JP2007234778A - 電子線式パターン検査装置、その検査条件設定方法、及びプログラム - Google Patents
電子線式パターン検査装置、その検査条件設定方法、及びプログラム Download PDFInfo
- Publication number
- JP2007234778A JP2007234778A JP2006053164A JP2006053164A JP2007234778A JP 2007234778 A JP2007234778 A JP 2007234778A JP 2006053164 A JP2006053164 A JP 2006053164A JP 2006053164 A JP2006053164 A JP 2006053164A JP 2007234778 A JP2007234778 A JP 2007234778A
- Authority
- JP
- Japan
- Prior art keywords
- defect
- image
- inspection
- sample
- inspection condition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
【課題】短時間で最適な検査条件を容易に導くことができる電子線式パターン検査装置を提供する。
【解決手段】予め任意に設定された検査条件によって試料に生じた実欠陥部及びノイズが記憶されている基準欠陥ファイルを生成し、検査条件の自動変更を行って検査条件が自動変更される都度、変更された検査条件に基づいて、電子線を照射して生成された前記試料の画像上から当該試料に生じた欠陥部を検出して取得し、この検出された検査条件別の欠陥部を、基準欠陥ファイル生成工程で生成された基準欠陥ファイルに記憶されている試料に生じた実欠陥部及びノイズと照合し、当該照合結果に基づいて変更された検査条件の中から最適な検査条件を選択する。
【選択図】図4
【解決手段】予め任意に設定された検査条件によって試料に生じた実欠陥部及びノイズが記憶されている基準欠陥ファイルを生成し、検査条件の自動変更を行って検査条件が自動変更される都度、変更された検査条件に基づいて、電子線を照射して生成された前記試料の画像上から当該試料に生じた欠陥部を検出して取得し、この検出された検査条件別の欠陥部を、基準欠陥ファイル生成工程で生成された基準欠陥ファイルに記憶されている試料に生じた実欠陥部及びノイズと照合し、当該照合結果に基づいて変更された検査条件の中から最適な検査条件を選択する。
【選択図】図4
Description
本発明は、半導体ウエハ等の繰り返しパターンを有する試料を検査するための検査装置に係り、特に電子線を用いた電子線式パターン検査装置、及びその検査条件設定方法に関する。
半導体装置は、半導体ウエハ上にホトマスクによって回路パターンを形成し、それをリソグラフィー処理及びエッチング処理により転写する工程を繰り返すことによって製造される。半導体装置の製造では、上述したリソグラフィー処理及びエッチング処理をはじめとする各処理の良否、その製造過程での異物発生等は、半導体装置の歩留りに大きく影響を及ぼす。そのため、半導体装置の製造では、各処理の異常や不良の発生を早期にあるいは事前に検知することが重要で、製造工程毎に半導体ウエハ上に形成されたパターンの検査を行い、対処をはかっている。
従来、この半導体装置の製造過程における検査には、レーザ光等をパターンに照射して得られる光学画像を用いて異常を判断する光学式外観検査装置、電子線等の荷電粒子線でパターンを走査して発生する二次電子や反射電子の信号強度やこれに基づき取得した画像を用いて異常を判断する電子線式パターン検査装置、等の各種検査装置が実際に用いられている。
光学式検査装置の例としては、半導体ウエハに白色光を照射し、光学画像を用いて複数のLSIの同種の回路パターンを比較する欠陥検査装置が知られており、その概要は非特許文献1の雑誌「月間セミコンダクタワールド」1995年8月号、第96〜99頁に記載されている。
しかしながら、このような光学式検査装置の場合は、光が透過するシリコン酸化膜や感光性フォトレジスト材料を表面に有するパターンの残渣や欠陥は検出できないという問題点があった。また、その光学系の分解能以下となるエッチング残りや微小導通穴の非開口不良も検出できないという問題点があった。さらに、配線パターンの段差底部に発生した欠陥は検出できないという問題点があった。
この結果、回路パターンの微細化や回路パターン形状の複雑化、材料の多様化に伴い、光学式検査装置による光学画像に基づく欠陥検出だけでは、十分な欠陥検出が困難になってきた。
そのため、光学式検査よりも分解能が高い荷電粒子線、特に、電子線を用いて回路パターンを検査する電子線式パターン検査方法が、半導体装置の製造過程における検査に用いられる場合が増加している。この電子線式パターン検査方法では、光学画像よりも分解能の高い、走査電子線によって取得された電子線画像を用いて回路パターンを比較検査する。
ところが、半導体ウエハの製造工程では、ウエハ内に同一サイズ、同一形状のダイが数百個作成されるため、この電子線式パターン検査方法によって実用的な検査を行うためには、走査電子顕微鏡(Scanning Electron Microscopy、以下SEMと略す)による通常の観察と比べて非常に高速に画像を取得する必要がある。さらに、この高速で取得した画像について、その分解能と所定のSN比を確保する必要がある。
このような電子線を用いたパターンの比較検査装置の例として、非特許文献2のJ. Vac. Sci. Tech. B、 Vol.9、 No.6、 pp.3005-3009(1991)、非特許文献3のJ. Vac. Sci. Tech. B、Vol.10、 No.6、pp.2804-2808(1992)、特許文献1の特開平5−258703号公報、及び特許文献2の米国特許明細書USP5,502,306に記載されているような電子線式検査方法がある。
これら電子線式検査方法では、通常のSEMの100倍以上(10nA以上)の電子線電流をもった電子線を導電性基板(X線マスク等)に照射し、発生する二次電子、反射電子、透過電子のいずれか1つ又は複数を検出し、その信号から形成された画像を比較検査することにより欠陥を自動検出する。
ところで、大電流で、かつ低加速の電子線では、空間電荷効果により高分解能な画像を得ることが困難である。そこで、この問題を解決する方法として、上記特許文献1には、試料直前で高加速電子線を減速し、試料上で実質的に低加速電子線として照射する方法が記載されている。
その一方で、高速に電子線画像を取得する方法としては、試料台を連続的に移動しながら試料台上の半導体ウエハに電子線を連続照射し取得する方法が特許文献3の特開昭59−160948号公報及び上記特許文献1に記載されている。
ところで、上記したようなSEMを利用した検査装置では、高速で高分解能な画像を取得することはできても、その取得した画像に関して所定のSN比を確保するためには、検査装置に対しての検査条件の設定が重要になる。すなわち、その検査条件の設定とは、(1)検出画像のノイズ除去フィルター(画像フィルター)の設定、(2)隣接した2つの画像を比較した後に残存するノイズの明るさ閾値の設定、(3)隣接した2つの画像を比較した後に残存するノイズの画素数及び画素配列情報に対する面積フィルターの設定、である。
しかし、このような検査条件の設定作業は、最適な検査条件を導くために多大な時間を要し、上述した従来技術の電子線式検査方法を使用した検査装置では、この点に対する配慮がなされていなかった。
そのため、上述した従来技術の電子線を使用した検査装置では、最適な検査条件を設定するのにかなりの時間がかかり、その設定した検査条件も設定者により最適閾値が異なっていた。
本発明は、短時間で、人為的バラツキの無い最適な検査条件を設定することができる、電子線を用いた検査装置を提供することを目的とする。
上記した課題を解決するために、本発明の電子線式パターン検査装置は、試料へ電子ビームを照射し発生する二次荷電粒子を検出する電子光学系装置と、予め設定された検査条件に基づいて、該電子光学系装置によって検出された二次荷電粒子の検出信号により当該電子ビームを照射した前記試料の画像を生成し、当該試料の画像上から当該試料に生じた欠陥部を検出する画像処理部とを備えた電子線式パターン検査装置であって、予め任意に設定された検査条件によって当該試料に生じた実欠陥部及びノイズが記憶されている基準欠陥ファイルと、前記検査条件の変更を繰り返し行う検査条件自動変更手段と、当該自動変更された検査条件に基づいて前記画像処理部により検出された欠陥部を取得する欠陥部取得手段と、該欠陥部取得手段によって取得された前記画像処理部によって検出された検査条件別の欠陥部を、前記基準欠陥ファイルに記憶されている実欠陥部及びノイズと照合し、当該照合結果に基づいて前記検査条件自動変更手段によって変更された検査条件の中から最適な検査条件を選択する最適検査条件設定手段とを備えていることを特徴とする。
また、本発明の電子線式パターン検査装置の検査条件設定方法は、予め設定された検査条件に基づいて、電子ビームを照射した前記試料の画像を生成し、当該試料の画像上から当該試料に生じた欠陥部を検出する電子線式パターン検査装置の検査条件設定方法であって、予め任意に設定された検査条件によって前記試料に生じた実欠陥部及びノイズが記憶されている基準欠陥ファイルを生成する基準欠陥ファイル生成工程、前記検査条件の自動変更を行う検査条件変更工程、該検査条件変更工程によって検査条件が自動変更される都度、変更された検査条件に基づいて、電子ビームを照射して生成された前記試料の画像上から当該試料に生じた欠陥部を検出して取得する欠陥部取得工程、該欠陥部取得工程によって検出された検査条件別の欠陥部を、前記基準欠陥ファイル生成工程で生成された基準欠陥ファイルに記憶されている前記試料に生じた実欠陥部及びノイズと照合し、当該照合結果に基づいて前記検査条件自動変更工程によって変更された検査条件の中から最適な検査条件を選択する最適検査条件設定工程を有することを特徴とする。
また、本発明は、コンピュータに、予め設定された検査条件に基づいて、電子ビームを照射した前記試料の画像を生成し、当該試料の画像上から当該試料に生じた欠陥部を検出する電子線式パターン検査装置の検査条件設定方法における前記検査条件の自動変更を行う検査条件変更工程、該検査条件変更工程によって検査条件が自動変更される都度、変更された検査条件に基づいて、電子ビームを照射して生成された前記試料の画像上から当該試料に生じた欠陥部を検出して取得する欠陥部取得工程、該欠陥部取得工程によって検出された検査条件別の欠陥部を、予め任意に設定された検査条件によって前記試料に生じた実欠陥部及びノイズが記憶されている基準欠陥ファイルの実欠陥部及びノイズと照合し、当該照合結果に基づいて前記検査条件自動変更工程によって変更された検査条件の中から最適な検査条件を選択する最適検査条件設定工程を実行させるためのプログラムであることを特徴とする。
本発明によれば、電子線を用いた電子線式パターン検査装置において、変更頻度が高く、なおかつ複数の組み合わせが存在する検査条件(すなわち、後述の欠陥パラメータ)としての、画像フィルター,明るさ閾値,面積フィルターそれぞれの最適設定を、設定者はこれらについての初期値を適宜設定し、この初期値を用いた検査で検出された欠陥部について実欠陥部若しくはノイズの欠陥分類を1回行うだけで、装置側で、基準となる基準欠陥ファイルを作成し、この基準欠陥ファイルをもとに、これら検査条件としての画像フィルター,明るさ閾値,面積フィルターの設定を自動的に変更しながら、この変更される検査条件としての画像フィルター,明るさ閾値,面積フィルターを用いた検査を繰り返し実施し、その検査結果に基づいて最適な検査条件としての最適画像フィルター,最適明るさ閾値,最適面積フィルターを自動的に選定することができるので、短時間でかつ容易に、人為的バラツキの無い、最適な検査条件を設定することができる。
本発明の一実施の形態によるSEM式外観検査装置の構成を説明する。
図1は、本発明の一実施の形態によるSEM式外観検査装置の構成の概略を示す図である。
図1は、本発明の一実施の形態によるSEM式外観検査装置の構成の概略を示す図である。
SEM式外観検査装置1は、検査室2を有し、検査室2は、電子光学系装置3と光学顕微鏡部4と試料室8とを有する。
電子光学系装置3は、電子銃10,電子線の引出電極11,コンデンサレンズ12,ブランキング偏向器13,絞り14,走査偏向器15,対物レンズ16,反射板17,ExB偏向器18,及び二次電子検出器20を有する。
光学顕微鏡部4は、白色光源32,光学レンズ33,及びCCDカメラ34を有し、電子光学系装置3の近傍に配置されている。電子光学系装置3と光学顕微鏡部4は、互いに影響を及ぼさない程度離れた位置に配置されており、両者の間の距離は既知である。
試料室8は、試料台26,Xステージ27,Yステージ28,及び回転ステージ29を有する。試料9は、X方向及びY方向に移動可能であり、且つ、Z軸周りに回転可能である。試料9は半導体ウエハである。Xステージ27又はYステージ28は、試料9を電子光学系装置3と光学顕微鏡部4の間にて往復移動させることができる。電子顕微鏡像を観察する場合には、試料9を電子光学系装置3の光軸に配置し、光学顕微鏡像を観察する場合には、試料9を光学顕微鏡部4の光軸に配置する。
SEM式外観検査装置1は、さらに、画像処理部5,制御部6,二次電子検出部7,位置モニタ測長器30,試料高さ測定器31,補正制御回路35,走査信号発生器36,及び対物レンズ電源37を有する。
二次電子検出部7は、プリアンプ21,AD変換器22,光変換手段23を有し、光伝送手段24を介して画像処理部5に接続されている。
位置モニタ測長器30は、Xステージ27,Yステージ28,及び回転ステージ29の位置を実時間でモニタし、その位置情報を補正制御回路35を介して制御部6に送信する。試料高さ測定器31は、試料9の高さを実時間で測定し、測定した情報を補正制御回路35を介して制御部6に送信する。
制御部6は、補正制御回路35を介して入力したデータに基づいて、補正制御回路35に対する補正信号を生成し、補正制御回路35に出力する。補正制御回路35は、制御部6からの補正信号をもとに、対物レンズ電源37に対物レンズ16に対する補正信号を送信し、走査信号発生器36にブランキング偏向器13に対する補正信号を出力する。これら対物レンズ16に対する補正信号、及びブランキング偏向器13に対する補正信号にしたがって、対物レンズ16及びブランキング偏向器13が駆動され、電子線19が試料9上の所定の位置に照射される。制御部6は、試料9が交換されても、試料毎に電子線19を照射した領域を記憶する。
制御部6には、予め電子線発生時の加速電圧,電子線偏向幅,偏向速度,二次電子検出器20の信号取り込みタイミング、試料台26の移動速度等々の条件が、目的に応じて任意にあるいは選択して設定入力されている。
電子銃10からの電子線19は引出電極11によって引き出され、コンデンサレンズ12、絞り14、対物レンズ16を介して試料9へ照射される。電子線19は細く絞られたビームであり、走査偏向器15によって試料9を走査される。
ブランキング偏向器13は、電子線19を絞り14の開口部の外側に偏向させる。それによって、電子線19が試料9へ照射することを回避させることができる。
試料9に電子線19が照射されると試料9から二次電子50が発生する。二次電子はExB偏向器18によって軌道を曲げられて反射板17を照射し、第二の二次電子51が発生する。二次電子51は、二次電子検出器20によって検出される。
二次電子検出器20の出力信号は、二次電子検出部7のプリアンプ21で増幅され、AD変換器22によりデジタルデータとなり、光変換手段23から光ファイバ等の光伝送手段24によって、画像処理部5の電気変換手段25へ送られる。
画像処理部5は、明るさ補正部38,第1制御部39,第1ダイ画像記憶部40,第2ダイ画像記憶部41,第3ダイ画像記憶部42,セル画像記憶部43,第2制御部44,ダイ比較位置ズレ検出部45,ダイ比較欠陥検出部46,セル比較欠陥検出部47,欠陥種類自動判別部48,及びモニタ49を含む。画像処理部5の各部の動作命令および動作条件は、制御部6から入出力される。
画像処理部5では、光伝送手段24を介して入力した画像信号を、電気変換手段25によって再び電気信号に変換し、明るさ補正部38で、予め設定された明るさ補正条件により補正し、さらにノイズ除去のための画像フィルターを掛けた後に、第1制御部39に送信される。
本実施の形態の場合、明るさ補正部38には、この画像フィルターとして、例えば、検出画像のノイズ除去に用いられるガウシャンフィルター又は平滑化フィルター、検出画像の欠陥コントラスト強調に用いられる微分フィルター、さらにこの両方を組み合わせた複合フィルターといった複数のフィルターが外部選択可能に設けられている。
第1制御部39は、明るさ補正部38からの連続画像データより、3個の互いに隣接するダイ領域を撮像したダイ画像を第1〜第3ダイ画像記憶部40〜42に順次切り出す。ダイ画像は、数ミリ単位に同一パターンが存在する半導体ウエハのダイ部を比較するための画像である。第1制御部39は、例えば、第1番目に切り出した第1ダイ画像を第1ダイ画像記憶部40に記憶し、第2番目に切り出した第2ダイ画像を第2ダイ画像記憶部41に記憶し、第3番目に切り出した第3ダイ画像を第3ダイ画像記憶部42に記憶する。同様にして、第1制御部39は、例えば、第4番目に切り出した第1ダイ画像を第1ダイ画像記憶部40に記憶し、第5番目に切り出した第2ダイ画像を第2ダイ画像記憶部41に記憶し、第6番目に切り出した第3ダイ画像を第3ダイ画像記憶部42に記憶する。
第1制御部39は、明るさ補正部38からの連続画像データより、セル画像を生成し、それをセル画像記憶部43に送信する。セル画像は、ダイ内に同一パターンが数ミクロン単位に隣接するセル部を比較するための画像である。
第2制御部44は、第1ダイ画像記憶部40,第2ダイ画像記憶部41,及び第3ダイ画像記憶部42から、それぞれ隣接する2つのダイ画像を切り出し、それをダイ比較位置ズレ検出部45に送信する。第2制御部44は、セル画像記憶部43からセル比較用画像を切り出し、それをセル比較欠陥検出部47に送信する。
ダイ比較位置ズレ検出部45は、第2制御部44によって切り出された連続する3つのダイ画像の中の隣接する2つのダイ画像同士を順次比較する。例えば、第1ダイ画像記憶部40と第2ダイ画像記憶部41とからそれぞれ切り出された第1,第2ダイ画像同士を比較し、第2ダイ画像記憶部41と第3ダイ画像記憶部42とからそれぞれ切り出された第2,第3ダイ画像同士とを比較する。すなわち、第1ダイ画像と第2ダイ画像とを比較し、第2ダイ画像と第3ダイ画像とを比較する。
ダイ比較位置ズレ検出部45は、この連続する3つのダイ画像の中の隣接する2つのダイ画像間の位置ずれ量、例えば、第1ダイ画像と第2ダイ画像との間の位置ずれ量、又は第2ダイ画像と第3ダイ画像との間の位置ずれ量を演算し、この演算した2つのダイ画像間の位置ずれ量を、その2つのダイ画像とともに、ダイ比較欠陥検出部46に送信する。
ダイ比較欠陥検出部46は、隣接する2つのダイ画像間(例えば、第1ダイ画像と第2ダイ画像との間)の位置ずれ量に基づいて、参照画像(第1ダイ画像)及び検査対象画像(第2ダイ画像)の2つのダイ画像におけるダイ検査領域の位置ずれ量に基づいて、参照画像と検査対象画像との比較演算を行って、欠陥有無を判定する。ダイ比較欠陥検出部46は、欠陥有りと判断した検査対象画像を欠陥種類自動判別部48に送信する。
セル比較欠陥検出部47は、第2制御部44から送られてきたセル画像(例えば、n−1番目)を参照画像とし、それより1セル分遅れたセル画像(例えば、n番目)を検査対象画像として比較演算し、欠陥有無を判定する。すなわち、連続するセル画像の中の隣接する2つのセル画像を順次比較する。セル比較欠陥検出部47は、欠陥有りと判断した画像を欠陥種類自動判別部48に送信する。
ダイ比較欠陥検出部46、及びセル比較欠陥検出部47は、参照画像と検査対象画像との比較演算の結果である2つの画像の差分である差画像信号の絶対値を所定の閾値と比較し、差画像信号の絶対値が所定の閾値を超えた部分についてそのサイズを所定の欠陥サイズと比較する。この場合における所定の閾値を明るさ閾値と呼び、所定の欠陥サイズを面積フィルターと呼ぶ。ダイ比較欠陥検出部46、及びセル比較欠陥検出部47は、差画像信号の絶対値が明るさ閾値より大きく、かつ欠陥サイズが面積フィルターよりも大きい場合には欠陥と判定する。
しかしながら、パターン作成時の像歪などで発生するずれ分が欠陥として判定される可能性がある。そこで、本例では、このような欠陥に対する許容値が設定されている。この許容値を、位置ずれ閾値と呼ぶ。
欠陥種類自動判別部48は、ダイ比較欠陥検出部46、及びセル比較欠陥検出部47で欠陥と判断された検査対象画像を用い、欠陥部の明るさ及び明るさの微分値,サイズ,面積,縦横比等の特徴量を算出し、欠陥種類の自動判別条件に基づいて、欠陥種類を分類し、モニタ49に出力する。
次に、製造過程でパターン加工が施された半導体ウエハを図1のSEM式外観検査装置1により検査する手順を説明する。
検査に際して、試料9が図示しない試料交換室へロードされる。試料交換室は、図示しない試料ホルダに試料9が搭載されて保持固定された後に、真空排気される。試料ホルダに搭載された試料9は、試料交換室がある程度の真空度に達した後、試料交換室から検査室2に移載される。検査室2では、試料9は、試料ホルダごとXステージ27,Yステージ28,回転ステージ29を介して試料台26に載せられ、保持固定される。補正制御回路35には予め制御部6に登録された電子線ビームの照射条件等が設定され、フォーカス等のキャリブレーションが補正制御回路35によって実施される。
先ず、光学顕微鏡部4による準備作業が行われる。制御部6は、予め設定されているレイアウト情報,回転量検出条件に基づいて、Xステージ27,Yステージ28を移動させる。このXステージ27,Yステージ28のX及びY方向の移動によって、試料9は、光学顕微鏡部4の光学レンズ33下方の所定の第一の座標に配置される。その際、モニタ49には、白色光源32からの光線を試料9に光学レンズ33を介して照射することによりCCDカメラ34によって得られた、試料9の上に形成された光学顕微鏡部4による回路パターンの光学顕微鏡画像が観察される。そして、この取得した光学顕微鏡画像は、光学顕微鏡部4の図示せぬ画像処理部により、位置回転補正のために予め記憶された同等の回路パタ−ン画像と比較され、第一の座標の位置補正値が算出される。
次に、制御部6は、第一の座標から一定距離だけ離れ、第一の座標と同等の回路パタ−ンが存在する第二の座標に試料9が配置されるように、Xステージ27,Yステージ28を移動させ、同様に、試料9の上に形成された回路パターンの光学顕微鏡画像を取得する。そして、この取得した光学顕微鏡画像は、図示せぬ光学顕微鏡部4のための画像処理部で、位置回転補正のために記憶された回路パターン画像と比較され、第二の座標の位置補正値及び第一の座標に対する回転ずれ量が算出される。
なお、本実施例では回転ステージ29の回転により回転ずれ量を補正しているが、回転ステージ29を設けず、算出された回転ずれ量に基づいて、電子線の走査偏向位置を補正してもよい。
次に、今後の位置補正のために、光学顕微鏡部4のための画像処理部では、第一の座標、光学顕微鏡画像観察による第一の回路パターンの位置ずれ量、第二の座標、光学顕微鏡画像観察による第二の回路パターンの位置ずれ量が記憶され、制御部6に送られる。
次に、光学顕微鏡部4によって試料9の上に形成された回路パターンが観察され、図示せぬ光学顕微鏡部4のための画像処理部で、回路パターンがあるチップの位置やチップ間の距離、あるいはメモリセルのような繰り返しパターンの繰り返しピッチ等が予め測定されると、その測定値は制御部6に入力される。また、光学顕微鏡部4のための画像処理部では、検査されるチップ、及びそのチップ内の検査領域が設定者によって指定され、その指定内容は制御部6に入力される。この場合、光学顕微鏡部4のCCDカメラ34による画像は、比較的低い倍率によって観察が可能である。また、例えば、試料9の表面がシリコン酸化膜等により覆われている場合でも、光線が下地まで透過して観察可能であるので、チップの配列やチップ内の回路パターンのレイアウトを簡便に観察することができる。このように、光学顕微鏡部4によれば検査領域が容易に設定できる。
以上のようにして光学顕微鏡部4による所定の補正作業や検査領域設定等の準備作業が完了すると、補正制御回路35によるXステージ27及びYステージ28の移動により、試料9が電子光学系装置3の下方に移動される。試料9が電子光学系装置3の下方に配置されると、光学顕微鏡部4により実施された補正作業や検査領域の設定と同様の作業を電子光学系装置3により実施する。このときの電子線画像の取得は、以下の方法で行われる。
光学顕微鏡部4による光学顕微鏡画像による位置合せで記憶され補正された座標値に基づき、光学顕微鏡部4で観察されたものと同じ試料9の回路パターンに、補正制御回路35により走査偏向器15を制御して電子線19をX,Y方向に二次元的に走査する。この電子線19の二次元走査により、その照射部位から二次電子(第一の二次電子)50が発生し、この第一の二次電子50は、ExB偏向器18によって軌道を曲げられて反射板17を照射し、反射板17からは第二の二次電子51が発生する。この反射板17で発生した第二の二次電子51は、二次電子検出器20によって検出され、電子線19を走査した観察領域の電子線画像が取得される。この場合、既に光学顕微鏡部4を用いて光学顕微鏡画像により簡便な検査領域の確認や位置合せ、及び位置調整が実施され、かつ回転補正も予め実施されているため、取得した観察領域の電子線画像に対しては大きな調整は不要である。電子光学系装置3による電子線画像は、光学顕微鏡部4による光学顕微鏡画像に比べ分解能が高く、高倍率で高精度に位置合せや、位置補正並びに回転補正を実施することができる。
従来のSEMでは、二次電子検出器20には、シンチレータ(アルミニウム蒸着された蛍光体),ライトガイド,及び光電子増倍管が用いられていた。このタイプの検出器は、蛍光体による発光を検出するため、周波数応答性が悪く、高速に電子線画像形成するには不適切であった。この問題を解決するために、高周波の二次電子信号を検出する検出装置として、半導体検出器を用いた検出器が特開平2−15545号公報や特開平5−258703号公報に記載されており、本実施の形態でも、二次電子検出器20には、高速度検出のために半導体検出器を用いられている。
また、二次電子検出器20を用いて二次電子を検出し、その検出信号を検出直後から逐次、AD変換器22によってデジタル化して画像信号として光変換手段23から光伝送手段24を介して光伝送する構成により、各種変換・伝送において発生するノイズの影響を小さくし、SN比の高い画像信号データを得ることができる。この画像信号から画像処理部5で電子線画像を形成する過程においては、制御部6から指定されたチップ内の検査領域に該当する電子線照射位置の画素の走査タイミングに対応した時間毎の画像信号データを、画像処理部5では、その明るさ補正部38が信号レベルに応じた明るさ階調値に補正し、第1制御部39が、第1ダイ画像記憶部40,第2ダイ画像記憶部41,第3ダイ画像記憶部42,並びにセル画像記憶部43に、それぞれ該当する画像を逐次記憶する。
このように、検査領域の電子線照射位置と対応づけてこの電子線照射位置の走査タイミングに対応した検出タイミングの画像信号の大きさ(すなわち、二次電子の量)を数値化しておくことにより、試料9の検査領域における回路パターンの電子線画像が二次元的に形成される。そして、第2制御部44は、第1ダイ画像記憶部40,第2ダイ画像記憶部41,第3ダイ画像記憶部42に記憶されたダイ画像を読み出し制御し、各ダイ画像記憶部40〜43それぞれに記憶されているダイ画像の中の隣接する2つのダイ画像について、一方を検査対象画像とし、他方を参照画像としてダイ比較位置ズレ検出部45に送る。ダイ比較位置ズレ検出部45は、検査対象画像と参照画像との2画像間の位置ずれ量を演算し、その演算した2画像間の位置ずれ量をこの検査対象画像及び参照画像の2画像と共にダイ比較欠陥検出部46に送信する。ダイ比較欠陥検出部46は、検査対象画像と参照画像との2画像間の位置ずれ量に基づいて、参照画像と検査対象画像との比較演算を行って、検査対象画像の欠陥有無を判定する。その上で、ダイ比較欠陥検出部46は、欠陥部を検出した場合のみ欠陥種類自動判別部48に検査対象画像を送り、欠陥種類自動判別部48は、欠陥種類の自動判別条件に基づいて、欠陥の種類を自動判別する。
同様に、セル比較においては、第1制御部39によってセル画像記憶部43に記憶された試料9のセル部についての二次元的に形成された回路パターンの電子線画像から、第2制御部44によって検査対象画像とこの検査対象画像と1セル分ずらした参照画像とがセル比較欠陥検出部47に送られ、セル比較欠陥検出部47では、この2つの画像の差分である差画像信号の絶対値を所定の閾値と比較演算し、欠陥有無を判定する。その上で、セル比較欠陥検出部47は、欠陥を検出した場合のみ欠陥種類自動判別部48に画像が送り、欠陥種類自動判別部48は、欠陥種類の自動判別条件に基づいて、欠陥の種類を自動判別する。
欠陥種類自動判別部48は、上述したようにしてダイ比較やセル比較を行って欠陥の種類を判別した欠陥について、モニタ49にその欠陥の位置や欠陥数等を表示する。
以降、上述した一連の処理が検査領域のダイ毎及びセル毎に繰り返されることにより、全ての検査領域について画像処理が実行される。
前述の検査方法により、高精度で良質な電子線画像を取得し比較検査することにより、微細な回路パターン上に発生した微小な欠陥を、実用性に則した検査時間で検出することができる。また、電子線を用いて画像を取得することにより、光学式パターン検査方法では光が透過してしまい検査できなかったシリコン酸化膜やレジスト膜で形成されたパターンやこれらの材料の異物・欠陥が検査できるようになる。さらに、回路パターンを形成している材料が絶縁物の場合にも安定して検査を実施することができる。
なお、電子線19を試料9に照射すると、その箇所が帯電する。検査の際にその帯電の影響を避けるために、上記位置回転補正あるいは検査領域設定等の検査前準備作業で電子線19を照射する回路パターンは、予め検査領域外に存在する回路パターンを選択するか、あるいは検査チップ以外のチップにおける同等の回路パターンを制御部6で自動的に選択できるようにしておくとよい。これにより、上記電子線19の照射による影響が検査画像に及ぶことは無くなる。なお、大電流電子線による走査は一回のみでも数回の繰り返しでもよい。
図2は、半導体ウエハの製造工程の説明図である。
半導体ウエハの製造工程は、半導体ウエハ毎に、例えば、ステップS1に示す膜づけ、ステップS2に示すパターンニング、及びステップS3に示すパターン加工が行われ、これら加工をその製造ロット単位で各半導体ウエハに繰り返し、最後に、ステップS4にて検査が必要か否かの判定を行う。検査を行う場合には、ステップS5に進み、上述したように検査装置を用いて欠陥の有無を判定する。この判定の結果、欠陥があると判定された場合には、判定された欠陥の種類等に基づいて、ステップS1に示す膜づけ、ステップS2に示すパターンニング、又はステップS3に示すパターン加工のいずれかのプロセスに戻り、欠陥の原因究明や対策等がなされる。検査を行う必要がない場合、又は、検査の結果、欠陥がないと判定された場合には、今回の製造ロットの各半導体ウエハに終了する。
半導体ウエハの製造工程は、半導体ウエハ毎に、例えば、ステップS1に示す膜づけ、ステップS2に示すパターンニング、及びステップS3に示すパターン加工が行われ、これら加工をその製造ロット単位で各半導体ウエハに繰り返し、最後に、ステップS4にて検査が必要か否かの判定を行う。検査を行う場合には、ステップS5に進み、上述したように検査装置を用いて欠陥の有無を判定する。この判定の結果、欠陥があると判定された場合には、判定された欠陥の種類等に基づいて、ステップS1に示す膜づけ、ステップS2に示すパターンニング、又はステップS3に示すパターン加工のいずれかのプロセスに戻り、欠陥の原因究明や対策等がなされる。検査を行う必要がない場合、又は、検査の結果、欠陥がないと判定された場合には、今回の製造ロットの各半導体ウエハに終了する。
図2に示した半導体ウエハの製造工程で、ステップS5に示した検査に図1に示したような構成のSEM式外観検査装置1を用いた場合では、検査条件とそれに含まれるパラメータの設定が必要となる。検査条件には、例えば、(1)電子線ビームの照射条件、(2)試料のレイアウト条件、(3)試料の回転量補正条件、(4)検出画像の明るさ補正条件、(5)検出画像のノイズ除去並びに欠陥コントラスト強調を行うために用いる画像フィルターの設定条件、(6)欠陥を検出するための明るさ閾値,面積フィルターといった欠陥検出条件、(7)検出欠陥に対する欠陥種類を判別するための自動判別条件がある。これらの検査条件のより具体的な例について、図3を参照して説明する。
図3は、本実施の形態によるSEM式外観検査装置の検査条件とそれに含まれるパラメータを示した図である。
検査条件は、ウエハ単位で必要な情報301と、検査サイクル単位で必要な情報302とに分類できる。ウエハ単位で必要な情報301は、ウエハレイアウト情報又は品種情報と称するもので、例えば、ウエハサイズ,ウエハ形状,ダイサイズ,ダイマトリックス等いった項目に関しての情報内容が含まれる。
検査サイクル単位で必要な情報302は、工程情報と称するもので、例えば、膜の材質等に応じて決定する電子光学系装置3における加速電圧や電流値等といった電子ビーム照射条件、二次電子検出部7によって検出される画像信号について画像コントラストの最適化を行うためのキャリブレーション情報、検出画像のノイズ除去及び欠陥画像コントラスト強調を行う画像フィルター情報、ダイ内のパターンを用いた自動アライメントを行う時に必要な光学顕微鏡部4や電子光学系装置3の辞書画像等のアライメント情報、パターン配列に基づくセル比較,ダイ比較,又はこれらの組み合わせたセルダイ混合比較といった検査方法情報、X方向又はY方向といった検査方向情報、LSIチップ内の検査を行う繰り返し領域を示したセル検査領域情報、セル検査領域内におけるダイ領域の有無情報、チップ内の検査を行う繰り返し領域の配列を示したセル領域マトリックス情報、LSIチップ内の繰り返し最小ピッチを示したセルピッチ情報、LSIチップ単位の繰り返し領域を示したダイ検査領域、明るさ閾値及び面積フィルターといった欠陥判定を行うための閾値情報、検出欠陥の分類を行うためのパラメータとしての欠陥分類情報、等を含むものである。
上述のようにSEM式外観検査装置1の検査条件に含まれるパラメータ(項目毎の設定情報内容)は多岐にわたり、かつその数も多い。これらのパラメータについては、SEM式外観検査装置1を使用するにあたって、その検査の目的,検査対象の半導体ウエハの回路パターンの形状や材料毎にその最適値を求める必要がある。
ところで、図3に示したSEM式外観検査装置の検査条件とそれに含まれるパラメータの中で、検査条件の設定を繰り返し行わないと最適な検査条件の設定ができない項目は、検出画像のノイズ除去及び欠陥画像コントラスト強調を行うための画像フィルター情報と、欠陥判定を行うための閾値である明るさ閾値情報及び面積フィルター情報である。また、例えば、電子ビーム照射条件,キャリブレーションといった他の検査条件の設定を変更した場合にも、画像フィルター、及び明るさ閾値や面積フィルターについては再設定が必要となり、変更頻度の高い検査条件となっている。また、これら相互の組み合わせも複数存在するため、人為的誤差の影響も大きく、検出感度低下の原因になっている。
本実施の形態の電子線式パターン検査装置は、電子線ビームを用いた検査装置において変更頻度が高く、なおかつ複数の組み合わせが存在する検査条件としての画像フィルターと明るさ閾値及び面積フィルターとの設定を、自動的に繰り返し各検査条件を実施し判定することで、短時間で且つ、人為的な誤差の無い最適検査条件を設定することができるようにしたものである。
以下、本実施の形態によるSEM式外観検査装置1における検査条件の設定方法の詳細について、従来の検査条件の設定方法と対比しながら、詳細に説明する。
図4は、従来の検査条件の設定方法を示したフローチャートである。
上述した検査条件のウエハレイアウト情報や、工程情報の電子ビーム照射条件,キャリブレーション情報,アライメント情報といったパラメータについて、設定者が、例えば欠陥原因等を解析するためのワークステーションとしてSEM式外観検査装置1とネットワーク接続されているEWS(Engineering Work Station)60の演算条件設定部61から設定後、SEM式外観検査装置1により試料9の検査対象領域の電子線画像の取得を実施すると、電子光学系装置3が、このウエハレイアウト情報及び工程情報の電子ビーム照射条件等に基づき、試料9の検査領域に電子線19をX,Y方向に二次元的に走査して照射し、二次電子検出部7は、その際に発生する二次電子51を検出して検査対象領域の画像信号を生成し、画像処理部5に供給する。この二次電子検出部7からの画像信号は、画像処理部5の明るさ補正部38に付設されている図示せぬメモリに記憶される(ステップS401)。
上述した検査条件のウエハレイアウト情報や、工程情報の電子ビーム照射条件,キャリブレーション情報,アライメント情報といったパラメータについて、設定者が、例えば欠陥原因等を解析するためのワークステーションとしてSEM式外観検査装置1とネットワーク接続されているEWS(Engineering Work Station)60の演算条件設定部61から設定後、SEM式外観検査装置1により試料9の検査対象領域の電子線画像の取得を実施すると、電子光学系装置3が、このウエハレイアウト情報及び工程情報の電子ビーム照射条件等に基づき、試料9の検査領域に電子線19をX,Y方向に二次元的に走査して照射し、二次電子検出部7は、その際に発生する二次電子51を検出して検査対象領域の画像信号を生成し、画像処理部5に供給する。この二次電子検出部7からの画像信号は、画像処理部5の明るさ補正部38に付設されている図示せぬメモリに記憶される(ステップS401)。
その後、設定者は、EWS60の演算条件設定部61から、工程情報の中の画像フィルターの設定(ステップS402)、明るさ閾値の設定(ステップS403)、面積フィルターの設定(ステップS404)を行う。以下、画像フィルター,明るさ閾値,面積フィルターをまとめて、他のパラメータと区別するため、欠陥パラメータと総称する。そして、これら画像フィルター,明るさ閾値,面積フィルターからなる欠陥パラメータは、EWS60からネットワーク接続されているSEM式外観検査装置1の制御部6に転送され、この欠陥パラメータをEWS60から取得した制御部6は、取得した画像フィルターを画像処理部5の明るさ補正部38に、明るさ閾値及び面積フィルターをダイ比較欠陥検出部46及びセル比較欠陥検出部47にそれぞれ供給する。これにより、明るさ補正部38の画像フィルター、ダイ比較欠陥検出部46並びにセル比較欠陥検出部47それぞれの明るさ閾値,面積フィルターは、この取得した欠陥パラメータに基づいて設定変更される。
この欠陥パラメータの設定が実行されると(ステップS402〜S404)、画像処理部5の明るさ補正部38は、その付設されている図示せぬメモリから記憶されている画像信号を読み出し、信号レベルに応じた明るさ階調値に補正し、さらに読み込み設定されたノイズ除去のための画像フィルターを掛けた後に、第1制御部39に送信する。
第1制御部39は、この画像フィルターをかけた検査対象領域の連続画像データから、ダイ領域を撮像したダイ画像を順次切り出し、第1〜第3ダイ画像記憶部40〜42に順次記憶する。また、第1制御部39は、この画像フィルターをかけた検査対象領域の連続画像データから、工程情報のセル検査領域,セル領域マトリックス,セルピッチといったパラメータに基づいてセル画像を生成し、それをセル画像記憶部43に記憶する。
そして、第1〜第3ダイ画像記憶部40〜42にそれぞれ記憶されたダイ画像は、第2制御部44によって切り出されてダイ比較位置ズレ検出部45に供給され、ダイ比較位置ズレ検出部45では、例えば第1ダイ画像記憶部40のダイ画像と第2ダイ画像記憶部41のダイ画像との間、第2ダイ画像記憶部41のダイ画像と第3ダイ画像記憶部42のダイ画像との間等といったように、検査対象領域の連続画像データにおける隣接する2つのダイ画像同士が順次比較され、その2つのダイ画像間の位置ずれ量が演算される。このダイ比較位置ズレ検出部45によって演算された連続画像データにおける隣接する2つのダイ画像間の位置ずれ量は、この隣接する2つのダイ画像と共に、ダイ比較欠陥検出部46に供給される。また、セル画像記憶部43に記憶されたセル画像は、第2制御部44によってセル比較用画像として切り出され、セル比較欠陥検出部47に供給される。
ダイ比較欠陥検出部46では、ダイ比較位置ズレ検出部45から供給される隣接する2つのダイ画像及びこの隣接する2つの画像間の位置ずれ量に基づいて、2つの画像間のダイ検査領域の比較演算を行って差画像信号を算出し、この差画像信号の絶対値について制御部6から読み込み設定された欠陥パラメータの明るさ閾値を用いて2値化処理を行う。さらに、この2値化された結果が表す欠陥補部毎に、同じく制御部6から読み込み設定された面積フィルターをかけ、その欠陥補部の欠陥サイズをこの面積フィルターによって規定された所定の欠陥サイズと比較することによってノイズ除去を行い、欠陥部の判定を行う。
また、セル比較欠陥検出部47では、第2制御部44から供給されてきたセル画像(例えば、n−1番目)を参照画像とし、それより1セル分遅れたセル画像(例えば、n番目)を検査対象画像として、制御部6から供給された欠陥パラメータを用いて欠陥部の判定を行う。
そして、ダイ比較欠陥検出部46及びセル比較欠陥検出部47でそれぞれ検出された欠陥部は、その欠陥部の画像データとともに欠陥種類自動判別部48に供給される。
欠陥種類自動判別部48は、ダイ比較欠陥検出部46及びセル比較欠陥検出部47それぞれから供給された欠陥部の画像データを用い、欠陥部の明るさ及び明るさの微分値,サイズ,面積,縦横比等の特徴量を算出し、制御部6から供給された欠陥パラメータの欠陥分類情報による自動判別条件に基づいて、欠陥種類を分類し、モニタ49に出力する(ステップS405)。
その上で、欠陥種類自動判別部48は、上述したダイ比較欠陥検出部46及びセル比較欠陥検出部47による欠陥部の検出処理でも残存した欠陥部について、例えばウエハ単位で、欠陥部毎の座標データをリスト化する。その際、欠陥部の座標リスト中の各欠陥部及びその座標データは、それぞれ対応する欠陥部の画像データ,画像特徴量,欠陥種類とのリンクがとられる。
そして、この欠陥部の座標リストは、各欠陥部の画像データ,画像特徴量,欠陥種類とともに、制御部6から、SEM式外観検査装置1とネットワーク接続されているEWS60側に転送され、EWS60の記憶装置62に蓄積される。
これにより、EWS60は、このSEM式外観検査装置1から転送された欠陥部の座標リスト等の欠陥ファイルに基づいて、欠陥部の座標位置と欠陥部の画像とを一体的に表示するウエハマップ等を生成し、EWS60のディスプレイ装置63上にこれらをGUI(Graphical User Interface)として表示し、EWS60側でも検査結果を確認することができる構成になっている(ステップS406)。また、EWS60側の検査結果の表示においては、各欠陥部の画像特徴量,欠陥種類もリスト表示される構成になっている。
したがって、設定者は、EWS60のディスプレイ装置63に結果表示された欠陥部の座標リストやウエハマップ等を基に、EWS60側で、自動欠陥分類の確認等を行うことができる。
例えば、欠陥部の座標リストに記載された個別の欠陥部を識別するための欠陥番号や、欠陥部の座標リストやウエハマップ上で所望の欠陥部をその演算条件設定部61から指定すると、EWS60は、その記憶装置62に蓄積されているSEM式外観検査装置1転送された欠陥部の座標リスト等の欠陥ファイルに基づいて、指定された欠陥部の座標の画像を切り出し、該当する検出欠陥の画像をディスプレイ装置63に拡大表示する等して、設定者が容易に確認することができる構成になっている。
この場合、設定者は、EWS60のディスプレイ装置63に表示された検査結果を基に、SEM式外観検査装置1の自動欠陥分類による検査結果の欠陥部それぞれについて、ノイズと欠陥とを再判定し(ステップS407)、SEM式外観検査装置1の明るさ補正部38に設定した画像フィルター,ダイ比較欠陥検出部46やセル比較欠陥検出部47に設定した明るさ閾値及び面積フィルター,及び欠陥種類自動判別部48に設定した欠陥分類情報といった欠陥パラメータが、最適であったか否かを分析・判定する(ステップS408)。
この結果、ステップS408に示した分析・判定結果により、先に設定した欠陥パラメータが最適でない場合には、ステップS407に示した再判定により判定結果が修正されたノイズ及び欠陥部の特徴から、最適でない欠陥パラメータの項目を判断し、ステップS402〜S404でこの最適でない欠陥パラメータの項目の設定内容を変更・調整する。そして、EWS60側からネットワーク接続されたSEM式外観検査装置1に対して、この変更・調整した欠陥パラメータの設定を行って、同じ試料9の画像信号、すなわち前述のステップS401で取得し、画像処理部5の明るさ補正部38に付設されている図示せぬメモリに記憶されている画像信号について、変更・調整した欠陥パラメータを用いてステップS405〜S408に示した演算,結果表示,欠陥分類,パラメータ判定の各処理を再び行う。
そして、ステップS402〜S408で示した欠陥パラメータの項目毎の設定内容の変更・調整及びその分析・判定は、最終的に欠陥パラメータの項目それぞれを組み合わせて総合した最適な欠陥パラメータが決定できるまで、設定者は、欠陥パラメータの項目毎について設定内容の変更・調整及びその分析・判定を繰り返し実施することになる。その後、ステップS408で最終的に最適な欠陥パラメータが決定できたことが判明した場合は、今回の最適な欠陥パラメータの設定を完了する(ステップS409)。
ところが、上記説明した従来の検査条件の設定方法では、設定者は、ノイズ及び欠陥画像の特徴を抽出し、かつ画像処理の知識を持った人でないと、ステップS402〜S408で示した作業及び処理を何回も繰り返すこととなり、短時間で、この欠陥パラメータを含む検査条件を設定することが難しく、さらに最終的に最適でない設定を行ってしまった場合には、SEM式外観検査装置1が持っている検査性能を低下させてしまうといった大きな問題点があった。
そこで、本実施の形態では、SEM式外観検査装置1の検査条件の設定を、次に述べる方式で行うことを特徴としている。
図5は、本実施の形態のSEM式外観検査装置を用いた検査条件設定方法のフローチャートである。
本実施の形態の検査条件設定方法においては、設定者は、EWS60の演算条件設定部61を所定操作して、検査対象部の画像の取得をネットワーク接続されたSEM式外観検査装置1に対して指示する。
この指示を受け、SEM式外観検査装置1は、始めは、図4のステップS401で説明したようにして、検査対象部の画像の取得を実施する(ステップS501)。
次に、欠陥パラメータの画像フィルター,明るさ閾値,面積フィルターそれぞれの初期値を設定するために、図4のステップS402〜S404で説明したように、欠陥パラメータの画像フィルター,明るさ閾値,面積フィルターそれぞれについて、設定者は、EWS60の演算条件設定部61から、その設定を行う。例えば、この場合、設定者は、画象フィルターを「無」、明るさ閾値を「下限値」、面積フィルターを「無」に設定する(ステップS502〜S504)。
これら設定された画像フィルター,明るさ閾値,面積フィルターからなる欠陥パラメータは、EWS60からネットワーク接続されているSEM式外観検査装置1の制御部6に転送され、この欠陥パラメータをEWS60から取得した制御部6は、取得した画像フィルターを画像処理部5の明るさ補正部38に、明るさ閾値及び面積フィルターをダイ比較欠陥検出部46及びセル比較欠陥検出部47にそれぞれ供給する。これにより、明るさ補正部38の画像フィルター、ダイ比較欠陥検出部46並びにセル比較欠陥検出部47それぞれの明るさ閾値,面積フィルターは、この取得した欠陥パラメータに基づいて設定変更される。
この欠陥パラメータの設定が実行されると(ステップS502〜S504)、SEM式外観検査装置検査装置1は、演算処理を実行する(ステップS505)。このステップS505に示す演算処理では、SEM式外観検査装置検査装置1は、図4のステップS403,S404で説明したと同様にして、明るさ補正部38がその付設されている図示せぬメモリに記憶されているステップS501で取得した画像の画像信号を読み出し、信号レベルに応じた明るさ階調値に補正し、さらにステップS502で設定された画像フィルターを掛け、ダイ比較欠陥検出部46及びセル比較欠陥検出部47それぞれでは、参照画像と検査対象画像と比較演算を行って差画像信号を算出し、この差画像信号の絶対値についてステップS503で設定された欠陥パラメータの明るさ閾値を用いて2値化処理を行い、この2値化された結果に対してステップS504で設定された面積フィルターをかけ、欠陥部の判定を行う。
その上で、欠陥種類自動判別部48では、欠陥部の画像データ,画像特徴量,欠陥種類とのリンクがとられた欠陥部の座標リストが生成され、この生成された欠陥部の座標リストは、各欠陥部の画像データ,画像特徴量,欠陥種類とともに、制御部6から、SEM式外観検査装置1とネットワーク接続されているEWS60側に転送され、EWS60の記憶装置62に蓄積される。
そして、EWS60は、このSEM式外観検査装置1から転送された欠陥部の座標リスト等の欠陥ファイルに基づいて、欠陥部の座標リストや欠陥部の座標位置と欠陥部の画像とを一体的に表示するウエハマップ等を、検査結果としてディスプレイ装置63に表示する(ステップS506)。
なお、SEM式外観検査装置1の画像処理部5で、例えばダイ比較欠陥検出部46又はセル比較欠陥検出部47によって検出された欠陥数が、画像処理部5の欠陥種類自動判別部48による演算許容値を超えてしまった場合、欠陥種類自動判別部48はオーバーフローしてしまい、欠陥種類自動判別部48ではオーバーフロー後の残りの欠陥部についての演算は実施されず、演算実施分の結果のみ、制御部6はEWS60側に転送することになる。
したがって、設定者は、ディスプレイ装置63によって、ステップS506の結果表示が試料9の電子線操作範囲全てについなされているか否か等に基づいて、SEM式外観検査装置1の画像処理部5がオーバーフローしているか否かを確認することができる(ステップS507)。
そして、SEM式外観検査装置1の画像処理部5がオーバーフローしている場合は、欠陥パラメータの画像フィルター,明るさ閾値,面積フィルターそれぞれについてEWS60の演算条件設定部61から設定し直し、上述のステップS502〜S507の処理を繰り返して、欠陥パラメータの画像フィルター,明るさ閾値,面積フィルターそれぞれが画像処理部5をオーバーフローさせないように調整し決定する。
そして、上述したステップS507のSEM式外観検査装置1の画像処理部5のオーバーフロー確認でオーバーフローしていないことが確認された場合は、設定者は、その際にステップS506の結果表示によってディスプレイ装置63に表示されている欠陥部の座標リストやウエハマップ等を基に、SEM式外観検査装置1で検出された各欠陥部の欠陥分類を行う(ステップS508)。この場合の欠陥分類は、設定者が、SEM式外観検査装置1で検出された欠陥部毎に、その欠陥画像を参照しながらその欠陥部が本来の欠陥であるか、又はノイズ等によるもので本来の欠陥ではないかを判別し、欠陥部又はノイズを演算条件設定部61からマニュアルで分類登録することによって行われる。
設定者は、上述したステップS508の欠陥分類処理を終了すると、演算条件設定部61を所定操作して、この欠陥分類処理の結果を基準欠陥ファイルとして登録する。
これにより、EWS60の記憶装置62には、例えば、SEM式外観検査装置1から転送された欠陥部の座標リスト記載の欠陥部毎に本来の欠陥部又はノイズの種別(すなわち、ステップS508の欠陥分類結果)が付加された欠陥部の座標リストを含む基準欠陥ファイルが記憶されるとともに、この基準欠陥ファイルの作成のもととなった欠陥部の座標リスト等の欠陥ファイルを取得したときのSEM式外観検査装置1に設定されていた欠陥パラメータの画像フィルター,明るさ閾値,面積フィルターの設定値が、初期設定値として、当初は最適設定として基準欠陥ファイルに対応づけて記憶される。
そして、今度は、この登録された基準欠陥ファイルを元に、EWS60とSEM式外観検査装置1との間で、設定者のマニュアル処理に依らずに、最適画像フィルターの設定処理(ステップS510),仮の明るさ閾値の設定処理(ステップS511),最適面積フィルターの設定処理(ステップS512),及び最適明るさ閾値の設定処理(ステップS513)が順次行われ、画像フィルター,明るさ閾値,面積フィルターの最適化処理が数値的に自動で行われる。これにより、誰でも性能を低下させずに、最適欠陥パラメータの設定が行える。
次に、図5のステップS510〜S513に示した画像フィルター,明るさ閾値,面積フィルターの最適化処理について説明する。
図6は、図5のステップS510に示した最適画像フィルターの設定処理の詳細を示したフローチャートである。
画象フィルターの最適化処理では、EWS60が、記憶装置62に記憶されている欠陥パラメータの画像フィルターの初期値をもとに、この初期値以外で有効と思われる画像フィルターの設定を選択する(ステップS601)。
そして、EWS60は、この選択された画像フィルターの中の一の画像フィルターの設定値と、記憶装置62に記憶されている画像フィルター以外の明るさ閾値,面積フィルターの最適値(当初は、前述の初期設定値)とを、ネットワーク接続されているSEM式外観検査装置1の制御部6に転送し、SEM式外観検査装置検査装置1に、この選択された画像フィルターの設定値、明るさ閾値,面積フィルター(この場合、明るさ閾値及び面積フィルターとしては、前述したとおり初期設定値が選択されている)を用いた演算処理を実行させる。これにより、EWS60には、SEM式外観検査装置検査装置1から、演算処理の結果、得られた欠陥部の座標リスト等の検査結果(欠陥ファイル)が転送され、EWS60の記憶装置62に蓄積される(ステップS603)。
このようにして、SEM式外観検査装置検査装置1からの検査結果の供給を受けたEWS60は、この検査結果による欠陥部の座標リストと、基準欠陥ファイルに記憶されている欠陥部の座標リストとを対照させて、両者の結果比較を行う(ステップS604)。
この結果比較は、例えば、今回選択した画像フィルターによる場合の検査結果の欠陥部の座標リストに記載されている欠陥部それぞれと、前述した基準欠陥ファイルに同じく記憶されている欠陥部それぞれとの座標つき合わせを行い、例えば、今回選択した画像フィルターではつき合わせすることができなかった基準欠陥ファイルの欠陥部の座標リストに記載されている実欠陥(すなわち、先に欠陥分類した本来の欠陥)の数である実欠陥検出失敗個数A1、今回選択した画像フィルターでつき合わせすることができた基準欠陥ファイルの欠陥部の座標リストに記載されているノイズ(すなわち、先に欠陥分類したノイズ)の数であるノイズ個数A2、今回選択した画像フィルターで新規に検出された基準欠陥ファイルの欠陥部の座標リストに記載されていない欠陥部(なお、この欠陥部については、実欠陥部又はノイズの欠陥分類は未だなされていない)の数である新規欠陥個数A3を算出する。
なお、この実欠陥検出失敗個数A1,ノイズ個数A2,新規欠陥個数A3は、例えば、電子光学系装置3における試料9に対しての電子線走査領域に対応した試料画像上における各部に対応する画素数(すなわち、欠陥部の座標リストに記載可能な対応する座標点数)を測定して表わすこともできる。
そして、この算出結果に基づき、EWS60は、今回選択した画像フィルターで新規に検出された基準欠陥ファイルの欠陥部の座標リストに記載されていない新規の欠陥部がある場合か否かを、本実施の形態の場合は新規欠陥個数A3に基づいて確認する(ステップS605)。
この結果、EWS60は、この新規の欠陥部がある場合(A3≠0)には、新規の欠陥部それぞれについて、前述したステップS508の場合と同様にして、演算条件設定部61からマニュアルで欠陥部又はノイズのいずれかを分類登録することを、設定者に案内する。
そして、この案内に応じて、設定者が、この新たな欠陥部についてのみ、その欠陥部画像を参照しながら、欠陥部又はノイズの分類登録を演算条件設定部61から行うことによって(ステップS606)、EWS60は、この新たな欠陥部それぞれについての座標データ及び分類結果(実欠陥部又はノイズ)等の情報を、今回選択した画像フィルターに対応させて記憶装置62に記憶するとともに、今回選択した画像フィルターによるノイズ個数A2を、新たな欠陥部の中でノイズと分類された欠陥部の数だけ加算更新する。そして、EWS60は、本実施の形態の場合は、今回選択した画像フィルターに対応付けて、実欠陥検出失敗個数A1、及びノイズ個数A2を、記憶装置62に保存する。この場合、実欠陥検出失敗個数A1の大小は、実欠陥部を検出し損なう度合いを、ノイズ個数A2の大小はノイズを実欠陥部として誤検出する度合いを、それぞれ表していることになる。
そして、EWS60では、上述したステップS601〜ステップS606の処理を、SEM式外観検査装置検査装置1と協働して、先にステップS601で選択された画像フィルター全てについて実施する。
その後、EWS60では、ステップS601で選択された画像フィルター全てについて、上述したステップS602〜ステップS606の処理を行ったならば、それぞれの画像フィルター同士で、実欠陥検出失敗個数A1、及びノイズ個数A2を相互比較し、その結果からノイズ個数A2が少なく、かつ実欠陥検出失敗個数A1が少なくて検出できる実欠陥数が多い画像フィルターを、最適設定の画像フィルターとして選択された画像フィルターの中から選定する(ステップS607)。
なお、EWS60は、上記ステップS602〜ステップS606で示した選択された画像フィルターそれぞれについ処理において、又はステップS607で示した比較処理において、ノイズ個数A2が0である画像フィルターがある場合は(ステップS608)、この画像フィルターを最適設定とし、基準欠陥ファイルに対応づけて記憶装置62に記憶し、画像フィルターについての設定処理を完了する(ステップS609)。
また、ステップS608で、EWS60は、最適設定の画像フィルターとして選択された画像フィルターについてのノイズ個数A2が0でない場合は(ステップS608)、この最適設定とされた画像フィルターに対応させて、ステップS605で記憶装置62に記憶されている新たな欠陥部それぞれについての座標データ及び分類結果(実欠陥部又はノイズ)等の情報を、基準欠陥ファイルに追加記録し、基準欠陥ファイルを更新登録する(ステップS610)。
図7は、図5のステップS511に示した仮明るさ閾値の設定処理の詳細を示したフローチャートである。
仮の最適明るさ閾値の設定処理では、図6で説明した最適画像フィルターの設定処理の場合と同様にして、EWS60が、記憶装置62に記憶されている欠陥パラメータの画像フィルターの初期値をもとに、明るさ閾値の上・下限値と、この上・下限値の間で明るさ閾値を変化さえるステップ数を設定する(ステップS701)。
そして、EWS60は、この上・下限値の範囲内で上記ステップ数に基づいて選択された明るさ閾値と、記憶装置62に記憶されている明るさ閾値以外の画像フィルター,面積フィルターの最適値(この場合、画像フィルターの最適値としては、図6で説明した最適画像フィルターの設定処理によって設定された最適画像フィルターが設定され、面積フィルターの最適値としては、前述の初期設定値が設定されている)とを、ネットワーク接続されているSEM式外観検査装置1の制御部6に転送し、SEM式外観検査装置検査装置1に、この選択された画像フィルターの設定値、明るさ閾値,面積フィルターを用いた演算処理を実行させる。
その結果、図6で説明した最適画像フィルターの設定処理の場合と同様にして、EWS60は、図7に示した仮明るさ閾値の設定処理の場合は、設定された明るさ閾値毎に(ステップS702)、SEM式外観検査装置1の演算処理の結果としての欠陥部の座標リスト等の欠陥ファイルを取得し(ステップS703)、基準欠陥ファイルとの結果比較処理によって、実欠陥検出失敗個数A1,ノイズ個数A2,新規欠陥個数A3を取得し(ステップS704)、新規欠陥部があるか否かの確認を行い(ステップS705)、新規欠陥部がある場合(A3≠0)は、新規に検出された欠陥のみの欠陥分類処理を行う(ステップS706)。
そして、EWS60では、ステップS701で設定された上・下限値の範囲内でステップ数に基づいて選択された明るさ閾値全てについて、上述したステップS702〜ステップS606の処理を行ったならば、それぞれの明るさ閾値同士で、実欠陥検出失敗個数A1、及びノイズ個数A2を相互比較し、その結果からノイズ個数A2が少なく、かつ実欠陥検出失敗個数A1が少なくて検出できる実欠陥数が多い明るさ閾値を、仮の最適設定の明るさ閾値として選択された明るさ閾値の中から選定する(ステップS707)。
なお、EWS60は、上記ステップS702〜ステップS706で示した選択された明るさ閾値それぞれについ処理において、又はステップS707で示した比較処理において、ノイズ個数A2が0である明るさ閾値がある場合は(ステップS708)、この明るさ閾値を仮の最適設定とし、基準欠陥ファイルに対応づけて記憶装置62に記憶し、仮明るさ閾値についての設定処理を完了する(ステップS709)。
また、ステップS708で、EWS60は、最適設定の明るさ閾値として選択された明るさ閾値についてのノイズ個数A2が0でない場合は(ステップS708)、この最適設定とされた明るさ閾値に対応させて、ステップS705で記憶装置62に記憶されている新たな欠陥部それぞれについての座標データ及び分類結果(実欠陥部又はノイズ)等の情報を、基準欠陥ファイルに追加記録し、基準欠陥ファイルを更新登録する(ステップS710)。
図8は、図5のステップS512に示した面積フィルターの設定処理の詳細を示したフローチャートである。
面積フィルターの最適化処理では、EWS60が、図6で説明した最適画像フィルターの設定処理の場合と同様にして、記憶装置62に記憶されている欠陥パラメータの面積フィルターの初期値をもとに、この初期値以外で有効と思われる面積フィルターの設定を選択する(ステップS801)。
そして、EWS60は、この選択された面積フィルターの中の一の面積フィルターの設定値と、記憶装置62に記憶されている面積フィルター以外の画像フィルター,明るさ閾値の最適値(この場合、画像フィルターの最適値として、図6で説明した最適画像フィルターの設定処理によって設定された最適画像フィルターが設定され、明るさ閾値の最適値としては、図7で説明した仮明るさ閾値の設定処理によって設定された最適明るさ閾値が設定されている)とを、ネットワーク接続されているSEM式外観検査装置1の制御部6に転送し、SEM式外観検査装置検査装置1に、この選択された画像フィルターの設定値、明るさ閾値,面積フィルターを用いた演算処理を実行させる。
その結果、図6で説明した最適画像フィルターの設定処理の場合と同様にして、EWS60は、図8に示した面積フィルターの最適化処理の場合は、設定された面積フィルター毎に(ステップS802)、SEM式外観検査装置1の演算処理の結果としての欠陥部の座標リスト等の欠陥ファイルを取得し(ステップS803)、基準欠陥ファイルとの結果比較処理によって、実欠陥検出失敗個数A1,ノイズ個数A2,新規欠陥個数A3を取得し(ステップS804)、新規欠陥部があるか否かの確認を行い(ステップS805)、新規欠陥部がある場合(A3≠0)は、新規に検出された欠陥のみの欠陥分類処理を行う(ステップS806)。
そして、EWS60では、ステップS801で選択された画像フィルター全てについて
上述したステップS802〜ステップS806の処理を行ったならば、それぞれの画像フィルター同士で、実欠陥検出失敗個数A1、及びノイズ個数A2を相互比較し、その結果からノイズ個数A2が少なく、かつ実欠陥検出失敗個数A1が少なくて検出できる実欠陥数が多い面積フィルターを、最適設定の面積フィルターとして選択された面積フィルターの中から選定する(ステップS807)。
上述したステップS802〜ステップS806の処理を行ったならば、それぞれの画像フィルター同士で、実欠陥検出失敗個数A1、及びノイズ個数A2を相互比較し、その結果からノイズ個数A2が少なく、かつ実欠陥検出失敗個数A1が少なくて検出できる実欠陥数が多い面積フィルターを、最適設定の面積フィルターとして選択された面積フィルターの中から選定する(ステップS807)。
なお、EWS60は、上記ステップS802〜ステップS806で示した選択された面積フィルターそれぞれについ処理において、又はステップS807で示した比較処理において、ノイズ個数A2が0である面積フィルターがある場合は(ステップS808)、この面積フィルターを最適設定とし、基準欠陥ファイルに対応づけて記憶装置62に記憶し、面積フィルターについての設定処理を完了する(ステップS809)。
また、ステップS808で、EWS60は、最適設定の面積フィルターとして選択された面積フィルターについてのノイズ個数A2が0でない場合は(ステップS808)、この最適設定とされた面積フィルターに対応させて、ステップS805で記憶装置62に記憶されている新たな欠陥部それぞれについての座標データ及び分類結果(実欠陥部又はノイズ)等の情報を、基準欠陥ファイルに追加記録し、基準欠陥ファイルを更新登録する(ステップS810)。
図9は、図5のステップS513に示した最適明るさ閾値の設定処理の詳細を示したフローチャートである。
最適明るさ閾値の設定処理では、図7で説明した最適画像フィルターの設定処理の場合と同様にして、EWS60が、記憶装置62に記憶されている欠陥パラメータの画像フィルターの図7の仮明るさ閾値の設定処理で設定した仮の最適設定の明るさ閾値をもとに、明るさ閾値の上・下限値と、この上・下限値の間で明るさ閾値を変化さえるステップ数を設定する(ステップS901)。
そして、EWS60は、この上・下限値の範囲内で上記ステップ数に基づいて選択された明るさ閾値と、記憶装置62に記憶されている明るさ閾値以外の画像フィルター,面積フィルターの最適値(この場合、画像フィルターの最適値としては、図6で説明した最適画像フィルターの設定処理によって設定された最適画像フィルターが設定され、面積フィルターの最適値としては、図8で説明した最適面積フィルターの設定処理によって設定された最適面積フィルターが設定されている)とを、ネットワーク接続されているSEM式外観検査装置1の制御部6に転送し、SEM式外観検査装置検査装置1に、この選択された明るさ閾値の設定値、画像フィルター,面積フィルターを用いた演算処理を実行させる。
その結果、図7で説明した仮明るさ閾値の設定処理の場合と同様にして、EWS60は、図9に示した最適明るさ閾値の設定処理の場合は、設定された明るさ閾値毎に(ステップS902)、SEM式外観検査装置1の演算処理の結果としての欠陥部の座標リスト等の欠陥ファイルを取得し(ステップS903)、基準欠陥ファイルとの結果比較処理によって、実欠陥検出失敗個数A1,ノイズ個数A2,新規欠陥個数A3を取得し(ステップS904)、新規欠陥部があるか否かの確認を行い(ステップS905)、新規欠陥部がある場合(A3≠0)は、新規に検出された欠陥のみの欠陥分類処理を行う(ステップS906)。
そして、EWS60では、ステップS901で設定された上・下限値の範囲内でステップ数に基づいて選択された明るさ閾値全てについて、上述したステップS902〜ステップS906の処理を行ったならば、それぞれの明るさ閾値同士で、実欠陥検出失敗個数A1、及びノイズ個数A2を相互比較し、その結果からノイズ個数A2が少なく、かつ実欠陥検出失敗個数A1が少なくて検出できる実欠陥数が多い明るさ閾値を、最適設定の明るさ閾値として選択された画像フィルターの中から選定する(ステップS907)。
その上で、EWS60では、これら詳述した図5のステップS510〜S513で示した一連の自動処理からなる画像フィルター,明るさ閾値,面積フィルターの最適化処理によって設定され、記憶装置62に記憶されている最適画像フィルター,最適明るさ閾値,最適面積フィルターを、ネットワーク接続されているSEM式外観検査装置1の制御部6に転送し、SEM式外観検査装置検査装置1の画像処理部5における明るさ補正部38に最適画像フィルターを、ダイ比較欠陥検出部46,セル比較欠陥検出部47それぞれに最適明るさ閾値及び最適面積フィルターを設定して、欠陥パラメータの最適化を完了する(ステップS908)。
したがって、上記説明したように、本実施の形態による電子線式パターン検査装置1、及びその検査条件設定方法によれば、画像フィルター,明るさ閾値,面積フィルターそれぞれについて、設定者はこれらについての初期値を適宜設定し、この初期値を用いた検査で検出された欠陥部について実欠陥部若しくはノイズの欠陥分類を1回行うだけで、最適明るさ閾値,最適面積フィルターを自動的に選定することができ、短時間でかつ容易に、人為的バラツキの無い、最適な検査条件を設定することができる。
以上、本発明の一実施の形態について説明したが、本発明の実施の形態は上記説明した実施の形態に限定されるものではなく、具体的な構成及び処理については、種々の変形例が可能である。
1…SEM式外観検査装置、2…検査室、3…電子光学系装置、4…光学顕微鏡部、5…画像処理部、6…制御部、7…二次電子検出部、8…試料室、9…試料、10…電子銃、11…引出電極、12…コンデンサレンズ、13…ブランキング偏向器、14…絞り、15…走査偏向器、16…対物レンズ、17…反射板、18…ExB偏向器、20…二次電子検出器、21…プリアンプ、22…AD変換器、23…光変換手段、24…光伝送手段、25…電気変換手段、26…試料台、27…Xステージ、28…Yステージ、29…回転ステージ、30…位置モニタ測長器、31…試料高さ測定器、32…白色光源、33…光学レンズ、34…CCDカメラ、35…補正制御回路、36…走査信号発生器、37…対物レンズ電源、38…明るさ補正部、39…第1制御部、40…第1ダイ画像記憶部、41…第2ダイ画像記憶部、42…第3ダイ画像記憶部、43…セル画像記憶部、44…第2制御部、45…ダイ比較位置ズレ検出部、46…ダイ比較欠陥検出部、47…セル比較欠陥検出部、48…欠陥種類自動判別部、49…モニタ、60…EWS
Claims (5)
- 試料へ電子ビームを照射し発生する二次荷電粒子を検出する電子光学系装置と、
予め設定された検査条件に基づいて、該電子光学系装置によって検出された二次荷電粒子の検出信号により当該電子ビームを照射した前記試料の画像を生成し、当該試料の画像上から当該試料に生じた欠陥部を検出する画像処理部と
を備えた電子線式パターン検査装置であって、
予め任意に設定された検査条件によって当該試料に生じた実欠陥部及びノイズが記憶されている基準欠陥ファイルと、
前記検査条件の変更を繰り返し行う検査条件自動変更手段と、
当該自動変更された検査条件に基づいて前記画像処理部により検出された欠陥部を取得する欠陥部取得手段と、
該欠陥部取得手段によって取得された前記画像処理部によって検出された検査条件別の欠陥部を、前記基準欠陥ファイルに記憶されている実欠陥部及びノイズと照合し、当該照合結果に基づいて前記検査条件自動変更手段によって変更された検査条件の中から最適な検査条件を選択する最適検査条件設定手段と
を備えていることを特徴とする電子線式パターン検査装置。 - 前記検査条件は、画像を生成した後のノイズ除去及び欠陥コントラスト強調を目的に使用する画像フィルター、隣接する2つの画像領域を比較した後に残存する画素明るさ差ノイズの除去を使用する明るさ閾値、又は明るさ閾値により2値化された画像に残存するノイズの除去を行う面積フィルターの中の少なくともいずれか一つであることを特徴とする請求項1記載の電子線式パターン検査装置。
- 前記検査条件は、画像を生成した後のノイズ除去及び欠陥コントラスト強調を目的に使用する画像フィルター、隣接する2つの画像領域を比較した後に残存する画素明るさ差ノイズの除去を使用する明るさ閾値、又は明るさ閾値により2値化された画像に残存するノイズの除去を行う面積フィルターの中の複数であり、
前記検査条件自動変更手段は、前記画像フィルター、明るさ閾値、又は面積フィルターの中の一の個別条件について繰り返し変更を行った後、前記画像フィルター、明るさ閾値、又は面積フィルターの中の個別条件について繰り返し変更を行うことを特徴とする請求項1記載の電子線式パターン検査装置。 - 予め設定された検査条件に基づいて、電子ビームを照射した前記試料の画像を生成し、当該試料の画像上から当該試料に生じた欠陥部を検出する電子線式パターン検査装置の検査条件設定方法であって、
予め任意に設定された検査条件によって前記試料に生じた実欠陥部及びノイズが記憶されている基準欠陥ファイルを生成する基準欠陥ファイル生成工程、
前記検査条件の自動変更を行う検査条件変更工程、
該検査条件変更工程によって検査条件が自動変更される都度、変更された検査条件に基づいて、電子ビームを照射して生成された前記試料の画像上から当該試料に生じた欠陥部を検出して取得する欠陥部取得工程、
該欠陥部取得工程によって検出された検査条件別の欠陥部を、前記基準欠陥ファイル生成工程で生成された基準欠陥ファイルに記憶されている前記試料に生じた実欠陥部及びノイズと照合し、当該照合結果に基づいて前記検査条件自動変更工程によって変更された検査条件の中から最適な検査条件を選択する最適検査条件設定工程
を有することを特徴とする電子線式パターン検査装置の検査条件設定方法。 - コンピュータに、
予め設定された検査条件に基づいて、電子ビームを照射した前記試料の画像を生成し、当該試料の画像上から当該試料に生じた欠陥部を検出する電子線式パターン検査装置の検査条件設定方法における前記検査条件の自動変更を行う検査条件変更工程、
該検査条件変更工程によって検査条件が自動変更される都度、変更された検査条件に基づいて、電子ビームを照射して生成された前記試料の画像上から当該試料に生じた欠陥部を検出して取得する欠陥部取得工程、
該欠陥部取得工程によって検出された検査条件別の欠陥部を、予め任意に設定された検査条件によって前記試料に生じた実欠陥部及びノイズが記憶されている基準欠陥ファイルの実欠陥部及びノイズと照合し、当該照合結果に基づいて前記検査条件自動変更工程によって変更された検査条件の中から最適な検査条件を選択する最適検査条件設定工程
を実行させるためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006053164A JP2007234778A (ja) | 2006-02-28 | 2006-02-28 | 電子線式パターン検査装置、その検査条件設定方法、及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006053164A JP2007234778A (ja) | 2006-02-28 | 2006-02-28 | 電子線式パターン検査装置、その検査条件設定方法、及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007234778A true JP2007234778A (ja) | 2007-09-13 |
Family
ID=38555076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006053164A Pending JP2007234778A (ja) | 2006-02-28 | 2006-02-28 | 電子線式パターン検査装置、その検査条件設定方法、及びプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007234778A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013074221A (ja) * | 2011-09-29 | 2013-04-22 | Hitachi High-Technologies Corp | 画像分類支援を行う荷電粒子線装置 |
KR101764658B1 (ko) * | 2012-05-11 | 2017-08-03 | 가부시키가이샤 히다치 하이테크놀로지즈 | 결함 해석 지원 장치, 결함 해석 지원 장치에 의해 실행되는 프로그램 및 결함 해석 시스템 |
-
2006
- 2006-02-28 JP JP2006053164A patent/JP2007234778A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013074221A (ja) * | 2011-09-29 | 2013-04-22 | Hitachi High-Technologies Corp | 画像分類支援を行う荷電粒子線装置 |
KR101764658B1 (ko) * | 2012-05-11 | 2017-08-03 | 가부시키가이샤 히다치 하이테크놀로지즈 | 결함 해석 지원 장치, 결함 해석 지원 장치에 의해 실행되는 프로그램 및 결함 해석 시스템 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8036447B2 (en) | Inspection apparatus for inspecting patterns of a substrate | |
JP4728144B2 (ja) | 回路パターンの検査装置 | |
JP5292043B2 (ja) | 欠陥観察装置及び欠陥観察方法 | |
JP4685599B2 (ja) | 回路パターンの検査装置 | |
JP2006332296A (ja) | 電子ビーム応用回路パターン検査における焦点補正方法 | |
KR20130007542A (ko) | Sem을 이용한 결함 검사 방법 및 장치 | |
JP5390215B2 (ja) | 欠陥観察方法および欠陥観察装置 | |
JP2011137901A (ja) | パターン計測条件設定装置 | |
JP6088803B2 (ja) | 画像処理装置、自己組織化リソグラフィ技術によるパターン生成方法、及びコンピュータープログラム | |
JP6145133B2 (ja) | 荷電粒子線装置 | |
JP2000161948A (ja) | 回路パターン検査装置、および回路パターン検査方法 | |
JP4041630B2 (ja) | 回路パターンの検査装置および検査方法 | |
JP3836735B2 (ja) | 回路パターンの検査装置 | |
JP4177375B2 (ja) | 回路パターンの検査方法及び検査装置 | |
JP2006216611A (ja) | パターン検査装置 | |
JP2005181347A (ja) | 回路パターンの検査装置、検査システム、および検査方法 | |
JP2011179819A (ja) | パターン測定方法及びコンピュータプログラム | |
JP2007234778A (ja) | 電子線式パターン検査装置、その検査条件設定方法、及びプログラム | |
JP3896996B2 (ja) | 回路パターンの検査装置および検査方法 | |
JP2000162143A (ja) | 回路パターンの検査装置および検査方法 | |
JP3765988B2 (ja) | 電子線式外観検査装置 | |
KR20190086730A (ko) | 하전 입자선 장치 | |
JP6207893B2 (ja) | 試料観察装置用のテンプレート作成装置 | |
JPH11160402A (ja) | 回路パターンの検査方法及び検査装置 | |
JP2007281500A (ja) | 回路パターンの検査装置、検査システム、および検査方法 |