JP2014128862A - Disc-shaped carrier - Google Patents

Disc-shaped carrier Download PDF

Info

Publication number
JP2014128862A
JP2014128862A JP2012289084A JP2012289084A JP2014128862A JP 2014128862 A JP2014128862 A JP 2014128862A JP 2012289084 A JP2012289084 A JP 2012289084A JP 2012289084 A JP2012289084 A JP 2012289084A JP 2014128862 A JP2014128862 A JP 2014128862A
Authority
JP
Japan
Prior art keywords
carrier
shaped carrier
disk
metal
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012289084A
Other languages
Japanese (ja)
Other versions
JP6206942B2 (en
Inventor
Shuji Iwata
修司 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012289084A priority Critical patent/JP6206942B2/en
Publication of JP2014128862A publication Critical patent/JP2014128862A/en
Application granted granted Critical
Publication of JP6206942B2 publication Critical patent/JP6206942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a disc-shaped carrier which has high rigidity, a long lifetime and high dimensional accuracy and is low-cost and light.SOLUTION: Within a disc-shaped carrier, a reinforcing material for enhancing rigidity is provided, and exposed parts of the reinforcing material are eliminated by covering the reinforcing material with a hard resin material. The shape of the reinforcing material is such as not to be superimposed on a hole for holding a to-be-abraded object arranged in the disc-shaped carrier or a hole for abrasive grains into which abrasive grains for abrading the to-be-abraded object are poured. The structure prevents problems of occurrence of scratches in the surface of a semiconductor wafer and metallic contamination.

Description

本発明は、被研磨物を研磨する工程において、半導体ウエハ,ハードディスク,液晶ディスプレイ用ガラスなどの被研磨物を保持する円盤状キャリアに関するものである。   The present invention relates to a disk-shaped carrier for holding an object to be polished such as a semiconductor wafer, a hard disk, and a liquid crystal display glass in the step of polishing the object to be polished.

半導体ウエハ(ウエハ)の両面を研磨する研磨装置として、研磨装置に形成されている外周歯車と中央歯車に、研磨装置上に置かれる円盤状キャリアの外周に設けられる外周歯車を噛合せ、そして円盤状キャリアに設けられたウエハ保持用のホール内に挿入したウエハを上定盤と下定盤によって上下に挟み込み、円盤状キャリアを自転と同時に公転させるようにしてウエハの上下面を同時に研磨する装置がある。
ここで、円盤状キャリアは、一般的には複数のウエハ保持用のホールと、ウエハを研磨するために研磨用砥粒(スラリー)を上定盤と下定盤の間に流し込むための複数のホールが設けられた構造となっている。
As a polishing apparatus for polishing both surfaces of a semiconductor wafer (wafer), an outer peripheral gear and a central gear formed in the polishing apparatus are meshed with an outer peripheral gear provided on the outer periphery of a disk-shaped carrier placed on the polishing apparatus, and a disk An apparatus that sandwiches a wafer inserted into a wafer holding hole provided in a carrier in a vertical direction between an upper surface plate and a lower surface plate and polishes the upper and lower surfaces of the wafer simultaneously so that the disk carrier revolves simultaneously with rotation. is there.
Here, the disc-shaped carrier generally has a plurality of holes for holding a wafer and a plurality of holes for pouring abrasive grains (slurry) between the upper surface plate and the lower surface plate to polish the wafer. The structure is provided.

円盤状キャリアの一つとして、熱硬化性樹脂含浸積層板からなる円板を加工したものがある。熱硬化性樹脂含浸積層板としては、ガラス繊維織布基材にエポキシ樹脂を含浸させた積層板、アラミド繊維不織布基材にエポキシ樹脂を含浸させた積層板、綿布基材にフェノール樹脂を含浸させた積層板などがある。   As one of the disk-shaped carriers, there is one obtained by processing a disk made of a thermosetting resin-impregnated laminated board. Thermosetting resin-impregnated laminates include laminates with glass fiber woven fabric impregnated with epoxy resin, laminates with aramid fiber nonwoven fabric impregnated with epoxy resin, and cotton fabric substrate with impregnated phenol resin. There is a laminated board.

研磨用砥粒による研磨は、二酸化ケイ素(SiO),酸化アルミニウム(Al),酸化セシウム(CeO)などの微粒子を分散した水系研磨液を円盤状キャリアの表面上に供給しながら、円盤状キャリアを回転するのと同時にウエハの表面上に配置した研磨パッドを相対的に回転させてウエハの表面を研磨する。 Polishing with abrasive grains is performed while supplying an aqueous polishing liquid in which fine particles such as silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and cesium oxide (CeO 2 ) are dispersed onto the surface of the disk-shaped carrier. Simultaneously with the rotation of the disk-shaped carrier, the polishing pad disposed on the surface of the wafer is relatively rotated to polish the surface of the wafer.

熱硬化性樹脂含浸積層板より構成される円盤状キャリアは、積層体を構成する樹脂自体は硬いものの、積層体界面での接着性が比較的低いため、研磨時にガラス繊維織布基材にエポキシ樹脂を含浸させた積層板ではガラス繊維織布基材とエポキシ樹脂の界面剥離が発生したり、研磨パッドとの摩擦により円盤状キャリアのエポキシ樹脂がすり減り、長期にわたって同一の円盤状キャリアを使用できなくなるという欠点がある。   A disk-shaped carrier composed of a thermosetting resin-impregnated laminate has a relatively low adhesiveness at the interface of the laminate, although the resin constituting the laminate itself is hard. In laminated sheets impregnated with resin, interfacial delamination between the glass fiber woven fabric substrate and the epoxy resin occurs, or the epoxy resin of the disk-shaped carrier is worn away by friction with the polishing pad, and the same disk-shaped carrier can be used for a long time. There is a drawback of disappearing.

このような欠点を改善するために、ステンレス、チタン、鉄、アルミニウムなどの金属材を用いて構成する円盤状キャリアがある。金属製円盤状キャリアは、樹脂で構成する円盤状キャリアよりも硬くて強固であるため、研磨パッドとの摩擦により金属がすり減ることが少なく、長期にわたって同一の円盤状キャリアを使用できる。
しかし、金属露出部から微量ながら金属微粒子が発生し、この金属微粒子がウエハの研磨面に侵入すると、ウエハ表面にスクラッチ傷を発生させたり、金属汚染を生じたりする問題が発生する。
In order to improve such a defect, there is a disk-shaped carrier configured using a metal material such as stainless steel, titanium, iron, or aluminum. Since the metal disk-shaped carrier is harder and stronger than the disk-shaped carrier made of resin, the metal is less worn by friction with the polishing pad, and the same disk-shaped carrier can be used over a long period of time.
However, when a minute amount of metal fine particles are generated from the exposed metal portion and this metal fine particle enters the polished surface of the wafer, there arises a problem that scratches are generated on the wafer surface or metal contamination occurs.

この欠点を解決するために、硬質の樹脂材、例えば、耐摩耗性、耐疲労性、耐薬品性などに優れたポリエーテルエーテルケトン(PEEK)を用いた円盤状キャリアが考えられるが、円盤状キャリアが薄い場合、あるいは大形化になってくるとPEEK材の剛性力が金属のように大きくないため、研磨中において円盤状キャリアの回転により円盤状キャリアが撓んだり、さらに撓みが大きくなってくるとクラッシュに至ることが懸念される。   In order to solve this drawback, a disk-shaped carrier using a hard resin material, for example, polyetheretherketone (PEEK) excellent in wear resistance, fatigue resistance, chemical resistance, etc. can be considered. When the carrier is thin or when it becomes larger, the rigidity of the PEEK material is not as great as that of metal, so the disk-like carrier is bent by the rotation of the disk-like carrier during polishing, and the deflection is further increased. It is feared that it will cause a crash.

このように、金属製円盤状キャリアでは金属微粒子によるウエハへのスクラッチ傷や汚染が発生する問題に対し、これを防止するために円盤状キャリアに硬質の樹脂材であるPEEK材を用いても、薄型化、大形化になってくると撓み、クラッシュの発生という問題が生じる。   As described above, in the case of a metal disk-shaped carrier, even if a PEEK material that is a hard resin material is used for the disk-shaped carrier in order to prevent the problem that scratches and contamination on the wafer due to metal fine particles occur, When the thickness is reduced and the size is increased, there is a problem of bending and crashing.

このような欠点を解決する方法として、特許文献1では、基材となる金属製キャリアを樹脂等の硬度の低い材料でコーティングして構成する、両面研磨用キャリアが報告されている。特許文献1のような構成の場合、基材とする金属キャリアを予め作製しておく必要があるが、金属キャリアはウエハを研磨する上で高い寸法精度が要求されることから、金属キャリアの外周歯車の加工精度、ウエハ保持用のホールやスラリーを上定盤と下定盤の間に流し込むためのホールの位置精度、金属キャリアの厚さばらつきが高い精度で確保されなければならない。   As a method for solving such a drawback, Patent Document 1 reports a double-side polishing carrier in which a metal carrier serving as a base material is coated with a material having low hardness such as a resin. In the case of the configuration as in Patent Document 1, it is necessary to prepare a metal carrier as a base material in advance, but since the metal carrier requires high dimensional accuracy in polishing the wafer, the outer periphery of the metal carrier The processing accuracy of the gears, the positional accuracy of the holes for pouring the holes and slurry for holding the wafer between the upper surface plate and the lower surface plate, and the thickness variation of the metal carrier must be ensured with high accuracy.

このような高い加工精度が要求される金属キャリアに樹脂等の硬度の低い材料でコーティングすると、コーティングされた金属キャリアの外周歯車の加工精度、各ホールの位置精度、金属キャリアの厚さばらつき精度が大きく低下する。このためコーティングされた金属キャリアの寸法精度を金属キャリアだけの加工精度に戻すためには、再度高精度な加工作業が必要となる。また、予め精度の高い金属キャリアを作製しておく必要があることから、最終的な金属キャリアの価格が高くなる可能性があり、また、樹脂キャリアに比べて金属キャリアを基材としているので重量も重たくなる。
このように特許文献1による構成のウエハ研磨用の円盤状キャリアは、寸法精度の問題、価格面、重量面の問題がある。
If such a metal carrier that requires high processing accuracy is coated with a low-hardness material such as resin, the processing accuracy of the outer peripheral gear of the coated metal carrier, the position accuracy of each hole, and the thickness variation accuracy of the metal carrier are increased. Decrease significantly. For this reason, in order to return the dimensional accuracy of the coated metal carrier to the processing accuracy of the metal carrier alone, a highly accurate processing operation is required again. In addition, since it is necessary to prepare a highly accurate metal carrier in advance, there is a possibility that the price of the final metal carrier may be high, and since the metal carrier is used as the base material compared to the resin carrier, the weight Also gets heavier.
As described above, the disk-shaped carrier for polishing a wafer according to Patent Document 1 has problems of dimensional accuracy, price, and weight.

また、特許文献2では、金属微粒子の汚染を改善する方法が報告されている。
ウエハの両面を研磨する研磨装置は、研磨装置に形成されている外周歯車と中央歯車に、研磨装置上に置かれた円盤状キャリアの外周に形成する外周歯車を噛合せて、円盤状キャリアを自転と同時に公転させるようにしてウエハの上下面を同時に研磨する。通常、研磨装置の外周歯車と中央歯車は金属材にて構成されているところから、特許文献2では、これらの歯車部周辺を硬質の樹脂材にて形成したり、あるいは歯車部の表面を硬質の樹脂被覆材で覆ったりして、金属材が樹脂キャリアの外周歯車と直接接触しないようにしてウエハへの金属微粒子による汚染を防止するとしている。
しかし、特許文献2では、円盤状キャリアが金属製のものでは研磨パッドがあたる部分は金属が露出しているので、金属の露出部から金属微粒子が発生し、ウエハ表面にスクラッチ傷が発生したり、金属汚染を生じさせたりする問題がある。
Patent Document 2 reports a method for improving the contamination of metal fine particles.
A polishing apparatus for polishing both surfaces of a wafer meshes the outer peripheral gear formed on the polishing apparatus with the outer peripheral gear and the central gear on the outer periphery of the disk-shaped carrier placed on the polishing apparatus. The upper and lower surfaces of the wafer are polished simultaneously so as to revolve simultaneously with the rotation. Normally, the outer peripheral gear and the central gear of the polishing apparatus are made of a metal material. In Patent Document 2, the periphery of these gear parts is formed of a hard resin material, or the surface of the gear part is hard. In other words, the metal material is not directly in contact with the outer peripheral gear of the resin carrier so as to prevent contamination of the wafer with metal fine particles.
However, in Patent Document 2, when the disk-shaped carrier is made of metal, the metal is exposed at the portion where the polishing pad hits, so that metal fine particles are generated from the exposed portion of the metal, and scratches are generated on the wafer surface. There is a problem of causing metal contamination.

また、特許文献3では、金属面にPEEK材の樹脂でコーティングする構造が提案されている。特許文献3で提案している構造は、金属面に樹脂をコーティングするとしているので、仮に金属キャリアに適用した場合、金属面の露出がなくなり金属微粒子の発生を防ぐことができるので、金属微粒子によるウエハの信頼性低下という問題は解決できる。
しかし、金属キャリアの表面に樹脂をコーティングして再度、寸法精度の高い金属キャリアを作製する必要が生じるので、特許文献1の場合と同じような問題が生じる。
Patent Document 3 proposes a structure in which a metal surface is coated with a PEEK material resin. The structure proposed in Patent Document 3 is such that the resin is coated on the metal surface. Therefore, when applied to a metal carrier, the metal surface is not exposed and the generation of metal particles can be prevented. The problem of reduced wafer reliability can be solved.
However, since it becomes necessary to coat the surface of the metal carrier with a resin again to produce a metal carrier with high dimensional accuracy, the same problem as in Patent Document 1 arises.

すなわち、特許文献3の方法においても、基材とする金属キャリアを予め作製しておく必要があるが、金属キャリアはウエハを研磨する上で高い寸法精度が要求されることから、金属キャリアの外周歯車の加工精度、ウエハ保持用のホールやスラリーを上定盤と下定盤の間に流し込むためのホールの位置精度、金属キャリアの厚さばらつきが高い精度で確保されなければならない、このような高い加工精度が要求される金属キャリアに樹脂材料でコーティングすると、コーティングされた金属キャリアの外周歯車の加工精度、各ホールの位置精度、金属キャリアの厚さばらつき精度が大きく低下する。   That is, in the method of Patent Document 3, it is necessary to prepare a metal carrier as a base material in advance, but since the metal carrier requires high dimensional accuracy in polishing the wafer, the outer circumference of the metal carrier is required. Gear processing accuracy, hole holding hole and slurry position accuracy for pouring slurry between upper and lower surface plates, metal carrier thickness variation must be ensured with high accuracy, such high When a metal carrier requiring processing accuracy is coated with a resin material, the processing accuracy of the outer peripheral gear of the coated metal carrier, the position accuracy of each hole, and the thickness variation accuracy of the metal carrier are greatly reduced.

このため、コーティングされた金属キャリアの寸法精度を金属キャリアだけの加工精度に戻すためには、再度高精度な加工作業が必要となる。また、予め精度の高い金属キャリアを作製しておく必要があることから、最終的な樹脂がコーティングされた金属キャリアの価格が高くなる可能性があり、また、樹脂キャリアに比べて金属キャリアを基材としているので重量も重たくなる。
このように特許文献3による構造で、仮にウエハ研磨用の円盤状キャリアに用いた場合でも、寸法精度の問題、価格面、重量面の問題がある。
For this reason, in order to return the dimensional accuracy of the coated metal carrier to the processing accuracy of the metal carrier alone, a highly accurate processing operation is required again. In addition, since it is necessary to prepare a metal carrier with high accuracy in advance, there is a possibility that the price of the metal carrier coated with the final resin may increase, and the metal carrier is based on the metal carrier compared to the resin carrier. Because it is made of wood, it becomes heavy.
Thus, even when the structure according to Patent Document 3 is used for a disk-shaped carrier for wafer polishing, there are problems of dimensional accuracy, price, and weight.

実開昭58−4349号公報Japanese Utility Model Publication No. 58-4349 特開平9−254026号公報Japanese Patent Laid-Open No. 9-254026 特許第4825001号公報Japanese Patent No. 48250001

樹脂をベースとした積層体で構成する円盤状キャリアでは、樹脂自体は硬いものの、積層体界面での接着性が比較的低いため研磨時に積層体界面で剥離したり、樹脂自体の破壊・摩耗が起こりやすい。また、ウエハを研磨する際に、研磨パッドとの摩擦により円盤状キャリアの樹脂がすり減り、長期にわたって同一の円盤状キャリアを使用できなくなるという欠点がある。これらの欠点を改善するために金属材を用いた金属製円盤状キャリアがある。   In a disk-shaped carrier composed of a resin-based laminate, the resin itself is hard, but the adhesiveness at the laminate interface is relatively low, so that it peels off at the laminate interface during polishing, and the resin itself breaks or wears. It is easy to happen. Further, when the wafer is polished, there is a drawback that the resin of the disk-shaped carrier is worn by friction with the polishing pad, and the same disk-shaped carrier cannot be used for a long time. In order to improve these drawbacks, there is a metal disc carrier using a metal material.

金属製円盤状キャリアは、硬くて強固であるため研磨パッドとの摩擦により金属がすり減ることが少なく長期にわたって使用できるものの、金属露出部から微量ながら金属微粒子が発生し、この金属微粒子がウエハの研磨面に侵入すると、ウエハ表面にスクラッチ傷が発生したり、金属汚染を生じさせたりする問題がある。   The metal disk carrier is hard and strong, so that it can be used for a long period of time with little abrasion of the metal due to friction with the polishing pad. However, a small amount of metal particles are generated from the exposed metal part, and the metal particles are polished on the wafer. When entering the surface, there are problems that scratches are generated on the wafer surface and metal contamination occurs.

この問題を改善する一方法として硬質の樹脂材を用いる方法があるが、円盤状キャリアが薄い場合、あるいは大形化になってくると樹脂材の剛性力が金属のように大きくないため、研磨中において円盤状キャリアの回転により円盤状キャリアが撓んだり、さらに撓みが大きくなってくるとクラッシュに至ることが懸念される。   One method to solve this problem is to use a hard resin material. However, if the disk-shaped carrier is thin or if it becomes larger, the rigidity of the resin material is not as great as that of metal. If the disk-shaped carrier is bent by the rotation of the disk-shaped carrier, or if the bending is further increased, a crash may occur.

この欠点をなくすために金属面に樹脂をコーティングした円盤状キャリアがあるが、高精度な寸法の円盤状キャリアの確保が難しいことや、価格面や重量面での課題が残る。そこで、これらの問題が解決できる円盤状キャリアが望まれていた。
上記状況に鑑みて、本発明は、高剛性、長寿命、高寸法精度であり、かつ、低価格、軽重量の円盤状キャリアを提供することを目的とする。
In order to eliminate this defect, there is a disk-shaped carrier in which a metal surface is coated with a resin, but it is difficult to secure a disk-shaped carrier with a high precision dimension, and there are still problems in price and weight. Therefore, a disc-shaped carrier that can solve these problems has been desired.
In view of the above situation, an object of the present invention is to provide a disc-shaped carrier having high rigidity, long life, high dimensional accuracy, low cost and light weight.

上記課題を解決すべく、本発明の円盤状キャリアは、被研磨物を保持する円盤状キャリアであって、円盤状キャリアは、内部に剛性を高めるための無機材からなる補強材が設けられており、該補強材は、外部を硬質の樹脂材で覆われ露出部を無くした構造を呈し、かつ、形状が円盤状キャリアに設けられる被研磨物保持用ホールと、被研磨物を研磨するために研磨用砥粒を流し込むための研磨砥粒用ホールの位置に重ならない形状である構成とされる。
かかる構成によれば、補強材が円盤状キャリアの大きさより小さく、かつ被研磨物用ホールやスラリーを上定盤と下定盤の間に流し込むための研磨砥粒用ホールの位置と重ならなければ任意な形状で良く、そのために高精度な加工を必要としない。
In order to solve the above problems, the disk-shaped carrier of the present invention is a disk-shaped carrier for holding an object to be polished, and the disk-shaped carrier is provided with a reinforcing material made of an inorganic material for increasing rigidity. The reinforcing material has a structure in which the outside is covered with a hard resin material and the exposed portion is eliminated, and the object-holding hole provided in the disk-shaped carrier is polished, and the object to be polished is polished. The configuration is such that the shape does not overlap with the position of the polishing abrasive hole for pouring the polishing abrasive grain.
According to such a configuration, the reinforcing material must be smaller than the size of the disk-shaped carrier and overlap with the position of the abrasive grain hole for pouring the hole or slurry to be polished between the upper surface plate and the lower surface plate. Arbitrary shapes are acceptable, and high-precision machining is not required for this purpose.

したがって補強材を簡単な切削加工やプレス加工のようなもので作製することができる。このように作製された補強材に長寿命の硬質な樹脂材で覆った後、円盤状キャリアに要求される高精度加工を施すことによって、金属汚染が防止され、高剛性、長寿命、高寸法精度であり、かつ、低価格、軽重量が実現できる。   Therefore, the reinforcing material can be produced by simple cutting or pressing. After covering the reinforcing material made in this way with a hard resin material with a long service life, metal contamination is prevented by applying the high-precision processing required for the disk-shaped carrier, resulting in high rigidity, long service life, and high dimensions. High accuracy, low price and light weight.

また、本発明の円盤状キャリアでは、厚さが略一定で、形状がシート状あるいはメッシュ状である構成がより好ましい。かかる構成であれば、円盤状キャリアの剛性を損なわなくて、長寿命であり、加工精度が高く、低価格、軽重量の円盤状キャリアが提供できる。   Moreover, in the disk-shaped carrier of the present invention, a configuration in which the thickness is substantially constant and the shape is a sheet shape or a mesh shape is more preferable. With such a configuration, it is possible to provide a disk-shaped carrier having a long life, high processing accuracy, low cost and light weight without impairing the rigidity of the disk-shaped carrier.

さらに、本発明の円盤状キャリアでは、硬質の樹脂材として、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリフェニレンサルファイド(PPS)、フッ素樹脂(PTFE)のそれぞれにおける単体材料、またはこれらの複合材料のいずれかであること、ならびに無機材からなる補強材がステンレス、チタン、アルミニウム、鉄、セラミック、カーボン繊維体、ガラス繊維体のいずれかであることが更に好ましい。円盤状キャリアの内部に埋め込まれている無機材からなる補強材が長期にわたって露出することがなく、信頼性の高いウエハを得ることができる。   Furthermore, in the disk-shaped carrier of the present invention, as a hard resin material, a single material in each of polyether ether ketone (PEEK), polyether ketone (PEK), polyphenylene sulfide (PPS), and fluororesin (PTFE), or these More preferably, the composite material is any one of the above-mentioned composite materials, and the reinforcing material made of an inorganic material is any one of stainless steel, titanium, aluminum, iron, ceramic, carbon fiber body, and glass fiber body. A reinforcing material made of an inorganic material embedded in the disk-shaped carrier is not exposed over a long period of time, and a highly reliable wafer can be obtained.

本発明に係る円盤状キャリアによれば、高剛性、長寿命、高寸法精度、低価格、軽重量を実現できる。   The disk-shaped carrier according to the present invention can realize high rigidity, long life, high dimensional accuracy, low price, and light weight.

実施例1に係る本発明の円盤状キャリアであり、補強材との位置関係を示した図である。It is the disk-shaped carrier of this invention which concerns on Example 1, and is the figure which showed the positional relationship with a reinforcing material. 実施例1に係る補強材の平面図である。1 is a plan view of a reinforcing material according to Example 1. FIG. 実施例1に係る硬質樹脂材によって補強材が埋め込まれたキャリアシートを示す。The carrier sheet with which the reinforcing material was embedded with the hard resin material which concerns on Example 1 is shown. 実施例1に係る円盤状キャリアにおけるキャリアシートの位置関係を示した図である。3 is a diagram showing a positional relationship of carrier sheets in a disc-shaped carrier according to Example 1. FIG. 実施例1に係る円盤状キャリアの平面図である。1 is a plan view of a disk-shaped carrier according to Example 1. FIG.

以下、本発明の実施形態について、図面を参照しながら詳細に説明していく。
なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The scope of the present invention is not limited to the following examples and illustrated examples, and many changes and modifications can be made.

以下、図1〜図5を用いて本発明の実施形態について説明する。
図1は、実施例1の円盤状キャリア1であり、円盤状キャリア1の中に設けられている補強材5の位置関係を示した図である。 図1(1)は、平面図である。図1(2)は、図1(1)におけるA−A断面図である。
円盤状キャリア1の内部には剛性を高めるための無機材からなる補強材5が設けられており、硬質樹脂材6を用いて補強材5を覆うことによって補強材5の露出部を無くした構造となっている。円盤状キャリア1の外周部には外周歯車2が設けられており、研磨装置(図示しない)に形成されている外周歯車と中央歯車に噛合せることにより、被研磨物保持用ホール3に挿入した被研磨物を研磨装置の上定盤と下定盤によって上下に挟み込み、円盤状キャリア1を自転と同時に公転させるようにして被研磨物の上下面を同時に研磨する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing a positional relationship of a reinforcing member 5 provided in the disc-like carrier 1, which is the disc-like carrier 1 of the first embodiment. FIG. 1A is a plan view. FIG. 1B is a cross-sectional view taken along line AA in FIG.
A reinforcing material 5 made of an inorganic material for increasing rigidity is provided inside the disc-shaped carrier 1, and a structure in which the exposed portion of the reinforcing material 5 is eliminated by covering the reinforcing material 5 with a hard resin material 6. It has become. An outer peripheral gear 2 is provided on the outer peripheral portion of the disc-shaped carrier 1 and is inserted into the object holding hole 3 by meshing with an outer peripheral gear and a central gear formed in a polishing apparatus (not shown). The object to be polished is sandwiched between the upper surface plate and the lower surface plate of the polishing apparatus, and the upper and lower surfaces of the object to be polished are simultaneously polished so that the disk-shaped carrier 1 revolves simultaneously with rotation.

補強材5の形状は、円盤状キャリア1に設けられる被研磨物保持用ホール3と、被研磨物を研磨するために研磨用砥粒を流し込むための研磨砥粒用ホール4、およびその他の目的で設けられるホールの位置に重ならないような形状となっている。もし、補強材5の形状が被研磨物保持用ホール3と研磨砥粒用ホール4を横切るような形状となれば、円盤状キャリア1を加工、作製する工程において被研磨物保持用ホール3と研磨砥粒用ホール4の穴あけ加工後に、その断面部に補強材5が露出することになる。補強材5が露出すれば、被研磨物の研磨工程においてその露出部分から金属微粒子が発生し、金属微粒子に関わる問題が生じ被研磨物の信頼性が低下する。尚、補強材5の形状が被研磨物保持用ホール3と研磨砥粒用ホール4の位置に重ならなければ、補強材5の形状はいかなる形状であってもよい。ここで、補強材5を剛性が損なわれない程度にコンパクトにすることによって重量の軽い円盤状キャリア1が提供できる。   The shape of the reinforcing member 5 is such that the object-holding hole 3 provided in the disc-shaped carrier 1, the abrasive-grain hole 4 for pouring abrasive grains to polish the object to be polished, and other purposes. The shape is such that it does not overlap the position of the hole provided in. If the shape of the reinforcing member 5 is such that it crosses the workpiece holding hole 3 and the abrasive grain hole 4, the workpiece holding hole 3 and the disc-shaped carrier 1 are processed and manufactured. After the drilling of the abrasive grain hole 4, the reinforcing material 5 is exposed at the cross-section. If the reinforcing material 5 is exposed, metal fine particles are generated from the exposed portion in the polishing process of the object to be polished, and problems relating to the metal fine particles are generated, and the reliability of the object to be polished is lowered. The shape of the reinforcing material 5 may be any shape as long as the shape of the reinforcing material 5 does not overlap the positions of the workpiece holding hole 3 and the abrasive grain hole 4. Here, the disk-shaped carrier 1 with a light weight can be provided by making the reinforcing member 5 compact so as not to impair the rigidity.

図2は、実施例1の円盤状キャリア1に係る補強材5に関する図である。 図2(1)は、平面図である。図2(2)は、図2(1)におけるB−B断面図である。補強材5は、ステンレス、チタン、アルミニウム、鉄(フェライトとマルテンサイトによる複合組織鋼や炭素鋼も鉄の範疇とする)、セラミック、カーボン繊維体、ガラス繊維体のような剛性の大きい金属や非金属の無機材であり、シート状あるいはメッシュ状となっている。補強材5の厚さは円盤状キャリア1の厚さより薄ければいかなる厚さでもよいが、剛性を高めるためには100μm以上が好ましい。   FIG. 2 is a diagram relating to the reinforcing material 5 according to the disk-shaped carrier 1 of the first embodiment. FIG. 2A is a plan view. FIG. 2 (2) is a cross-sectional view taken along the line BB in FIG. 2 (1). Reinforcing material 5 is made of stainless steel, titanium, aluminum, iron (composite steel or carbon steel with ferrite and martensite is also in the category of iron), ceramic, carbon fiber body, non-rigid metal such as glass fiber body It is a metallic inorganic material and is in the form of a sheet or mesh. The thickness of the reinforcing material 5 may be any thickness as long as it is thinner than the thickness of the disk-shaped carrier 1, but is preferably 100 μm or more in order to increase the rigidity.

補強材5の形状は、円盤状キャリア1に設けられる被研磨物保持用ホール3と、研磨砥粒用ホール4の位置に重ならない形状であれば任意な形状でよいため、特別に高精度に加工する必要がなく簡単な切削加工やプレス加工のようなもので作製することができる。もし、この工程において切削加工やプレス加工によりバリや返りがある場合は、研磨処理してこれらを削除するのが好ましい。このように簡単な切削加工やプレス加工のようなもので作製できるので、補強材5の加工するための加工賃が安くでき、その分円盤状キャリアの価格を抑えることができる。   The shape of the reinforcing member 5 may be any shape as long as it does not overlap the positions of the object holding hole 3 and the abrasive grain hole 4 provided in the disc-shaped carrier 1, and thus has a particularly high accuracy. There is no need for processing, and it can be produced by simple cutting or pressing. If there are burrs or returns due to cutting or pressing in this step, it is preferable to remove these by polishing. Thus, since it can produce by things like simple cutting and press work, the processing cost for processing the reinforcing material 5 can be made cheap, and the price of the disk-shaped carrier can be restrained accordingly.

図3は、実施例1の円盤状キャリア1に係る硬質樹脂材6によって、補強材5がキャリアシート7の中央部に設けられた図である。キャリアシート7は、圧縮成形、フレーム溶射の加工方法などにより作製することができる。
圧縮成形方法において硬質樹脂材6にPEEK材を用いると、キャリアシート7の大きさに相当する金型に粉末やペレットのPEEK材を入れ、金型の縦・横方向及び厚さ方向の中心部に補強材5を埋め込み、金型とPEEK材をPEEK材の溶融温度以上に加熱すると共に、加熱時間を持続することによってPEEK材が溶融するので、溶融されたPEEK材は補強材5の隅々まで行きわたる。その後、金型を所定の時間をかけて冷却した後、金型よりキャリアシート7を取り出すことによって、硬くて強固なキャリアシート7を得ることができる。
FIG. 3 is a view in which the reinforcing material 5 is provided in the center portion of the carrier sheet 7 by the hard resin material 6 according to the disk-shaped carrier 1 of the first embodiment. The carrier sheet 7 can be produced by a compression molding method, a flame spraying method, or the like.
When a PEEK material is used for the hard resin material 6 in the compression molding method, a PEEK material of powder or pellets is put into a mold corresponding to the size of the carrier sheet 7, and the center of the mold in the vertical / horizontal direction and the thickness direction The reinforcing material 5 is embedded in the mold, and the mold and the PEEK material are heated to a temperature higher than the melting temperature of the PEEK material, and the PEEK material is melted by maintaining the heating time. Go up to. Then, after cooling a metal mold | die over predetermined time, the carrier sheet 7 can be taken out from a metal mold | die, and the hard and strong carrier sheet 7 can be obtained.

ここで、金型を冷却する際、補強材5と硬質樹脂材6の膨張係数の違いにより補強材5の界面に剥離が生じたり不具合が懸念される場合は、冷却時間を十分に取ったり、補強材5をメッシュ状にして硬質樹脂材6が補強材5を覆うような構造とすることによって膨張係数の違いによる剥離や不具合を改善、防止させることが望ましい。
フレーム溶射では、ガスと酸素の混合気を燃焼させることでPEEK粉末を溶かし、圧縮空気によりPEEK材の溶融粒子を加熱した補強材5の表面に高速に吹きかけ、PEEK材粒子を補強材5の表面に堆積させてキャリアシート7を得る方法である。まずキャリアシート7の大きさに相当する金型の内壁に、フレーム溶射によりPEEK材の溶融粒子を吹き付け、キャリアシート7の半面を作製する。続いて補強材5をその上に置き、再度PEEK材の溶融粒子を吹き付け、もう一方の半面を作製した後、所定の時間をかけて冷却、金型よりキャリアシート7を取り出すことによって、硬くて強固なキャリアシートを得ることができる。
Here, when cooling the mold, if the interface between the reinforcing material 5 is peeled off due to the difference in expansion coefficient between the reinforcing material 5 and the hard resin material 6 or there is a concern about the malfunction, sufficient cooling time is taken, It is desirable to improve and prevent peeling and problems due to the difference in expansion coefficient by forming the reinforcing material 5 in a mesh shape so that the hard resin material 6 covers the reinforcing material 5.
In flame spraying, PEEK powder is melted by burning a gas-oxygen mixture, and the PEEK material molten particles are heated at high speed onto the surface of the reinforcing material 5 heated by compressed air, and the PEEK material particles are sprayed onto the surface of the reinforcing material 5. The carrier sheet 7 is obtained by being deposited on the substrate. First, molten particles of PEEK material are sprayed onto the inner wall of the mold corresponding to the size of the carrier sheet 7 by flame spraying to produce a half surface of the carrier sheet 7. Subsequently, the reinforcing material 5 is placed thereon, the PEEK material is again sprayed with molten particles, the other half surface is produced, cooled over a predetermined time, and the carrier sheet 7 is taken out of the mold to be hard. A strong carrier sheet can be obtained.

このように作製されたキャリアシート7は表面が凸凹であったり、外形の縦横寸法が正確でない状態であるので、研削加工、研磨加工等により表面と外周壁を研磨、平坦化したり、外形寸法を正確に切断することによって、寸法精度の高いキャリアシート7を得る。また厚さに関しては更に研磨加工することによって、厚さばらつきのないキャリアシート7を得ることができる。   Since the surface of the carrier sheet 7 thus manufactured is uneven or the vertical and horizontal dimensions of the outer shape are not accurate, the surface and outer peripheral wall are polished and flattened by grinding, polishing, etc. By cutting accurately, the carrier sheet 7 with high dimensional accuracy is obtained. Further, the carrier sheet 7 having no thickness variation can be obtained by further polishing the thickness.

ここで、硬質樹脂材6にPEEK材の単体材料を用いて説明したが、PEK材、PPS材、PTFE材のいずれの単体材料であっても良いし、これらの複合材料であっても同様の効果が得られる。また、PEEK材、PEK材、PPS材、PTFE材のいずれかに、アルミナやジルコニウムなどのいずれか、または複数を添加して得ることができる複合材料を用いて、硬度や摩擦性などの性能的付加価値をつけてもよい。   Here, the hard resin material 6 has been described by using a single material of PEEK material, but any single material of PEK material, PPS material, and PTFE material may be used, and the same may be applied to these composite materials. An effect is obtained. In addition, using any composite material that can be obtained by adding one or more of alumina, zirconium, etc. to any of PEEK material, PEK material, PPS material, and PTFE material, performance such as hardness and friction You may add value.

図4は、実施例1の円盤状キャリア1のキャリアシート7における位置関係を示した図である。
補強材5は予め設定されたキャリアシート7の中央部に設けられているので、円盤状キャリア1の作製はキャリアシート7のたとえばコーナー部を基準にしてレーザーなどにより切削して行う。
FIG. 4 is a diagram showing a positional relationship in the carrier sheet 7 of the disc-shaped carrier 1 of the first embodiment.
Since the reinforcing member 5 is provided in the center of the carrier sheet 7 set in advance, the disc-shaped carrier 1 is manufactured by cutting with a laser or the like with reference to the corner portion of the carrier sheet 7, for example.

図5は、作製された実施例1に係る円盤状キャリア1の平面図である。
補強材5が埋め込まれたキャリアシート7をレーザー加工や旋盤加工によって円盤状キャリア1に仕上げられていくが、たとえば、炭酸ガスレーザーであればレーザーの熱により、硬質樹脂材6を溶融、切断して外周歯車2、被研磨物保持用ホール 3、研磨砥粒用ホール4を高精度の寸法で加工できる。これにより円盤状キャリア1は、高精度の寸法のものが得られる。
FIG. 5 is a plan view of the manufactured disc-shaped carrier 1 according to the first embodiment.
The carrier sheet 7 in which the reinforcing material 5 is embedded is finished into a disk-like carrier 1 by laser processing or lathe processing. For example, in the case of a carbon dioxide gas laser, the hard resin material 6 is melted and cut by the heat of the laser. Thus, the outer peripheral gear 2, the object holding hole 3, and the abrasive grain hole 4 can be machined with high precision. As a result, the disk-shaped carrier 1 is obtained with a highly accurate dimension.

このように、補強材5については簡単な切削加工やプレス加工のようなもので作製でき、しかも寸法精度が悪くてもキャリアシート7から円盤状キャリア1を作製する段階で、レーザー加工により高精度な加工を施せばよいので、寸法精度の高い円盤状キャリア1を得ることができると共に、一回の加工だけで高精度の円盤状キャリア1を得ることができるので加工賃を抑えることができ、その分、円盤状キャリア1の価格が安くなる。
さらに、補強材5の形状が被研磨物保持用ホール3と研磨砥粒用ホール4の位置に重ならない形状であれば、いかなる形状であっても良いので、大きさをコンパクトにすることによって重量の軽い円盤状キャリア1を得ることができる。
As described above, the reinforcing material 5 can be manufactured by simple cutting or pressing, and even when the dimensional accuracy is poor, the disk-shaped carrier 1 is manufactured from the carrier sheet 7 at a stage of high accuracy by laser processing. Therefore, it is possible to obtain a disc-shaped carrier 1 with high dimensional accuracy and to obtain a highly accurate disc-shaped carrier 1 with only one processing, so that the processing cost can be reduced. Accordingly, the price of the disk-shaped carrier 1 is reduced.
Furthermore, any shape can be used as long as the shape of the reinforcing material 5 does not overlap with the positions of the workpiece holding hole 3 and the abrasive grain hole 4, so that the weight can be reduced by making the size compact. Can be obtained.

円盤状キャリア1の剛性力の向上については、円盤状キャリア1の内部に剛性の高い補強材5を設けているので、円盤状キャリア1が薄型化、大形化になっても撓み、クラッシュの発生しない高剛性の円盤状キャリア1が提供できる。
また、PEEK材のような耐摩耗性、耐疲労性、耐薬品性のある硬質樹脂材6で補強材5を覆った構成としているので、被研磨物の金属汚染がなくなり、長期にわたって安定に研磨できる円盤状キャリア1が提供できる。
なお、図中、同一符号、同一記号は、同じ機能、同じ効果を示すものである。
Regarding the improvement of the rigidity of the disk-shaped carrier 1, since the highly rigid reinforcing material 5 is provided inside the disk-shaped carrier 1, the disk-shaped carrier 1 bends and crashes even when the disk-shaped carrier 1 becomes thin and large. A highly rigid disc-shaped carrier 1 that does not occur can be provided.
In addition, since the reinforcing material 5 is covered with a hard resin material 6 having wear resistance, fatigue resistance, and chemical resistance such as PEEK material, metal contamination of the object to be polished is eliminated, and stable polishing is performed over a long period of time. A disc-shaped carrier 1 that can be provided can be provided.
In the drawings, the same reference numerals and the same symbols indicate the same functions and the same effects.

本発明は、半導体ウエハの両面を研磨する研磨装置の円盤状キャリアとして有用である。   The present invention is useful as a disk-shaped carrier of a polishing apparatus for polishing both surfaces of a semiconductor wafer.

1 円盤状キャリア
2 外周歯車
3 被研磨物保持用ホール
4 研磨砥粒用ホール
5 補強材
6 硬質樹脂材
7 キャリアシート
1 Disc carrier
2 peripheral gear 3 hole for holding an object to be polished 4 hole for abrasive grain 5 reinforcing material 6 hard resin material 7 carrier sheet

Claims (3)

被研磨物を保持する円盤状キャリアであって、
該円盤状キャリアは、
内部に剛性を高めるための無機材からなる補強材が設けられており、
該補強材は、外部を硬質の樹脂材で覆われ露出部を無くした構造を呈し、かつ、形状が円盤状キャリアに設けられる被研磨物保持用ホールと、被研磨物を研磨するために研磨用砥粒を流し込むための研磨砥粒用ホールの位置に重ならない形状である、
ことを特徴とする円盤状キャリア。
A disc-shaped carrier for holding an object to be polished,
The disc carrier is
A reinforcing material made of inorganic material is provided inside to increase rigidity,
The reinforcing material has a structure in which the outside is covered with a hard resin material and the exposed portion is eliminated, and the object-holding hole provided in the disk-shaped carrier is polished to polish the object to be polished. It is a shape that does not overlap the position of the abrasive grain hole for pouring the abrasive grain for
Disc carrier characterized by that.
前記補強材は、厚さが略一定で、形状がシート状あるいはメッシュ状であることを特徴とする請求項1に記載の円盤状キャリア。   The disk-shaped carrier according to claim 1, wherein the reinforcing material has a substantially constant thickness and has a sheet shape or a mesh shape. 前記硬質の樹脂材として、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリフェニレンサルファイド、フッ素樹脂のそれぞれにおける単体材料、またはこれらの複合材料のいずれかであること、ならびに、前記補強材がステンレス、チタン、アルミニウム、鉄、セラミック、カーボン繊維体、ガラス繊維体のいずれかであることを特徴とする請求項1又は2に記載の円盤状キャリア。
As the hard resin material, polyether ether ketone, polyether ketone, polyphenylene sulfide, a fluorocarbon resin, or a composite material thereof, and the reinforcing material is stainless steel, titanium, aluminum The disk-shaped carrier according to claim 1, wherein the carrier is any one of iron, ceramic, carbon fiber body, and glass fiber body.
JP2012289084A 2012-12-28 2012-12-28 Disc carrier Expired - Fee Related JP6206942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012289084A JP6206942B2 (en) 2012-12-28 2012-12-28 Disc carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012289084A JP6206942B2 (en) 2012-12-28 2012-12-28 Disc carrier

Publications (2)

Publication Number Publication Date
JP2014128862A true JP2014128862A (en) 2014-07-10
JP6206942B2 JP6206942B2 (en) 2017-10-04

Family

ID=51407742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012289084A Expired - Fee Related JP6206942B2 (en) 2012-12-28 2012-12-28 Disc carrier

Country Status (1)

Country Link
JP (1) JP6206942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009315A (en) * 2013-06-28 2015-01-19 Hoya株式会社 Grinding/polishing carrier, and method for manufacturing glass substrate for magnetic disk

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584349U (en) * 1981-06-30 1983-01-12 日立金属株式会社 Carrier for double-sided sanding machine
JPH09207064A (en) * 1996-02-01 1997-08-12 Shin Etsu Handotai Co Ltd Carrier for double side polisher and method for polishing both faces of work using the carrier
JPH09254026A (en) * 1996-03-26 1997-09-30 Shin Etsu Handotai Co Ltd Both-side polishing device
JPH1119866A (en) * 1997-02-28 1999-01-26 Advanced Ceramics Res Inc Polymer carrier for polishing flat material
JP2000084835A (en) * 1998-09-17 2000-03-28 River Steel:Kk Lapping carrier
JP2007036225A (en) * 2005-07-21 2007-02-08 Siltronic Ag Method of processing semiconductor wafer, carrier, and semiconductor wafer
JP4825001B2 (en) * 2005-12-26 2011-11-30 日建塗装工業株式会社 Thermal spray deposition method for super engineering plastics laminated film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584349U (en) * 1981-06-30 1983-01-12 日立金属株式会社 Carrier for double-sided sanding machine
JPH09207064A (en) * 1996-02-01 1997-08-12 Shin Etsu Handotai Co Ltd Carrier for double side polisher and method for polishing both faces of work using the carrier
JPH09254026A (en) * 1996-03-26 1997-09-30 Shin Etsu Handotai Co Ltd Both-side polishing device
JPH1119866A (en) * 1997-02-28 1999-01-26 Advanced Ceramics Res Inc Polymer carrier for polishing flat material
JP2000084835A (en) * 1998-09-17 2000-03-28 River Steel:Kk Lapping carrier
JP2007036225A (en) * 2005-07-21 2007-02-08 Siltronic Ag Method of processing semiconductor wafer, carrier, and semiconductor wafer
JP4825001B2 (en) * 2005-12-26 2011-11-30 日建塗装工業株式会社 Thermal spray deposition method for super engineering plastics laminated film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009315A (en) * 2013-06-28 2015-01-19 Hoya株式会社 Grinding/polishing carrier, and method for manufacturing glass substrate for magnetic disk

Also Published As

Publication number Publication date
JP6206942B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP5506064B2 (en) Grinding wheel for fine trimming, its use and its manufacturing method and apparatus
JP5514843B2 (en) Method for providing a flat processing layer on each of two processing disks of a double-sided processing apparatus
US20100273402A1 (en) CMP conditioner and method of manufacturing the same
JP5305698B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate for magnetic disk
US9180572B2 (en) Chemical mechanical polishing conditioner and manufacturing methods thereof
JP5821883B2 (en) Template assembly and method for manufacturing template assembly
US20140273772A1 (en) Chemical mechanical polishing conditioner and manufacturing methods thereof
US20100247978A1 (en) Method of manufacturing a substrate for a magnetic disk
KR101484706B1 (en) Manufacturing method of pad conditioner
JP6206942B2 (en) Disc carrier
TWI569920B (en) The manufacturing method of the grinding dresser
KR20150114408A (en) Polishing method and holder
JP6177603B2 (en) Grinding / polishing carrier and substrate manufacturing method
JP5994022B2 (en) Grinding wheel, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP2010247254A (en) Method of preparing polishing head and polishing apparatus
JP2015069674A (en) Manufacturing method of magnetic disk glass substrate, and polishing treatment carrier
CN105163908B (en) The manufacture method of pallet, the manufacture method of substrate for magnetic disc and disk
KR20160068625A (en) Method for manufacturing a glass plate, and apparatus for manufacturing a glass plate
CN104641415A (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2015064920A (en) Manufacturing method of glass substrate for magnetic disk
WO2021193970A1 (en) Carrier and method for manufacturing substrate
JP6353524B2 (en) Substrate manufacturing method
JP2015164084A (en) Magnetic disk substrate manufacturing method and polishing processing apparatus
JP2015069665A (en) Production method of magnetic disk glass substrate
JP2014216042A (en) Method of manufacturing glass substrate for magnetic disk, and magnetic disk manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170831

R150 Certificate of patent or registration of utility model

Ref document number: 6206942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees