JP2014130745A - 荷電粒子線装置 - Google Patents

荷電粒子線装置 Download PDF

Info

Publication number
JP2014130745A
JP2014130745A JP2012288025A JP2012288025A JP2014130745A JP 2014130745 A JP2014130745 A JP 2014130745A JP 2012288025 A JP2012288025 A JP 2012288025A JP 2012288025 A JP2012288025 A JP 2012288025A JP 2014130745 A JP2014130745 A JP 2014130745A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
sample
defect
acceleration voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012288025A
Other languages
English (en)
Inventor
Hiromitsu Arai
弘光 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012288025A priority Critical patent/JP2014130745A/ja
Publication of JP2014130745A publication Critical patent/JP2014130745A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 非破壊での欠陥抽出や分析は、加速電圧の切換え等に時間が掛り、高い加速電圧の電子線照射により欠陥や汚染が発生してしまう問題がある。
【解決手段】 欠陥抽出装置のADC(Automatic Defect Classification)機能内の輝度特徴分類にてBSE(Back Scattered Electron)像の輝度関連付け条件出しを行ない、この輝度関連付け条件の情報記憶し(316)、この情報をレシピファイルとして運用する事により、加速電圧≧3,000Vを使用することなく、欠陥やウェーハの簡易元素分析、及び処理時間の高速化を図ることができる。また、欠陥やウェーハへ繰り返し電子ビームを照射することがなくなるので、汚染を軽減することができる。
【選択図】 図3A

Description

本発明は荷電粒子線装置に係り、特に、その自動欠陥分類や簡易元素分析の技術に関する。
半導体デバイスの微細化及び複雑化に伴い、その製造工程における欠陥の発生原因が多様かつ複合的となり、故障解析技術の一環として欠陥抽出の重要性が増している。また、欠陥数の増加により検査の高速化のみならず、抽出した欠陥の元素分析の需要も増加している。
欠陥の元素分析は、まず光学式あるいは電子線式の外観検査装置を用いて半導体ウェーハ上の欠陥位置を検出することにより開始される。外観検査装置により検出される欠陥は、通常ノイズを多く含み、かつ重要ではない欠陥も含むので、欠陥抽出装置を用いて低加速電圧にて外観検査装置により取得された欠陥位置の高分解能画像を撮像し、得られた画像を用いて欠陥分類を行う。分類された欠陥は、高加速電圧に切り替えられた電子線照射により元素分析が行われる。近年では、欠陥抽出装置にて撮像した欠陥画像の教示データを用いて自動的に分類する機能を備えるようになっており、これを自動欠陥分類(ADC : Automatic Defect Classification)と称している。このADCに関する先行技術文献としては、例えば、特許文献1がある。
また、欠陥の元素分析には、通常、走査電子顕微鏡(SEM:Scanning Electron Microscopy)や透過電子顕微鏡(TEM:Transmission Electron Microscopy)による高分解能観察の他、エネルギー分散X線分光法(EDS:Energy Dispersive X-ray Spectrometry)や電子エネルギー損失分光法(EELS:Electron Energy-Loss Spectroscopy)による元素分析等が用いられる。
特開2005−114384号公報
通常、欠陥抽出を行うSEMは、半導体生産ラインに組みこまれ使用される仕様となっており、シリコンウェーハを非破壊により欠陥をそのままEDSにて元素分析が可能である。この非破壊により、非致命欠陥のチップが製品として使用できる利点があると共に、シリコンウェーハを割断する場合に比べ短時間での分析が可能となっている。
しかしながら、非破壊での欠陥抽出や元素分析は、事前に像質が良好な加速電圧≦1,300Vなどの低加速電圧での欠陥抽出を行い、その後元素分析に必要なエネルギーを得るため加速電圧≧3,000Vなどの高加速電圧へ切替えての繰り返しの作業が必要となる。すなわち、従来の方法においては、観察時に使用される加速電圧≦1,300Vなどの低加速電圧と、欠陥の元素分析時に使用される加速電圧≧3,000Vなどの高加速電圧と異なる加速電圧なので、加速電圧の切換えや欠陥の再位置合わせに時間が掛る。また、欠陥の再位置合わせに伴った繰り返しの電子線照射や元素分析時に使用される高い加速電圧の電子線照射により、欠陥やウェーハへ試料室内部のハイドロカーボンが電子線で焼き付いた汚染が発生してしまう。
本発明の目的は、上記の課題を解決し、分析時間を短縮し、分析したい欠陥やその周辺の試料表面の汚染や破壊を防止することが可能な荷電粒子線装置を提供することにある。
上記の目的を達成するため、本発明においては、荷電粒子線装置であって、第1の試料に一次荷電粒子線を照射して二次荷電粒子線像を得る検出部と、第1の試料に一次荷電粒子線を照射して得られる二次荷電粒子線像と、第2の試料に一次荷電粒子線を照射して得られた二次荷電粒子線像と、当該二次荷電粒子線像の輝度の原子番号依存性と、第2の試料に含まれる既知の元素情報とに基づき、第1の試料に含まれる元素を推定する推定部とを備える構成の荷電粒子線装置を提供する。
実試料への高加速電圧での荷電粒子線照射による元素分析を省略でき、簡易元素分析が可能となる。この簡易元素分析により、欠陥やその周辺のウェーハに対する汚染や破壊の軽減、また繰り返しの欠陥抽出の割愛により短時間での元素分析が行なえる。
各実施例に係る荷電粒子線装置の全体構成の一例を示す図である。 実施例1に係る、荷電粒子線装置の試料室内を示す図である。 実施例1に係る、輝度関連付け標準サンプルでの関連付け解析フローの一例を示す図である。 実施例1に係る、標準サンプルでの輝度関連付けの一例を示す図である。 実施例2に係る、実欠陥での輝度関連付け解析フローの一例を示す図である。 実施例2に係る、実欠陥での輝度関連付けの一例を示す図である。 実施例に係る、実欠陥での簡易元素分析解析フローの一例を示す図である。 実施例に係る、輝度平均化曲線からの簡易元素分析結果出力の一例を示す図である。 実施例に係る、実欠陥でのADR,ADC未使用時における簡易元素分析簡易フローチャートの一例を示す図である。 実施例に係る、GUI上に表示される簡易元素分析モード画面の一例を示す図である。
以下、本発明を実施するための形態を図面に従い説明する。なお、これからの説明において、一次荷電粒子線として一次電子線、二次荷電粒子線として二次電子、反射電子であるBSE、X線等を例にして説明するが、本発明はこれらに限定されることなく、イオン線等の他の荷電粒子線を用いる装置においても適用可能である。また、本明細書において、荷電粒子線装置の検出部とは、試料に一次荷電粒子線を照射して得られる二次荷電粒子線を用いて、当該試料の二次荷電粒子線像を得る部分を、荷電粒子線装置の推定部とは、当該試料等の元素を推定する部分を意味している。
本発明の好適な態様においては、欠陥抽出を行う荷電粒子線装置での元素分析では、欠陥の元素分析時に毎回、高加速電圧の一次電子線を欠陥へ照射せずに、例えば、ADC機能を用い簡易的な元素分析、元素の推定を行わせる。
すなわち、輝度関連付けモード作業として、ADC機能を用いて最初の1回目は基準画像の登録を実施する。基準画像の登録は、欠陥抽出を行うSEMにて、元素分析の校正に用いられる標準サンプルを用い、加速電圧≧3,000Vの高加速電圧でのADCへ元素分析結果、標準輝度画像等を保存する。
次に、観察時に使用される加速電圧≦1,300Vの低下加電圧でBSE(Back Scattered Electron)像を取得しADCへ校正画像として保存する。その後、欠陥の元素分析時に使用される加速電圧≧3,000Vの高加速電圧を用いてADCへ元素分析結果と実分析画像を保存する。BSE像には、原子番号に依存した固有の輝度が存在する。このBSE像の原子番号依存性に照らし合わせる形で、標準輝度画像,校正画像と実分析画像の輝度を輝度関連付ける。
次回からは、輝度関連付けられた校正画像の輝度情報から元素分類を実施する。これにより、欠陥の元素分析時に使用される加速電圧≧3,000Vを使用しなくても簡易元素分析が可能となる。
図1に各実施例に係る欠陥抽出装置、および欠陥抽出装置が配置される欠陥検出システムの一構成例を示す。
同図において、点線枠で示す欠陥抽出装置105は、走査電子顕微鏡(SEM)カラムである電子光学カラム107、試料室108、光学顕微鏡109、制御部110、自動欠陥検出部(ADR:Automatic Defect Review)111、自動欠陥分類部(ADC:Automatic Defect Classification)112、通信インタフェースとなる通信用コンピュータ106を有し、通信用コンピュータ106経由でネットワークを通じて、歩留まり管理システム(YMS:Yield Management System)101と接続されている。更に、欠陥検査システムでは、このYMS101は、明視野光学式外観検査装置102、暗視野光学式外観検査装置103、電子線式外観検査装置104ともネットワークにより接続されている。同図における実線はSEM等の制御信号、検出信号などの信号線を示し、2重線は、ネットワーク等の信号伝送路を示す。
本構成の欠陥検査システムでは、これらの検査装置102、103、104から、検査終了後にYMS101に検査データが送られ、更に通信用コンピュータ106欠陥抽出装置105に送られる。欠陥抽出装置105では、この検査データを用いて、ADR部111,ADC部112において、ADR,ADCを実施し、結果、通信用コンピュータ106を通じて、YMS101に戻す。
次に、本構成の欠陥抽出装置の詳細について説明する。走査電子顕微鏡カラム107は、試料室108内に格納された被検査対象に対し一次電子線を照射し、得られる二次電子あるいは反射電子を検出して検出信号を出力する機能を有する。試料室108の内部には、図示されない試料ステージが格納されており、制御部110からの制御信号に従って被検査対象上での一次電子線の照射目標位置の目標位置を走査電子顕微鏡カラム107に移動させる。走査電子顕微鏡カラム107により得られた走査電子顕微鏡画像は、抽出欠陥を画像として特定するために使用される。
光学顕微鏡109は、試料室108の上部に配置されており、欠陥の光学顕微鏡画像を撮像可能である。光学顕微鏡109の視野移動は、走査電子顕微鏡カラム107と同様、図示されない試料ステージにより実行され、得られた光学顕微鏡画像は、走査電子顕微鏡では見えない欠陥の位置特定に使用される。
欠陥抽出装置に付随する走査電子顕微鏡の各構成要素は制御部110により制御され、制御部110の後段にはADR部111,ADC部112,通信用コンピュータ106が接続されている。ADR部111は、自動欠陥抽出の制御シーケンスをコントロールし、ADC部112は、ADR部111によるADRによって得られた欠陥画像の自動分類処理を実行する。
制御部110は、走査電子顕微鏡の各構成要素の動作を制御するため、電子光学カラム制御ユニット1101,光学顕微鏡制御ユニット1102,およびステージ制御ユニット1103などの各制御ユニットを備える。通信用コンピュータ106は、欠陥抽出装置の管理コンソールを兼用しており、欠陥抽出の動作条件あるいは検査レシピを設定するためのGUI(Graphical User’s Interface)が表示されるモニタ等の入出力部を備えている。
以上説明した制御部110の各制御ユニットは、制御部110内でソフトウェア実装あるいはハードウェア実装のいずれかの方式で実現される。したがって、制御部110は、各制御ユニットの機能を実現するプログラムが格納されるメモリおよびプログラムを実行するための処理部となるプロセッサを内部に備える。あるいは、必要に応じて、各制御ユニット個々の機能に対応するマイクロコンピュータを複数備える構成とすることができる。
第1の実施例は、上述した構成の欠陥抽出装置、および欠陥抽出システムが、標準サンプルを用いて、ウェーハの欠陥等における元素分析のための輝度関連付けを行う輝度関連付けモードを実行する実施例である。図2、図3A、図3Bを用いて、本実施例の欠陥抽出装置における、輝度関連付け処理、簡易元素分析の処理フローついて説明する。なお、本実施例においては、実サンプルであるウェーハが第1の試料、標準サンプルが第2の試料となる。
図2は、図1に示した本実施例で用いる欠陥抽出装置15の、欠陥画像抽出時の試料室108内の動作を示す模式図である。試料室108内では、制御部110の電子光学カラム制御ユニット1101にて条件設定された電子線201が対物レンズ202で絞られ、ウェーハ等の第1の試料203に照射される。ウェーハ203はステージ204上に載せられ、ステージ制御ユニット1104により欠陥の位置へ移動される。走査電子顕微鏡画像の取得条件によっては、一次電子線201を試料203の直前で減速させて試料203を撮像する場合もあり、その場合には、リターディングユニット205によりリターディング電圧が試料203に印加される。
試料203の欠陥画像抽出時には、ステージ204が欠陥位置へ順次移動し、対物レンズ202で絞られた電子線201を照射して欠陥のSEM画像の取得を行う。欠陥画像は、2次電子像検出器206,左側反射電子検出器207,右側反射電子検出器208が使用され3種類の欠陥画像として取得される。
また、元素分析時においては、制御部110内の電子光学カラム制御ユニット1101にて、元素分析条件へと変更後、ステージ制御ユニット1104により、ステージ204上の固定位置に載せられている第2の試料としての標準サンプル210が、欠陥の位置へ移動された際に得られる特性X−線が、X−線分析検出器209にて取得され、エネルギースペクトルに換算されて元素分析の検出結果となる。
ここで、本実施例における元素分析の輝度関連付けモードは、元素分析の校正に用いられる第2の試料である標準サンプル210と、第1の試料である試料203各々から得た画像の輝度を、ADC部112へ転送し、画像の輝度から反射電子強度の原子番号依存性に照らし合わせ、元素分析の輝度関連付けを行うための動作モードである。
本実施例の構成において、この輝度関連付けモードが完了して得た結果は、元素を推定する推定部であるADC部112内の図示を省略した記憶部に簡易元素分析情報として保存する。保存された簡易元素分析情報は、ADR部111のレシピ条件から必要に応じ呼び出され、簡易元素分析情報として使用される。また、以上の簡易元素分析情報は、ADR部111,ADC部112,通信用コンピュータ106、更にはネットワークを通じて、YMS101にアップロードする。
次に、図3Aを用いて、本実施例の欠陥抽出装置における簡易元素分析輝度関連付けモードに関し、標準サンプルでの関連付け解析フローの一例を説明する。
まず、同図のステップ301でEDS校正用標準サンプルを使用する場合、簡易元素分析輝度関連付けモードAを選択する。ステップ302では、EDS校正用標準サンプルに使用される電子光学系条件と、標準サンプルの個数,元素名及び固定座標また、検出したい元素名を設定する。ステップ303でEDS分析用の加速電圧≧3,000Vの高加速電圧に自動設定され、この値はステップ302で事前設定された加速電圧となる。この高加速電圧は、3,000V以上に限定されるものでない。
ステップ304で、EDS校正用標準サンプルの固定座標へ移動する。この固定座標も、ステップ302で事前設定された座標への移動となる。ステップ305で、標準サンプルを対象として得た、基準値となるEDS分析結果、及びBSE像を取得する。ステップ306で、取得したデータをADC機能内のEDS輝度関連付けモード処理へ転送する。
ステップ307で、事前に指定した標準サンプルへの全移動が完了したかの判断を行う。この際、未完了であればステップ304へ戻り、残りの輝度関連付けデータの取得を繰り返し行う。なお、EDS校正用標準サンプルへの全移動が完了と判断された場合は、次のステップへ処理を移行する。
ステップ308では、取得されたEDS分析結果と輝度結果から、補間処理等の既存の処理により平均化された曲線としての平均化曲線を自動作成する。図3Bに、その一例である平均化曲線317を示した。ここまでで、EDS校正用標準サンプルでの加速電圧≧3,000Vの基準値の取得が完了する。
その後、ステップ309で、加速電圧≦1,300Vの低加速電圧でのEDS校正用標準サンプルのBSE像輝度を得るため、ステップ302で事前設定した条件へ自動変更される。この低加速電圧は、1,300V以下に限定されるものでない。
ステップ310で、EDS校正用標準サンプルの固定座標へ移動する。この固定座標も、ステップ302で事前設定された座標への移動となる。
ステップ311で、加速電圧≦1,300VでのBSE像を取得する。ステップ312で、ADC機能内のEDS輝度関連付けモード処理へ転送する。ステップ313で、事前に指定した標準サンプルの登録が完了したかの判断を行う。この際、未完了であればステップ310へ戻り残りの輝度関連付けデータの取得を繰り返し行う。なお、標準サンプルへの全移動が完了と判断された場合は、次のステップへ処理を移行する。
ステップ314では、取得されたEDS分析結果と輝度結果から、図3Bの318で示す平均化曲線を自動作成する。ここまでで、EDS校正用標準サンプルでの加速電圧≦1,300Vの基準値の取得となる。
図3Bに示した本実施例の欠陥抽出装置、欠陥抽出システムにおける平均化曲線317、318の作成の一例を示す。EDS校正用標準サンプルに、原子番号6:C,原子番号13:Al,原子番号26:Fe,原子番号42:Mo,原子番号64:Gd,原子番号74:Wが準備できたとする。その際、加速電圧≧3,000Vと加速電圧≦1,300Vの各々得られるBSE像の輝度を、各々の原子番号に対しプロットする。BSE像には、原子番号に依存した固有の輝度が存在するので、プロット間の平均化曲線317、318を描くことにより原子番号とBSE像輝度との関連付けが定義できる。
以上説明した実施例1の欠陥抽出装置、欠陥検出システムによれば、第1の試料であるウェーハの高加速電圧での電子線照射による元素分析を省略することが可能となり、簡易元素分析が可能となる。この簡易元素分析により、欠陥やその周辺のウェーハに対する汚染や破壊の軽減、また繰り返しの欠陥抽出の割愛により短時間での元素分析が行なえる。
上述した第2の試料として用いたEDS校正用標準サンプルの表面は、表面起伏による校正値の変化を抑えるため、表面が研磨されているサンプルである。しかし、第1の試料の実欠陥では欠陥の表面起伏は一定ではなく、その形状変化によりBSE像輝度も変化する。
そこで第2の実施例として、標準サンプルに替え実欠陥での輝度関連付け解析フローを行う欠陥抽出装置、欠陥抽出システムの実施例を説明する。なお、先に説明したように、本実施例において用いる欠陥抽出装置、欠陥抽出システムは、第2の試料は実欠陥である点を除き、図1、図2に示した構成をそのまま用いることができる。
図4Aに、実欠陥を用いた実欠陥での関連付け解析フロー図を示す。ステップ319で、第2の試料として実欠陥を使用する場合、簡易元素分析輝度関連付けモードBを選択する。
ステップ320でYMS101から検査データを読み込む。ステップ321では、電子光学系条件と検出したい元素名を設定する。ステップ321では、ウェーハ上の欠陥を検出及び分析するためのADR条件を読み込む。ステップ322で、ADRレシピ条件(加速電圧≦1,300Vを含む)が読み込まれ電子光学系条件が自動設定される。
ステップ323でウェーハアライメントを行い、ウェーハの大まかな位置合わせを行う。ステップ324でフォーカスマップを取り、フォーカスのウェーハ面内領域毎の分布を補正して、オートフォーカスが短時間で合うようにする。ステップ325ではSEMのファインアライメントが実行される。ファインアライメントは、パターン付きウェーハの場合にはホトプロセスのマスクショット単位に特異なパターンを用いて行われ、ノンパターンウェーハの場合には光学顕微鏡、特にレーザ光による暗視野顕微鏡等で欠陥を光らせて欠陥位置を正確に検出することにより行われる。
ステップ326でステップ320にて読み込済みの欠陥位置へ移動する。ステップ327でADRにより欠陥の正確な位置を検出し、欠陥を中心にBSE像を取得する。ステップ328で、加速電圧≦1,300V条件時の輝度関連付けモードへBSE像が転送される。ステップ328にて最終欠陥であるかどうかの判断を実施する。最終欠陥でない場合は、ステップ326へ戻る。なお、最終欠陥の場合は、次のステップ330を実施する。
次に、ステップ330で、加速電圧≧3,000Vでの条件が読み込まれ自動設定される。ステップ331で、ステップ320で読み込まれた欠陥位置へ移動する。ステップ332で、EDSを実施し元素名を抽出する。ステップ333で、ADRで取得したBSE像をADC/EDSキャリブレーションへ転送する。ステップ334で、ステップ302にて読み込んだ欠陥位置が最終かの判断を行う。この際、欠陥位置が最終でなければステップ331へ戻り繰り返しADRを実施し、欠陥位置が最終と判断された場合は、次の処理ステップ334へと進む。
ステップ334にて、実欠陥での加速電圧≦1,300Vと、加速電圧≧3,000Vから得られるBSE像の輝度を、各々の原子番号に対しプロットする。BSE像には、原子番号に依存した固有の輝度が存在するので、プロット間の平均化曲線を描くことにより原子番号とBSE像輝度との実欠陥での関連付けが定義できる。ステップ335で、関連付けられた輝度情報結果を、元素を推定する推定部であるADC部112内の記憶部に保存して作業が完了となる。
図4Bを用いて、実施例2における、実欠陥を用いたEDS分析結果とBSE像輝度との関連付けの一例を説明する。
図4Bにおいて、336,339は、分析先の欠陥ID番号(01、02)である。各々の欠陥番号毎に平均化曲線342の加速電圧≧3,000VでEDS分析した結果、原子番号337,341が得られる。次に、平均化曲線343の加速電圧≦1,300Vでの各々の欠陥ID番号(01,02)へ移動し、BSE像を取得することにより既知の原子番号に対応した輝度338,340のプロットを得ることができる。これらを複数回繰り返しながら、原子番号データを増やし、平均化曲線343の原子番号と、BSE像輝度との平均化曲線342、343を描くことにより、実欠陥での関連付け定義と共に、精度の向上が図られる。
以上説明した実施例2の欠陥抽出装置、欠陥検出システムによれば、実欠陥を用いて第1の試料であるウェーハの高加速電圧での電子線照射による元素分析を省略することが可能となり、簡易元素分析が可能となる。また、実欠陥を用いるため、実欠陥の表面の形状変化の影響を受けることなく、元素分析が行なえる。
続いて、上述の通りに説明した各実施例に係る欠陥抽出装置、欠陥抽出システムにおける簡易元素分析解析処理を説明する。
図5Aに、実施例における実欠陥での簡易元素分析解析フローの一例を示した。同図において、欠陥抽出装置105はステップ344でYMS101から検査データを読み込む。ステップ345では、ウェーハ上の欠陥を検出及び分析するためのADR条件を読み込む。ステップ346で、ADRレシピ条件内に設定されているADC簡易元素分析機能を使用するかどうかの判断を行う。実施しない設定の場合は、ステップ348へ移行し通常のADR部111のADRを実施する。ADC簡易元素分析機能を実施するように設定されている場合は、ステップ347へ移行する。このADC簡易元素部関機能を利用することにより、利用者は負担無く、元素分析結果を得ることが可能となる。
ステップ347では、上述した実施例により事前取得されているADC簡易元素分析の関連付けデータを読み込む。ステップ348でウェーハアライメントを実施する。ステップ349でフォーカスマップを取る。ステップ350ではSEMのファインアライメントが実行される。ステップ351でステップ344にて読み込済みの欠陥位置へ移動する。ステップ352でADRにより欠陥の正確な位置を検出し、欠陥を中心にBSE像を取得する。同時に、加速電圧≦1,300V条件時の輝度関連付けモードへBSE像が転送される。
ステップ353にて最終欠陥であるかどうかの判断を実施する。最終欠陥でない場合は、ステップ351へ戻る。なお、最終欠陥の場合は、次のステップ354を実施する。最後に、通信用コンピュータ106を介してADR/ADC/簡易元素分析結果をYMS101にアップロードし終了する。
図5Bに、実施例における輝度平均化曲線からの簡易元素分析結果の出力例を示す。同図中359は、加速電圧≦1,300V時の輝度平均化曲線となる。356の原子番号6:Cは、実欠陥サンプルから事前に得られていた既知元素である。そこに、同一な輝度を持った欠陥1個355が検出され、簡易元素分析結果は、356の原子番号6:Cとなる。
図5Bにおいて、平均値化曲線359を求めたのは、校正を実施した既知元素の他に、未知元素も同時に検出できるようにするためである。そこで、357で3個の欠陥がほぼ同様な輝度で検出された場合、この輝度では校正は行ってないがBSE像には、原子番号に依存した固有の輝度が存在するので、輝度平均化曲線359から358の原子番号25:Mgと分析できる。
図5Cに、上記の説明の変形実施例として、実欠陥でのADR,ADC未使用時における簡易元素分析簡易フローチャート図を示す。
欠陥抽出装置105は、ステップ360でYMS101から検査データを読み込む。ステップ361でウェーハアライメントを実施する。ステップ362でフォーカスマップを取る。ステップ363ではSEMのファインアライメントを実行する。ステップ364で、ADR,ADC未使用時における簡易元素分析機能を使用するかどうかの判断を行う。実施しない設定の場合は、ステップ371へ移行しでステップ360にて読み込済みの欠陥位置への移動と、ステップ372で、通常の画像取得と保存を実施する。ステップ373にて、最終欠陥かの判断を行い最終欠陥でない場合は、ステップ371へ移行し次の欠陥位置へ移動し繰り返し荷電粒子画像の取得と保存を実施する。最終欠陥の場合は、次のステップ374を実施する。最後に、通信用コンピュータ106を介して簡易元素分析結果をYMS101にアップロードし終了する。
ステップ364で、実施するように設定されている場合は、ステップ365へ移行する。ステップ365では、先の実施例で事前取得され保存されている簡易元素分析の関連付けデータを読み込む。ステップ366でステップ360にて読み込済みの欠陥位置へ移動する。ステップ367で、荷電粒子画像取得と保存を実施する。ステップ368で取得画像の輝度に合わせる輝度カーソルにより簡易元素分析を実施する。ステップ369にて分析結果の保存を行う。ステップ370にて、最終欠陥かの判断を行い最終欠陥でない場合は、ステップ366へ移行し次の欠陥位置へ移動し繰り返し簡易元素分析を実施する。なお、最終欠陥の場合は、次のステップ374を実施する。最後に、通信用コンピュータ106を介して簡易元素分析結果をYMS101にアップロードし終了する。
図5Dに、図5Cの簡易元素分析簡易フローのステップ364にて [簡易元素分析を実施する。] を選択した場合に、通信用コンピュータ106のモニタのGUI上に表示される簡易元素分析モード画面の一例を示す。
エリア375,376,377は、纏めて簡易元素分析モード画面となり、エリア378は、荷電粒子画像を表示するモニタ部分とする。
エリア375では、エリア376で合わせたスクロールバー379の位置に応じた元素分析結果がリアルタイムで自動表示される。エリア376は、ステップ365のデータから表示されるエリア377の輝度情報に、ステップ367で取得した荷電粒子画像の輝度を目視により合わせるスクロールバー380が表示されるエリアとなる。
また、エリア377は、図5Cのステップ365で選択した簡易元素分析の輝度関連付けデータから輝度のグラディエーションが表示されるエリアとなる。簡易分析したい欠陥の位置へ移動し、ステップ367で荷電粒子画像を取得することにより、378へ荷電粒子画像が表示される。
エリア378へ表示された荷電粒子画像の欠陥輝度と377グラディエーションバーに376のスクロールの同じ輝度に合わせることにより、375に簡易分析結果が表示される。ステップ369にて荷電粒子画像及び簡易分析結果を保存する。最終欠陥の場合は、ステップ374を実施する。最後に、通信用コンピュータ106を介して簡易元素分析結果をYMS101にアップロードし終了する。本変形実施例によれば、ADR、ADCを使用する必要がないので、そのような機能が無い場合でも、簡易元素分析が可能となる。
以上、詳述したように、本発明の荷電粒子線装置によれば、高加速電圧での荷電粒子線照射による元素分析を省略でき、簡易元素分析が可能となる。この簡易元素分析により、欠陥やその周辺のウェーハに対する汚染や破壊の軽減、また繰り返しの欠陥抽出の割愛により短時間での元素分析が行なえる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
更に、上述した各構成、機能、処理部等は、それらの一部又は全部を実現するプログラムを作成する例を説明したが、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現しても良いことは言うまでもない。
101 YMS
102 明視野光学式外観検査装置
103 暗視野光学式外観検査装置
104 電子線式外観検査装置
105 欠陥抽出SEM
106 通信用コンピュータ
107 走査電子顕微鏡カラム
108 試料室
109 制御部
110 ADR部
111 ADC部
112 光学顕微鏡(OM)
201 電子線
202 対物レンズ
203 試料(ウェーハ)
204 ステージ
205 リターディングユニット
206 二次電子検出器
207 左側反射電子検出器
208 右側反射電子検出器
209 X−線検出器
1101 電子光学カラム制御ユニット
1102 光学顕微鏡制御ユニット
1103 ステージ制御ユニット

Claims (10)

  1. 荷電粒子線装置であって、
    第1の試料に一次荷電粒子線を照射して二次荷電粒子線像を得る検出部と、
    前記第1の試料に一次荷電粒子線を照射して得られる前記二次荷電粒子線像と、第2の試料に一次荷電粒子線を照射して得られた二次荷電粒子線像と、当該二次荷電粒子線像の輝度の原子番号依存性と、前記第2の試料に含まれる既知の元素情報とに基づき、前記第1の試料に含まれる元素を推定する推定部とを、備える、
    ことを特徴とする荷電粒子線装置。
  2. 請求項1に記載の荷電粒子線装置であって、
    前記第2の試料の前記二次荷電粒子線像と前記原子番号依存性は、
    低加速電圧で前記一次荷電粒子線を照射して得られた二次荷電粒子線像、および高加速電圧で前記一次荷電粒子線を照射して得られた二次荷電粒子線像と原子番号依存性であり、
    前記検出部は、
    前記第1の試料に低加速電圧で前記一次荷電粒子線を照射して前記二次荷電粒子線像を得、
    前記推定部は、前記第2の試料の前記二次荷電粒子線像と前記原子番号依存性と、前記第1の試料の前記二次荷電粒子線像とから前記第1の試料の元素分析を行う、
    ことを特徴とする荷電粒子線装置。
  3. 請求項2に記載の荷電粒子線装置であって、
    前記推定部は、
    前記第1の試料の元素分析を行うため、
    前記二次荷電粒子線の輝度と原子番号を軸としたグラフ上に平均化曲線を作成する、
    ことを特徴とする荷電粒子線装置。
  4. 請求項2に記載の荷電粒子線装置であって、
    前記第2の試料は、当該試料の座標位置と特定元素の対応付けがなされている標準試料である、
    ことを特徴とする荷電粒子線装置。
  5. 請求項4に記載の荷電粒子線装置であって、
    前記推定部は、
    前記標準試料の前記二次荷電粒子線像と、前記原子番号依存性と、前記元素情報を予め記憶している、
    ことを特徴とする荷電粒子線装置。
  6. 請求項2に記載の荷電粒子線装置であって、
    前記第2の試料は、実試料中の欠陥部分である、
    ことを特徴とする荷電粒子線装置。
  7. 請求項6に記載の荷電粒子線装置であって、
    前記推定部は、
    前記欠陥部分の前記二次荷電粒子線像と、前記原子番号依存性と、前記元素情報を記憶する、
    ことを特徴とする荷電粒子線装置。
  8. 請求項2に記載の荷電粒子線装置であって、
    前記低加速電圧とは、加速電圧≦1,300Vであり、前記高加速電圧とは、加速電圧≧3,000Vである、
    ことを特徴とする荷電粒子線装置。
  9. 請求項1に記載の荷電粒子線装置であって、
    前記一次荷電粒子線は、一次電子線であり、前記二次荷電粒子線は、BSE(Back Scattered Electron)である、
    ことを特徴とする荷電粒子線装置。
  10. 請求項1に記載の荷電粒子線装置であって、
    前記推定部は、自動欠陥分類(ADC : Automatic Defect Classification)機能を含む、
    ことを特徴とする荷電粒子線装置。
JP2012288025A 2012-12-28 2012-12-28 荷電粒子線装置 Pending JP2014130745A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288025A JP2014130745A (ja) 2012-12-28 2012-12-28 荷電粒子線装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288025A JP2014130745A (ja) 2012-12-28 2012-12-28 荷電粒子線装置

Publications (1)

Publication Number Publication Date
JP2014130745A true JP2014130745A (ja) 2014-07-10

Family

ID=51408970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288025A Pending JP2014130745A (ja) 2012-12-28 2012-12-28 荷電粒子線装置

Country Status (1)

Country Link
JP (1) JP2014130745A (ja)

Similar Documents

Publication Publication Date Title
JP6873129B2 (ja) 領域適応的欠陥検出を行うシステムおよび方法
US7755776B2 (en) Inspection system and inspection method
KR102514134B1 (ko) 웨이퍼 노이즈 뉴슨스 식별을 위한 sem 및 광학 이미지의 상관
TWI512684B (zh) Defect observation method and defect observation device
US8111902B2 (en) Method and apparatus for inspecting defects of circuit patterns
JP5525421B2 (ja) 画像撮像装置および画像撮像方法
US7903867B2 (en) Method and apparatus for displaying detected defects
JP5202071B2 (ja) 荷電粒子顕微鏡装置及びそれを用いた画像処理方法
JP5069904B2 (ja) 指定位置特定方法及び指定位置測定装置
US8994815B2 (en) Method of extracting contour lines of image data obtained by means of charged particle beam device, and contour line extraction device
US20110261190A1 (en) Defect observation device and defect observation method
WO2012157160A1 (ja) 欠陥レビュー装置
US20150146967A1 (en) Pattern evaluation device and pattern evaluation method
JP2012083147A (ja) 欠陥分類システム及び欠陥分類装置及び画像撮像装置
US20130134308A1 (en) Sample observation apparatus and method of marking
TW202217902A (zh) 藉由對重疊結構上之反向散射電子建模以量測重疊之目標及演算法
CN112313769A (zh) 基于电子束感应电流的晶片检查
TWI611162B (zh) 相對臨界尺寸之量測的方法及裝置
JP2005181347A (ja) 回路パターンの検査装置、検査システム、および検査方法
JP4028864B2 (ja) パターン欠陥検査方法および検査装置
JP6207893B2 (ja) 試料観察装置用のテンプレート作成装置
JP2014130745A (ja) 荷電粒子線装置
JP2013246001A (ja) 荷電粒子線装置及び試料作成方法
US20230005123A1 (en) Sample observation system and image processing method
JP2007234778A (ja) 電子線式パターン検査装置、その検査条件設定方法、及びプログラム