JP2014131396A - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
JP2014131396A
JP2014131396A JP2012287519A JP2012287519A JP2014131396A JP 2014131396 A JP2014131396 A JP 2014131396A JP 2012287519 A JP2012287519 A JP 2012287519A JP 2012287519 A JP2012287519 A JP 2012287519A JP 2014131396 A JP2014131396 A JP 2014131396A
Authority
JP
Japan
Prior art keywords
power generation
field coil
generation unit
torque
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012287519A
Other languages
English (en)
Other versions
JP6036292B2 (ja
Inventor
Katsuyuki Mori
勝之 森
Isao Okawa
功 大川
Yuichi Minamiguchi
雄一 南口
Akihiko Yagyu
明彦 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012287519A priority Critical patent/JP6036292B2/ja
Publication of JP2014131396A publication Critical patent/JP2014131396A/ja
Application granted granted Critical
Publication of JP6036292B2 publication Critical patent/JP6036292B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

【課題】電源安定化のための制御と、振動抑制のための制御との両立を容易にする
【解決手段】発電機5の第1系統56は、界磁コイルを有し、車両200に搭載された内燃機関2で発生するトルクにより界磁コイルを駆動することで発電するとともに、発電機5の第2系統59は、界磁コイルを有し、内燃機関2で発生するトルクにより界磁コイルを駆動することで発電する。また、電子制御装置1の第1系統発電機トルク演算部75と発電機5の第1系統制御回路61は、第1系統56で発電した電気エネルギで、車両200に搭載されたバッテリ6を充電するために、界磁コイル91に流れる電流を制御するとともに、電子制御装置1の発電機第2系統指示信号生成部76と発電機5の第2系統制御回路62は、車両200の振動を抑制するために、界磁コイル92に流れる電流を制御する。界磁コイル91のインダクタンスは界磁コイル92のインダクタンスよりも大きい。
【選択図】図1

Description

本発明は、車両に搭載された内燃機関で発生するトルクを利用した発電を制御する車両用制御装置に関する。
従来、車両の乗り心地・操安性向上実現手段として、車両で生じる振動を抑制するとともに車載バッテリの蓄電量を維持するために、運転者が要求するトルクと、振動を抑制するためのトルクとの加算値を低周波成分と高周波成分とに分離して、上記低周波成分のトルクを発生させるように内燃機関を制御するとともに、上記高周波成分のトルクを発生させるように発電機を制御する技術が知られている(例えば、特許文献1を参照)。
特許第4483985号公報
しかし、特許文献1に記載の技術では、車載バッテリの蓄電量を維持する電源安定化と、振動を抑制するための高精度なトルク制御とを1つの発電機で行う必要があり、電源安定化と、振動抑制のためのトルク制御とを両立しようとすると、振動制御に必要なトルク制御の応答性を確保するために、電源安定化のための発電のエネルギ変換効率が低下するという問題があった。
本発明は、こうした問題に鑑みてなされたものであり、電源安定化のための制御と、振動抑制のための制御との両立を容易にする技術を提供することを目的とする。
上記目的を達成するためになされた請求項1に記載の車両用制御装置は、第1発電部が、第1界磁コイルを有し、車両に搭載された内燃機関で発生するトルクにより第1界磁コイルを駆動することで発電するとともに、第2発電部が、第2界磁コイルを有し、内燃機関で発生するトルクにより第2界磁コイルを駆動することで発電する。また第1発電制御手段が、第1発電部で発電した電気エネルギで、車両に搭載されたバッテリを充電するために、第1界磁コイルに流れる電流を制御するとともに、第2発電制御手段が、車両の振動を抑制するために、第2界磁コイルに流れる電流を制御する。そして、第1界磁コイルのインダクタンスは、第2界磁コイルのインダクタンスよりも大きい。
このように構成された車両用制御装置では、車両に搭載されたバッテリ(以下、車載バッテリという)を充電するための発電を行う第1発電部と、車両の振動を抑制するための発電を行う第2発電部とが別々に設けられている。このため、電源安定化のための制御(以下、電源安定化制御という)を第1発電部に対し実行し、車両の振動を抑制するための制御(以下、振動抑制制御という)を第2発電部に対し実行させることができる。これにより、電源安定化制御が振動抑制制御に影響を及ぼしたり、逆に、振動抑制制御が電源安定化制御に影響を及ぼしたりするという事態の発生を抑制することができ、電源安定化制御と振動抑制制御との両立を容易にすることができる。
また、第1発電部で消費するトルクは運転者の操作意図と無関係で、内燃機関で相殺する必要がある。よって、第1界磁コイルの応答周波数は内燃機関の吸気応答周波数より低く設定する必要がある。吸気以外(点火、噴射など)で対応すると燃費およびエミッションが悪化するおそれがあるためである。これに対し、内燃機関の空気慣性および空気粘性に依存する吸気応答より、車両振動は高い周波数成分を含むため、第2界磁コイルは第1界磁コイルより高い周波数応答が必要となる。
このため、請求項1に記載の車両用制御装置では、第1界磁コイルのインダクタンスは第2界磁コイルのインダクタンスよりも大きい。これにより、第1界磁コイルのインダクタンスが小さい場合と比較して、同じ電気エネルギを発生させるために必要な励磁電流が小さくなり、界磁コイルの抵抗等による損失が減少する。すなわち、第1発電部の発電効率を向上させることができる。
また、請求項1に記載の車両用制御装置において、請求項2に記載のように、第2界磁コイルのインダクタンスは、振動の変動に対応して第2発電部が発電する電気エネルギを変動させることができるように予め設定された応答周波数となるように設定されるとよい。
このように構成された車両用制御装置では、第2界磁コイルのインダクタンスが振動の変動に対応した応答周波数となるように設定されているため、第2発電部は、振動の変動に追随した発電を行うことができ、車両の振動を抑制することができる。
また請求項8に記載の車両用制御装置は、第1発電部が、第1界磁コイルを有し、車両に搭載された内燃機関で発生するトルクにより第1界磁コイルを駆動することで発電するとともに、第2発電部が、第2界磁コイルを有し、内燃機関で発生するトルクにより第2界磁コイルを駆動することで発電する。また第1発電制御手段が、第1発電部で発電した電気エネルギで、車両に搭載されたバッテリを充電するために、第1界磁コイルに流れる電流を制御するとともに、第2発電制御手段が、車両の振動を抑制するために、第2界磁コイルに流れる電流を制御する。
これにより、請求項1と同様に、車載バッテリを充電するための発電を行う第1発電部と、車両の振動を抑制するための発電を行う第2発電部とが別々に設けられているため、電源安定化制御が振動抑制制御に影響を及ぼしたり、逆に、振動抑制制御が電源安定化制御に影響を及ぼしたりするという事態の発生を抑制することができ、電源安定化制御と振動抑制制御との両立を容易にすることができる。
また、第1発電部で消費するトルクは運転者の操作意図と無関係で、内燃機関で相殺する必要がある。よって、第1発電部の応答周波数は内燃機関の吸気応答周波数より低く設定する必要がある。吸気以外(点火、噴射など)で対応すると燃費およびエミッションが悪化するおそれがあるためである。これに対し、内燃機関の空気慣性および空気粘性に依存する吸気応答より、車両振動は高い周波数成分を含むため、第2発電部は第1発電部より高い周波数応答が必要となる。また、第2発電部は、振動の変動に追随した発電を行う必要がある。
このため、請求項8に記載の車両用制御装置は、第2発電部の発電量およびそれに伴う負荷トルクの応答周波数が、制御対象となる車両振動の周波数よりも高く、かつ、第1発電部の発電電力およびそれに伴う発電トルクの応答周波数が、第2発電部の発電電力およびそれに伴う発電トルクの応答周波数より低い。
電子制御装置1と車両200の構成を示すブロック図である。 車両200の概略構成を示す図である。 発電機5の概略構成を示す平面図である。 補正車輪軸トルク算出部72の構成を示すブロック図である。 発電機5の概略構成を示す回路図である。 トルク制御処理の前半部分を示すフローチャートである。 トルク制御処理の後半部分を示すフローチャートである。 電子制御装置1により算出される各トルクの変化の具体例を示すグラフである。 別の実施形態の発電機5の概略構成を示す回路図である。 別の実施形態の発電機5の概略構成を示す回路図である。
以下に本発明の実施形態について図面とともに説明する。
本実施形態の電子制御装置1は、図1に示すように、車両200に搭載され、車両200の内燃機関2の制御を行う。
内燃機関2は、電子制御装置1からの要求に応じてトルクを発生させ、発生したトルクを、そのクランク軸21(図2を参照)を介して伝達装置3へ出力する。
伝達装置3は、変速機31(図2を参照)およびディファレンシャルギア32(図2を参照)などで構成される。そして伝達装置3は、内燃機関2から入力したトルクを、変速機31のギア比とディファレンシャルギア32のギア比とを乗ずることで得られる減速比Rg倍に増加させて、車輪軸41(図2を参照)へ出力する。これにより、車輪軸41に連結されている車輪4にトルクが伝達される。
発電機5は、内燃機関2により回転駆動されて発電することによってバッテリ6を充電する。そして、バッテリ6から電気負荷7へ電力が供給される。内燃機関2のクランク軸21と発電機5の回転軸51(図2を参照)にはそれぞれプーリ22,52(図2を参照)が取り付けられており、プーリ22とプーリ52との間にベルト53(図2を参照)が架け渡されている。これにより、内燃機関2で発生したトルクが発電機5に伝達される。
また発電機5は、ロータ54とステータ55とから構成される第1系統56と、ロータ57とステータ58とから構成される第2系統59とを備える(図3を参照)。そして発電機5は、第1系統56を制御する第1系統制御回路61と、第2系統59を制御する第2系統制御回路62とを備える。
第1系統制御回路61は、バッテリ6の電圧が所定電圧になるように、ロータ54に流れる励磁電流Ifadを制御する。第2系統制御回路62は、電子制御装置1から入力する電流制御デューティ指令値Fduty(後述)に基づいてデューティ制御を行うことにより、ロータ57に流れる励磁電流を制御する。
ストロークセンサ8は、運転者によるアクセルペダル9の踏み込み量を検出し、検出結果を電子制御装置1へ出力する。
クランク角センサ10は、内燃機関2のクランク軸21の回転に応じて所定角度毎(例えば30°CA毎)にエッジが生じるクランク角信号を出力する。電子制御装置1は、このクランク角信号に基づいて、内燃機関2の回転速度Neおよびクランク角度を算出する。
電子制御装置1は、要求車輪軸トルク算出部71、補正車輪軸トルク算出部72、変速機ギア選択部73、発電機トルク補正分演算部74、第1系統発電機トルク演算部75、発電機第2系統指示信号生成部76、発電トルク演算部77および内燃機関トルク演算部78を備える。
要求車輪軸トルク算出部71は、ストロークセンサ8により検出されたアクセルペダル踏み込み量に基づいて、車輪軸41に掛かるトルクを算出する。アクセルペダル踏み込み量は運転手によるトルク要求に対応するため、以下、要求車輪軸トルク算出部71が算出するトルクを、運転者要求車輪軸トルクTw_dという。なお、添字のwは、車輪軸41に掛かるときのトルクであることを示す。
補正車輪軸トルク算出部72は、車両モデル部81およびLQR(Linear Quadratic Regulator)コントローラゲイン82を備える(図4を参照)。
車両モデル部81は、車両振動モデルを用いて、車両200の状態を推定する。この車両振動モデルは、車両200の前輪と車体との間および後輪と車体との間のそれぞれが、所定のバネ定数と所定の減衰係数が設定されたサスペンションで連結されているとして車両200がピッチング振動およびシャシと車輪間で振動する場合を想定し、車両200の車両状態を状態方程式で表現したものである。そして車両モデル部81は、要求車輪軸トルク算出部71により算出された運転者要求車輪軸トルクTw_dを用いて、この状態方程式の演算を行い、車両200の車両状態を算出する。
LQRコントローラゲイン82は、車両モデル部81が算出した車両状態に基づいて、車両200の振動を抑制するためのトルクを算出して出力する。なお、振動を抑制するためのトルクを車両振動モデルを用いて算出する方法は従来知られているため、詳細な説明を省略する。以下、補正車輪軸トルク算出部72が算出するトルクを、補正車輪軸トルクTw_cという。
変速機ギア選択部73は、要求車輪軸トルク算出部71からの運転者要求車輪軸トルクTw_dと、駆動軸(プロペラシャフト)の回転速度とを用いて、変速機31のギアを選択する。
発電機トルク補正分演算部74は、第2系統補正発電トルクTa_2cと、第2系統ベーストルクTa_2bを算出する。なお、添字のaは、発電機5の回転軸51に掛かるときのトルクであることを示す。
第2系統補正発電トルクTa_2cは、下式(1)により算出される。ここで、Rpは、内燃機関2のプーリ22と発電機5のプーリ52とのプーリ比である。
Ta_2c = Tw_c/(Rg×Rp) ・・・(1)
第2系統ベーストルクTa_2bは、Ta_2cの正側補正のためのオフセットである。なお、トルクTw_d,Tw_cは正負に及ぶ値であるのに対し、トルクTa_2bは負の値である。また、トルクTa_2bの値は、その絶対値がTa_2cの振幅より大きくなるように予め設定された一定値である。Ta_2cが例えば−1N・mから+1N・mの間で変動する場合(すなわち、Ta_2cの振幅が1N・mである場合)には、トルクTa_2bは−1N・mより小さい値に設定される。
そして発電機トルク補正分演算部74は、第2系統補正発電トルクTa_2cと第2系統ベーストルクTa_2bとを加算した値(すなわち、Ta_2b+Ta_2c)を発電機第2系統指示信号生成部76へ出力する。また発電機トルク補正分演算部74は、第2系統ベーストルクTa_2bを発電トルク演算部77へ出力する。
第1系統発電機トルク演算部75は、発電機5の第1系統56で発電を行うために必要なトルクTa_1b(以下、第1系統発電負荷トルクTa_1bという)を算出する。第1系統発電負荷トルクTa_1bは、下式(2)に示すように、発電機5の第1系統56の励磁電流Ifadと、内燃機関2の回転速度Neとに基づいて算出される。なお、トルクTa_1bは負の値である。
Ta_1b = f(Ifad,Ne) ・・・(2)
発電機第2系統指示信号生成部76は、発電機5の第2系統59のロータ57に流れる励磁電流を制御するための電流制御デューティ指令値Fdutyを、下式(3)に示すように、トルク(Ta_2b+Ta_2c)と、内燃機関2の回転速度Neとに基づいて算出する。そして発電機第2系統指示信号生成部76は、算出した電流制御デューティ指令値Fdutyを第2系統制御回路62へ出力する。
Fduty = g(Ta_2b+Ta_2c,Ne) ・・・(3)
発電トルク演算部77は、発電機5での発電で消費されるトルクTe_b(以下、発電消費トルクTe_bという)を下式(4)により算出する。なお、添字のeは、内燃機関2のクランク軸21に掛かるときのトルクであることを示す。
Te_b = (Ta_1b + Ta_2b)×Rp ・・・(4)
内燃機関トルク演算部78は、内燃機関2での燃焼で発生させるトルクTe_i(以下、燃焼トルクTe_iという)を下式(5),(6)により算出する。
Te_d = Tw_d/Rg ・・・(5)
Te_i = (Te_d + Te_b) ・・・(6)
そして電子制御装置1は、算出した燃焼トルクTe_iに基づいて、スロットル弁の開度を変えるスロットルモータ(不図示)、各気筒内の燃料に着火するための点火プラブ(不図示)、および各気筒に燃料を噴射するインジェクタ(不図示)といった各種アクチュエータを制御して、内燃機関2を作動させる。
また発電機5は、図5に示すように、ロータ54,57を構成する界磁コイル91,92と、ステータ55,58を構成する三相電機子コイル93,94と、三相全波整流器95とを備える。
三相全波整流器95は、ダイオードD1,D2,D3,D4,D5,D6,D7,D8,D9を備えている。そして、ダイオードD1,D2,D3のカソードがバッテリ6の正極に接続されるとともに、ダイオードD7,D8,D9のアノードがバッテリ6の負極に接続される。また、ダイオードD1,D2,D3のアノードにそれぞれダイオードD4,D5,D6のカソードが接続されるとともに、ダイオードD7,D8,D9のカソードにそれぞれダイオードD4,D5,D6のアノードが接続される。
すなわち、三相全波整流器95は、ダイオードD1,D4,D7が直列に接続された第1ダイオード列と、ダイオードD2,D5,D8が直列に接続された第2ダイオード列と、ダイオードD3,D6,D9が直列に接続された第3ダイオード列を並列接続した回路構成を有している。
そして、三相電機子コイル93の3つの端子はそれぞれ、ダイオードD4,D5,D6のアノードに接続される。また、三相電機子コイル94の3つの端子はそれぞれ、ダイオードD1,D2,D3のアノードに接続される。
すなわち、第1系統56と第2系統59は、直列に接続されている。このため、第1系統56で発生した電気エネルギと、第2系統59で発生した電気エネルギとが加算されて、バッテリ6に供給される。
また、界磁コイル91のインダクタンスは、界磁コイル92のインダクタンスよりも大きい。
なお、コイルの時定数T[s]と応答周波数f[Hz]は、コイルのインダクタンスをL[H]とし、コイルの直流抵抗と回路抵抗との加算値をR[Ω]として、下式(7),(8)で表される。すなわち、インダクタンスが大きくなるほど、応答周波数が低下する。
T = L/R ・・・(7)
f = 1/2πT = R/2πL ・・・(8)
また、界磁コイルのインダクタンスが小さい場合には、界磁コイルのインダクタンスが大きい場合と比較して、同じ電気エネルギを三相電機子コイルで発生させるために必要な励磁電流が大きくなり、上記の抵抗Rによる損失が増加する。すなわち、インダクタンスが小さくなるほど、発電効率が低下する。
したがって、第1系統56は、発電効率が高く応答性が低い。一方、第2系統59は、発電効率が低く応答性が高い。
そして、界磁コイル92のインダクタンスは、界磁コイル92の応答周波数が車両200の振動の周波数に対応するように設定される。
次に、このように構成された電子制御装置1が実行するトルク制御処理の手順を図6および図7を用いて説明する。このトルク制御処理は、電子制御装置1の動作中において繰り返し実行される処理である。
このトルク制御処理が実行されると、電子制御装置1は、まずS10にて、運転者要求車輪軸トルクTw_dを算出する。そしてS20にて、車両振動モデルを用いて、車両200の状態を推定し、さらにS30にて、S20で算出した車両状態に基づいて、補正車輪軸トルクTw_cを算出する。またS40にて、運転者要求車輪軸トルクTw_dと駆動軸の回転速度とを用いて変速機31のギアを選択する。
その後S50にて、発電機5の第1系統56と第2系統59が正常であるか否かを判断する。ここで、第1系統56と第2系統59が正常である場合には(S50:YES)、S60にて、第2系統ベーストルクTa_2bを算出し、さらにS70にて、第2系統補正発電トルクTa_2cを算出する。そしてS80にて、電流制御デューティ指令値Fdutyを算出し、この電流制御デューティ指令値Fdutyを第2系統制御回路62へ出力する。これにより、第2系統制御回路62は、電流制御デューティ指令値Fdutyに基づいて、発電機5の第2系統59を制御する。
またS90にて、第1系統発電負荷トルクTa_1bを算出し、S100にて、発電消費トルクTe_bを算出し、S110にて、燃焼トルクTe_iを算出する。そしてS120にて、S110で算出した燃焼トルクTe_iを発生させるように内燃機関2を制御して、トルク制御処理を一旦終了する。
またS50にて、第1系統56と第2系統59の少なくとも一方が異常である場合には(S50:NO)、S130にて、第1系統56が正常であるか否かを判断する。ここで、第1系統56が正常である場合には(S130:YES)、第2系統59が異常であると判断し、S140にて、第2系統59が故障である旨を示す故障情報を電子制御装置1の外部へ出力する。
そしてS150にて、第2系統ベーストルクTa_2bの値を0に設定するとともに、S160にて、第2系統補正発電トルクTa_2cの値を0に設定する。これにより、第2系統59による発電が実質的に停止する。
次にS170にて、第1系統発電負荷トルクTa_1bを算出し、S100に移行する。
またS130にて、第1系統56が正常でない場合には(S130:NO)、S180にて、第2系統59が正常であるか否かを判断する。ここで、第2系統59が正常である場合には(S180:YES)、第1系統56が異常であると判断し、S190にて、第1系統56が故障である旨を示す故障情報を電子制御装置1の外部へ出力する。
そしてS200にて、第2系統ベーストルクTa_2bの値を、予め設定された最大値Ta_2b_maxに設定し、さらにS210にて、第2系統補正発電トルクTa_2cを算出する。そしてS220にて、電流制御デューティ指令値Fdutyを算出し、この電流制御デューティ指令値Fdutyを第2系統制御回路62へ出力する。これにより、第2系統制御回路62は、電流制御デューティ指令値Fdutyに基づいて、発電機5の第2系統59を制御する。
次にS230にて、第1系統発電負荷トルクTa_1bの値を0に設定し、S100に移行する。
またS180にて、第2系統59が正常でない場合には(S180:NO)、第1系統56と第2系統59の両方が異常であると判断し、S240にて、第1系統56と第2系統59の両方が故障である旨を示す故障情報を電子制御装置1の外部へ出力する。
そしてS250にて、第2系統ベーストルクTa_2bの値を0に設定するとともに、S260にて、第2系統補正発電トルクTa_2cの値を0に設定する。
次にS270にて、第1系統発電負荷トルクTa_1bの値を0に設定し、S280にて、運転者に退避走行を促す表示を例えばインストルメントパネル(不図示)に実行させるための退避走行指令を電子制御装置1の外部へ出力し、S100に移行する。
次に、電子制御装置1により算出される各トルクの変化の具体例を図8を用いて説明する。
図8に示すように、運転者要求車輪軸トルクTw_dは、時刻t1に0から増加を開始し時刻t2で増加を終了し、時刻t2から時刻t3まで一定値を維持し、時刻t3に減少を開始し、時刻t4で再び0になるとする。
上記のように運転者要求車輪軸トルクTw_dが変化する場合に、補正車輪軸トルクTw_cは、時刻t2の前後と時刻t4の前後で、振動を制御するために値を変動させる(図中の指示P1,P2を参照)。
また第2系統補正発電トルクTa_2cは、上式(1)に示すように、補正車輪軸トルクTw_cに比例するため、時刻t2の前後と時刻t4の前後で値を変動させる(図中の指示P3,P4を参照)。
また、第2系統ベーストルクTa_2bは負の一定値であるため、第2系統ベーストルクTa_2bと第2系統補正発電トルクTa_2cとの加算値(図中のTa_2b+Ta_2cを参照)も、時刻t2の前後と時刻t4の前後で値を変動させる(図中の指示P3,P4を参照)。
また第1系統発電負荷トルクTa_1bは、発電パワー要求一定の場合、運転者要求車輪軸トルクTw_dの増加に伴う回転速度Neの上昇に起因して、時刻t0に負の一定値から増加を開始し時刻t3で増加を終了し、回転速度Neが一定になった後、一定値を維持する。
また、上述のように第2系統ベーストルクTa_2bは負の一定値であるため、第1系統発電負荷トルクTa_1bと第2系統ベーストルクTa_2bとの加算値(図中のTa_1b+Ta_2bを参照)も、第1系統発電負荷トルクTa_1bに類似した変化を示す。
また発電消費トルクTe_bは、上式(4)に示すように、第1系統発電負荷トルクTa_1bと第2系統ベーストルクTa_2bとの加算値に比例するため、この加算値に類似した変化を示す。
また、トルクTe_dは、上式(5)に示すように、運転者要求車輪軸トルクTw_dに比例するため、運転者要求車輪軸トルクTw_dに類似した変化を示す。
また燃焼トルクTe_iは、トルクTe_dと発電消費トルクTe_bの絶対値との加算値である。このため燃焼トルクTe_iは、時刻t1に一定値から増加を開始し時刻t2で増加を終了し、時刻t2に減少を開始する。そして燃焼トルクTe_iは、時刻t3まで、発電消費トルクTe_bの変化量に応じた減少を続け、その後、時刻t3から時刻t4まで、トルクTe_dの変化量に応じた減少を続ける。
このように、発電機5の第1系統56は、界磁コイル91を有し、車両200に搭載された内燃機関2で発生するトルクにより界磁コイル91を駆動することで発電するとともに、発電機5の第2系統59は、界磁コイル92を有し、内燃機関2で発生するトルクにより界磁コイル92を駆動することで発電する。また、電子制御装置1の第1系統発電機トルク演算部75と発電機5の第1系統制御回路61は、第1系統56で発電した電気エネルギで、車両200に搭載されたバッテリ6を充電するために、界磁コイル91に流れる電流を制御するとともに、電子制御装置1の発電機第2系統指示信号生成部76と発電機5の第2系統制御回路62は、車両200の振動を抑制するために、界磁コイル92に流れる電流を制御する。
このように構成された電子制御装置1および発電機5では、車両200に搭載されたバッテリ6を充電するための発電を行う第1系統56と、車両の振動を抑制するための発電を行う第2系統59とが別々に設けられている。このため、電源安定化のための制御(以下、電源安定化制御という)を第1系統56に対し実行し、車両200の振動を抑制するための制御(以下、振動抑制制御という)を第2系統59に対し実行させることができる。これにより、電源安定化制御が振動抑制制御に影響を及ぼしたり、逆に、振動抑制制御が電源安定化制御に影響を及ぼしたりするという事態の発生を抑制することができ、電源安定化制御と振動抑制制御との両立を容易にすることができる。
また、第1系統56で消費するトルクは運転者の操作意図と無関係で、内燃機関2で相殺する必要がある。よって、第1系統56の応答周波数は内燃機関2の吸気応答周波数より低く設定する必要がある。吸気以外(点火、噴射など)で対応すると燃費およびエミッションが悪化するおそれがあるためである。これに対し、内燃機関2の空気慣性および空気粘性に依存する吸気応答より、車両振動は高い周波数成分を含むため、第2系統59は第1系統56より高い周波数応答が必要となる。また、第2系統59は、振動の変動に追随した発電を行う必要がある。
このため、電子制御装置1および発電機5では、第2系統59の発電量およびそれに伴う負荷トルクの応答周波数が、制御対象となる車両振動の周波数よりも高く、かつ、第1系統56の発電電力およびそれに伴う発電トルクの応答周波数が、第2系統59の発電電力およびそれに伴う発電トルクの応答周波数より低い。
また、電子制御装置1および発電機5では、界磁コイル91のインダクタンスは界磁コイル92のインダクタンスよりも大きい。これにより、界磁コイル91のインダクタンスが小さい場合と比較して、同じ電気エネルギを発生させるために必要な励磁電流が小さくなり、界磁コイル91の抵抗等による損失が減少する。すなわち、第1系統56の発電効率を向上させることができる。
また、界磁コイル91のインダクタンスを界磁コイル92のインダクタンスよりも大きくするのは、第1系統56で設定された応答周波数が、第2系統59で設定された応答周波数よりも低いという関係を満たすようにする必要があるからである。
また、界磁コイル92のインダクタンスは、振動の変動に対応して第2系統59が発電する電気エネルギを変動させることができるように予め設定された応答周波数となるように設定されている。
これにより、第2系統59は、振動の変動に追随した発電を行うことができ、車両200の振動を抑制することができる。
また、第1系統56と第2系統59とが直列に接続されている。これにより、第1系統56と第2系統59とが並列に接続に接続される場合と異なり、第1系統56と同等の起電力を第2系統59で発生させる必要がないため、第2系統59の励磁電流をその分小さくすることができる。このため、第1系統56と第2系統59とが並列に接続に接続される場合よりも、第2系統59の発電効率を向上させることができる。
また、第1系統56が異常であるか否かを判断し(S50,S130,S180)、第1系統56が異常である場合に(S50:NO,S130:NO,S180:YES)、第1系統56が異常でないときよりも第2系統59で発生する電気エネルギが大きくなるように、界磁コイル92に流れる電流を制御する(S200)。
これにより、第1系統56でバッテリ6を充電することができない場合であっても第2系統59でバッテリ6を充電することが可能となり、バッテリ6の蓄電量の低下を抑制することができる。このため、第1系統56が故障したときに、車両200の運転者が車両200を退避走行させるための時間を稼ぐことができる。
また、第2系統59が異常であるか否かを判断し(S50,S130)、第2系統59が異常である場合に(S50:NO,S130:YES)、界磁コイル92に電流が流れないように制御する(S150,S160)。これにより、車両200の振動を抑制するための制御が実行されなくなる。このため、第2系統59の異常に起因して車両200の振動を抑制するための制御に異常が発生してしまうというという事態の発生を抑制することができる。
以上説明した実施形態において、電子制御装置1および発電機5は本発明における車両用制御装置、界磁コイル91は本発明における第1界磁コイル、第1系統56は本発明における第1発電部、界磁コイル92は本発明における第2界磁コイル、第2系統59は本発明における第2発電部、第1系統発電機トルク演算部75と第1系統制御回路61は本発明における第1発電制御手段、発電機第2系統指示信号生成部76と第2系統制御回路62は本発明における第2発電制御手段、S50,S130,S180の処理は本発明における第1故障判断手段、S50,S130の処理は本発明における第2故障判断手段である。
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採ることができる。
例えば上記実施形態では、第1系統と第2系統とが直列に接続されているものを示したが、第1系統と第2系統とが並列に接続されているようにしてもよい。
具体的には、発電機5は、図9に示すように、界磁コイル101,102と、三相電機子コイル103,104と、三相全波整流器105,106と、第1系統制御回路107と、第2系統制御回路108とを備える。
まず、界磁コイル101のインダクタンスは、界磁コイル102のインダクタンスよりも大きい。
三相全波整流器105は、ダイオードD11,D12,D13,D14,D15,D16を備えている。そして、ダイオードD11,D12,D13のカソードがバッテリ6の正極に接続されるとともに、ダイオードD14,D15,D16のアノードがバッテリ6の負極に接続される。また、ダイオードD11,D12,D13のアノードにそれぞれダイオードD14,D15,D16のカソードが接続される。
三相全波整流器106は、ダイオードD21,D22,D23,D24,D25,D26を備えている。そして、ダイオードD21,D22,D23のカソードがバッテリ6の正極に接続されるとともに、ダイオードD24,D25,D26のアノードがバッテリ6の負極に接続される。また、ダイオードD21,D22,D23のアノードにそれぞれダイオードD24,D25,D26のカソードが接続される。
すなわち、三相全波整流器105と三相全波整流器106は互いに並列に接続されている。
そして、三相電機子コイル103の3つの端子はそれぞれ、ダイオードD11,D12,D13のアノードに接続される。また、三相電機子コイル104の3つの端子はそれぞれ、ダイオードD21,D22,D23のアノードに接続される。
さらに、第1系統制御回路107には界磁コイル101が接続され、第2系統制御回路108には界磁コイル102が接続される。
以上より、発電機5の第1系統111と発電機5の第2系統112は、並列に接続されている。これにより、第1系統111が断線故障した場合でも第2系統112で独立してバッテリ6を充電することができる。
また、発電機5は、図10に示すように、界磁コイル121,122と、三相電機子コイル123と、三相全波整流器124と、第1系統制御回路125と、第2系統制御回路126とを備えるようにしてもよい。
まず、界磁コイル121のインダクタンスは、界磁コイル122のインダクタンスよりも大きい。
三相全波整流器124は、ダイオードD31,D32,D33,D34,D35,D36を備えている。そして、ダイオードD31,D32,D33のカソードがバッテリ6の正極に接続されるとともに、ダイオードD34,D35,D36のアノードがバッテリ6の負極に接続される。また、ダイオードD31,D32,D33のアノードにそれぞれダイオードD34,D35,D36のカソードが接続される。
そして、三相電機子コイル123の3つの端子はそれぞれ、ダイオードD31,D32,D33のアノードに接続される。
さらに、第1系統制御回路125には界磁コイル121が接続され、第2系統制御回路126には界磁コイル122が接続される。そして、発電機5は、構造または制御により、界磁コイル121と界磁コイル122との間で相互インダクタンスを発生させないように構成されている。例えば、界磁コイル121と界磁コイル122とが互いに直交するように配置される。
これにより、発電機5の第1系統は、界磁コイル121を駆動することで、三相電機子コイル123に電気エネルギを発生させ、発電機5の第2系統は、界磁コイル122を駆動することで、三相電機子コイル123に電気エネルギを発生させることができる。このため、1つの電機子コイルを2つの系統で共有することができ、電機子コイルの数を減らすことができるため、電機子コイル数の減少分、発電機の製造コストを低減することができる。
また上記実施形態では、第1系統と第2系統の両方を一体の発電機としたものを示したが、第1系統の特徴を有する発電機と第2系統の特徴を有する発電機の2台を設置することでも同様の効果を得ることは可能である。
また、公知の回生制動を実行する場合には、この回生制動を発電機5の第1系統で実行することで、回生制動による制動補正と、発電機5の第2系統による制振補正とを両立させることが可能である。
1…電子制御装置、2…内燃機関、5…発電機、6…バッテリ、56…第1系統、59…第2系統、61,107,125…第1系統制御回路、62,108,126…第2系統制御回路、75…第1系統発電機トルク演算部、76…発電機第2系統指示信号生成部、91,92,101,102,121,122…界磁コイル

Claims (9)

  1. 第1界磁コイル(91,101,121)を有し、車両(200)に搭載された内燃機関(2)で発生するトルクにより前記第1界磁コイルを駆動することで発電する第1発電部(56,111)と、
    第2界磁コイル(92,102,122)を有し、前記内燃機関で発生するトルクにより前記第2界磁コイルを駆動することで発電する第2発電部(59,112)と、
    前記第1発電部で発電した電気エネルギで、前記車両に搭載されたバッテリを充電するために、前記第1界磁コイルに流れる電流を制御する第1発電制御手段(61,75)と、
    前記車両の振動を抑制するために、前記第2界磁コイルに流れる電流を制御する第2発電制御手段(62,76)とを備え、
    前記第1界磁コイルのインダクタンスは、前記第2界磁コイルのインダクタンスよりも大きい
    ことを特徴とする車両用制御装置。
  2. 前記第2界磁コイルのインダクタンスは、前記振動の変動に対応して前記第2発電部が発電する電気エネルギを変動させることができるように予め設定された応答周波数となるように設定される
    ことを特徴とする請求項1に記載の車両用制御装置。
  3. 前記第1発電部(56)と前記第2発電部(59)とが直列に接続される
    ことを特徴とする請求項1または請求項2に記載の車両用制御装置。
  4. 前記第1発電部(111)と前記第2発電部(112)とが並列に接続される
    ことを特徴とする請求項1または請求項2に記載の車両用制御装置。
  5. 電機子コイル(123)を備え、
    前記第1発電部は、前記第1界磁コイル(121)を駆動することで、前記電機子コイルに電気エネルギを発生させ、
    前記第2発電部は、前記第2界磁コイル(122)を駆動することで、前記電機子コイルに電気エネルギを発生させる
    ことを特徴とする請求項1または請求項2に記載の車両用制御装置。
  6. 前記第1発電部が故障したか否かを判断する第1故障判断手段(S50,S130,S180)を備え、
    前記第2発電制御手段は、
    前記第1発電部が故障したと前記第1故障判断手段が判断した場合に、前記第1発電部が故障していないときよりも前記第2発電部で発生する電気エネルギが大きくなるように、前記第2界磁コイルに流れる電流を制御する
    ことを特徴とする請求項1〜請求項5の何れか1項に記載の車両用制御装置。
  7. 前記第2発電部が故障したか否かを判断する第2故障判断手段(S50,S130)を備え、
    前記第2発電制御手段は、
    前記第2発電部が故障したと前記第2故障判断手段が判断した場合に、前記第2界磁コイルに電流が流れないように制御する
    ことを特徴とする請求項1〜請求項6の何れか1項に記載の車両用制御装置。
  8. 第1界磁コイル(91,101,121)を有し、車両(200)に搭載された内燃機関(2)で発生するトルクにより前記第1界磁コイルを駆動することで発電する第1発電部(56,111)と、
    第2界磁コイル(92,102,122)を有し、前記内燃機関で発生するトルクにより前記第2界磁コイルを駆動することで発電する第2発電部(59,112)と、
    前記第1発電部で発電した電気エネルギで、前記車両に搭載されたバッテリを充電するために、前記第1界磁コイルに流れる電流を制御する第1発電制御手段(61,75)と、
    前記車両の振動を抑制するために、前記第2界磁コイルに流れる電流を制御する第2発電制御手段(62,76)とを備え、
    前記第2発電部の発電量およびそれに伴う負荷トルクの応答周波数が、制御対象となる車両振動の周波数よりも高く、かつ、前記第1発電部の発電電力およびそれに伴う発電トルクの応答周波数が、前記第2発電部の発電電力およびそれに伴う発電トルクの応答周波数より低い
    ことを特徴とする車両用制御装置。
  9. 前記第1発電部で設定された応答周波数と、前記第2発電部で設定された応答周波数との関係は、前記第1界磁コイルのインダクタンスを前記第2界磁コイルのインダクタンスよりも大きくすることによって定められる
    ことを特徴とする請求項8に記載の車両用制御装置。
JP2012287519A 2012-12-28 2012-12-28 車両用制御装置 Expired - Fee Related JP6036292B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287519A JP6036292B2 (ja) 2012-12-28 2012-12-28 車両用制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287519A JP6036292B2 (ja) 2012-12-28 2012-12-28 車両用制御装置

Publications (2)

Publication Number Publication Date
JP2014131396A true JP2014131396A (ja) 2014-07-10
JP6036292B2 JP6036292B2 (ja) 2016-11-30

Family

ID=51409298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287519A Expired - Fee Related JP6036292B2 (ja) 2012-12-28 2012-12-28 車両用制御装置

Country Status (1)

Country Link
JP (1) JP6036292B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129022A (ja) * 2015-12-28 2016-07-14 任天堂株式会社 周辺装置、情報処理システム、および、周辺装置の接続方法
WO2018038062A1 (ja) * 2016-08-23 2018-03-01 株式会社デンソー 停止制御システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450800A (en) * 1987-08-21 1989-02-27 Tamagawa Seiki Co Ltd Output voltage controller for generator
JPH02142399A (ja) * 1988-11-21 1990-05-31 Hitachi Ltd 車両用電源装置
JP2000295827A (ja) * 1999-04-01 2000-10-20 Mitsubishi Electric Corp 車両の電力供給システム
JP2004129431A (ja) * 2002-10-04 2004-04-22 Denso Corp 車載内燃機関による駆動システム
JP2007082283A (ja) * 2005-09-12 2007-03-29 Denso Corp 車両用交流発電機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450800A (en) * 1987-08-21 1989-02-27 Tamagawa Seiki Co Ltd Output voltage controller for generator
JPH02142399A (ja) * 1988-11-21 1990-05-31 Hitachi Ltd 車両用電源装置
JP2000295827A (ja) * 1999-04-01 2000-10-20 Mitsubishi Electric Corp 車両の電力供給システム
JP2004129431A (ja) * 2002-10-04 2004-04-22 Denso Corp 車載内燃機関による駆動システム
JP2007082283A (ja) * 2005-09-12 2007-03-29 Denso Corp 車両用交流発電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129022A (ja) * 2015-12-28 2016-07-14 任天堂株式会社 周辺装置、情報処理システム、および、周辺装置の接続方法
WO2018038062A1 (ja) * 2016-08-23 2018-03-01 株式会社デンソー 停止制御システム

Also Published As

Publication number Publication date
JP6036292B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
JP5423898B2 (ja) 電動車両およびその制御方法
CN107962980B (zh) 驱动装置和车辆
US9555799B2 (en) Control device for hybrid vehicle, hybrid vehicle provided with same, and control method for hybrid vehicle
JP4267565B2 (ja) 動力出力装置およびこれを搭載する自動車
US10322714B2 (en) Hybrid vehicle and control method for same
US10214205B2 (en) Hybrid vehicle
WO2012105042A1 (ja) ハイブリッド車両
JP2014066136A (ja) エンジンの制御装置
US9932032B2 (en) Hybrid vehicle
KR20150120475A (ko) 내연기관 제어 장치 및 내연기관 제어 방법
JP6036292B2 (ja) 車両用制御装置
JP6731010B2 (ja) 電動車両
JP2009179311A (ja) 電力供給装置
JP2009154715A (ja) 発電制御装置
JP2012232646A (ja) ハイブリッド自動車
JP2013103645A (ja) ハイブリッド車両の制御装置
KR101448768B1 (ko) 하이브리드 전기자동차의 진동 제어장치 및 방법
US8922036B2 (en) Vehicular power generation system and power generation control method for the same
JP5259936B2 (ja) 電動車両のモータ診断装置
JP2018090207A (ja) ハイブリッド自動車
KR20180068050A (ko) 하이브리드 차량의 토크 제어 방법 및 시스템
US10875520B2 (en) Hybrid vehicle
WO2024053413A1 (ja) モータ制御装置、及びモータ制御プログラム
US10882507B2 (en) Vehicle having drive motor and method of controlling the same
KR101405745B1 (ko) 차량의 엔진 토크 제어방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R151 Written notification of patent or utility model registration

Ref document number: 6036292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees