの部分断面図である。これらに基づいて、本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETの製造プロセスを説明する。   FIG. 9 is a partial cross-sectional view of the wafer during the manufacturing process (epitaxial growth process) of the part corresponding to FIG. FIG. 10 is a partial cross-sectional view of the wafer during the manufacturing process (trench formation process) of the part corresponding to FIG. FIG. 11 is a partial cross-sectional view of the wafer in the middle of the manufacturing process of the part corresponding to FIG. 5 (gate insulating film formation and polysilicon electrode embedding process). FIG. 12 is a partial cross-sectional view of the wafer during the manufacturing process of the portion corresponding to FIG. 5 (P-type body region introduction step of the main active region). FIG. 13 is a partial cross-sectional view of the wafer in the middle of the manufacturing process of the portion corresponding to FIG. 5 (P-type body region introduction step of the sub-active region). FIG. 14 is a partial cross-sectional view of the wafer in the middle of the manufacturing process (N-type source region introduction process) of the part corresponding to FIG. FIG. 15 is a partial cross-sectional view of the wafer in the middle of the manufacturing process (interlayer insulating film formation and contact hole formation process) of the part corresponding to FIG. FIG. 16 is a partial cross-sectional view of the wafer during the manufacturing process (contact hole extending process) of the part corresponding to FIG. FIG. 17 is a partial cross-sectional view of the wafer in the middle of the manufacturing process (P-type body contact region introduction process) corresponding to FIG. FIG. 18 is a partial cross-sectional view of the wafer in the middle of the manufacturing process of the part corresponding to FIG. 5 (metal film formation and metal source electrode patterning process). FIG. 19 is a partial cross-sectional view of the wafer in the middle of the manufacturing process (back grinding process) of the part corresponding to FIG. FIG. 20 is a partial cross-sectional view of the wafer in the middle of the manufacturing process (back surface metal electrode film forming step) of the portion corresponding to FIG. Based on these, a manufacturing process of a power MOSFET which is an example of the semiconductor device according to the embodiment of the present application will be described.

まず、たとえば、面方位を(100)とした200φのN型シリコン単結晶ウエハ1s(必要に応じて、300ファイでも、450ファイでも、その他の口径のウエハでもよい。抵抗率は、たとえば、1から2mΩ・cm程度)を用意し、必要な耐圧(ここでは、一例としてソースドレイン耐圧を30ボルト程度とする)に応じて、図9に示すように、たとえば、2マイクロメートル程度(範囲としては、たとえば1.3から3.3マイクロメートル程度)のN型(たとえばリンドープ、抵抗率は、たとえば、0.1から0.3mΩ・cm程度)シリコンエピタキシャル層を堆積することにより、エピタキシャル層付ウエハ1とする。   First, for example, a 200φ N-type silicon single crystal wafer 1s with a plane orientation of (100) (300 phi, 450 phi, or other diameter wafer may be used as required. The resistivity is, for example, 1 9 to 2 mΩ · cm), depending on the required breakdown voltage (here, the source-drain breakdown voltage is about 30 volts as an example), as shown in FIG. A wafer with an epitaxial layer by depositing a silicon epitaxial layer of N type (for example, phosphorus doping, resistivity is, for example, about 0.1 to 0.3 mΩ · cm) of, for example, about 1.3 to 3.3 micrometers Set to 1.

次に、図10に示すように、ウエハ1のデバイス面1aのほぼ全面に、たとえば低圧CVD(Chemical Vapor Deposition)等により、たとえば、450nm程度の厚さの酸化シリコン膜を成膜する。この酸化シリコン膜をたとえば通常のリソグラフィによりパターニングすることにより、トレンチ加工用ハードマスク膜10とする。続いて、トレンチ加工用ハードマスク膜10を用いて、異方性ドライエッチング(エッチング雰囲気は、たとえば、HBr等のハロゲン系ガス雰囲気など)により、たとえば深さ0.8マイクロメートル程度(幅0.15マイクロメートル程度)のトレンチ5を形成する。   Next, as shown in FIG. 10, a silicon oxide film having a thickness of, for example, about 450 nm is formed on almost the entire device surface 1a of the wafer 1 by, for example, low pressure CVD (Chemical Vapor Deposition). The silicon oxide film is patterned by, for example, ordinary lithography to form a trench processing hard mask film 10. Subsequently, the trench processing hard mask film 10 is used for anisotropic dry etching (the etching atmosphere is, for example, a halogen-based gas atmosphere such as HBr). A trench 5 of about 15 micrometers) is formed.

次に、図11に示すように、熱酸化等により、たとえば40nm程度のゲート酸化膜6(ゲート絶縁膜)を形成する。続いて、ゲート酸化膜6上の、半導体ウエハ1の表面1a側のほぼ全体を覆い、トレンチ5内を埋め込むように、たとえばCVD(Chemical Vapor Deposition)等により、ゲートポリシリコン膜7(たとえば、厚さ500nm程度)を成膜する。更に、たとえば、SF等のエッチングガスを用いたドライエッチングによって、ゲートポリシリコン膜7をエッチバックする。これによって、トレンチゲート電極7aが形成される。なお、ゲート絶縁膜6の構成は、熱酸化膜(熱酸化による酸化シリコン膜)のほか、CVD等による酸化シリコン系絶縁膜等としてもよい。また、全体の一部(シリコン基板に接する部分)を熱酸化膜(たとえば、厚さ15nm程度)とし、残りの部分(シリコン基板に接しない部分)をCVD等による酸化シリコン系絶縁膜等(たとえば、厚さ25nm程度)とした積層膜としても良い。 Next, as shown in FIG. 11, a gate oxide film 6 (gate insulating film) of, eg, about 40 nm is formed by thermal oxidation or the like. Subsequently, the gate polysilicon film 7 (for example, the thickness is formed by CVD (Chemical Vapor Deposition), for example, so as to cover almost the entire surface of the semiconductor wafer 1 on the gate oxide film 6 on the surface 1a side and fill the trench 5. About 500 nm). Further, the gate polysilicon film 7 is etched back by dry etching using an etching gas such as SF 6 . Thereby, the trench gate electrode 7a is formed. The configuration of the gate insulating film 6 may be a thermal oxide film (silicon oxide film by thermal oxidation), a silicon oxide insulating film by CVD, or the like. Further, a part of the whole (a part in contact with the silicon substrate) is a thermal oxide film (for example, a thickness of about 15 nm), and the remaining part (a part not in contact with the silicon substrate) is a silicon oxide insulating film by CVD or the like (for example, , About 25 nm thick).

次に、図12に示すように、主アクティブ領域12mのP型ボディ領域9mを導入する。すなわち、たとえば、副アクティブ領域12s等をレジスト膜等で被覆した状態で、ウエハ1のデバイス面1a側からイオン注入することにより、P型ボディ領域9m(P型ウエル領域又はチャネル領域)を導入する。このイオン注入条件としては、たとえば、イオン種:ボロン、打ち込みエネルギ:200keV程度,濃度:7x1012/cm程度を好適なものとして例示することができる。その後、不要になったレジスト膜をアッシング等により除去する。 Next, as shown in FIG. 12, a P-type body region 9m of the main active region 12m is introduced. That is, for example, the P-type body region 9m (P-type well region or channel region) is introduced by ion implantation from the device surface 1a side of the wafer 1 in a state where the sub-active region 12s is covered with a resist film or the like. . As the ion implantation conditions, for example, ion species: boron, implantation energy: about 200 keV, concentration: about 7 × 10 12 / cm 2 can be exemplified as preferable ones. Thereafter, the resist film that has become unnecessary is removed by ashing or the like.

次に、図13に示すように、副アクティブ領域12sのP型ボディ領域9sを導入する。すなわち、たとえば、主アクティブ領域12m等をレジスト膜等で被覆した状態で、ウエハ1のデバイス面1a側からイオン注入することにより、P型ボディ領域9s(P型ウエル領域又はチャネル領域)を導入する。このイオン注入条件としては、たとえば、イオン種:ボロン、打ち込みエネルギ:200keV程度,濃度:2x1012/cm程度を好適なものとして例示することができる。その後、不要になったレジスト膜をアッシング等により除去する。 Next, as shown in FIG. 13, a P-type body region 9s of the sub-active region 12s is introduced. That is, for example, a P-type body region 9s (P-type well region or channel region) is introduced by ion implantation from the device surface 1a side of the wafer 1 with the main active region 12m or the like covered with a resist film or the like. . As the ion implantation conditions, for example, ion species: boron, implantation energy: about 200 keV, concentration: about 2 × 10 12 / cm 2 can be exemplified as preferable ones. Thereafter, the resist film that has become unnecessary is removed by ashing or the like.

次に、図14に示すように、たとえば、ウエハ1のデバイス面1a側からイオン注入することにより、N型ソース領域11を導入する。このイオン注入条件としては、たとえば、イオン種:砒素、打ち込みエネルギ:45keV程度,濃度:3x1015/cm程度を好適なものとして例示することができる。 Next, as shown in FIG. 14, for example, the N-type source region 11 is introduced by ion implantation from the device surface 1 a side of the wafer 1. As the ion implantation conditions, for example, ion species: arsenic, implantation energy: about 45 keV, concentration: about 3 × 10 15 / cm 2 can be exemplified as a preferable one.

次に、図15に示すように、たとえばCVD等によって、ウエハ1のデバイス面1aのほぼ全面に、層間絶縁膜8を形成する。層間絶縁膜8としては、たとえば、PSG(Phospho−Silicate Glass)膜(たとえば、厚さ300nm程度)からなる絶縁膜を好適なものとして例示することができる。次に通常のリソグラフィによって、ウエハ1のデバイス面1a上に、レジスト膜等の対エッチングマスクパターンを形成し、それをマスクとして、異方性ドライエッチングを実行することによって、ソースコンタクト部29a(コンタクトホールすなわちコンタクト溝)を開口する。続いて、異方性ドライエッチングにより、コンタクト溝29aをソース領域11より深いところまで延長する(エッチング量は、たとえば200nm程度)。   Next, as shown in FIG. 15, an interlayer insulating film 8 is formed on almost the entire device surface 1a of the wafer 1 by, for example, CVD. As the interlayer insulating film 8, for example, an insulating film made of a PSG (Phospho-Silicate Glass) film (for example, a thickness of about 300 nm) can be exemplified as a suitable example. Next, an etching mask pattern such as a resist film is formed on the device surface 1a of the wafer 1 by ordinary lithography, and anisotropic dry etching is performed using the resist mask pattern as a mask to form the source contact portion 29a (contact A hole or contact groove) is opened. Subsequently, the contact groove 29a is extended deeper than the source region 11 by anisotropic dry etching (the etching amount is about 200 nm, for example).

次に、図17に示すように、半導体ウエハ1の表面1a側からほぼ全面に対して、たとえば、P型不純物をイオン注入することにより、自己整合的に、半導体基板の表面領域にP型ボディコンタクト領域14(P型高濃度コンタクト用不純物領域)を導入する。このイオン注入条件としては、たとえば、イオン種:BF、打ち込みエネルギ:30keV程度,濃度:1x1015/cm程度を好適なものとして例示することができる。 Next, as shown in FIG. 17, a P-type body is formed in the surface region of the semiconductor substrate in a self-aligned manner by, for example, ion-implanting P-type impurities into almost the entire surface from the surface 1a side of the semiconductor wafer 1. Contact region 14 (P-type high-concentration contact impurity region) is introduced. As the ion implantation conditions, for example, ion species: BF 2 , implantation energy: about 30 keV, and concentration: about 1 × 10 15 / cm 2 can be exemplified as preferable ones.

次に、図18に示すように、半導体ウエハ1の表面1a側のほぼ全面に、たとえば、スパッタリング成膜により、たとえば300nm程度の厚さのTiW膜(TiW膜中のチタンの多くの部分は、後の熱処理によって、シリコン界面に移動してシリサイドを形成して、コンタクト特性の改善に寄与するが、これらの過程は煩雑であるので図面には表示しない)を形成し、更にその上に、先と同様に、TiW膜上の半導体ウエハ1の表面1a側のほぼ全面に、たとえば、スパッタリング成膜により、たとえば3マイクロメートルから5マイクロメートル程度の厚さのアルミニウム系メタル膜(数%程度のシリコン等を添加したアルミニウム)を形成する。このTiW膜とアルミニウム系メタル膜でアルミニウム系メタル電極膜30を構成する。その後、通常のリソグラフィにより、アルミニウム系メタル電極膜30をパターニングすることにより、図2に示すように、メタルソース電極15、ゲート配線部24、ガードリング27等を形成する。必要であれば、続いて、ファイナルパッシベーション膜として、たとえば、ポリイミドを主要な成分とする有機膜(たとえば、厚さ2.5マイクロメートル程度)等をウエハ1のデバイス面1aのほぼ全面に塗布する。更に、通常のリソグラフィによって、図2のソースパッド開口26、ゲートパッド開口25等の部分のファイナルパッシベーション膜を除去する。   Next, as shown in FIG. 18, a TiW film having a thickness of, for example, about 300 nm (a large portion of titanium in the TiW film is formed by sputtering film formation, for example, on almost the entire surface of the semiconductor wafer 1 on the surface 1a side. Subsequent heat treatment moves to the silicon interface to form silicide and contributes to improving contact characteristics, but these processes are complicated and are not shown in the drawing). In the same manner as described above, an aluminum-based metal film having a thickness of, for example, about 3 μm to 5 μm (several percent silicon) is formed on almost the entire surface of the semiconductor wafer 1 on the TiW film on the surface 1a side by, for example, sputtering. Etc. to which aluminum is added). The TiW film and the aluminum metal film constitute an aluminum metal electrode film 30. Thereafter, by patterning the aluminum-based metal electrode film 30 by normal lithography, as shown in FIG. 2, the metal source electrode 15, the gate wiring portion 24, the guard ring 27, and the like are formed. If necessary, subsequently, as a final passivation film, for example, an organic film containing polyimide as a main component (for example, about 2.5 micrometers in thickness) or the like is applied to almost the entire device surface 1a of the wafer 1. . Further, the final passivation film in portions such as the source pad opening 26 and the gate pad opening 25 in FIG. 2 is removed by ordinary lithography.

次に、図19に示すように、ウエハ1の裏面1bに対して、バックグラインディング処理を施すことによって、たとえば、500から900マイクロメータ程度のウエハ厚を必要により、たとえば30から300マイクロメータ程度に薄膜化する。   Next, as shown in FIG. 19, by performing a back grinding process on the back surface 1b of the wafer 1, for example, a wafer thickness of about 500 to 900 micrometers is required, for example, about 30 to 300 micrometers. Thin film.

次に、図20に示すように、その後、裏面電極4(たとえばウエハに近い方から、チタン膜/ニッケル膜/金膜)をたとえばスパッタリング成膜により、形成する。更に、ダイシング等により、ウエハ1を個々のチップ2(図2)に分割する。   Next, as shown in FIG. 20, a back electrode 4 (for example, a titanium film / nickel film / gold film from the side closer to the wafer) is formed by, for example, sputtering film formation. Further, the wafer 1 is divided into individual chips 2 (FIG. 2) by dicing or the like.

4.本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブセル構造の変形例1(副アクティブ領域においてゲート絶縁膜を相対的に薄くした構造)の説明(主に図21)
このセクションでは、図5の副アクティブ領域12sの単位セル領域20sの構造の変形例を説明する。この例では、閾値電圧を下げるべき部分のゲート絶縁膜の膜厚を通常部分の半分程度にすることによって、相対的に低い閾値電圧としている。
4). Description of Modification 1 of Active Cell Structure of Power MOSFET which is an Example of Semiconductor Device of One Embodiment of the Present Application (Structure in which Gate Insulating Film is Relatively Thinned in Subactive Region) (Mainly FIG. 21)
In this section, a modification of the structure of the unit cell region 20s of the sub-active region 12s of FIG. 5 will be described. In this example, a relatively low threshold voltage is obtained by reducing the thickness of the gate insulating film in the portion where the threshold voltage is to be lowered to about half of the normal portion.

図21は本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブセル構造の変形例1(副アクティブ領域においてゲート絶縁膜を相対的に薄くした構造)に関する図7に対応する副アクティブ領域の単位セル領域20sの詳細断面図である。これに基づいて、本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブセル構造の変形例1(副アクティブ領域においてゲート絶縁膜を相対的に薄くした構造)を説明する。   FIG. 21 shows a sub-corresponding to FIG. 7 relating to Modification 1 (a structure in which the gate insulating film is relatively thin in the sub-active region) of the active cell structure of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. It is a detailed sectional view of a unit cell region 20s of an active region. Based on this, a first modification of the active cell structure of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application (a structure in which the gate insulating film is relatively thin in the sub-active region) will be described.

図7の例では、幾何学的構造は同一で、P型ボディ領域9の不純物濃度を主アクティブ領域12mと副アクティブ領域12sの間で異ならせることにより、副アクティブ領域12sの閾値電圧を主アクティブ領域12mの閾値電圧と比較して低く設定しているが、この例では、P型ボディ領域9m、9sの不純物濃度は同じにして、副アクティブ領域12sのゲート絶縁膜6の厚さを相対的に薄くする(たとえば、厚さ20nm程度の熱酸化膜)ことによって(副アクティブ領域12sのゲート絶縁膜6を相対的に薄いゲート絶縁膜6tとしている)閾値電圧を低く設定している。ここで、ゲート絶縁膜6tの構成は、熱酸化膜(熱酸化による酸化シリコン膜)のほか、CVD等による酸化シリコン系絶縁膜等としてもよい。また、全体の一部(シリコン基板に接する部分)を熱酸化膜(たとえば、厚さ10nm程度)とし、残りの部分(シリコン基板に接しない部分)をCVD等による酸化シリコン系絶縁膜等(たとえば、厚さ10nm程度)とした積層膜としても良い。   In the example of FIG. 7, the geometric structure is the same, and the threshold voltage of the sub-active region 12s is changed to the main active region by making the impurity concentration of the P-type body region 9 different between the main active region 12m and the sub-active region 12s. Although the threshold voltage is set lower than the threshold voltage of the region 12m, in this example, the impurity concentrations of the P-type body regions 9m and 9s are the same, and the thickness of the gate insulating film 6 of the sub-active region 12s is relative. The threshold voltage is set low by reducing the thickness (for example, a thermal oxide film having a thickness of about 20 nm) (the gate insulating film 6 in the sub-active region 12s is a relatively thin gate insulating film 6t). Here, the configuration of the gate insulating film 6t may be a thermal oxide film (silicon oxide film by thermal oxidation), a silicon oxide insulating film by CVD, or the like. Further, a part of the whole (part in contact with the silicon substrate) is a thermal oxide film (for example, a thickness of about 10 nm), and the remaining part (part not in contact with the silicon substrate) is a silicon oxide insulating film or the like by CVD or the like (for example, Or a laminated film having a thickness of about 10 nm).

なお、P型ボディ領域9の不純物濃度とゲート絶縁膜6の厚さの両方を異ならせることも可能である。ただし、その分、工程は複雑となる。また、ゲート絶縁膜の厚さを異ならせることは、熱酸化膜(酸化シリコン膜)を基準とした酸化シリコン膜換算厚さを異ならせるようにしてもよい。すなわち、主アクティブ領域12mと副アクティブ領域12sの間でゲート絶縁膜6の材質又はその一部を異ならせることによって、閾値電圧を異ならせるようにしてもよい。   It is possible to make both the impurity concentration of the P-type body region 9 different from the thickness of the gate insulating film 6. However, the process is complicated accordingly. In addition, the thickness of the gate insulating film may be varied to vary the equivalent thickness of the silicon oxide film with respect to the thermal oxide film (silicon oxide film). That is, the threshold voltage may be varied by changing the material of the gate insulating film 6 or a part thereof between the main active region 12m and the sub active region 12s.

5.本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する各種の変形例の説明(主に図22から図28)
このセクションでは、図4で説明したアクティブ領域12m内における副アクティブ領域12s(閾値電圧が相対的に低く設定された領域)の分布又はレイアウトの変形例を説明する。
5. Description of various modifications relating to the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application (mainly FIGS. 22 to 28)
In this section, a modified example of the distribution or layout of the sub-active region 12s (region in which the threshold voltage is set relatively low) in the active region 12m described with reference to FIG. 4 will be described.

図22は本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例1(複数リング状分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。図23は本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例2(ドット状分散分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。図24は本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例3(2次元単連結集中分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。図25は本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例4(複数単連結分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。図26は本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例5(2次元単連結端部集中分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。図27は本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例6(ゲート延在方向線状分散分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。図28は本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する変形例6(ゲート直交方向線状分散分布)に関する図4に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況を示す半導体チップ全体上面模式図である。これらに基づいて、本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのアクティブ領域における副アクティブ領域の分布に関する各種の変形例を説明する。   FIG. 22 is a top view of a semiconductor chip of a power MOSFET corresponding to FIG. 4 relating to Modification 1 (multiple ring-shaped distribution) relating to the distribution of sub-active regions in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. FIG. 2 is a schematic top view of the entire semiconductor chip showing the distribution of sub-active areas inside the active area in FIG. FIG. 23 is a top view of the semiconductor chip of the power MOSFET corresponding to FIG. 4 relating to Modification 2 (dot dispersion distribution) relating to the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. FIG. 2 is a schematic top view of the entire semiconductor chip showing the distribution of sub-active areas inside the active area in FIG. FIG. 24 is a power MOSFET semiconductor corresponding to FIG. 4 relating to the modification 3 (two-dimensional single-connection concentrated distribution) regarding the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition of the subactive area | region inside the active area | region in a chip | tip upper surface. FIG. 25 is a top view of the semiconductor chip of the power MOSFET corresponding to FIG. 4 relating to Modification 4 (multiple single connection distribution) relating to the distribution of the sub-active regions in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. FIG. 2 is a schematic top view of the entire semiconductor chip showing the distribution of sub-active areas inside the active area in FIG. FIG. 26 is a power MOSFET corresponding to FIG. 4 relating to the modification 5 (two-dimensional single connection end concentration distribution) regarding the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition of the subactive area | region inside the active area | region in the semiconductor chip upper surface. FIG. 27 is a power MOSFET corresponding to FIG. 4 relating to the modification 6 (linear extension distribution in the gate extending direction) regarding the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition of the subactive area | region inside the active area | region in the semiconductor chip upper surface. FIG. 28 is a diagram of a power MOSFET corresponding to FIG. 4 relating to Modification 6 (linear distribution distribution in the direction perpendicular to the gate) regarding the distribution of the sub-active region in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. It is a semiconductor chip whole upper surface schematic diagram which shows the distribution condition of the subactive area | region inside the active area | region in a semiconductor chip upper surface. Based on these, various modifications relating to the distribution of the sub-active regions in the active region of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application will be described.

(1)複数リング分布(主に図22):
図22に示すレイアウトは、図4のリング状副アクティブ領域12sを複数のリング状領域に分割したものである。これは、単一リング状副アクティブ領域12sと同様に、アクティブ領域12全体の温度分布を比較的均一にできるメリットがある。すなわち、副アクティブ領域12sに対応する部分は、オンしている時間が長いので、他の部分よりも発熱量が大きいからである。
(1) Multiple ring distribution (mainly FIG. 22):
The layout shown in FIG. 22 is obtained by dividing the ring-shaped sub-active region 12s of FIG. 4 into a plurality of ring-shaped regions. This has the merit that the temperature distribution of the entire active region 12 can be made relatively uniform, like the single ring-shaped sub-active region 12s. That is, the portion corresponding to the sub-active region 12s is on for a long time, so the amount of heat generated is larger than the other portions.

リングの数は、2個に限らず、3個でも、それ以上の複数個でも良い。   The number of rings is not limited to two, but may be three or more.

(2)ドット分散分布(主に図23):
図23に示すレイアウトは、比較的面積の狭いドット状副アクティブ領域12sを多数分散してレイアウトしたものである。このレイアウトに於いては、アクティブ領域12全体の温度分布を更に均一にできるメリットがある。
(2) Dot distribution (mainly FIG. 23):
The layout shown in FIG. 23 is a layout in which a large number of dot-like sub-active regions 12s having a relatively small area are dispersed. This layout has an advantage that the temperature distribution of the entire active region 12 can be made more uniform.

(3)単連結集中分布(主に図24):
図24に示すレイアウトは、副アクティブ領域12sをアクティブ領域12の中央部に設けられた単一の2次元単連結領域としたものでる。このような集中配置は、レイアウトが比較的簡単に行えるメリットがある。
(3) Single connection concentration distribution (mainly Figure 24):
In the layout shown in FIG. 24, the sub-active region 12s is a single two-dimensional single connection region provided in the center of the active region 12. Such a centralized arrangement has the advantage that the layout can be made relatively simple.

(4)複数単連結分布(主に図25):
図25に示すレイアウトは、図24の例で、2次元単連結領域とした副アクティブ領域12sを2分割したものである。2次元単連結領域の数は、2個に限らず、3個でも、それ以上の複数個でも良い。
(4) Multiple single connected distribution (mainly FIG. 25):
The layout shown in FIG. 25 is obtained by dividing the sub-active region 12s, which is a two-dimensional single connection region, into two in the example of FIG. The number of two-dimensional single connected regions is not limited to two, but may be three or more.

(5)単連結一端集中分布(主に図26):
図26に示すレイアウトは、図24のものと類似するが、配置する場所が、アクティブ領域12の中央部ではなく、ゲートパッド部25と反対側のアクティブ領域12の端部になっている点が特徴となっている。このような集中レイアウトは、アクティブ領域12外部との関係で、副アクティブ領域12sを主アクティブ領域12mと異なる扱いをしたいときに有利である(例えば、セクション6参照)。
(5) Single connection one end concentration distribution (mainly FIG. 26):
The layout shown in FIG. 26 is similar to that shown in FIG. 24, except that the location is not the center of the active region 12 but the end of the active region 12 opposite to the gate pad portion 25. It is a feature. Such a concentrated layout is advantageous when it is desired to treat the sub-active area 12s differently from the main active area 12m in relation to the outside of the active area 12 (see, for example, section 6).

また、主アクティブ領域12mと副アクティブ領域12sとの間の相互作用をできるだけ少なくできるメリットが在る。   Further, there is a merit that the interaction between the main active region 12m and the sub active region 12s can be reduced as much as possible.

更に、このレイアウトのメリットは、実質的に、両領域の境界をトレンチゲート電極7上に配置できることである。すなわち、両領域の境界線がチャネル領域やソース領域を通過しないメリットがある。   Further, the advantage of this layout is that the boundary between both regions can be arranged on the trench gate electrode 7 substantially. That is, there is an advantage that the boundary line between both regions does not pass through the channel region or the source region.

(6)ゲート方向線状分散分布(主に図27):
図27に示すレイアウトは、トレンチゲート7の延在方向と平行な線状領域を多数分散して、副アクティブ領域12sとしたものである。このレイアウトのメリットは、温度の均一化のほか、実質的に、両領域の境界をトレンチゲート電極7上に配置できることである。すなわち、両領域の境界線がチャネル領域やソース領域を通過しないメリットがある。
(6) Gate-direction linear dispersion distribution (mainly FIG. 27):
In the layout shown in FIG. 27, a large number of linear regions parallel to the extending direction of the trench gate 7 are dispersed to form sub-active regions 12s. The merit of this layout is that, in addition to uniform temperature, the boundary between both regions can be arranged on the trench gate electrode 7 substantially. That is, there is an advantage that the boundary line between both regions does not pass through the channel region or the source region.

通常、単一のチップのトレンチの数、すなわち、セルの数は、1万本前後(好適な範囲としては、数千本から数万本程度)であるから、ここでの副アクティブ領域12sの単一要素は、たとえば、100本程度(好適な範囲としては、数十本から数百本程度)の隣接するセルを束ねたものとなる。   Usually, the number of trenches of a single chip, that is, the number of cells is around 10,000 (preferably, about several thousand to several tens of thousands). The single element is, for example, a bundle of adjacent cells of about 100 (preferably about several tens to several hundreds).

(7)ゲート直交方向線状分散分布(主に図28):
図28に示すレイアウトは、図27のレイアウトを90度回転させたものである。このレイアウトに於いては、比較的単純なレイアウトであり、且つ、アクティブ領域12全体の温度分布を均一にできるメリットがある。
(7) Linear dispersion distribution in the gate orthogonal direction (mainly FIG. 28):
The layout shown in FIG. 28 is obtained by rotating the layout of FIG. 27 by 90 degrees. This layout has a merit that it is a relatively simple layout and that the temperature distribution of the entire active region 12 can be made uniform.

6.本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのチップ全体構造の変形例の説明(主に図29から図32)
このセクションの例は、図1に示すDC−DCコンバータの変形例であり、また、そのロウサイドSWパワーMOSFET(Qhl)に対応するパワー系能動素子の変形例である。また、このセクションの例は、図26の副アクティブ領域12sのレイアウトの応用例でもある。
6). Description of Modification of Whole Chip Structure of Power MOSFET as an Example of Semiconductor Device of One Embodiment of the Present Application (Mainly FIGS. 29 to 32)
The example of this section is a modification of the DC-DC converter shown in FIG. 1 and a modification of the power system active element corresponding to the low-side SW power MOSFET (Qhl). The example in this section is also an application example of the layout of the sub-active region 12s in FIG.

図29は本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのチップ全体構造の変形例を説明するための図1に対応するコンピュータ用のDC−DCコンバータの回路構成を示す模式回路図である。図30は図29のロウサイドSWパワーMOSFET(Qhl)に関する図2に対応するパワーMOSFETの半導体チップ全体上面図である。図31は図30に対応するパワーMOSFETの半導体チップ上面におけるアクティブ領域内部の副アクティブ領域の分布状況(図26に対応する2次元単連結端部集中分布)を示す半導体チップ全体上面模式図である。図32は図30及び図31のゲート電極引き出し部切り出し領域R1に対応するチップ局所拡大上面図である。これに基づいて、本願の前記一実施の形態の半導体装置の一例であるパワーMOSFETのチップ全体構造の変形例を説明する。   FIG. 29 is a schematic circuit diagram showing a circuit configuration of a DC-DC converter for a computer corresponding to FIG. 1 for explaining a modification of the whole chip structure of a power MOSFET which is an example of the semiconductor device according to the embodiment of the present application. FIG. 30 is a top view of the entire semiconductor chip of the power MOSFET corresponding to FIG. 2 relating to the low-side SW power MOSFET (Qhl) of FIG. 31 is a schematic top view of the entire semiconductor chip showing the distribution of sub-active regions inside the active region on the top surface of the semiconductor chip of the power MOSFET corresponding to FIG. 30 (two-dimensional single connection end concentration distribution corresponding to FIG. 26). . 32 is a locally enlarged top view of the chip corresponding to the gate electrode lead-out region cutout region R1 in FIGS. 30 and 31. FIG. Based on this, a modification of the whole chip structure of the power MOSFET which is an example of the semiconductor device according to the embodiment of the present application will be described.

図29に示すように、DC−DCコンバータにおいては、ロウサイドSWパワーMOSFET(Qhl)は、回路的には、主アクティブ領域12mに対応する部分Qhlmと副アクティブ領域12sに対応する部分Qhlsに分割されている。そして、副アクティブ領域12sに対応する部分Qhlsのゲート電極(ゲート端子)には、付加的な抵抗PRが挿入されている(なお、その他の回路構成は、図1のものと全く同一である)。すなわち、ゲートパッド25と主アクティブ領域12mの各ゲート電極(主アクティブ領域に対応する部分Qhlmのゲート電極)間の第1の電流通路P1と比較して、ゲートパッド25と副アクティブ領域12sの各ゲート電極(副アクティブ領域に対応する部分Qhlsのゲート電極)間の第2の電流通路P2には、付加的な抵抗成分PRが挿入されているので、第2の電流通路P2の抵抗値(たとえば、5から20Ω程度)は、第1の電流通路P1の抵抗値(たとえば、1から2Ω程度)と比較して大きい。言い換えると、主アクティブ領域に対応する部分Qhlmのゲート抵抗と比較して、副アクティブ領域に対応する部分Qhlsのゲート抵抗は、高くされている。   As shown in FIG. 29, in the DC-DC converter, the low-side SW power MOSFET (Qhl) is divided into a part Qhlm corresponding to the main active region 12m and a part Qhls corresponding to the sub active region 12s in terms of circuit. ing. An additional resistor PR is inserted into the gate electrode (gate terminal) of the portion Qhls corresponding to the sub-active region 12s (other circuit configuration is exactly the same as that of FIG. 1). . That is, each of the gate pad 25 and the sub active region 12s is compared with the first current path P1 between the gate pad 25 and each gate electrode of the main active region 12m (the gate electrode of the portion Qhlm corresponding to the main active region). Since an additional resistance component PR is inserted in the second current path P2 between the gate electrodes (the gate electrode of the portion Qhls corresponding to the sub-active region), the resistance value of the second current path P2 (for example, (About 5 to 20Ω) is larger than the resistance value of the first current path P1 (for example, about 1 to 2Ω). In other words, the gate resistance of the portion Qhls corresponding to the sub-active region is higher than the gate resistance of the portion Qhlm corresponding to the main active region.

この付加的な抵抗PRの挿入によって、ロウサイドSWパワーMOSFET(Qhl)の内、副アクティブ領域12sに対応する部分Qhlsのゲートは、もともとの低閾値電圧化とあいまって不安定化する。すなわち、ハイサイドSWパワーMOSFET(Qhh)がオンしたときに、ロウサイドSWパワーMOSFET(Qhl)の内、副アクティブ領域12sに対応する部分Qhlsがセルフターンオンするため、ロウサイドSWパワーMOSFET(Qhl)が部分的にオン状態となるため、ロウサイドSWパワーMOSFET(Qhl)が全体として、オンしたときのドレイン電圧の跳ね上がりを抑制することができる。   By the insertion of this additional resistor PR, the gate of the portion Qhls corresponding to the sub-active region 12s in the low-side SW power MOSFET (Qhl) becomes unstable along with the original low threshold voltage. That is, when the high-side SW power MOSFET (Qhh) is turned on, the portion Qhls corresponding to the sub-active region 12s in the low-side SW power MOSFET (Qhl) is self-turned on, so that the low-side SW power MOSFET (Qhl) is partially Since the low-side SW power MOSFET (Qhl) is turned on as a whole, the drain voltage can be prevented from jumping up.

ここで、この例の場合は、ロウサイドSWパワーMOSFET(Qhl)の外部端子としてのゲート端子は単一であり、その内部でゲートが分岐する構成をとっている。これは、外部からは通常のパワーMOSFETとして取り扱える点で有利である。しかし、実際に外部ゲート端子を2分割することも可能である。その場合は、外部に付加的な抵抗PRを設置することができる。   Here, in the case of this example, the low-side SW power MOSFET (Qhl) has a single gate terminal as an external terminal, and the gate branches in the inside. This is advantageous in that it can be handled as a normal power MOSFET from the outside. However, the external gate terminal can actually be divided into two. In that case, an additional resistor PR can be installed outside.

次に、このような付加的な抵抗PRが挿入されたMOSFET(Qhl)のデバイス構造を、図30から図32を用いて説明する。図30に図2に対応するチップ上面全体図を示す。図2との違いは、アクティブ領域12の内部分割構造が表示されている点である。すなわち、アクティブ領域12の副アクティブ領域12sのレイアウトが、図26のレイアウトに対応している。   Next, the device structure of the MOSFET (Qhl) in which such an additional resistor PR is inserted will be described with reference to FIGS. FIG. 30 shows an overall top view of the chip corresponding to FIG. The difference from FIG. 2 is that the internal division structure of the active region 12 is displayed. That is, the layout of the sub active area 12s of the active area 12 corresponds to the layout of FIG.

次に、図4に対応するチップ上面の主アクティブ領域12m、副アクティブ領域12s等のチップ上面の主要要素のレイアウトを図31に示す。図31に示すように、この例では、図26と同様に、アクティブ領域12は、主アクティブ領域12mと副アクティブ領域12sに分かれており、副アクティブ領域12sがゲートパッド部25と反対側のアクティブ領域12を占有する2次元単連結領域(矩形領域)をなしており、残余の2次元単連結領域が主アクティブ領域12mとなっている。また、メタルゲート配線部24は、アクティブ領域12の3辺に沿うUの字型をしており、その下層には、同様の形状を呈するゲート引き出しポリシリコン配線部7b(ここに表示したものは、その主幹部である)が配置されており、メタルゲート配線部24とゲート引き出しポリシリコン配線部7bは、主アクティブ領域12mに近接する部分に於いては、相互に、多数のゲートコンタクト部29bを介して相互接続されているが、副アクティブ領域12sに近接した部分に於いては、相互接続されていない。   Next, FIG. 31 shows a layout of main elements on the top surface of the chip such as the main active region 12m and the sub active region 12s on the top surface of the chip corresponding to FIG. As shown in FIG. 31, in this example, as in FIG. 26, the active region 12 is divided into a main active region 12 m and a sub active region 12 s, and the sub active region 12 s is active on the side opposite to the gate pad portion 25. A two-dimensional single connected region (rectangular region) occupying the region 12 is formed, and the remaining two-dimensional single connected region is the main active region 12m. Further, the metal gate wiring portion 24 has a U-shape along the three sides of the active region 12, and a gate lead-out polysilicon wiring portion 7b (shown here) having a similar shape is formed below the metal gate wiring portion 24. The metal gate wiring portion 24 and the gate lead-out polysilicon wiring portion 7b are mutually connected in a number of gate contact portions 29b in a portion close to the main active region 12m. Are connected to each other, but are not connected to each other in the vicinity of the sub-active region 12s.

次に、図30及び図31のゲート電極引き出し部切り出し領域R1の拡大平面図を図32に示す。図32に示すように、付加的抵抗部34が、図29の付加的な抵抗成分PRにほぼ対応する(又は、その一部をなす)。なお、付加的抵抗部34については、たとえば、この例のようにドープトポリシリコン膜の幅を狭くして引き回すことにより、所望の抵抗値を得ても良いが、この部分のみに、逆導電型の不純物をイオン注入して、高抵抗を形成してもよい。その場合には、付加的抵抗部34の占有面積を小さくすることができる。また、ドープトポリシリコン膜ではなく、ノンドープポリシリコン膜でゲートポリシリコン膜7を構成し、後にイオン注入で抵抗値を制御する場合は、付加的抵抗部34のみ、打ち込み濃度を下げればよい。   Next, an enlarged plan view of the gate electrode lead-out region R1 in FIGS. 30 and 31 is shown in FIG. As shown in FIG. 32, the additional resistance portion 34 substantially corresponds to (or forms part of) the additional resistance component PR of FIG. As for the additional resistance portion 34, a desired resistance value may be obtained by, for example, narrowing the width of the doped polysilicon film as in this example. High resistance may be formed by ion implantation of a type impurity. In that case, the area occupied by the additional resistance portion 34 can be reduced. Further, when the gate polysilicon film 7 is formed not by the doped polysilicon film but by the non-doped polysilicon film and the resistance value is controlled later by ion implantation, only the additional resistance portion 34 may be reduced in implantation concentration.

なお、この例では、低閾値電圧領域とゲート分割による一部ゲートの不安定化を併用したが、副アクティブ領域12sの閾値電圧を主アクティブ領域12mと同じにしてもよい。その場合には、プロセスを簡略化できるメリットがある。   In this example, the low threshold voltage region and the destabilization of a part of the gates by gate division are used together, but the threshold voltage of the sub active region 12s may be the same as that of the main active region 12m. In that case, there is an advantage that the process can be simplified.

7.本願に於いて説明する各実施の形態等の他の能動デバイスへの適用等の説明(主に図33から図36)
ここまでに説明した例は、主にパワーMOSFETを例に取り具体的に説明したが、各実施の形態の考え方は、絶縁ゲート型パワー系能動素子全般に適用できることは言うまでもない。この絶縁ゲート型パワー系能動素子には、パワーMOSFET以外に、たとえば、IGBT(Insulated gate Bipolar Transistor)や、絶縁ゲート型パワー系能動素子とCMOS(Complementary Metal Oxide Semiconductor)またはCMIS(Complementary Metal Insulator Semiconductor)集積回路等と単一チップ上に集積した集積型パワー系デバイス等がある。以下これらについて簡単に説明する。
7). Description of application to other active devices such as each embodiment described in the present application (mainly FIGS. 33 to 36)
The examples described so far have been specifically described mainly using power MOSFETs as an example, but it is needless to say that the concept of each embodiment can be applied to all insulated gate power system active elements. In addition to the power MOSFET, the insulated gate power system active element includes, for example, an IGBT (Insulated gate Bipolar Transistor), an insulated gate power system active element, a CMOS (Complementary Metal Oxide Semiconductor), or a CMIS (Complementary Semiconductor Metal). There are an integrated circuit and the like and an integrated power device integrated on a single chip. These will be briefly described below.

図33は本願に於いて説明する各実施の形態等の適用対象である他の能動デバイスの一例であるIGBTの端子配置図である。図34は図6に対応する本願に於いて説明する各実施の形態等の適用対象である他の能動デバイスの一例であるIGBTの単位セル断面図である。図35は図1における回路要素の主要部を単一チップ上に集積した集積化電源素子のチップ上面レイアウト図である。図36は図35のY−Y’断面に対応するチップ部分模式断面図である。これらに基づいて、本願に於いて説明する各実施の形態等の他の能動デバイスへの適用等を説明する。   FIG. 33 is a terminal layout diagram of an IGBT which is an example of another active device to which the embodiments and the like described in the present application are applied. FIG. 34 is a unit cell cross-sectional view of an IGBT which is an example of another active device to which the embodiments and the like described in the present application corresponding to FIG. 6 are applied. FIG. 35 is a chip top surface layout diagram of an integrated power supply element in which main parts of the circuit elements in FIG. 1 are integrated on a single chip. 36 is a chip partial schematic cross-sectional view corresponding to the Y-Y ′ cross section of FIG. 35. Based on these, application to other active devices such as each embodiment described in the present application will be described.

(1)IGBTへの適用について(主に図33及び図34):
図33に示すように、IGBTの各端子は、通常、バイポーラトランジスタとのピン対応の関係で回路的呼称として、ベースに対応する端子をゲート端子G、エミッタに対応する端子をエミッタ端子E、コレクタに対応する端子をコレクタ端子Cとしているが、構造的および動作的観点からは、エミッタ端子Eは、構造的呼称としてはソース端子と呼ぶ方が自然である。
(1) Application to IGBT (mainly FIG. 33 and FIG. 34):
As shown in FIG. 33, each terminal of the IGBT is normally referred to as a circuit name in a pin-corresponding relationship with the bipolar transistor. The terminal corresponding to the base is the gate terminal G, the terminal corresponding to the emitter is the emitter terminal E, and the collector. The terminal corresponding to is the collector terminal C. From the structural and operational viewpoint, it is natural that the emitter terminal E is called the source terminal as a structural name.

すなわち、図34に示すように、IGBTは、図6に説明したパワーMOSFETと構造的に同一部分R2のN型半導体基板領域1sの裏面1b側と裏面メタル電極4(コレクタ電極)の間に、P型コレクタ領域18を挿入した構造となっている。従って、構造的呼称では、ソース系の部分、すなわち、ソース領域11、N型基板内ソース領域11a、ポリSiソース領域11b、メタルソース電極15、ソースパッド部26、ソースコンタクト部29a等は、そのまま用いることができる。なお、ゲート系の部分は、そのまま対応しているので、当然、そのまま用いることができる。   That is, as shown in FIG. 34, the IGBT is between the back surface 1b side of the N-type semiconductor substrate region 1s of the same portion R2 and the back surface metal electrode 4 (collector electrode) structurally identical to the power MOSFET described in FIG. The P-type collector region 18 is inserted. Therefore, in the structural name, the source system portion, that is, the source region 11, the N-type substrate source region 11a, the poly-Si source region 11b, the metal source electrode 15, the source pad portion 26, the source contact portion 29a, etc. Can be used. Since the gate system part corresponds as it is, it can be used as it is.

(2)パワー系能動素子等を集積化したデバイスへの適用について(主に図35及び図36):
図35に集積型パワー系デバイスの一例であるパーソナルコンピュータ用ワンチップ型DC−DCコンバータ(図1に対応)のチップ2の上面レイアウトの一例を示す。図35に示すように、チップ2のデバイス面1aには、ハイサイドSWパワーMOSFET(Qhh)、ロウサイドSWパワーMOSFET(Qhl)、ハイサイドSWパワーMOSFET(Qhh)を駆動するハイサイドドライバ51、ロウサイドSWパワーMOSFET(Qhl)を駆動するロウサイドドライバ52、およびハイサイドドライバ51とロウサイドドライバ52を制御する制御回路部53(たとえば、回路はCMOS回路構成となっている)等がレイアウトされている。ここで、ハイサイドSWパワーMOSFET(Qhh)は、具体的には、図6、図7、図21、図34等で説明したパワー系能動素子(絶縁ゲート型パワー系能動素子)のいずれかである。なお、ロウサイドSWパワーMOSFET(Qhl)も、これらのいずれかで構成することができる。
(2) Application to devices in which power system active elements and the like are integrated (mainly FIGS. 35 and 36):
FIG. 35 shows an example of the top surface layout of the chip 2 of a one-chip DC-DC converter for personal computers (corresponding to FIG. 1), which is an example of an integrated power device. As shown in FIG. 35, the device surface 1a of the chip 2 has a high side SW power MOSFET (Qhh), a low side SW power MOSFET (Qhl), a high side driver 51 for driving the high side SW power MOSFET (Qhh), and a low side. A low side driver 52 for driving the SW power MOSFET (Qhl), a control circuit unit 53 for controlling the high side driver 51 and the low side driver 52 (for example, the circuit has a CMOS circuit configuration), etc. are laid out. . Here, the high-side SW power MOSFET (Qhh) is specifically one of the power system active elements (insulated gate type power system active elements) described in FIG. 6, FIG. 7, FIG. 21, FIG. is there. Note that the low-side SW power MOSFET (Qhl) can also be composed of any of these.

次に、ハイサイドSWパワーMOSFET(Qhh)のアクティブ領域12とCMOS制御回路部53の部分断面(Y−Y’断面)を図36に基づいて説明する。   Next, a partial cross section (Y-Y 'cross section) of the active region 12 of the high side SW power MOSFET (Qhh) and the CMOS control circuit section 53 will be described with reference to FIG.

図36に示すように、ワンチップ型DC−DCコンバータは、たとえば、P型半導体基板1p上に作られる。すなわち、P型半導体基板1p(P型半導体基板領域)の表面1a(第1の主面またはデバイス面)側には、エピタキシャル成長等により、たとえばN−エピタキシャル領域1eが設けられており、このN−エピタキシャル領域1eとP型半導体基板領域1pの境界付近には、N+埋め込み領域19が設けられている。CMOS領域RcとパワーMOS領域Rhの間等のN−エピタキシャル領域1eには、P+素子分離領域22が設けられており、その上部のチップ2の上面1aには、フィールド絶縁膜23(LOCOS型またはSTI型の絶縁膜)が設けられている。   As shown in FIG. 36, the one-chip type DC-DC converter is made on, for example, a P-type semiconductor substrate 1p. That is, for example, an N-epitaxial region 1e is provided on the surface 1a (first main surface or device surface) side of the P-type semiconductor substrate 1p (P-type semiconductor substrate region) by epitaxial growth or the like. An N + buried region 19 is provided near the boundary between the epitaxial region 1e and the P-type semiconductor substrate region 1p. A P + element isolation region 22 is provided in the N− epitaxial region 1e such as between the CMOS region Rc and the power MOS region Rh, and a field insulating film 23 (LOCOS type or STI type insulating film) is provided.

次に、各デバイス領域を説明する。パワーMOS領域RhすなわちパワーMOSFET(Qh)が作られた領域に於いては、ドレイン等をチップ2の上面1aに引き出すためのN+ドレイン引き出し領域21が設けられており、チップ2の上面1aの半導体表面領域には、トレンチ5、ゲート絶縁膜6、P型ボディ領域9、ソース領域11、P型ボディコンタクト領域14等が設けられている。   Next, each device area will be described. In the region where the power MOS region Rh, that is, the power MOSFET (Qh) is formed, an N + drain extraction region 21 for extracting a drain or the like to the upper surface 1a of the chip 2 is provided, and a semiconductor on the upper surface 1a of the chip 2 is provided. In the surface region, a trench 5, a gate insulating film 6, a P-type body region 9, a source region 11, a P-type body contact region 14 and the like are provided.

一方、CMOS領域Rcに於いては、N−エピタキシャル領域1eのチップ2の上面1a側表面下に、Pウエル領域31pおよびNウエル領域31nが設けられており、これらの表面領域にそれぞれN型およびP型のソースドレイン領域32が設けられている。更に、チップ2の上面1aには、これらのN型およびP型のソースドレイン領域32とともに、Nチャネル型のMOSFET(Qn)およびPチャネル型のMOSFET(Qp)を構成するゲート電極33が設けられている。   On the other hand, in the CMOS region Rc, a P-well region 31p and an N-well region 31n are provided below the surface of the N-epitaxial region 1e on the upper surface 1a side of the chip 2. A P-type source / drain region 32 is provided. Further, on the upper surface 1a of the chip 2, together with the N-type and P-type source / drain regions 32, a gate electrode 33 constituting an N-channel MOSFET (Qn) and a P-channel MOSFET (Qp) is provided. ing.

8.本願の全般に関する考察並びに各実施の形態に関する補足的説明(主に図1、図4、図29及び図37)
図37は本願の各実施の形態の半導体装置の有効性を説明するための跳ね上がり電圧及び電力損失の副アクティブ領域の占有率依存性を示す効果説明図である。これに基づいて、本願の全般に関する考察並びに各実施の形態に関する補足的説明を行う。
8). General consideration of the present application and supplementary explanation regarding each embodiment (mainly FIG. 1, FIG. 4, FIG. 29 and FIG. 37)
FIG. 37 is an effect explanatory diagram showing the occupancy ratio dependency of the jumping voltage and the power loss for explaining the effectiveness of the semiconductor device of each embodiment of the present application in the sub-active region. Based on this, a general consideration of the present application and a supplementary explanation regarding each embodiment will be given.

ここまでに説明した各実施の形態の基本的考え方は、図37に示すような考察を背景としている。すなわち、一般に、DC−DCコンバータ等におけるパワーMOSFETのようなパワー系能動素子(ロウサイドSWパワーMOSFET)の電力損失と跳ね上がり電圧の関係は、トレードオフの関係にある。しかし、図37に示すように、たとえば、パワーMOSFETの一部(全体に比較して、比較的狭い領域)に、閾値電圧の低い部分を設けると、あまり電力損失が増えないにもかかわらず、跳ね上がり電圧に関して比較的大きな改善が得られる部分があることがわかる。すなわち、何らかの方法で、パワーMOSFETの一部を(一部のセルの全体、または、少なくとも一部のセルの一部分)を他の部分に比較して、オンしやすい状態にすることで、少しの電力損失と交換に、急峻な立ち上がりに起因する跳ね上がり電圧を低減するという考え方である。   The basic concept of each embodiment described so far is based on the consideration as shown in FIG. That is, generally, the relationship between the power loss and the jumping voltage of a power system active element (low-side SW power MOSFET) such as a power MOSFET in a DC-DC converter or the like is a trade-off relationship. However, as shown in FIG. 37, for example, if a portion having a low threshold voltage is provided in a part of the power MOSFET (relatively narrow region compared to the whole), the power loss does not increase so much. It can be seen that there is a portion where a relatively large improvement can be obtained with respect to the jumping voltage. In other words, in some way, a part of the power MOSFET (a part of the whole cell, or at least a part of the part of the cell) is compared with the other part to make it easy to turn on. The idea is to reduce the jumping voltage caused by a steep rise in exchange for power loss.

これを実現する方として、一つは、セクション2から5に説明したように、ロウサイドSWパワーMOSFET(Qhl)の一部に閾値電圧が低い部分を作ることである。このようにすると、ロウサイドSWパワーMOSFET(Qhl)がオンする際に、まず、閾値電圧が低い部分が先にオンして、その後に、主要部がオンするので、立ち上がりが緩やかになり、跳ね上がり電圧を低減される。   One way to achieve this is to create a low threshold voltage in part of the low-side SW power MOSFET (Qhl) as described in sections 2-5. In this way, when the low-side SW power MOSFET (Qhl) is turned on, first, the portion with the lower threshold voltage is turned on first, and then the main portion is turned on. Is reduced.

ここで、ロウサイドSWパワーMOSFET(Qhl)の主アクティブ領域に対応する部分Qhlmの閾値電圧(第1の閾値電圧)を基準とする副アクティブ領域に対応する部分Qhlsの閾値電圧(第2の閾値電圧)の好適な範囲は、一般に基準値の45%以上、且つ、85%以下である。また、更に損失を低減する必要がるときは、閾値電圧の好適な範囲は、基準値の55%以上、且つ、75%以下である。   Here, the threshold voltage (second threshold voltage) of the portion Qhls corresponding to the sub-active region based on the threshold voltage (first threshold voltage) of the portion Qhlm corresponding to the main active region of the low-side SW power MOSFET (Qhl). ) Is generally 45% or more and 85% or less of the reference value. Further, when it is necessary to further reduce the loss, the preferable range of the threshold voltage is 55% or more and 75% or less of the reference value.

また、アクティブ領域12全体の面積を基準とする副アクティブ領域12sの面積の割合の好適な範囲(面積割合)は、1%以上、且つ、20%以下である。これは、面積割合が20%を超えると、急速に電力損失が増加するからである。   Further, a suitable range (area ratio) of the area ratio of the sub-active area 12s based on the area of the entire active area 12 is 1% or more and 20% or less. This is because power loss increases rapidly when the area ratio exceeds 20%.

また、更に確実に跳ね上がり電圧を抑制する必要があるときは、この割合の好適な範囲は、5%以上、且つ、20%以下である。たとえば、この面積割合が、5%から10%程度の場合の電力損失率は1から3%程度と推定される。   Further, when it is necessary to more reliably suppress the jumping voltage, the preferable range of this ratio is 5% or more and 20% or less. For example, when the area ratio is about 5% to 10%, the power loss rate is estimated to be about 1 to 3%.

一方、もう一つの考え方は、ロウサイドSWパワーMOSFET(Qhl)の一部のゲートを他のゲートから分離して、そこに付加的な抵抗を付加して、容量結合に対して不安定化することにより、あえてセルフターンオンを誘起させることである。セルフターンオンは、ロウサイドSWパワーMOSFET(Qhl)全体で起こるときは、非常に有害な現象であるが、限定された比較的小さな部分で発生しても、それ自体は問題とならない。   On the other hand, another idea is that some gates of the low-side SW power MOSFET (Qhl) are separated from other gates, and an additional resistor is added thereto to destabilize the capacitive coupling. This is to induce self-turn-on. Self-turn-on is a very harmful phenomenon when it occurs in the entire low-side SW power MOSFET (Qhl), but even if it occurs in a limited relatively small part, it does not pose a problem in itself.

なお、跳ね上がり電圧を低減する方法として、ロウサイドSWパワーMOSFET(Qhl)のチップ内にSBDを内蔵させる方法(SBD内蔵方式)が知られているが、SBD内蔵方式は、セルフターンオンおよび跳ね上がり電圧を抑制する効果がある反面、チップ面積を大幅に増加させるデメリットがある。   As a method for reducing the jump voltage, a method of incorporating an SBD in the chip of the low-side SW power MOSFET (Qhl) (SBD built-in method) is known, but the SBD built-in method suppresses self-turn-on and the jump voltage. However, there is a demerit that greatly increases the chip area.

しかしながら、本願発明は、本願発明の各実施の形態とSBD内蔵方式を併用することを排除するものではない。   However, the present invention does not exclude the combined use of each embodiment of the present invention and the SBD built-in method.

9.サマリ
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
9. Summary The invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited thereto, and it goes without saying that various changes can be made without departing from the scope of the invention.

例えば、前記実施の形態では、N+シリコン単結晶基板上のNエピタキシャル層上面に主にNチャネルデバイスを形成するものを具体的に説明したが、本発明はそれに限定されるものではなく、P+シリコン単結晶基板上のNエピタキシャル層上面にPチャネルデバイスを形成するものでもよい。   For example, in the above-described embodiment, the N channel device is mainly formed on the upper surface of the N epitaxial layer on the N + silicon single crystal substrate. However, the present invention is not limited thereto, and P + silicon A P channel device may be formed on the upper surface of the N epitaxial layer on the single crystal substrate.

また、前記実施の形態では、パワーMOSFETを例にとり具体的に説明したが、本発明はそれに限定されるものではなく、バイポーラトランジスタ(IGBTを含む)等にも適用できることは言うまでもない。なお、これらのパワーMOSFET、バイポーラトランジスタ等を内蔵する半導体集積回路装置等にも適用できることは言うまでもない。   In the above-described embodiment, the power MOSFET has been specifically described as an example. However, the present invention is not limited thereto, and it is needless to say that the present invention can be applied to a bipolar transistor (including IGBT). Needless to say, the present invention can also be applied to a semiconductor integrated circuit device incorporating such power MOSFETs, bipolar transistors, and the like.

また、前記実施の形態では、主にシリコン系半導体基板に作られるデバイスについて具体的に説明したが、本発明はそれに限定されるものではなく、GaAs系半導体基板、シリコンカーバイド系半導体基板及びシリコンナイトライド系半導体基板に作られるデバイスについてもほぼそのまま適用できることは言うまでもない。   In the above-described embodiments, devices mainly made on a silicon-based semiconductor substrate have been specifically described. However, the present invention is not limited thereto, and a GaAs-based semiconductor substrate, a silicon carbide-based semiconductor substrate, and a silicon nitride. Needless to say, the present invention can be applied almost as it is to a device made on a ride-type semiconductor substrate.

なお、前記実施の形態では、主にゲート電極等として、ポリシリコン膜を使用したものを具体的に説明したが、本発明はそれに限定されるものではなく、ポリサイド膜やシリサイド膜等でもよいことはいうまでもない。   In the above-described embodiment, the gate electrode or the like that uses a polysilicon film has been specifically described. However, the present invention is not limited thereto, and may be a polycide film, a silicide film, or the like. Needless to say.

また、前記実施の形態では、主にメタル電極として、アルミニウム系メタル膜を主要構成膜として使用したものを具体的に説明したが、本発明はそれに限定されるものではなく、チタンやタングステン等の高融点金属膜や金膜をメタル電極の主要構成膜として使用したものにも適用できることは言うまでもない。   Further, in the above-described embodiment, the metal electrode and the aluminum-based metal film as the main constituent film have been specifically described. However, the present invention is not limited thereto, and titanium, tungsten, and the like are used. Needless to say, the present invention can also be applied to a film using a refractory metal film or a gold film as a main component film of a metal electrode.

更に、前記実施の形態では、ドリフト領域として単一の導電型領域から構成されたものを具体的に説明したが、本発明はそれに限定されるものではなく、反対導電型領域が交互に入れ替わるスーパジャンクション(Super−Junction)型のドリフト領域を有するものにも適用できることは言うまでもない。   Further, in the above-described embodiment, the drift region constituted by a single conductivity type region has been specifically described. However, the present invention is not limited to this, and a superconducting region in which the opposite conductivity type regions are alternately replaced is described. Needless to say, the present invention can also be applied to one having a super-junction type drift region.

1 ウエハ
1a ウエハ又は半導体チップの表面(第1の主面またはデバイス面)
1b ウエハ又は半導体チップの表面(第2の主面)
1e N−エピタキシャル領域
1p P型半導体基板領域
1s N型半導体基板領域
2 半導体チップ
3 N−ドリフト領域
4 裏面メタル電極
5 トレンチ
6 ゲート絶縁膜
6t 相対的に薄いゲート絶縁膜
7 ゲートポリシリコン膜(ゲート電極)
7a トレンチゲート電極
7b ゲート引き出しポリシリコン配線部
8 層間絶縁膜
9 P型ボディ領域
9m 主アクティブ領域のP型ボディ領域
9s 副アクティブ領域のP型ボディ領域
10 トレンチ形成用ハードマスク膜
11 N型ソース領域
12 アクティブ領域
12m 主アクティブ領域
12s 副アクティブ領域
14 P型ボディコンタクト領域
15 メタルソース電極
18 P型コレクタ領域
19 N+埋め込み領域
20 単位セル領域
20m 主アクティブ領域の単位セル領域
20s 副アクティブ領域の単位セル領域
21 N+ドレイン引き出し領域
22 P+素子分離領域
23 フィールド絶縁膜
24 メタルゲート配線部
25 ゲートパッド部
26 ソースパッド部
27 ガードリング
28 エッジターミネーション領域
29a ソースコンタクト部
29b ゲートコンタクト部
30 アルミニウム系メタル電極膜
31p CMOS領域のPウエル領域
31n CMOS領域のNウエル領域
32 CMOS領域のソースドレイン領域
33 CMOS領域のゲート電極等
34 付加的抵抗部
50 DC−DCコンバータ
51 ハイサイドドライバ
52 ロウサイドドライバ
53 制御回路部
54 出力平滑用インダクタ
55 出力平滑用コンデンサ
101 システムインパッケージ
102 ハイサイドMOSFET半導体チップ
103 ロウサイドMOSFET半導体チップ
106 ドライバチップ
107,108,109,110 ボンディングワイヤ(接続配線)
115,116,117 ダイパッド(タブ)
118 ソースパッド
119 ゲートパッド
120 ソースパッド
121 ゲートパッド
122 相互接続用ソースパッド
123,124 ボンディングワイヤ(接続配線)
127 パワーグラウンド端子
128 ロジックグラウンド端子
BP ドライバチップのボンディングパッド
C コレクタ端子
E エミッタ端子
G ゲート端子
P1 第1の電流通路
P2 第2の電流通路
PR 付加的な抵抗成分
Qh パワーMOSFET
Qhh ハイサイドSWパワーMOSFET
Qhl ロウサイドSWパワーMOSFET
Qhlm ロウサイドSWパワーMOSFETの主アクティブ領域に対応する部分(標準的閾値電圧の部分)
Qhls ロウサイドSWパワーMOSFETの副アクティブ領域に対応する部分(相対的に低い閾値電圧の部分)
Qn CMOS領域のNチャネル型MOSFET
Qp CMOS領域のPチャネル型MOSFET
R1 ゲート電極引き出し部切り出し領域
R2 パワーMOSFETと構造的に同一部分
R3 主及び副アクティブ領域境界周辺切り出し領域
Rc CMOS領域
Rh パワーMOS領域
S ソース端子
Vdd 電源出力端子
Vin 直流電源
Vss 接地端子
1 Wafer 1a Wafer or semiconductor chip surface (first main surface or device surface)
1b Wafer or semiconductor chip surface (second main surface)
1e N-epitaxial region 1p P-type semiconductor substrate region 1s N-type semiconductor substrate region 2 semiconductor chip 3 N-drift region 4 back metal electrode 5 trench 6 gate insulating film 6t relatively thin gate insulating film 7 gate polysilicon film (gate) electrode)
7a Trench gate electrode 7b Gate lead polysilicon wiring part 8 Interlayer insulating film 9 P-type body region 9m P-type body region of main active region 9s P-type body region of sub-active region 10 Hard mask film for trench formation 11 N-type source region 12 Active region 12m Main active region 12s Sub active region 14 P type body contact region 15 Metal source electrode 18 P type collector region 19 N + buried region 20 Unit cell region 20m Unit cell region of main active region 20s Unit cell region of sub active region 21 N + drain extraction region 22 P + element isolation region 23 field insulating film 24 metal gate wiring portion 25 gate pad portion 26 source pad portion 27 guard ring 28 edge termination region 29a source Contact portion 29b Gate contact portion 30 Aluminum-based metal electrode film 31p P-well region of CMOS region 31n N-well region of CMOS region 32 Source / drain region of CMOS region 33 Gate electrode of CMOS region 34 Additional resistance portion 50 DC-DC converter DESCRIPTION OF SYMBOLS 51 High side driver 52 Low side driver 53 Control circuit part 54 Output smoothing inductor 55 Output smoothing capacitor 101 System in package 102 High side MOSFET semiconductor chip 103 Low side MOSFET semiconductor chip 106 Driver chip 107, 108, 109, 110 Bonding wire ( Connection wiring)
115, 116, 117 Die pad (tab)
118 Source Pad 119 Gate Pad 120 Source Pad 121 Gate Pad 122 Interconnection Source Pad 123, 124 Bonding Wire (Connection Wiring)
127 Power ground terminal 128 Logic ground terminal BP Driver chip bonding pad C Collector terminal E Emitter terminal G Gate terminal P1 First current path P2 Second current path PR Additional resistance component Qh Power MOSFET
Qhh High-side SW power MOSFET
Qhl Low-side SW power MOSFET
Part corresponding to the main active area of the Qhlm low-side SW power MOSFET (standard threshold voltage part)
Qhls Low-side SW power MOSFET corresponding to the sub-active region (relatively low threshold voltage)
N-channel MOSFET in Qn CMOS region
P-channel MOSFET in Qp CMOS region
R1 Gate electrode lead-out region R2 Structurally the same as the power MOSFET R3 Main and sub active region boundary peripheral region Rc CMOS region Rh Power MOS region S Source terminal Vdd Power supply output terminal Vin DC power supply Vss Ground terminal

Claims (12)

以下を含む半導体装置:
(a)第1の主面及び第2の主面を有する半導体基板;
(b)前記半導体基板内に設けられ、第1導電型を有するドリフト領域;
(c)前記第1の主面上に設けられたアクティブ領域;
(d)平面的に見て、前記アクティブ領域内に設けられた多数の単位セル領域、
ここで、各単位セル領域は、以下を有する:
(d1)前記ドリフト領域の前記第1の主面側の前記半導体基板内に設けられ、前記第1導電型と反対導電型の第2導電型を有するボディ領域;
(d2)前記ボディ領域に接するように前記第1の主面側の前記半導体基板の表面領域に設けられたゲート絶縁膜;
(d3)前記ゲート絶縁膜を介して前記半導体基板の前記表面領域に設けられたゲート電極;
(d4)前記ゲート電極上に設けられた層間絶縁膜;
(d5)前記半導体基板の前記第1の主面側表面に、前記ゲート絶縁膜に接するように設けられ、前記第1導電型を有するソース領域;
(d7)前記層間絶縁膜を覆うように、前記半導体基板の前記第1の主面上に設けられたメタルソース電極、
ここで更に、前記アクティブ領域は、以下を有する:
(c1)第1の閾値電圧および第1の占有面積を有する主アクティブ領域;
(c2)前記第1の閾値電圧よりも低い第2の閾値電圧および前記第1の占有面積よりも狭い第2の占有面積を有する副アクティブ領域。
Semiconductor devices including:
(A) a semiconductor substrate having a first main surface and a second main surface;
(B) a drift region provided in the semiconductor substrate and having a first conductivity type;
(C) an active region provided on the first main surface;
(D) a plurality of unit cell regions provided in the active region in plan view;
Here, each unit cell region has the following:
(D1) a body region provided in the semiconductor substrate on the first main surface side of the drift region and having a second conductivity type opposite to the first conductivity type;
(D2) a gate insulating film provided in a surface region of the semiconductor substrate on the first main surface side so as to be in contact with the body region;
(D3) a gate electrode provided in the surface region of the semiconductor substrate via the gate insulating film;
(D4) an interlayer insulating film provided on the gate electrode;
(D5) A source region having the first conductivity type provided on the first main surface side surface of the semiconductor substrate so as to be in contact with the gate insulating film;
(D7) a metal source electrode provided on the first main surface of the semiconductor substrate so as to cover the interlayer insulating film,
Here further, the active area comprises:
(C1) a main active region having a first threshold voltage and a first occupied area;
(C2) A sub-active region having a second threshold voltage lower than the first threshold voltage and a second occupied area smaller than the first occupied area.
前記1項の半導体装置において、前記第1の占有面積と前記第2の占有面積との和に占める前記第2の占有面積の比率は、1%以上、且つ、20%以下である。     In the semiconductor device according to the item 1, the ratio of the second occupied area to the sum of the first occupied area and the second occupied area is 1% or more and 20% or less. 前記1項の半導体装置において、前記第1の占有面積と前記第2の占有面積との和に占める前記第2の占有面積の比率は、5%以上、且つ、20%以下である。     In the semiconductor device according to the item 1, the ratio of the second occupied area to the sum of the first occupied area and the second occupied area is 5% or more and 20% or less. 前記2項の半導体装置において、前記第1の閾値電圧と前記第2の閾値電圧の差は、前記主アクティブ領域と前記副アクティブ領域における前記ボディ領域の不純物濃度に起因する。     In the semiconductor device according to the item 2, the difference between the first threshold voltage and the second threshold voltage is caused by an impurity concentration of the body region in the main active region and the sub active region. 前記2項の半導体装置において、前記第1の閾値電圧と前記第2の閾値電圧の差は、前記主アクティブ領域と前記副アクティブ領域における前記ゲート絶縁膜の厚さの差に起因する。     In the semiconductor device of the item 2, the difference between the first threshold voltage and the second threshold voltage is caused by a difference in thickness of the gate insulating film in the main active region and the sub active region. 前記3項の半導体装置において、前記副アクティブ領域の平面形状は、単一又は複数のリング形状である。     In the semiconductor device according to the item 3, the planar shape of the sub-active region is a single or a plurality of ring shapes. 前記3項の半導体装置において、前記副アクティブ領域の平面形状は、複数のドット形状である。     In the semiconductor device of the item 3, the planar shape of the sub-active region is a plurality of dot shapes. 前記3項の半導体装置において、前記副アクティブ領域は、2次元単連結領域として単一の領域を形成する。     In the semiconductor device according to the item 3, the sub-active region forms a single region as a two-dimensional single connection region. 前記3項の半導体装置において、前記副アクティブ領域は、複数の線状領域である。     In the semiconductor device of the item 3, the sub-active region is a plurality of linear regions. 前記1項の半導体装置において、前記第2の閾値電圧の値は、前記第1の閾値電圧の値の45%以上、且つ、85%以下である。     In the semiconductor device of the item 1, the value of the second threshold voltage is 45% or more and 85% or less of the value of the first threshold voltage. 前記1項の半導体装置において、前記第2の閾値電圧の値は、前記第1の閾値電圧の値の55%以上、且つ、75%以下である。     In the semiconductor device of the item 1, the value of the second threshold voltage is 55% or more and 75% or less of the value of the first threshold voltage. 前記1項の半導体装置において、更に、以下を含む:
(e)前記半導体基板の前記第1の主面上に設けられたゲートパッド;
(f)前記ゲートパッドと、前記主アクティブ領域内の各ゲート電極間の第1の電流通路;
(g)前記ゲートパッドと、前記副アクティブ領域内の各ゲート電極間の第2の電流通路、
ここで、前記第2の電流通路の抵抗値は、前記第1の電流通路の抵抗値よりも大きい。
The semiconductor device according to the item 1, further includes the following:
(E) a gate pad provided on the first main surface of the semiconductor substrate;
(F) a first current path between the gate pad and each gate electrode in the main active region;
(G) a second current path between the gate pad and each gate electrode in the sub-active region;
Here, the resistance value of the second current path is larger than the resistance value of the first current path.
JP2011088071A 2011-04-12 2011-04-12 Semiconductor device Withdrawn JP2014132600A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011088071A JP2014132600A (en) 2011-04-12 2011-04-12 Semiconductor device
PCT/JP2012/059641 WO2012141121A1 (en) 2011-04-12 2012-04-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011088071A JP2014132600A (en) 2011-04-12 2011-04-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2014132600A true JP2014132600A (en) 2014-07-17

Family

ID=47009294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088071A Withdrawn JP2014132600A (en) 2011-04-12 2011-04-12 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2014132600A (en)
WO (1) WO2012141121A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113865A1 (en) * 2015-01-14 2016-07-21 三菱電機株式会社 Semiconductor device and manufacturing method therefor
WO2017047286A1 (en) * 2015-09-16 2017-03-23 富士電機株式会社 Semiconductor device
WO2018173477A1 (en) * 2017-03-22 2018-09-27 トヨタ自動車株式会社 Semiconductor device
WO2018198606A1 (en) * 2017-04-25 2018-11-01 株式会社Sumco N-type silicon single crystal production method, n-type silicon single crystal ingot, silicon wafer, and epitaxial silicon wafer
WO2018198663A1 (en) * 2017-04-25 2018-11-01 株式会社Sumco n-TYPE SILICON SINGLE CRYSTAL PRODUCTION METHOD, n-TYPE SILICON SINGLE CRYSTAL INGOT, SILICON WAFER, AND EPITAXIAL SILICON WAFER
US10734483B2 (en) 2018-09-14 2020-08-04 Kabushiki Kaisha Toshiba Semiconductor device
US10872974B2 (en) 2018-09-15 2020-12-22 Kabushiki Kaisha Toshiba Semiconductor device
JP2021040062A (en) * 2019-09-04 2021-03-11 株式会社東芝 Semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6440989B2 (en) 2013-08-28 2018-12-19 ローム株式会社 Semiconductor device
JP6541862B2 (en) * 2013-08-28 2019-07-10 ローム株式会社 Semiconductor device
DE102015220265A1 (en) * 2015-10-19 2017-04-20 Robert Bosch Gmbh Semiconductor device having a plurality of cells and control device for a vehicle
CN109659360A (en) * 2018-12-18 2019-04-19 吉林华微电子股份有限公司 IGBT device and production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149773B2 (en) * 1996-03-18 2001-03-26 富士電機株式会社 Insulated gate bipolar transistor with current limiting circuit
JP3090132U (en) * 2002-05-21 2002-11-29 船井電機株式会社 MOS transistor and switching power supply
JP2008263136A (en) * 2007-04-13 2008-10-30 Denso Corp Semiconductor device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016113865A1 (en) * 2015-01-14 2017-07-13 三菱電機株式会社 Semiconductor device and manufacturing method thereof
CN107534053A (en) * 2015-01-14 2018-01-02 三菱电机株式会社 Semiconductor device and its manufacture method
WO2016113865A1 (en) * 2015-01-14 2016-07-21 三菱電機株式会社 Semiconductor device and manufacturing method therefor
US10276666B2 (en) 2015-09-16 2019-04-30 Fuji Electric Co., Ltd. Semiconductor device
WO2017047286A1 (en) * 2015-09-16 2017-03-23 富士電機株式会社 Semiconductor device
JPWO2017047286A1 (en) * 2015-09-16 2017-12-14 富士電機株式会社 Semiconductor device
WO2018173477A1 (en) * 2017-03-22 2018-09-27 トヨタ自動車株式会社 Semiconductor device
JP2018160488A (en) * 2017-03-22 2018-10-11 トヨタ自動車株式会社 Semiconductor device
US11393902B2 (en) 2017-03-22 2022-07-19 Denso Corporation Semiconductor device
KR102275678B1 (en) * 2017-04-25 2021-07-08 가부시키가이샤 사무코 Method for manufacturing n-type silicon single crystal, n-type silicon single crystal ingot, silicon wafer, and epitaxial silicon wafer
JP2018184317A (en) * 2017-04-25 2018-11-22 株式会社Sumco Method for manufacturing n type silicon single crystal, n type silicon single crystal ingot, silicon wafer, and epitaxial silicon wafer
KR20190126163A (en) * 2017-04-25 2019-11-08 가부시키가이샤 사무코 Method for producing n-type silicon single crystal, ingot of n-type silicon single crystal, silicon wafer and epitaxial silicon wafer
JPWO2018198606A1 (en) * 2017-04-25 2020-02-20 株式会社Sumco Method for manufacturing n-type silicon single crystal, ingot of n-type silicon single crystal, silicon wafer, and epitaxial silicon wafer
WO2018198606A1 (en) * 2017-04-25 2018-11-01 株式会社Sumco N-type silicon single crystal production method, n-type silicon single crystal ingot, silicon wafer, and epitaxial silicon wafer
US11377755B2 (en) 2017-04-25 2022-07-05 Sumco Corporation N-type silicon single crystal production method, n-type silicon single crystal ingot, silicon wafer, and epitaxial silicon wafer
WO2018198663A1 (en) * 2017-04-25 2018-11-01 株式会社Sumco n-TYPE SILICON SINGLE CRYSTAL PRODUCTION METHOD, n-TYPE SILICON SINGLE CRYSTAL INGOT, SILICON WAFER, AND EPITAXIAL SILICON WAFER
US11702760B2 (en) 2017-04-25 2023-07-18 Sumco Corporation N-type silicon single crystal production method, n-type silicon single crystal ingot, silicon wafer, and epitaxial silicon wafer
US10734483B2 (en) 2018-09-14 2020-08-04 Kabushiki Kaisha Toshiba Semiconductor device
US10872974B2 (en) 2018-09-15 2020-12-22 Kabushiki Kaisha Toshiba Semiconductor device
JP2021040062A (en) * 2019-09-04 2021-03-11 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
WO2012141121A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
WO2012141121A1 (en) Semiconductor device
JP6008377B2 (en) P-channel power MOSFET
JP2012178389A (en) Semiconductor device
JP5969771B2 (en) IE type trench gate IGBT
JP4124981B2 (en) Power semiconductor device and power supply circuit
JP5973730B2 (en) IE type trench gate IGBT
US9231082B2 (en) Power semiconductor device having gate electrode coupling portions for etchant control
JP2006202931A (en) Semiconductor device and its manufacturing method
JP2011199109A (en) Power mosfet
JP2012054378A (en) Semiconductor device
JP2012209330A (en) Semiconductor device
JP2014086569A (en) Vertical power mosfet
US11335627B2 (en) Connection arrangements for integrated lateral diffusion field effect transistors having a backside contact
JP2006509360A (en) Integrated half-bridge power circuit
US9293453B2 (en) Electronic circuit device
JP2014175640A (en) Vertical composite power MOSFET
JP2002158353A (en) Mos field effect transistor
JP2012033951A (en) Semiconductor device
JP6439033B2 (en) Manufacturing method of IGBT
US10134887B2 (en) Semiconductor device and manufacturing method thereof
JP2015222817A (en) P-channel power mosfet manufacturing method
JP6584592B2 (en) Trench gate IGBT
JP2008199037A (en) Semiconductor device for electric power and power supply circuit
JP6034354B2 (en) Manufacturing method of semiconductor device
CN103579298A (en) Field element of high-voltage semiconductor element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805