JP2014127376A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2014127376A
JP2014127376A JP2012283852A JP2012283852A JP2014127376A JP 2014127376 A JP2014127376 A JP 2014127376A JP 2012283852 A JP2012283852 A JP 2012283852A JP 2012283852 A JP2012283852 A JP 2012283852A JP 2014127376 A JP2014127376 A JP 2014127376A
Authority
JP
Japan
Prior art keywords
main switching
switching element
coil
turned
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012283852A
Other languages
Japanese (ja)
Other versions
JP5986921B2 (en
Inventor
Michihiro Kadota
充弘 門田
Hiroyuki Shoji
浩幸 庄司
Atsushi Hatakeyama
篤史 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012283852A priority Critical patent/JP5986921B2/en
Priority to CN201310741029.0A priority patent/CN103906311A/en
Publication of JP2014127376A publication Critical patent/JP2014127376A/en
Application granted granted Critical
Publication of JP5986921B2 publication Critical patent/JP5986921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a lighting device with high power efficiency and low noise.SOLUTION: The lighting device comprises a power conversion circuit and a control circuit. The power conversion circuit includes a main switching element, a synchronous rectifier element, a coil, and a capacitor, and converts DC power supply to supply the converted power to a light-emitting diode (LED) load connected in parallel with the capacitor. The control circuit performs ON/OFF control on the main switching element and the synchronous rectifier element. When a current flowing in the coil reaches a first preset value, the main switching element is turned off and after the lapse of a predetermined time, the synchronous rectifier element is turned on, by the control circuit. Also, after a polarity of the current flowing in the coil is inverted from a polarity of the first preset value, the synchronous rectifier element is turned off and after the lapse of a predetermined time, the main switching element is turned on, by the control circuit.

Description

本発明は、点灯装置に関する。   The present invention relates to a lighting device.

発光ダイオード(以下、LED:Light Emitting Diodeと記す)などの光源(負荷)を駆動する点灯装置において、電力変換効率の向上が重要な課題である。電力変換効率の向上を実現するために、降圧チョッパや昇降圧チョッパやフライバックコンバータなどのスイッチング方式の電力変換回路を用いた点灯装置が利用されているが、更なる電力変換効率の向上が望まれている。   In a lighting device that drives a light source (load) such as a light emitting diode (hereinafter referred to as LED: Light Emitting Diode), improvement of power conversion efficiency is an important issue. In order to improve power conversion efficiency, lighting devices using switching type power conversion circuits such as step-down choppers, buck-boost choppers, flyback converters, etc. are used, but further improvement in power conversion efficiency is expected. It is rare.

更なる電力変換効率の向上のために、特許文献1には、同期整流を適用しない場合を含めて電力変換回路がスイッチング動作のために本来備えている主スイッチング素子と、同期整流を適用する場合に還流ダイオードからの置き換えとして用いられるスイッチング素子である同期整流素子と、を備え、同期整流を適用する点灯装置が記載されている。   In order to further improve the power conversion efficiency, Patent Document 1 includes a case where the main switching element that the power conversion circuit originally has for the switching operation including the case where the synchronous rectification is not applied and the case where the synchronous rectification is applied. And a synchronous rectifying element that is a switching element used as a replacement from the free wheel diode, and a lighting device that applies synchronous rectification is described.

特開2011−151913号公報JP 2011-151913 A

特許文献1に記載の点灯装置では、同期整流素子をターンオフさせ、デッドタイムを経て主スイッチング素子をターンオンさせる場合に、各スイッチング素子が電極間に持つ寄生容量(コンデンサ)の充放電が発生する。この充放電において、主スイッチング素子にスパイク状の電流が流れ、ターンオン損失とノイズの発生要因となる恐れがある。特に、特許文献1のように同期整流を適用する場合、同期整流素子には導通時の抵抗(オン抵抗)の小さいものを用いるため、電極間の寄生容量が大きく、上記の充放電に伴うスパイク状の電流も大きくなる恐れがある。   In the lighting device described in Patent Document 1, when the synchronous rectifying element is turned off and the main switching element is turned on after a dead time, charging / discharging of the parasitic capacitance (capacitor) that each switching element has between the electrodes occurs. In this charge / discharge, a spike-like current flows through the main switching element, which may cause a turn-on loss and noise. In particular, when synchronous rectification is applied as in Patent Document 1, since a synchronous rectifier element having a small resistance (ON resistance) during conduction is used, the parasitic capacitance between the electrodes is large, and the spike associated with the charge / discharge described above. The current of the shape may also increase.

本発明では、高い電力変換効率かつ低ノイズの点灯装置の提供を目的とする。   An object of the present invention is to provide a lighting device with high power conversion efficiency and low noise.

上記の課題を解決するために、主スイッチング素子、同期整流素子、コイル、コンデンサを備え、直流電源を変換して前記コンデンサと並列に接続される発光ダイオード(以下、LEDと記す)負荷に給電する電力変換回路と、前記主スイッチング素子と前記同期整流素子をオン・オフ制御する制御回路とを備え、前記制御回路は、前記コイルに流れる電流が第1の設定値に達したときに前記主スイッチング素子をオフとし、所定の時間経過後に前記同期整流素子をオンとし、前記コイルに流れる電流の極性が前記第1の設定値の極性から反転したのちに前記同期整流素子をオフとし、所定の時間経過後に前記主スイッチング素子をオンとする。   In order to solve the above problems, a main switching element, a synchronous rectifying element, a coil, and a capacitor are provided, and a direct current power source is converted to supply power to a light emitting diode (hereinafter referred to as LED) load connected in parallel with the capacitor. A power conversion circuit; and a control circuit for controlling on / off of the main switching element and the synchronous rectifying element, wherein the control circuit is configured to switch the main switching element when a current flowing through the coil reaches a first set value. The element is turned off, the synchronous rectification element is turned on after a predetermined time has elapsed, and the polarity of the current flowing through the coil is reversed from the polarity of the first set value, and then the synchronous rectification element is turned off, for a predetermined time. After the elapse of time, the main switching element is turned on.

本発明によれば、高い電力効率効率かつ低ノイズの点灯装置を提供することができる。   According to the present invention, it is possible to provide a lighting device with high power efficiency and low noise.

本発明の点灯装置の基本構成図である。It is a basic lineblock diagram of the lighting device of the present invention. 本発明の点灯装置の動作波形を示す図である。It is a figure which shows the operation | movement waveform of the lighting device of this invention. 電流検出手段と制御回路の具体例を示す図である。It is a figure which shows the specific example of an electric current detection means and a control circuit. 制御回路の別例を示す図である。It is a figure which shows another example of a control circuit. 電力変換回路の別例を示す図である。It is a figure which shows another example of a power converter circuit. 交流電源を利用する場合の構成例を示す図である。It is a figure which shows the structural example in the case of utilizing AC power supply.

本発明の実施形態について図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の点灯装置の基本構成図である。点灯装置は、破線内に示した電力変換回路101によって、直流電源100の電圧を変換してLED負荷102に給電する。直流電源100は、商用電源を整流回路によって整流したものを利用してもよいし、外部に接続される直流電源装置を利用してもよい。LED負荷102は、LEDの個数や接続形態は問わない。また、LED負荷102には、保護用素子などを内蔵したLEDモジュールを含んでもよい。   FIG. 1 is a basic configuration diagram of a lighting device of the present invention. The lighting device converts the voltage of the DC power supply 100 by the power conversion circuit 101 shown in the broken line and supplies power to the LED load 102. As the DC power source 100, a commercial power source rectified by a rectifier circuit may be used, or a DC power source device connected to the outside may be used. The number of LEDs and the connection form of the LED load 102 are not limited. Further, the LED load 102 may include an LED module incorporating a protection element or the like.

図1では、電力変換回路101の主回路を、主スイッチング素子103、同期整流素子104、コイル105、コンデンサ106、電流検出手段107を用いた降圧チョッパとして構成している。なお、電力変換回路101の主回路は、昇降圧チョッパやフライバックコンバータなど、他種の回路を用いてもよい。なお、図1では主スイッチング素子103と同期整流素子104の例としてMOSFETを示したが、バイポーラトランジスタやIGBTなど、他種のスイッチング素子でもよい。108と109は、それぞれ主スイッチング素子103と同期整流素子104の寄生容量(コンデンサ)である。ただし、当該箇所に別途コンデンサを接続してもよい。   In FIG. 1, the main circuit of the power conversion circuit 101 is configured as a step-down chopper using a main switching element 103, a synchronous rectifying element 104, a coil 105, a capacitor 106, and current detection means 107. Note that the main circuit of the power conversion circuit 101 may use other types of circuits such as a buck-boost chopper and a flyback converter. In FIG. 1, MOSFETs are shown as examples of the main switching element 103 and the synchronous rectifying element 104, but other types of switching elements such as bipolar transistors and IGBTs may be used. Reference numerals 108 and 109 denote parasitic capacitances (capacitors) of the main switching element 103 and the synchronous rectifying element 104, respectively. However, you may connect a capacitor | condenser separately to the said location.

主スイッチング素子103と同期整流素子104とは直列に接続されている。コイル105とコンデンサ106とは直列に接続されている。同期整流素子104と、コイル105とコンデンサ106と、は並列に接続されている。コンデンサ106とLED負荷102とは並列に接続されている。電流検出手段107はコイル105とコンデンサ106との間に設けられており、コイル105に流れる電流を検出する。   The main switching element 103 and the synchronous rectifying element 104 are connected in series. The coil 105 and the capacitor 106 are connected in series. The synchronous rectifying element 104, the coil 105, and the capacitor 106 are connected in parallel. The capacitor 106 and the LED load 102 are connected in parallel. The current detection means 107 is provided between the coil 105 and the capacitor 106 and detects the current flowing through the coil 105.

図1の一点鎖線内には降圧チョッパの制御回路110を示している。制御回路110は、電流制御手段111と、反転検出手段112と、駆動回路113と、から構成される。電流制御手段111は、電流検出手段107によって検出されるコイル105に流れる電流(コイル電流)の最大値を制御するための信号を駆動回路113に出力する。反転検出手段112は、電流検出手段107によって検出されるコイル電流の極性が反転したことを検出し、検出に応じた信号を駆動回路113に出力する。これらの具体例については後述するが、後述の図2に示す動作波形を実現できれば詳細な構成については問わない。駆動回路113は、電流制御手段111と反転検出手段112が出力する信号をもとに主スイッチング素子103と同期整流素子104をオン・オフさせる駆動を行う。   A step-down chopper control circuit 110 is shown within a dashed line in FIG. The control circuit 110 includes a current control unit 111, an inversion detection unit 112, and a drive circuit 113. The current control unit 111 outputs a signal for controlling the maximum value of the current (coil current) flowing through the coil 105 detected by the current detection unit 107 to the drive circuit 113. The inversion detection unit 112 detects that the polarity of the coil current detected by the current detection unit 107 is inverted, and outputs a signal corresponding to the detection to the drive circuit 113. Specific examples of these will be described later, but the detailed configuration is not limited as long as an operation waveform shown in FIG. 2 described later can be realized. The driving circuit 113 performs driving for turning on and off the main switching element 103 and the synchronous rectifying element 104 based on signals output from the current control unit 111 and the inversion detection unit 112.

つまり、制御回路110は、電流検出手段によって検出されるコイル電流に応じて主スイッチング素子103と同期整流素子104とをオン・オフ制御する。   That is, the control circuit 110 performs on / off control of the main switching element 103 and the synchronous rectification element 104 in accordance with the coil current detected by the current detection unit.

図2は、本発明の点灯装置の動作波形である。図2の記号として、SW1とSW2はそれぞれ主スイッチング素子103と同期整流素子104のオン・オフ状態、ILはコイル105に流れる電流(コイル電流)、Id1は主スイッチング素子103のドレイン電流(ボディダイオードや寄生容量に流れる電流も含む)、Vds1は主スイッチング素子103のドレイン−ソース電圧である。IL、Id1、Vds1の極性として、図1に示した矢印の向きを正とする。   FIG. 2 is an operation waveform of the lighting device of the present invention. 2, SW1 and SW2 are the on / off states of the main switching element 103 and the synchronous rectifying element 104, IL is a current (coil current) flowing through the coil 105, and Id1 is a drain current (body diode) of the main switching element 103. And Vds1 is the drain-source voltage of the main switching element 103. As the polarities of IL, Id1, and Vds1, the direction of the arrow shown in FIG. 1 is positive.

主スイッチング素子103がオン(SW1がON)のとき、直流電源100(の正極側)から、主スイッチング素子103、コイル105、コンデンサ106とLED負荷102の並列体、直流電源100(の負極側)の経路で電流が流れる。図1から分かるように、電流検出手段107もこの電流の経路上に存在するが、説明の都合上除いた。これについては、以下の説明でも同様である。図2のILとId1から分かるように、この電流は時間に対して線形に増大する。また、ILとId1はほぼ等しくなる。主スイッチング素子103がオンであるため、Vds1はほぼゼロである。   When the main switching element 103 is ON (SW1 is ON), the DC power supply 100 (positive side) starts from the main switching element 103, the coil 105, the capacitor 106 and the LED load 102 in parallel, and the DC power supply 100 (negative electrode side). Current flows through the path. As can be seen from FIG. 1, the current detection means 107 is also present on this current path, but is omitted for convenience of explanation. The same applies to the following description. As can be seen from IL and Id1 in FIG. 2, this current increases linearly with time. IL and Id1 are substantially equal. Since the main switching element 103 is on, Vds1 is almost zero.

電流制御手段111により、ILが第1の設定値(図2のImax)に達したときに、主スイッチング素子103をオフ(SW1をOFF)にして、さらに所定の時間(デッドタイム、図2のtd)が経過した後で同期整流素子104をオン(SW2をON)にする。これにより、コイル105に蓄えられていたエネルギーによって、コイル105、コンデンサ106とLED負荷102の並列体、同期整流素子104、コイル105の経路に環流電流1が流れ始める。   When IL reaches the first set value (Imax in FIG. 2) by the current control means 111, the main switching element 103 is turned off (SW1 is turned off), and a predetermined time (dead time, FIG. After td), the synchronous rectifying element 104 is turned on (SW2 is turned on). As a result, the circulating current 1 starts to flow through the path of the coil 105, the parallel body of the capacitor 106 and the LED load 102, the synchronous rectifier element 104, and the coil 105 due to the energy stored in the coil 105.

なお、主スイッチング素子103をオフ(SW1をOFF)にして、環流電流1が流れ始めたときに、Vds1は直流電源100とほぼ同じ電圧まで増大する。このとき、直流電源100が主スイッチング素子103の寄生容量108を充電する。一方、同期整流素子104の寄生容量109に蓄えられていた電荷は放電され、同期整流素子104のドレイン−ソース電圧(Vds2)はほぼゼロになる。なお、この放電は、環流電流1が寄生容量109の電荷を引き抜くことによってなされる。デッドタイム(td)期間中にこの充放電が完了すれば、同期整流素子104のターンオンはゼロ電圧スイッチング(ZVS)となり、損失はほとんど発生しない。なお、同期整流素子104として、寄生容量109の静電容量が大きい素子を選定すれば、Vds1が増大する傾きを抑え、主スイッチング素子103のターンオフ損失およびノイズを低減できる。   Note that when the main switching element 103 is turned off (SW1 is turned off) and the circulating current 1 starts to flow, Vds1 increases to substantially the same voltage as the DC power supply 100. At this time, the DC power supply 100 charges the parasitic capacitance 108 of the main switching element 103. On the other hand, the charge stored in the parasitic capacitance 109 of the synchronous rectifying element 104 is discharged, and the drain-source voltage (Vds2) of the synchronous rectifying element 104 becomes almost zero. This discharge is performed when the circulating current 1 extracts the charge of the parasitic capacitance 109. If this charging / discharging is completed during the dead time (td) period, the turn-on of the synchronous rectifying element 104 becomes zero voltage switching (ZVS), and almost no loss occurs. Note that if an element having a large capacitance of the parasitic capacitance 109 is selected as the synchronous rectifying element 104, the inclination of increasing Vds1 can be suppressed, and the turn-off loss and noise of the main switching element 103 can be reduced.

図2のILから分かるように、この環流電流1は時間に対して線形に減少する。同期整流を適用し、同期整流素子104として低オン抵抗の素子を適用することで、同期整流素子104の導通損失を低減できる。   As can be seen from the IL in FIG. 2, this reflux current 1 decreases linearly with time. By applying synchronous rectification and applying a low on-resistance element as the synchronous rectifying element 104, the conduction loss of the synchronous rectifying element 104 can be reduced.

特許文献1に記載のように降圧チョッパの制御方式として一般的である電流臨界モードでは、ILがゼロになった時点で同期整流素子104をオフにして、主スイッチング素子103をオンにする。しかし、本発明では、ILがゼロになった後も同期整流素子104のオン(SW2がON)を維持する。これによって、図2のようにILが負になる、すなわち、極性(向き)が反転し、コンデンサ106、コイル105、同期整流素子104、コンデンサ106の経路に電流が流れる。   As described in Patent Document 1, in the current critical mode, which is a general control method for a step-down chopper, when the IL becomes zero, the synchronous rectifier element 104 is turned off and the main switching element 103 is turned on. However, in the present invention, the synchronous rectifying element 104 is kept on (SW2 is ON) even after IL becomes zero. As a result, IL becomes negative as shown in FIG. 2, that is, the polarity (direction) is reversed, and a current flows through the path of the capacitor 106, the coil 105, the synchronous rectifier element 104, and the capacitor 106.

反転検出手段112により、ILの極性が第1の設定値(Imax)の極性から反転したことや、第2の設定値(図2のImin)に達したこと、を検出したのちに、駆動回路113は、同期整流素子104をオフ(SW2をOFF)にする。さらに駆動回路113は、同期整流素子104をオフ(SW2をOFF)にしてからデッドタイム(図2のtd)が経過した後で主スイッチング素子103をオン(SW1をON)にする。このデッドタイム(td)期間では、コイル105に蓄えられていたエネルギーによって、コイル105、主スイッチング素子103(正確には寄生容量108)、直流電源100、コンデンサ106、コイル105の経路に電流が流れる。この電流が寄生容量108に蓄えられた電荷を放電し、Vds1は減少する。Iminやtdなどの設定が適切であれば、図2のようにデッドタイム期間中にVds1がほぼゼロまで減少する。なお、Vds1がゼロになった後は、主スイッチング素子103のボディダイオードに電流が流れる。寄生容量108の充放電が完了し、Vds1がゼロまで減少した後で主スイッチング素子103をターンオンすれば主スイッチング素子103のターンオンはゼロ電圧スイッチング(ZVS)となり、損失はほとんど発生しない。   After detecting that the polarity of IL has been reversed from the polarity of the first set value (Imax) or has reached the second set value (Imin in FIG. 2) by the inversion detection means 112, the drive circuit 113 turns off the synchronous rectification element 104 (SW2 is OFF). Further, the drive circuit 113 turns the main switching element 103 on (SW1 is turned on) after the dead time (td in FIG. 2) has elapsed since the synchronous rectifying element 104 is turned off (SW2 is turned off). In this dead time (td) period, current flows through the path of the coil 105, the main switching element 103 (more precisely, the parasitic capacitance 108), the DC power supply 100, the capacitor 106, and the coil 105 due to the energy stored in the coil 105. . This current discharges the charge stored in the parasitic capacitance 108, and Vds1 decreases. If settings such as Imin and td are appropriate, Vds1 decreases to almost zero during the dead time period as shown in FIG. In addition, after Vds1 becomes zero, a current flows through the body diode of the main switching element 103. If the main switching element 103 is turned on after the charging / discharging of the parasitic capacitance 108 is completed and Vds1 is reduced to zero, the main switching element 103 is turned on to zero voltage switching (ZVS) and almost no loss occurs.

従来の電流臨界モードでは、寄生容量108の充放電が完了しないうちに、すなわち、Vds1がゼロまで減少しないうちに主スイッチング素子103がターンオンすることになる。このとき、充放電を完結させるために必要な電流が主スイッチング素子103に流れるため、主スイッチング素子103において損失が発生する。また、この電流はスパイク状に流れるため、ノイズを発生させる。特に同期整流を適用する場合、寄生容量の静電容量が大きいため、充放電には必要な電流も大きくなる。したがって、本発明のようにコイル105のエネルギーを利用して充放電を完了させてから主スイッチング素子103をターンオンする制御は、装置の高効率化と低ノイズ化に有効である。   In the conventional current critical mode, the main switching element 103 is turned on before charging / discharging of the parasitic capacitance 108 is completed, that is, before Vds1 is reduced to zero. At this time, a current necessary for completing charging / discharging flows through the main switching element 103, so that loss occurs in the main switching element 103. Further, since this current flows in a spike shape, noise is generated. In particular, when synchronous rectification is applied, since the parasitic capacitance is large, the current required for charging and discharging also increases. Therefore, the control of turning on the main switching element 103 after the charging / discharging is completed by using the energy of the coil 105 as in the present invention is effective for the high efficiency and low noise of the apparatus.

本発明の制御を利用したとしても、例えばIminの絶対値が小さく、コイル105に十分なエネルギーが蓄積されていなかった場合など、Vds1がゼロまで減少しないうちに主スイッチング素子103がターンオンする状況が考えられる。しかし、この場合も、従来方式に比べればVds1が低い状態で主スイッチング素子103がターンオンするため、従来方式に比べ、損失及びノイズは抑えられる。   Even when the control of the present invention is used, for example, when the absolute value of Imin is small and sufficient energy is not stored in the coil 105, there is a situation where the main switching element 103 is turned on before Vds1 decreases to zero. Conceivable. However, also in this case, since the main switching element 103 is turned on in a state where Vds1 is low as compared with the conventional method, loss and noise can be suppressed as compared with the conventional method.

図3は、図1における主回路の電流検出手段107と、制御回路110における電流制御手段111と反転検出手段112の具体例を示したものである。電流検出手段107は、2個の抵抗である第1抵抗114と第2抵抗115から構成される。主スイッチング素子103がオン(SW1がON)のとき、ILの経路は、直流電源100(の正極側)、主スイッチング素子103、コイル105、コンデンサ106とLED負荷102の並列体、第1抵抗114、直流電源100(の負極側)となるため、第1抵抗114の電圧としてILを検出できる。同期整流素子104がオン(SW2がON)のとき、電流経路については記載を省略するが、第2抵抗115の電圧としてILを検出できる。もちろん、電流検出手段107を実現する単純な方式として、コイル105と直列に抵抗を接続し、この抵抗の電位差で以てILを検出してもよい。   FIG. 3 shows specific examples of the current detection means 107 of the main circuit in FIG. 1, and the current control means 111 and the inversion detection means 112 in the control circuit 110. The current detection means 107 includes a first resistor 114 and a second resistor 115 which are two resistors. When the main switching element 103 is ON (SW1 is ON), the path of IL is the DC power supply 100 (positive electrode side), the main switching element 103, the coil 105, the parallel body of the capacitor 106 and the LED load 102, and the first resistor 114. Since it becomes the DC power supply 100 (the negative electrode side), IL can be detected as the voltage of the first resistor 114. When the synchronous rectifying element 104 is on (SW2 is on), the description of the current path is omitted, but IL can be detected as the voltage of the second resistor 115. Of course, as a simple method for realizing the current detection means 107, a resistor may be connected in series with the coil 105, and IL may be detected by a potential difference between the resistors.

電流制御手段111は、第1抵抗114によって検出したILと第1設定値Imaxをコンパレータ116によって比較する。ILがImaxより大きくなった瞬間において、コンパレータ116の出力はLレベルからHレベルに変化するため、後段の制御ロジック117によって立ち上がりを検出し、主スイッチング素子103をターンオフさせるための信号を駆動回路113に出力すればよい。   The current control unit 111 compares the IL detected by the first resistor 114 with the first set value Imax by the comparator 116. At the moment when IL becomes larger than Imax, the output of the comparator 116 changes from the L level to the H level. Therefore, the rising edge is detected by the control logic 117 in the subsequent stage, and a signal for turning off the main switching element 103 is sent to the driving circuit 113. Can be output.

反転検出手段112についてもほぼ同様であり、第2抵抗115によって検出したIL(の絶対値)と第2設定値Imin(の絶対値)をコンパレータ118によって比較する。ILがIminより小さくなった瞬間において、コンパレータ118の出力はLレベルからHレベルに変化するため、後段の制御ロジック119によって立ち上がりを検出し、同期整流素子104をターンオフさせるための信号を駆動回路113に出力すればよい。   The same applies to the inversion detection means 112, and the comparator 118 compares the IL (absolute value) detected by the second resistor 115 and the second set value Imin (absolute value). At the moment when IL becomes smaller than Imin, the output of the comparator 118 changes from the L level to the H level. Can be output.

図3のように電流検出手段107と制御回路110を構成することで、制御回路110のグランドを直流電源110の負極側に一致させることができ、結果として制御回路110の構成が簡単になる。   By configuring the current detection unit 107 and the control circuit 110 as shown in FIG. 3, the ground of the control circuit 110 can be matched with the negative electrode side of the DC power supply 110, and as a result, the configuration of the control circuit 110 is simplified.

図4は、制御回路110の別例である。図3と比べて、電流制御手段111の構成は同様であるが、反転検出手段112の構成とILの反転を検出する原理が異なる。図2の動作波形の説明にて、同期整流素子104がオンした後にILが減少していく過程に着目する。このときILが減少する傾きは、コイル105の自己インダクタンス、直流電源100の電圧、LED負荷102の電圧から計算できる。すなわち、同期整流素子104がオン(SW2がON)になってから、ILが反転して所望の第2設定値へと減少するまでに必要な時間も、これらのパラメータから計算できる。図4の反転検出手段112は、SW2オン時間制御手段120を備え、ILが反転するまでに必要な同期整流素子104のオン時間を得るための信号を駆動回路113に出力する。図4のように反転検出手段112を構成することで、図3における抵抗115は不要となり、点灯装置の構成が簡単になる。なお、同様の考え方に基づき、電流制御手段111が主スイッチング素子103のオン時間を制御するように構成してもよい。制御回路110の実現方法として、市販されているLED用の制御ICを用いる方法、コンパレータなどのディスクリート部品を組み合わせて構成する方法、マイコンやデジタル・シグナル・プロセッサを利用してソフトウェア実装する方法などがある。 図5は、電力変換回路101の別例であり、主スイッチング素子103を直流電源100の負極側(ローサイド)に、同期整流素子104を直流電源100の正極側(ハイサイド)にそれぞれ接続する方式である。このとき、コイル105やLED負荷102などはハイサイドに接続される。なお、動作波形は図2と同様である。 主スイッチング素子103の寄生容量108、または、同期整流素子104の寄生容量109と並列にコンデンサを接続してもよい。これによって、主スイッチング素子103がオフ(SW1がOFF)になったときのVds1の増大が緩やかになり、ターンオフ損失とノイズ低減に有効である。   FIG. 4 is another example of the control circuit 110. Compared with FIG. 3, the configuration of the current control unit 111 is the same, but the configuration of the inversion detection unit 112 and the principle of detecting the inversion of IL are different. In the explanation of the operation waveform in FIG. 2, attention is paid to the process in which IL decreases after the synchronous rectifying element 104 is turned on. The slope at which IL decreases at this time can be calculated from the self-inductance of the coil 105, the voltage of the DC power supply 100, and the voltage of the LED load 102. That is, the time required from when the synchronous rectifying element 104 is turned on (SW2 is turned on) to when IL is inverted and reduced to the desired second set value can also be calculated from these parameters. The inversion detection unit 112 in FIG. 4 includes the SW2 on-time control unit 120 and outputs a signal for obtaining the on-time of the synchronous rectifying element 104 necessary until the IL is inverted to the drive circuit 113. By configuring the inversion detection means 112 as shown in FIG. 4, the resistor 115 in FIG. 3 is unnecessary, and the configuration of the lighting device is simplified. Note that, based on the same idea, the current control unit 111 may be configured to control the on-time of the main switching element 103. As a method of realizing the control circuit 110, there are a method of using a commercially available control IC for LED, a method of configuring by combining discrete components such as a comparator, and a method of implementing software using a microcomputer or a digital signal processor. is there. FIG. 5 shows another example of the power conversion circuit 101, in which the main switching element 103 is connected to the negative side (low side) of the DC power supply 100 and the synchronous rectifier element 104 is connected to the positive side (high side) of the DC power supply 100. It is. At this time, the coil 105, the LED load 102, and the like are connected to the high side. The operation waveform is the same as in FIG. A capacitor may be connected in parallel with the parasitic capacitance 108 of the main switching element 103 or the parasitic capacitance 109 of the synchronous rectification element 104. As a result, the increase in Vds1 when the main switching element 103 is turned off (SW1 is turned off) is moderated, which is effective in reducing turn-off loss and noise.

図6は、図1に示した点灯装置について、直流電源100として交流電源121の電圧を整流回路122で整流したものを利用する構成である。整流回路122として、例えばダイオードブリッジを利用すればよい。なお、図6に示した構成要素の他にも、ヒューズ、入力フィルタ用のコイルやコンデンサなどを追加してもよい。   FIG. 6 shows a configuration in which the lighting device shown in FIG. 1 is obtained by rectifying the voltage of the AC power source 121 by the rectifier circuit 122 as the DC power source 100. For example, a diode bridge may be used as the rectifier circuit 122. In addition to the components shown in FIG. 6, a fuse, an input filter coil, a capacitor, or the like may be added.

本実施例において、光源(負荷)としてLED負荷を用いたがこの限りでない。例えば、有機ELなどの光源を負荷として用いた場合でも同様の効果を奏することが可能である。   In the present embodiment, the LED load is used as the light source (load), but this is not the case. For example, the same effect can be obtained even when a light source such as an organic EL is used as a load.

100 直流電源
101 電力変換回路
102 LED負荷
103 主スイッチング素子
104 同期整流素子
105 コイル
106 コンデンサ
107 電流検出手段
108 主スイッチング素子の寄生容量
109 同期整流素子の寄生容量
110 制御回路
111 電流制御手段
112 反転検出手段
113 駆動回路
114 抵抗(115同様)
116 コンパレータ(118も同様)
117 制御ロジック(119も同様)
120 SW2オン時間制御手段
121 交流電源
122 整流回路
DESCRIPTION OF SYMBOLS 100 DC power supply 101 Power conversion circuit 102 LED load 103 Main switching element 104 Synchronous rectification element 105 Coil 106 Capacitor 107 Current detection means 108 Main switching element parasitic capacitance 109 Synchronous rectification element parasitic capacitance 110 Control circuit 111 Current control means 112 Inversion detection Means 113 Drive circuit 114 Resistance (same as 115)
116 Comparator (118 is the same)
117 Control logic (same for 119)
120 SW2 ON time control means 121 AC power supply 122 Rectifier circuit

Claims (6)

主スイッチング素子、同期整流素子、コイル、コンデンサを備え、直流電源を変換して前記コンデンサと並列に接続される発光ダイオード(以下、LEDと記す)負荷に給電する電力変換回路と、前記主スイッチング素子と前記同期整流素子をオン・オフ制御する制御回路とを備え、
前記制御回路は、
前記コイルに流れる電流が第1の設定値に達したときに前記主スイッチング素子をオフとし、所定の時間経過後に前記同期整流素子をオンとし、
前記コイルに流れる電流の極性が前記第1の設定値の極性から反転したのちに前記同期整流素子をオフとし、所定の時間経過後に前記主スイッチング素子をオンとする
ことを特徴とするLED点灯装置。
A power conversion circuit that includes a main switching element, a synchronous rectifying element, a coil, and a capacitor, converts a DC power supply, and supplies power to a light emitting diode (hereinafter referred to as LED) load connected in parallel with the capacitor, and the main switching element And a control circuit for controlling on / off of the synchronous rectifier element,
The control circuit includes:
Turning off the main switching element when the current flowing through the coil reaches a first set value, turning on the synchronous rectifying element after a predetermined time;
The LED lighting device, wherein the synchronous rectifying element is turned off after the polarity of the current flowing through the coil is reversed from the polarity of the first set value, and the main switching element is turned on after a predetermined time has elapsed. .
請求項1に記載のLED点灯装置において、
前記制御回路は、
前記コイルに流れる電流の極性が前記第1の設定値の極性から反転し第2の設定値に達したときに前記同期整流素子をオフにすることを特徴とするLED点灯装置。
The LED lighting device according to claim 1,
The control circuit includes:
The LED lighting device according to claim 1, wherein when the polarity of the current flowing through the coil is reversed from the polarity of the first set value and reaches a second set value, the synchronous rectifying element is turned off.
請求項1または2に記載のLED点灯装置において、
前記主スイッチング素子と前記同期整流素子と第1抵抗と第2抵抗がこの順に直列に接続され、
前記主スイッチング素子と前記同期整流素子と前記直流電源とは直列に接続されており、
前記コイルと前記コンデンサとは直列に接続されており、
前記コイルと前記コンデンサとは、前前記同期整流素子と前記第1抵抗と並列に接続されており、
前記LED負荷は前記コンデンサと並列に接続されており、
前記第1抵抗と前記第2抵抗は、前記コイルに流れる電流を検出する手段として用いることを特徴とするLED点灯装置。
In the LED lighting device according to claim 1 or 2,
The main switching element, the synchronous rectifier element, the first resistor and the second resistor are connected in series in this order,
The main switching element, the synchronous rectifier element and the DC power supply are connected in series,
The coil and the capacitor are connected in series,
The coil and the capacitor are connected in parallel with the synchronous rectifier element and the first resistor,
The LED load is connected in parallel with the capacitor,
The LED lighting device according to claim 1, wherein the first resistor and the second resistor are used as means for detecting a current flowing through the coil.
請求項1乃至2の何れか1項に記載のLED点灯装置において、
前記直流電源は、交流電源を整流回路によって整流することで生成されることを特徴とするLED点灯装置。
In the LED lighting device according to any one of claims 1 to 2,
The LED lighting device according to claim 1, wherein the DC power source is generated by rectifying an AC power source by a rectifier circuit.
請求項1乃至4の何れか1項に記載のLED点灯装置において、
前記電力変換回路は、前記主スイッチング素子と前記同期整流素子とのうち少なくとも一方と並列に接続されるコンデンサを備えることを特徴とするLED点灯装置。
In the LED lighting device according to any one of claims 1 to 4,
The LED lighting device, wherein the power conversion circuit includes a capacitor connected in parallel with at least one of the main switching element and the synchronous rectifying element.
直流電源と、該直流電源と接続される電力変換回路と、該電力変換回路と接続される光源と、からなり、
前記電力変換回路は、該直流電源と直列に接続される主スイッチング素子と、該主スイッチング素子と直列に接続される同期整流素子と、該同期整流素子と並列に接続されるコイルとコンデンサと、該コンデンサと並列に接続される光源と、前記主スイッチング素子と前記同期整流素子とのオン・オフを制御する制御回路と、を備え、
前記制御回路は、前記コイルに流れる電流が第1の設定値に達したときに前記主スイッチング素子をオフに制御し、所定の時間経過後に前記同期整流素子をオンに制御し、前記コイルに流れる電流の極性が反転し第2の設定値に達したときに前記同期整流素子をオフに制御し、所望の時間経過後に前記主スイッチング素子をオンに制御する点灯装置。
A DC power supply, a power conversion circuit connected to the DC power supply, and a light source connected to the power conversion circuit,
The power conversion circuit includes a main switching element connected in series with the DC power supply, a synchronous rectifying element connected in series with the main switching element, a coil and a capacitor connected in parallel with the synchronous rectifying element, A light source connected in parallel with the capacitor, and a control circuit for controlling on / off of the main switching element and the synchronous rectification element,
The control circuit controls the main switching element to be turned off when a current flowing through the coil reaches a first set value, and controls the synchronous rectification element to be turned on after a predetermined time has passed to flow to the coil. A lighting device that controls the synchronous rectifying element to be turned off when the polarity of the current is reversed and reaches a second set value, and controls the main switching element to be turned on after a lapse of a desired time.
JP2012283852A 2012-12-27 2012-12-27 Lighting device Expired - Fee Related JP5986921B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012283852A JP5986921B2 (en) 2012-12-27 2012-12-27 Lighting device
CN201310741029.0A CN103906311A (en) 2012-12-27 2013-12-27 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012283852A JP5986921B2 (en) 2012-12-27 2012-12-27 Lighting device

Publications (2)

Publication Number Publication Date
JP2014127376A true JP2014127376A (en) 2014-07-07
JP5986921B2 JP5986921B2 (en) 2016-09-06

Family

ID=50997396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012283852A Expired - Fee Related JP5986921B2 (en) 2012-12-27 2012-12-27 Lighting device

Country Status (2)

Country Link
JP (1) JP5986921B2 (en)
CN (1) CN103906311A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016221398A1 (en) * 2016-10-31 2018-05-03 Tridonic Gmbh & Co Kg DOWN TRANSFORMER FOR ONE LIGHT DIODE
JP2018519787A (en) * 2015-07-06 2018-07-19 ティーエム4・インコーポレーテッド Circuit for softening the switching phase of a voltage converter
JP2018157695A (en) * 2017-03-17 2018-10-04 株式会社リコー Driving circuit and light-emitting device
JP2021057989A (en) * 2019-09-30 2021-04-08 東芝ライテック株式会社 Power supply device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244946A (en) * 2002-02-19 2003-08-29 Hitachi Ltd Synchronous rectifying circuit and power supply
JP2007110845A (en) * 2005-10-14 2007-04-26 Renesas Technology Corp Switched mode power supply and semiconductor integrated circuit device
US20090302814A1 (en) * 2008-06-06 2009-12-10 Infineon Technologies Austria Ag System and method for controlling a converter
WO2011001500A1 (en) * 2009-06-30 2011-01-06 富士通株式会社 Dc-dc converter, module, power supply device and electronic apparatus
US20110148368A1 (en) * 2009-12-23 2011-06-23 R2 Semiconductor, Inc. Stacked NMOS DC-To-DC Power Conversion
JP2012227076A (en) * 2011-04-22 2012-11-15 Koha Co Ltd Led lighting device and led illuminating device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873755B (en) * 2009-04-24 2014-04-16 松下电器产业株式会社 Discharge lamp lighting device and illuminator
JP5541934B2 (en) * 2009-09-25 2014-07-09 パナソニック株式会社 Driving device for lighting circuit and lighting device
EP2320711B1 (en) * 2009-11-09 2020-09-16 Toshiba Lighting & Technology Corporation LED lighting device and illuminating device
JP2011151913A (en) * 2010-01-20 2011-08-04 Mitsubishi Electric Corp Power supply circuit and lighting device
JP5327251B2 (en) * 2011-02-28 2013-10-30 Tdk株式会社 LED lighting device
JP5828067B2 (en) * 2011-04-04 2015-12-02 パナソニックIpマネジメント株式会社 Semiconductor light-emitting element lighting device and lighting fixture using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244946A (en) * 2002-02-19 2003-08-29 Hitachi Ltd Synchronous rectifying circuit and power supply
JP2007110845A (en) * 2005-10-14 2007-04-26 Renesas Technology Corp Switched mode power supply and semiconductor integrated circuit device
US20090302814A1 (en) * 2008-06-06 2009-12-10 Infineon Technologies Austria Ag System and method for controlling a converter
WO2011001500A1 (en) * 2009-06-30 2011-01-06 富士通株式会社 Dc-dc converter, module, power supply device and electronic apparatus
US20110148368A1 (en) * 2009-12-23 2011-06-23 R2 Semiconductor, Inc. Stacked NMOS DC-To-DC Power Conversion
JP2012227076A (en) * 2011-04-22 2012-11-15 Koha Co Ltd Led lighting device and led illuminating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519787A (en) * 2015-07-06 2018-07-19 ティーエム4・インコーポレーテッド Circuit for softening the switching phase of a voltage converter
DE102016221398A1 (en) * 2016-10-31 2018-05-03 Tridonic Gmbh & Co Kg DOWN TRANSFORMER FOR ONE LIGHT DIODE
WO2018077599A1 (en) * 2016-10-31 2018-05-03 Tridonic Gmbh & Co Kg Step-down converter for a light-emitting diode
AT17349U1 (en) * 2016-10-31 2022-01-15 Tridonic Gmbh & Co Kg Step-down converter for a light-emitting diode
JP2018157695A (en) * 2017-03-17 2018-10-04 株式会社リコー Driving circuit and light-emitting device
JP2021057989A (en) * 2019-09-30 2021-04-08 東芝ライテック株式会社 Power supply device
JP7251429B2 (en) 2019-09-30 2023-04-04 東芝ライテック株式会社 power supply

Also Published As

Publication number Publication date
JP5986921B2 (en) 2016-09-06
CN103906311A (en) 2014-07-02

Similar Documents

Publication Publication Date Title
KR100796890B1 (en) Switching power source device
US9042140B2 (en) Bridge-less step-up switching power supply device
JP2011223800A (en) Switching power supply circuit
US10530269B2 (en) AC-DC converter
TWI641207B (en) Switching power supply device and light irradiation device including the same
US20170302176A1 (en) System and Method for a Switched-Mode Power Supply
JP5040268B2 (en) Switching power supply
JP5986921B2 (en) Lighting device
JP2013247766A (en) Dc-dc converter
US8681514B2 (en) Controller for secondary side control of a switch, power converter, and related synchronous rectification control method
JP5678860B2 (en) AC / DC converter
JP6296091B2 (en) Light source lighting device and lighting fixture
JP5326605B2 (en) Power converter
US9445468B1 (en) Voltage converting device
US20140071579A1 (en) Ionizer
US20190312576A1 (en) A power switch drive circuit with built-in power supply capacitor
JP2018060731A (en) Led lighting device and led illumination device
US20130039101A1 (en) Switching power supply apparatus
US20170142788A1 (en) Illumination device
JP6458235B2 (en) Switching power supply
JP5578234B2 (en) Switching power supply device, power supply system using the same, and electronic device
KR20130113363A (en) Led emitting device and the driving method thereof
JP2018085873A (en) Switching power supply device of zero-volt switching system
JP6111508B2 (en) Lighting device and lighting fixture using the same
JP5214003B2 (en) Power supply device and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5986921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees