JP2014126305A - Boiler control device - Google Patents

Boiler control device Download PDF

Info

Publication number
JP2014126305A
JP2014126305A JP2012283857A JP2012283857A JP2014126305A JP 2014126305 A JP2014126305 A JP 2014126305A JP 2012283857 A JP2012283857 A JP 2012283857A JP 2012283857 A JP2012283857 A JP 2012283857A JP 2014126305 A JP2014126305 A JP 2014126305A
Authority
JP
Japan
Prior art keywords
boiler
fuel
bir
value
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012283857A
Other languages
Japanese (ja)
Other versions
JP5970368B2 (en
Inventor
Yoshiharu Hayashi
喜治 林
Takao Sekiai
孝朗 関合
Masayuki Fukai
雅之 深井
Toru Akatsu
徹 赤津
Hiroto Takeuchi
洋人 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012283857A priority Critical patent/JP5970368B2/en
Publication of JP2014126305A publication Critical patent/JP2014126305A/en
Application granted granted Critical
Publication of JP5970368B2 publication Critical patent/JP5970368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate response lag of a boiler at the time of load change of the boiler by optimizing a fuel BIR signal (a boiler input regulator, a boiler input acceleration signal) for increasing fuel precedently, reducing a coal consumption, and stabilizing a steam temperature.SOLUTION: In a boiler control device that creates a precedent control signal of a fuel flow amount for precedently inputting fuel in order to compensate response lag of a boiler at the time of load change of the boiler, the precedent control signal is corrected on the basis of a measured value of the boiler.

Description

本発明はボイラ制御装置に関する。
The present invention relates to a boiler control device.

発電プラントに使用される燃料の中で、石炭は世界中に広く分布し、価格も安く、安定している。このため、今後も石炭火力発電は電力の安定供給に重要な役割を果たすことが期待されている。しかしながら、石炭火力は、LNGや石油などを燃料とする他方式の火力発電に比べて、発電量当たりの二酸化炭素の排出量が最も多い。このため、石炭火力プラントは、燃料消費量削減による発電コスト低減という経済面、及び、二酸化炭素排出量の削減という環境面の両観点から高効率化が求められている。   Among the fuels used in power plants, coal is widely distributed throughout the world, its price is cheap and stable. For this reason, coal-fired power generation is expected to continue to play an important role in the stable supply of electricity. However, coal-fired power generation has the highest carbon dioxide emissions per power generation compared to other types of thermal power generation using LNG or oil as fuel. For this reason, coal-fired power plants are required to be highly efficient from both the economic viewpoint of reducing power generation costs by reducing fuel consumption and the environmental aspect of reducing carbon dioxide emissions.

ボイラにおいて燃料消費量を削減するには、幾つかの方法がある。一つは、蒸気の高温化・高圧化などボイラ構造を改良することによる高効率化である。また、一つは、特に石炭ボイラの場合、燃焼制御の最適化により、未燃分を低減する方法である。ボイラの各個所に設置された空気用のポートから投入される空気の流量・流速を調整し、NOx・COなどの環境規制物質の排出量を抑えながら、石炭の燃焼率を向上させる。一方、制御によって燃料消費量を削減する別の方法としては、特に、負荷変化時において、燃料投入量を最適化することにより燃料消費量を抑える方法がある。   There are several ways to reduce fuel consumption in a boiler. One is high efficiency by improving boiler structure such as high temperature and high pressure of steam. One is a method of reducing unburned content by optimizing combustion control, particularly in the case of a coal boiler. The coal combustion rate is improved while adjusting the flow rate / velocity of the air supplied from the air ports installed at each location of the boiler, and controlling the emission of environmentally restricted substances such as NOx / CO. On the other hand, as another method of reducing the fuel consumption by control, there is a method of suppressing the fuel consumption by optimizing the amount of fuel input especially when the load changes.

一般的なボイラでは、燃料流量に対する発電出力への応答は、遅れ時間が非常に大きくなる。これは、ボイラ内のチューブメタルの重量が非常に大きく、メタル温度の上昇に時間を要すること、また、出力上昇に応じて蒸気圧力も上昇させる変圧運転を行うので、負荷上昇時にはボイラの保有水量が増え、多くの熱量が必要になることによる。通常運転時においては、燃料流量は、蒸気温度の設定値偏差に対してフィードバック制御を行うことで制御する。これに対し、負荷上昇時には、フィードバック制御に加えて、前記した応答の遅れを補償するため、先行的に燃料を多く投入する制御を行う。この先行制御信号をBIR(Boiler Input Regulator、ボイラ入力加速信号)と呼び、特に、燃料流量に対するBIRを燃料BIRと呼ぶ。また、燃料BIRに応じて、給水流量や空気流量なども先行制御を行い、同様に給水BIR、空気BIRと呼ぶ。通常、これらのBIR信号の波形は、ボイラの試運転時において、試運転員が負荷上昇時の出力や温度の変動を見ながら、調整して決定している。したがって、負荷変化における負荷帯が同じであれば、つまり、500MWから750MWへの上昇、750MWから1000MWへの上昇など、負荷変化パターンが同じであれば、BIR信号の波形は同じになる。このとき、BIR信号の波形を決定する着眼点は、制御偏差が最小となるようにすることであり、温度や圧力変動を極力抑えた制御を実現するように調整されていた。   In a general boiler, the response time to the power generation output with respect to the fuel flow rate has a very large delay time. This is because the tube metal in the boiler is very heavy and it takes time to increase the metal temperature, and because the transformer operation is performed to increase the steam pressure as the output increases, the amount of water held by the boiler when the load increases This is because more heat is needed. During normal operation, the fuel flow rate is controlled by performing feedback control on the set value deviation of the steam temperature. On the other hand, when the load increases, in addition to feedback control, control is performed in which a large amount of fuel is introduced in advance in order to compensate for the response delay described above. This preceding control signal is called BIR (Boiler Input Regulator), and in particular, the BIR for the fuel flow rate is called the fuel BIR. Further, according to the fuel BIR, the feed water flow rate and the air flow rate are also controlled in advance, and are similarly referred to as the feed water BIR and the air BIR. Normally, the waveforms of these BIR signals are determined by adjusting the tester while observing the output and temperature fluctuation when the load is increased during the test operation of the boiler. Therefore, if the load band in the load change is the same, that is, if the load change pattern is the same, such as an increase from 500 MW to 750 MW or an increase from 750 MW to 1000 MW, the waveform of the BIR signal is the same. At this time, the point of focus for determining the waveform of the BIR signal is to minimize the control deviation, and it has been adjusted so as to realize control that suppresses temperature and pressure fluctuations as much as possible.

燃料BIRを調整する際の評価基準について、従来の信号変動の抑制に加えて、燃料消費量の最小化という観点からBIRの最適化を図ることが考えられる。つまり、燃料BIRを最適化することにより、過剰な燃料投入を抑えて、燃料消費量を低減する。この方法として、特開2003-295905に記載された制御方法が挙げられる。この制御方法では、試運転時に調整される燃料BIR信号に対して、蒸気温度などの制御偏差が許容値の範囲に収まり、かつ、燃料消費量が最小となるように、燃料BIR信号に対して補正値を乗じている。補正値の決定は、シミュレータにより求める方法もあるし、あるいは、実機で補正値を変えて得られた運転データにより求める方法もあると記載している。   Regarding the evaluation criteria for adjusting the fuel BIR, it is conceivable to optimize the BIR from the viewpoint of minimizing fuel consumption in addition to the conventional suppression of signal fluctuations. That is, by optimizing the fuel BIR, excessive fuel input is suppressed and fuel consumption is reduced. As this method, there is a control method described in JP-A-2003-295905. In this control method, the fuel BIR signal is corrected so that the control deviation such as the steam temperature is within the allowable range and the fuel consumption is minimized with respect to the fuel BIR signal adjusted during the trial operation. Multiply by value. It is described that there is a method for determining the correction value using a simulator, or a method for determining the correction value using operation data obtained by changing the correction value using an actual machine.

特開2003−295905号公報JP 2003-295905 A

以上のように、特許文献1では燃料BIRに補正処理を加えることにより、燃料流量の削減を図っている。ただし、特許文献1では、シミュレーションデータまたは実機データを用いて、補正値をあらかじめ決定しておく必要がある。このため、シミュレーションデータを使用する場合は、シミュレーション誤差による影響を受ける。また、実機データを使用する場合は、補正値と燃料消費量の特性カーブを得るために、同じ負荷変化パターンで補正値を変えた幾つかの条件で実機を運転する必要がある。プラントによっては、このような試験的な運転ができない場合もある。また、ボイラの経年劣化によって、最適な補正値も変わっていくため、定期的に補正値を決めるための試験運転を行う必要がある。   As described above, in Patent Document 1, the fuel flow rate is reduced by applying correction processing to the fuel BIR. However, in Patent Document 1, it is necessary to determine a correction value in advance using simulation data or actual machine data. For this reason, when using simulation data, it is affected by simulation errors. Further, when using actual machine data, it is necessary to operate the actual machine under several conditions in which the correction value is changed with the same load change pattern in order to obtain the characteristic curve of the correction value and the fuel consumption. Depending on the plant, such a trial operation may not be possible. In addition, since the optimum correction value also changes due to the aging of the boiler, it is necessary to perform a test operation to determine the correction value periodically.

さらに、前記した公知例では、燃料BIRの補正値は、調整によって更新した後は固定値である。負荷変化の間に補正値が逐次変化していく処理は想定していない。つまり、燃料BIR信号を補正して信号の波形を変えたとしても、補正前の波形に対して、燃料流量の方向に縮尺または拡大をした波形しか得られない。したがって、補正による燃料消費量の低減幅は、補正前の波形に大きく依存する。   Further, in the above-described known example, the correction value of the fuel BIR is a fixed value after being updated by adjustment. A process in which the correction value sequentially changes during the load change is not assumed. In other words, even if the waveform of the signal is changed by correcting the fuel BIR signal, only a waveform scaled or enlarged in the direction of the fuel flow rate can be obtained with respect to the waveform before correction. Therefore, the reduction range of the fuel consumption by the correction largely depends on the waveform before the correction.

そこで本発明は、燃料BIR信号の最適化が図られ、負荷変化時における燃料消費量を低減できると共に、蒸気温度の変動も抑制することができるボイラ制御装置を提供する。
Therefore, the present invention provides a boiler control device in which the fuel BIR signal is optimized, the fuel consumption at the time of load change can be reduced, and the fluctuation of the steam temperature can be suppressed.

上記課題を解決するために本発明のボイラ制御装置は、ボイラの負荷変化時に、ボイラの応答遅れを補償するために先行的に燃料を投入する燃料流量の先行制御信号を作成するボイラ制御装置において、ボイラでの計測値を基に、該先行制御信号を補正することを特徴とする。
In order to solve the above-described problems, a boiler control device according to the present invention is a boiler control device that generates a preceding control signal of a fuel flow rate to inject fuel in advance in order to compensate for a response delay of the boiler at the time of boiler load change. The preceding control signal is corrected based on the measured value in the boiler.

本発明によれば、燃料BIR信号の最適化が図られ、負荷変化時における燃料消費量を低減できると共に、蒸気温度の変動も抑制することができる。
According to the present invention, the fuel BIR signal can be optimized, the amount of fuel consumed when the load changes can be reduced, and fluctuations in the steam temperature can also be suppressed.

本発明の第一実施例であるボイラ制御装置の制御ロジック。The control logic of the boiler control apparatus which is 1st Example of this invention. 設定値計算器におけるボイラ出口ガス温度設定値の計算方法。Calculation method of boiler outlet gas temperature setting value in the setting value calculator. 燃料BIR補正時の燃料BIRとボイラ出口ガス温度の例。An example of fuel BIR and boiler outlet gas temperature at the time of fuel BIR correction. 燃料BIR制御に関する支援システム画面。Support system screen for fuel BIR control. 本発明のボイラ制御装置を含むプラント全体の概略図。The schematic of the whole plant containing the boiler control apparatus of this invention. 本発明の第二実施例であるボイラ制御装置の制御ロジック。The control logic of the boiler control apparatus which is a 2nd Example of this invention. 本発明の第一実施例と第二実施例を組み合わせたときの制御ロジック。The control logic when combining the first embodiment and the second embodiment of the present invention. 本発明の第三実施例であるボイラ制御装置の制御ロジック。The control logic of the boiler control apparatus which is a 3rd Example of this invention.

本発明によるボイラ制御装置の構成について図面を参照して以下に説明する。   A configuration of a boiler control device according to the present invention will be described below with reference to the drawings.

図5は、本発明の一実施例であるボイラ制御装置を含むプラント全体の概略図である。1がボイラ制御装置である。2が石炭火力プラントである。ただし、図に示す石炭火力プラントでは、ボイラのみを示し、蒸気タービン、発電機、給水加熱器などの他の機器は省略している。201がボイラ、202が石炭を粉砕するミルである。また、203は燃料流量を計測するセンサ、204は蒸気タービンに送る主蒸気温度を計測するセンサ、205はボイラ出口ガス温度を計測するセンサ、206はスートブロワの動作を計測するセンサである。また、3は運転員がプラントを監視制御するためのモニタである。   FIG. 5 is a schematic view of the entire plant including a boiler control apparatus according to an embodiment of the present invention. Reference numeral 1 denotes a boiler control device. 2 is a coal-fired power plant. However, in the coal-fired power plant shown in the figure, only the boiler is shown, and other devices such as a steam turbine, a generator, and a feed water heater are omitted. 201 is a boiler, and 202 is a mill for pulverizing coal. 203 is a sensor for measuring the fuel flow rate, 204 is a sensor for measuring the main steam temperature sent to the steam turbine, 205 is a sensor for measuring the boiler outlet gas temperature, and 206 is a sensor for measuring the operation of the soot blower. Reference numeral 3 denotes a monitor for the operator to monitor and control the plant.

図1は、ボイラ制御装置に実装する制御ロジックを示す概略図である。ただし、この図では、燃料流量のデマンドを決定するロジックの主要部分のみを示している。図1に示す制御ロジックで示すように、燃料流量デマンドはBID信号(Boiler Input Demand、ボイラ入力指令)を基に決定する。最初に、BID信号の決定方法を説明する。   FIG. 1 is a schematic diagram showing control logic implemented in a boiler control device. However, this figure shows only the main part of the logic that determines the demand for the fuel flow rate. As shown by the control logic shown in FIG. 1, the fuel flow demand is determined based on a BID signal (Boiler Input Demand). First, a method for determining a BID signal will be described.

電力会社は、電力系統内の電力需要を監視し、各発電所へ発電量を指示する中央給電指令所を有している。中央給電指令所からプラントに届く負荷指令は発電出力の最終目標値である。これに対し、プラントの制御装置内で、発電機器の負荷変化率の制約を考慮しながら決定した発電量指令値をMWD(Mega Watt Demand)と呼ぶ。前記したように、ボイラは応答の遅れが大きい。ボイラの負荷変化率はガスタービンなどの応答の早い発電機器よりも低く抑えられて、発電量が緩やかに上昇するようなMWDが決定される。次に、MWDから前記したBIDを決定する。ボイラでは発電量を増加させる場合、ボイラ出口の主蒸気温度は一定となるよう制御し、これに対し、主蒸気の流量と圧力は増加させる。主蒸気流量は弁の開度によって調整する。主蒸気圧力はボイラへの給水を主蒸気よりも多くすることで増加させる。このため、給水の増加による必要熱量の増加を考慮し、MWDに対して圧力の制御偏差のPI制御(比例・積分制御)出力を加算した信号をBIDとする。   The electric power company has a central power supply command station that monitors power demand in the power system and directs the power generation amount to each power station. The load command reaching the plant from the central power supply command station is the final target value of the power generation output. On the other hand, the power generation amount command value determined in consideration of the restriction on the load change rate of the power generation equipment in the plant control device is called MWD (Mega Watt Demand). As described above, the boiler has a large response delay. The MWD is determined such that the load change rate of the boiler is suppressed to be lower than that of a power generator having a quick response such as a gas turbine, and the amount of power generation gradually increases. Next, the aforementioned BID is determined from the MWD. When the power generation amount is increased in the boiler, the main steam temperature at the boiler outlet is controlled to be constant, while the flow rate and pressure of the main steam are increased. The main steam flow rate is adjusted by the valve opening. The main steam pressure is increased by supplying more water to the boiler than the main steam. For this reason, taking into account the increase in the required heat quantity due to the increase in water supply, a signal obtained by adding the PI control (proportional / integral control) output of the pressure control deviation to the MWD is defined as BID.

図1で示されているBID信号を入力として、関数発生器101では燃料流量のデマンド値を出力する。また、主蒸気温度の計測値を入力として、減算器102で制御偏差を求め、PI制御器103の入力とする。加算器104では、関数発生器101で出力した燃料流量デマンドに、PI制御器103の出力を加算し、主蒸気温度の制御偏差に応じた燃料流量デマンドの補正を行う。次に、加算器105で燃料BIRを加算し、最終的な燃料流量デマンドとなる。燃料BIRは負荷変化時のみに加算するものであり、一定負荷では0である。   With the BID signal shown in FIG. 1 as an input, the function generator 101 outputs a demand value for the fuel flow rate. In addition, the measured value of the main steam temperature is input, and the control deviation is obtained by the subtractor 102 and is input to the PI controller 103. The adder 104 adds the output of the PI controller 103 to the fuel flow demand output from the function generator 101, and corrects the fuel flow demand according to the control deviation of the main steam temperature. Next, the fuel BIR is added by the adder 105 to obtain a final fuel flow demand. The fuel BIR is added only when the load changes, and is zero at a constant load.

加算器105で燃料流量デマンドに加算する燃料BIRは、あらかじめ調整された燃料BIRマスタ信号に対し、乗算器106において、燃料BIR補正器11が出力した補正値を乗じることにより求める。   The fuel BIR to be added to the fuel flow demand by the adder 105 is obtained by multiplying the fuel BIR master signal adjusted in advance by the correction value output from the fuel BIR corrector 11 in the multiplier 106.

次に、燃料BIR補正器11での処理を説明する。第一の実施例になる装置では、ボイラ出口ガス温度の計測値を用いて燃料BIRの補正値を求める。燃料BIR補正器11は、ボイラ出口ガス温度の計測値を取りこみ、減算器111で制御偏差を求める。このとき、ボイラ出口ガス温度の設定値は、設定値計算器112で求める。   Next, processing in the fuel BIR corrector 11 will be described. In the apparatus according to the first embodiment, the correction value of the fuel BIR is obtained using the measured value of the boiler outlet gas temperature. The fuel BIR corrector 11 takes in the measured value of the boiler outlet gas temperature, and the subtractor 111 calculates the control deviation. At this time, the set value of the boiler outlet gas temperature is obtained by the set value calculator 112.

図2に、設定値計算器112での処理の概要を示した。図2(a)で示すように、設定値計算器では、負荷指令値からMWDのトレンドを求める。次に、MWDに一次遅れ処理を行い、ボイラ出口ガス温度設定値のトレンド(規格化値)を求める。ここで、一次遅れの時定数はボイラの動特性を基にあらかじめ決めておく。次に、図2(b)で示すように、設定値のトレンドの開始温度が現在のボイラ出口ガス温度の計測値になるように、また、最終目標値が負荷とスートブロワに応じた直近のボイラ出口ガス温度の計測値になるように変換する。負荷によって排ガス温度は変わるのに加え、経年劣化によっても変わり、さらに、スートブロワによっても変わるためである。ボイラが経年劣化し、伝熱性能が劣化すると、排ガス温度は高くなる傾向にある。また、スートブロワとは、伝熱管に付着した灰を除去するため、蒸気を噴射する装置である。スートブロワの噴射直後は、伝熱性能が向上し、排ガス温度は低下する傾向にある。以上に述べた排ガス温度の変化特性を踏まえ、負荷とスートブロワに応じて、直近のボイラ出口ガス温度を図1に示す計測値DB(データベース)113から取りだす。計測値DB113では、発電出力、スートブロワからの経過時間、ボイラ出口ガス温度の計測値が格納されており、ボイラ出口ガス温度の変化傾向が把握できるようになっている。   FIG. 2 shows an outline of processing in the set value calculator 112. As shown in FIG. 2A, the set value calculator obtains the MWD trend from the load command value. Next, first-order lag processing is performed on the MWD to determine a trend (standardized value) of the boiler outlet gas temperature set value. Here, the first-order lag time constant is determined in advance based on the dynamic characteristics of the boiler. Next, as shown in FIG. 2 (b), the latest boiler whose final target value corresponds to the load and the soot blower is set so that the start temperature of the set value trend becomes the measured value of the current boiler outlet gas temperature. Convert to a measured value of outlet gas temperature. This is because, in addition to the exhaust gas temperature changing depending on the load, it also changes due to aging, and also changes depending on the soot blower. As the boiler deteriorates over time and the heat transfer performance deteriorates, the exhaust gas temperature tends to increase. The soot blower is a device that injects steam to remove ash adhering to the heat transfer tube. Immediately after the injection of the soot blower, the heat transfer performance is improved and the exhaust gas temperature tends to decrease. Based on the above-described change characteristics of the exhaust gas temperature, the latest boiler outlet gas temperature is extracted from the measured value DB (database) 113 shown in FIG. 1 according to the load and the soot blower. The measured value DB 113 stores the power generation output, the elapsed time from the soot blower, and the measured value of the boiler outlet gas temperature, so that the change tendency of the boiler outlet gas temperature can be grasped.

以上の処理で求めたボイラ出口ガス温度の設定値と計測値との偏差は、PI制御器114に取り込まれ、ボイラ出口ガス温度の計測値が設定値に追従するような補正値を出力する。次いで、リミッター115で、PI制御器が出力した補正値に対して、上・下限の処理を行い、最終的な燃料BIR補正値となる。リミッターは、燃料BIRが過大あるいは過小になって、ボイラの運転を不安定にしないように調整する機能をもつ。このように燃料流量の先行制御信号であるBIRの補正値に上限または下限の少なくとも一方の処理を行うことにより、ボイラを安定に運転することができる。   The deviation between the set value and the measured value of the boiler outlet gas temperature obtained by the above processing is taken into the PI controller 114, and a correction value is output so that the measured value of the boiler outlet gas temperature follows the set value. Next, the limiter 115 performs upper / lower limit processing on the correction value output from the PI controller to obtain the final fuel BIR correction value. The limiter has a function of adjusting so that the operation of the boiler does not become unstable when the fuel BIR becomes too large or too small. Thus, the boiler can be stably operated by performing at least one of the upper limit and the lower limit on the correction value of the BIR that is the preceding control signal of the fuel flow rate.

図3に、燃料BIRに補正処理を行った例を示す。図3(a)は燃料BIR信号の補正の有無による信号波形の比較である。補正によって、燃料BIR信号は小さくなる方向に変わっている。つまり、補正値は100%より小さい値であることが分かる。また、(b)に補正の有無でのボイラ出口ガス温度を比較した。補正がない場合、ボイラ出口ガス温度はオーバーシュートしている。つまり、排ガス損失(排ガスによってボイラの系外に排出されるガス熱量による損失)が過大となっており、燃料消費量の増加をもたらす。これに対し、燃料BIRの補正を行うことで、ボイラ出口ガス温度のオーバーシュートは改善し、排ガス損失を減らすことができる。   FIG. 3 shows an example in which correction processing is performed on the fuel BIR. FIG. 3A shows a comparison of signal waveforms depending on whether or not the fuel BIR signal is corrected. As a result of the correction, the fuel BIR signal has been reduced. That is, it can be seen that the correction value is smaller than 100%. Moreover, the boiler exit gas temperature in the presence or absence of correction | amendment was compared with (b). When there is no correction, the boiler outlet gas temperature is overshooting. In other words, exhaust gas loss (loss due to the amount of gas heat discharged out of the boiler system by exhaust gas) is excessive, leading to an increase in fuel consumption. On the other hand, by correcting the fuel BIR, the overshoot of the boiler outlet gas temperature can be improved and the exhaust gas loss can be reduced.

図4に、燃料BIR制御に関する運転員の支援画面を示す。これは、前記の図5に示したモニタ3に表示される。301、302は燃料BIR補正処理の実行のON/OFFを制御するためのボタンである。これにより補正処理の動作のON/OFFを設定できる。303は予想される燃料削減量の推定値である。304は燃料流量のトレンドである。305は燃料BIRの補正の有無を比較したトレンドである。306はボイラ出口ガス温度の設定値と計測値を比較したトレンドである。307は主蒸気温度のトレンドである。これらの情報を提供することにより、燃料BIRの補正制御による効果や、プラントへの影響を把握することができる。   FIG. 4 shows an operator support screen related to fuel BIR control. This is displayed on the monitor 3 shown in FIG. Reference numerals 301 and 302 denote buttons for controlling ON / OFF of execution of the fuel BIR correction process. Thereby, ON / OFF of the operation | movement of a correction process can be set. 303 is an estimated value of the expected fuel reduction amount. Reference numeral 304 denotes a fuel flow trend. A trend 305 compares the presence or absence of correction of the fuel BIR. A trend 306 compares the set value of the boiler outlet gas temperature with the measured value. Reference numeral 307 denotes a trend of the main steam temperature. By providing these pieces of information, it is possible to grasp the effect of the fuel BIR correction control and the influence on the plant.

以上に示した本実施例の装置では、ボイラの負荷変化時に先行的に燃料を投入するための信号である燃料BIRに対し、ボイラ出口ガス温度の計測値を用いて補正処理を行うことで、燃料消費量を抑えた運転を行うことができる。これにより、発電コストが低減するので、経済的メリットが得られる。また、これまで、燃料BIRは試運転時に負荷変化時の温度変動を見ながら調整しており、熟練作業員の経験に依存する面があった。さらに、燃料BIRは試運転時に調整した波形を使用するため、経年劣化などでボイラの状態が変わった場合、その都度、再度調整する作業が必要になっていた。これに対し、本実施例の装置では、ボイラの計測値を基に、現在の状態に応じて最適になるように燃料BIRが自動的に補正される。このため、試運転における燃料BIRの調整作業の負担を減らすことができる。さらに、ボイラの計測値を基に、現在の状態に応じて最適化された燃料BIRを使用することによって、負荷変化時の蒸気温度の変動を低減でき、プラントの安全性と信頼性が向上できるメリットもある。   In the apparatus of the present embodiment shown above, correction processing is performed using the measured value of the boiler outlet gas temperature on the fuel BIR, which is a signal for introducing fuel in advance when the boiler load changes, Operation with reduced fuel consumption can be performed. Thereby, since the power generation cost is reduced, an economic merit can be obtained. In the past, the fuel BIR has been adjusted while observing the temperature fluctuation at the time of load change during the trial operation, and has depended on the experience of skilled workers. Further, since the fuel BIR uses the waveform adjusted during the trial operation, it is necessary to perform adjustment again each time the boiler state changes due to deterioration over time. On the other hand, in the apparatus of the present embodiment, the fuel BIR is automatically corrected based on the measured value of the boiler so as to be optimal according to the current state. For this reason, the burden of the adjustment work of the fuel BIR in the trial operation can be reduced. Further, by using the fuel BIR optimized according to the current state based on the measured values of the boiler, the fluctuation of the steam temperature at the time of load change can be reduced, and the safety and reliability of the plant can be improved. There are also benefits.

図6は、本発明の一実施例であるボイラ制御装置に実装する制御ロジックを示す概略図である。図1の実施例1における制御ロジックの中で、燃料BIR補正器11の処理のみが異なる。このため、本実施例を示す図6では、燃料BIR補正器のみを示している。   FIG. 6 is a schematic diagram showing a control logic implemented in a boiler control apparatus according to an embodiment of the present invention. Only the processing of the fuel BIR corrector 11 is different in the control logic in the embodiment 1 of FIG. For this reason, FIG. 6 showing the present embodiment shows only the fuel BIR corrector.

第一実施例ではボイラ出口ガス温度を基に、燃料BIRの補正処理を行っていた。これに対し、第二実施例ではボイラ出口ガスO2濃度を基に補正処理を行う。 In the first embodiment, the fuel BIR correction process is performed based on the boiler outlet gas temperature. In contrast, in the second embodiment, correction processing is performed based on the boiler outlet gas O 2 concentration.

図6に示す制御ロジックでは、減算器511によりボイラ出口ガスO2濃度の制御偏差を求める。ボイラ出口ガスO2濃度の制御設定値は設定値計算器512で求める。設定値の演算方法は、実施例1と同様である。負荷指令値からMWDを求め、これに一次遅れ処理を行う。次いで、計測値DB513に格納した負荷とボイラ出口ガスO2濃度のデータを用いて、負荷の最終目標値に応じて規格化する。 In the control logic shown in FIG. 6, the control deviation of the boiler outlet gas O 2 concentration is obtained by the subtractor 511. A control set value for the boiler outlet gas O 2 concentration is obtained by a set value calculator 512. The setting value calculation method is the same as in the first embodiment. MWD is obtained from the load command value, and a first order lag process is performed on the MWD. Next, using the load and boiler outlet gas O 2 concentration data stored in the measured value DB 513, normalization is performed according to the final target value of the load.

ボイラ出口ガスO2濃度の制御偏差はPI制御器514に取り込まれ、ボイラ出口ガスO2濃度の計算値が設定値に追従するような補正値を出力する。次いで、リミッター515で、PI制御器が出力した補正値に上・下限の処理を行い、最終的な燃料BIR補正信号とする。 The control deviation of the boiler outlet gas O 2 concentration is taken into the PI controller 514, and a correction value is output so that the calculated value of the boiler outlet gas O 2 concentration follows the set value. Next, a limiter 515 performs upper / lower limit processing on the correction value output from the PI controller to obtain a final fuel BIR correction signal.

以上が実施例2になる装置における燃料BIR補正器の処理内容である。これは、実施例1におけるボイラ出口ガス温度による燃料BIR補正器の代わりに用いてもよい。また、図7に示すように、ボイラ出口ガス温度による燃料BIR補正器11とボイラ出口ガスO2濃度による燃料BIR補正器51を連結して、両者で燃料BIRの補正処理を行ってもよい。 The above is the processing content of the fuel BIR corrector in the apparatus according to the second embodiment. This may be used instead of the fuel BIR corrector based on the boiler outlet gas temperature in the first embodiment. Further, as shown in FIG. 7, the fuel BIR corrector 11 based on the boiler outlet gas temperature and the fuel BIR corrector 51 based on the boiler outlet gas O 2 concentration may be connected to perform the fuel BIR correction process.

以上に示した本実施例になる装置では、ボイラ出口ガスのO2濃度を用いて燃料BIRの最適化を図っている。燃料が過剰な場合、O2濃度は低下傾向を示すので、この情報を用いて燃料BIRを補正することにより、燃料BIRの最適化処理が実現できる。また、O2濃度以外にも、CO濃度も燃料の過不足を示す指標となる。したがって、CO濃度で燃料BIRを補正する方法もある。この場合の装置の構成は、前記した図6で、O2濃度をCO濃度に置き換えればよい。 In the apparatus according to this embodiment described above, the fuel BIR is optimized by using the O 2 concentration of the boiler outlet gas. When the fuel is excessive, the O 2 concentration tends to decrease. Therefore, the fuel BIR can be optimized by correcting the fuel BIR using this information. In addition to the O 2 concentration, the CO concentration is an index indicating the excess or deficiency of fuel. Therefore, there is also a method for correcting the fuel BIR with the CO concentration. Structure of the apparatus in this case, in FIG. 6 described above may be replaced with O 2 concentration in the CO concentration.

以上のように、ボイラ出口ガスから得られる計測情報として、温度に加えて、O2濃度、CO濃度などのガス組成を利用することにより、燃料BIRの補正処理の信頼性が向上する。 As described above, the reliability of the fuel BIR correction process is improved by using the gas composition such as the O 2 concentration and the CO concentration in addition to the temperature as the measurement information obtained from the boiler outlet gas.

図8は、本発明の一実施例であるボイラ制御装置に実装する制御ロジックを示す概略図である。図1の実施例1における制御ロジックの中で、燃料BIR補正器11の処理のみが異なる。このため、本実施例を示す図8では、燃料BIR補正器のみを示している。   FIG. 8 is a schematic diagram showing the control logic implemented in the boiler control apparatus according to one embodiment of the present invention. Only the processing of the fuel BIR corrector 11 is different in the control logic in the embodiment 1 of FIG. Therefore, FIG. 8 showing the present embodiment shows only the fuel BIR corrector.

実施例1または実施例2ではボイラ出口ガスの情報を基に、燃料BIRの補正処理を行っていた。これに対し、本実施例ではボイラ収熱量を基に補正処理を行う。ただし、ボイラ収熱量を直接計測することはできない。蒸気の流量、温度、圧力から計算する。ボイラ収熱量は式(1)で計算する。   In the first embodiment or the second embodiment, the fuel BIR correction process is performed based on the information of the boiler outlet gas. In contrast, in the present embodiment, correction processing is performed based on the amount of heat recovered from the boiler. However, boiler heat recovery cannot be measured directly. Calculate from steam flow, temperature, and pressure. The amount of heat recovered from the boiler is calculated by equation (1).

Q(kW)はボイラ収熱量である。また、Hはエンタルピー(kJ/kg)、Fは流量(kg/s)、Tは温度(℃)、Pは圧力(MPa)を表す。ここでfは温度、圧力からエンタルピーに換算する蒸気関数である。エンタルピーは計測できないので、温度、圧力の計測値から計算で求める。添え字は、MSが主蒸気(ボイラ出口)、SEPが気水分離器、FWがボイラ給水を表す。 Q (kW) is boiler heat recovery. H represents enthalpy (kJ / kg), F represents flow rate (kg / s), T represents temperature (° C.), and P represents pressure (MPa). Here, f is a vapor function which converts temperature and pressure into enthalpy. Since enthalpy cannot be measured, it is calculated from the measured values of temperature and pressure. In the subscript, MS represents main steam (boiler outlet), SEP represents a steam separator, and FW represents boiler feed water.

図8に示す制御ロジックでは、ボイラ収熱量計算器416で、前記の式1を用いてボイラ収熱量を計算する。次いで、減算器411によりボイラ収熱量の制御偏差を求める。ボイラ収熱量の制御設定値は設定値計算器412で求める。設定値の演算方法は、実施例1と同様である。負荷指令値からMWDを求め、これに一次遅れ処理を行う。次いで、計測値DB413に格納した負荷とボイラ収熱量のデータを用いて、負荷の最終目標値に応じて規格化する。   In the control logic shown in FIG. 8, the boiler heat recovery amount calculator 416 calculates the boiler heat recovery amount using Equation 1 described above. Next, the control deviation of the boiler heat recovery amount is obtained by the subtractor 411. A control set value for the amount of heat recovered from the boiler is obtained by a set value calculator 412. The setting value calculation method is the same as in the first embodiment. The MWD is obtained from the load command value, and a first order lag process is performed on the MWD. Next, the load and boiler heat recovery data stored in the measurement value DB 413 are used to normalize according to the final target value of the load.

ボイラ収熱量の制御偏差はPI制御器414に取り込まれ、ボイラ収熱量の計算値が設定値に追従するような補正値を出力する。次いで、リミッター415で、PI制御器が出力した補正値に上・下限の処理を行い、最終的な燃料BIR補正信号とする。   The control deviation of the boiler heat recovery amount is taken into the PI controller 414, and a correction value is output so that the calculated value of the boiler heat recovery amount follows the set value. Next, the limiter 415 performs upper / lower limit processing on the correction value output from the PI controller to obtain a final fuel BIR correction signal.

以上が実施例3になる装置における燃料BIR補正器の処理内容である。これは、実施例1におけるボイラ出口ガス温度による燃料BIR補正器の代わりに用いてもよい。また、実施例2で説明したように、ボイラ収熱量による燃料BIR補正器41を、実施例1や実施例2で示した他の補正器と連結して、複数の補正器で燃料BIRの補正処理を行ってもよい。   The above is the processing content of the fuel BIR corrector in the apparatus according to the third embodiment. This may be used instead of the fuel BIR corrector based on the boiler outlet gas temperature in the first embodiment. Further, as described in the second embodiment, the fuel BIR corrector 41 based on the amount of heat recovered from the boiler is connected to the other correctors shown in the first and second embodiments, and the fuel BIR is corrected by a plurality of correctors. Processing may be performed.

以上に示した本実施例になる装置では、実施例1や実施例2がガス側の情報を使用しているのに対し、蒸気側の情報を用いて燃料BIRの最適化を図っている。必要となる燃料流量はボイラ収熱量によって決まる。本実施例では、その情報を直接使用して燃料BIRの波形を補正しており、信頼性が向上できる。さらに、実施例1や実施例2のボイラ出口ガスと、本実施例のボイラ収熱量の両者を用いて、燃料BIRを補正することもでき、信頼性が向上できる。   In the apparatus according to the present embodiment described above, the information on the gas side is used in the first and second embodiments, whereas the information on the steam side is used to optimize the fuel BIR. The required fuel flow is determined by the boiler heat recovery. In this embodiment, the information is directly used to correct the waveform of the fuel BIR, so that the reliability can be improved. Furthermore, the fuel BIR can be corrected by using both the boiler outlet gas of the first and second embodiments and the boiler heat recovery amount of the present embodiment, and the reliability can be improved.

各実施例の装置によれば、ボイラの計測値を用いて、燃料BIR信号の補正値を逐次計算し、燃料BIR信号を補正して、最終的な燃料BIR信号の波形を作成することができる。これにより、燃料BIR信号の最適化が図られ、負荷変化時における燃料消費量を低減できると共に、蒸気温度の変動も抑制することができる。また、負荷変化における制御性能が、試運転時に決定する燃料BIRのマスタ信号にあまり依存しない。これにより、燃料BIR信号の調整が試運転作業員の熟練度に頼ることがなくなり、作業員の負担を減らすことができる。また、ボイラの燃料としては、石炭のみではなく、ガスや石油でも同様の方法が適用できる。   According to the apparatus of each embodiment, the correction value of the fuel BIR signal is sequentially calculated using the measured value of the boiler, the fuel BIR signal is corrected, and the final waveform of the fuel BIR signal can be created. . As a result, the fuel BIR signal can be optimized, the fuel consumption at the time of load change can be reduced, and the fluctuation of the steam temperature can also be suppressed. Moreover, the control performance in the load change does not depend much on the master signal of the fuel BIR that is determined during the trial operation. Thereby, adjustment of the fuel BIR signal does not depend on the skill level of the trial operation worker, and the burden on the worker can be reduced. In addition, as a boiler fuel, the same method can be applied not only to coal but also to gas and oil.

各実施例では、ボイラの負荷変化時に、ボイラの応答遅れを補償するために先行的に燃料を投入する燃料流量の先行制御信号である燃料BIRを作成するボイラ制御装置において、ボイラでの計測値を基に、先行制御信号である燃料BIRを補正している。そうすることにより、燃料BIR信号の最適化が図られ、負荷変化時における燃料消費量を低減できると共に、蒸気温度の変動も抑制することができる。   In each of the embodiments, in a boiler control device that creates a fuel BIR that is a preceding control signal of a fuel flow rate for fuel injection in advance in order to compensate for a response delay of the boiler when the load on the boiler changes, measured values in the boiler Based on this, the fuel BIR, which is the preceding control signal, is corrected. By doing so, the fuel BIR signal can be optimized, the fuel consumption at the time of load change can be reduced, and the fluctuation of the steam temperature can also be suppressed.

燃料BIRは、より詳細に説明すると、計測値に対応する設定値を設け、設定値と計測値との偏差を用いて、燃料BIRの補正値を求め、燃料BIRのマスタ信号に補正値を乗じて作成されている。また各実施例中において計測値は、ボイラ出口ガスの温度、O2濃度、もしくはCO濃度、またはボイラ収熱量の何れかである。ボイラ収熱量は蒸気の温度、圧力、及び流量から計算することができる。 More specifically, the fuel BIR is provided with a set value corresponding to the measured value, a correction value of the fuel BIR is obtained using a deviation between the set value and the measured value, and the master signal of the fuel BIR is multiplied by the correction value. Has been created. In each embodiment, the measured value is any one of the temperature of the boiler outlet gas, the O 2 concentration, the CO concentration, or the amount of heat recovered from the boiler. Boiler heat recovery can be calculated from steam temperature, pressure, and flow rate.

設定値は発電出力目標値である負荷指令値から、設定値計算器112により求められる。各実施例のボイラ制御装置は、計測値に加え、発電出力の計測値またはスートブロア履歴の少なくとも一方を格納するデータベースを備えている。設定値はこのデータベースに格納された計測値等のデータを用いて発電出力目標値である負荷指令値に対応するように計算される。
The set value is obtained by the set value calculator 112 from the load command value which is the power generation output target value. The boiler control device according to each embodiment includes a database that stores at least one of the measurement value of the power generation output and the soot blower history in addition to the measurement value. The set value is calculated so as to correspond to the load command value, which is the power generation output target value, using data such as measured values stored in the database.

1 ボイラ制御装置
2 石炭火力プラント
3 モニタ
11 燃料BIR補正器
41 燃料BIR補正器
51 燃料BIR補正器
101 関数発生器
102 減算器
103 PI制御器
104 加算器
105 加算器
106 乗算器
107 乗算器
111 減算器
112 設定値計算器
113 計測値DB
114 PI制御器
115 リミッター
201 ボイラ
202 石炭を粉砕するミル
203 燃料流量を計測するセンサ
204 主蒸気温度を計測するセンサ
205 ボイラ出口ガス温度を計測するセンサ
206 スートブロワの動作を計測するセンサ
411 減算器
412 設定計算器
413 計測値DB
414 PI制御器
415 リミッター
416 ボイラ収熱量計算器
511 減算器
512 設定計算器
513 計測値DB
514 PI制御器
515 リミッター
DESCRIPTION OF SYMBOLS 1 Boiler control apparatus 2 Coal-fired power plant 3 Monitor 11 Fuel BIR corrector 41 Fuel BIR corrector 51 Fuel BIR corrector 101 Function generator 102 Subtractor 103 PI controller 104 Adder 105 Adder 106 Multiplier 107 Multiplier 111 Subtraction 112 Setting value calculator 113 Measurement value DB
114 PI controller 115 Limiter 201 Boiler 202 Mill for pulverizing coal 203 Sensor for measuring fuel flow rate 204 Sensor for measuring main steam temperature 205 Sensor for measuring boiler outlet gas temperature Sensor 411 for measuring operation of soot blower Subtractor 412 Setting calculator 413 Measurement value DB
414 PI controller 415 Limiter 416 Boiler heat recovery calculator 511 Subtractor 512 Setting calculator 513 Measurement value DB
514 PI Controller 515 Limiter

Claims (7)

ボイラの負荷変化時に、ボイラの応答遅れを補償するために先行的に燃料を投入する燃料流量の先行制御信号を作成するボイラ制御装置において、
ボイラでの計測値を基に、該先行制御信号を補正することを特徴とするボイラ制御装置
In a boiler control device for creating a preceding control signal of a fuel flow rate for injecting fuel in advance to compensate for a response delay of the boiler at the time of boiler load change,
A boiler control device that corrects the preceding control signal based on a measured value in the boiler
請求項1に記載のボイラ制御装置において、
該計測値に対応する設定値を設け、該設定値と該計測値との偏差を用いて、先行制御信号の補正値を求め、先行制御信号のマスタ信号に該補正値を乗じて該先行制御信号を作成することを特徴とするボイラ制御装置。
In the boiler control device according to claim 1,
A setting value corresponding to the measured value is provided, a correction value of the preceding control signal is obtained using a deviation between the setting value and the measured value, and the master signal of the preceding control signal is multiplied by the correction value to perform the preceding control. A boiler control device characterized by creating a signal.
請求項1または2に記載のボイラ制御装置において、
該計測値はボイラ出口ガスの温度、O2濃度、もしくはCO濃度、またはボイラ収熱量の何れかであることを特徴とするボイラ制御装置。
In the boiler control device according to claim 1 or 2,
The boiler control device characterized in that the measured value is any one of a temperature of the boiler outlet gas, an O 2 concentration, a CO concentration, or a boiler heat recovery amount.
請求項1から3の何れかに記載のボイラ制御装置において、
該設定値を発電出力目標値から作成することを特徴とするボイラ制御装置。
In the boiler control apparatus in any one of Claim 1 to 3,
A boiler control device that creates the set value from a power generation output target value.
請求項2から4の何れかに記載のボイラ制御装置において、
前記計測値と、発電出力の計測値またはスートブロア履歴を格納するデータベースを備え、
該設定値を、該データベースに格納されたデータを用いて発電出力目標値に対応するように計算することを特徴とするボイラ制御装置。
In the boiler control apparatus in any one of Claim 2 to 4,
A database for storing the measured value and the measured value of the power generation output or the soot blower history,
The boiler control device, wherein the set value is calculated so as to correspond to the power generation output target value by using data stored in the database.
請求項3に記載のボイラ制御装置において、
該ボイラ収熱量は蒸気の温度、圧力、及び流量から計算することを特徴とするボイラ制御装置。
In the boiler control device according to claim 3,
The boiler heat recovery amount is calculated from steam temperature, pressure, and flow rate.
請求項1から請求項6の何れかに記載のボイラ制御装置において、
該燃料流量の先行制御信号の補正値に上限または下限の少なくとも一方の処理を行うことを特徴とするボイラ制御装置。
In the boiler control apparatus in any one of Claims 1-6,
A boiler control device that performs at least one of an upper limit and a lower limit on a correction value of a preceding control signal of the fuel flow rate.
JP2012283857A 2012-12-27 2012-12-27 Boiler control device Active JP5970368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012283857A JP5970368B2 (en) 2012-12-27 2012-12-27 Boiler control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012283857A JP5970368B2 (en) 2012-12-27 2012-12-27 Boiler control device

Publications (2)

Publication Number Publication Date
JP2014126305A true JP2014126305A (en) 2014-07-07
JP5970368B2 JP5970368B2 (en) 2016-08-17

Family

ID=51405943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012283857A Active JP5970368B2 (en) 2012-12-27 2012-12-27 Boiler control device

Country Status (1)

Country Link
JP (1) JP5970368B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831656A (en) * 2017-10-27 2018-03-23 华润电力(贺州)有限公司 A kind of fired power generating unit coordinated control system energy saving optimizing technology
WO2018212224A1 (en) * 2017-05-16 2018-11-22 郵船商事株式会社 Boiler combustion control system and boiler combustion control method
CN108964090A (en) * 2018-08-06 2018-12-07 哈尔滨工业大学 A kind of control method that supercritical unit can be promoted to participate in the consumption of wind power
CN109931581A (en) * 2017-12-19 2019-06-25 赫普科技发展(北京)有限公司 A kind of system that boiler oxygen-enriched combusting combines auxiliary peak-frequency regulation equipment
WO2020162607A1 (en) * 2019-02-08 2020-08-13 株式会社Ihi Learning device and boiler control system
CN111881554A (en) * 2020-06-29 2020-11-03 东北电力大学 Optimization control method for boiler changing along with air temperature
JP2021021554A (en) * 2019-07-30 2021-02-18 三菱パワー株式会社 Boiler control device, boiler system, power generation plant, and boiler control method
CN113359428A (en) * 2021-05-24 2021-09-07 大唐东北电力试验研究院有限公司 Supercritical unit fuel calorific value correction control method based on dynamic work coal ratio
WO2022054193A1 (en) * 2020-09-10 2022-03-17 郵船商事株式会社 Boiler combustion control system and boiler combustion control method
WO2022208846A1 (en) * 2021-04-01 2022-10-06 郵船商事株式会社 Boiler combustion control system and boiler combustion control method for supercritical pressure once-through boiler and ultra supercritical pressure once-through boiler

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332602A (en) * 1994-06-07 1995-12-22 Mitsubishi Heavy Ind Ltd Steam temperature prediction control device
JPH10212906A (en) * 1997-01-31 1998-08-11 Mitsubishi Heavy Ind Ltd Flow control valve control system for steam turbine
JPH1194205A (en) * 1997-09-18 1999-04-09 Mitsubishi Heavy Ind Ltd Equipment for control corresponding to multiple kind of coal
JPH11237002A (en) * 1998-02-24 1999-08-31 Hitachi Ltd Power plant controller
JP2002215205A (en) * 2001-01-16 2002-07-31 Hitachi Ltd Process controller
JP2002228103A (en) * 2001-01-29 2002-08-14 Hitachi Ltd Boiler controller
JP2003295905A (en) * 2002-04-05 2003-10-17 Hitachi Ltd Controller, operation support system, and operation support service method of thermal power plant
JP2004126652A (en) * 2002-09-30 2004-04-22 Mitsubishi Heavy Ind Ltd Temperature control device
JP2008146371A (en) * 2006-12-11 2008-06-26 Hitachi Ltd Controller of boiler plant
JP2009198137A (en) * 2008-02-25 2009-09-03 Hitachi Ltd Control device and control method for boiler

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332602A (en) * 1994-06-07 1995-12-22 Mitsubishi Heavy Ind Ltd Steam temperature prediction control device
JPH10212906A (en) * 1997-01-31 1998-08-11 Mitsubishi Heavy Ind Ltd Flow control valve control system for steam turbine
JPH1194205A (en) * 1997-09-18 1999-04-09 Mitsubishi Heavy Ind Ltd Equipment for control corresponding to multiple kind of coal
JPH11237002A (en) * 1998-02-24 1999-08-31 Hitachi Ltd Power plant controller
JP2002215205A (en) * 2001-01-16 2002-07-31 Hitachi Ltd Process controller
JP2002228103A (en) * 2001-01-29 2002-08-14 Hitachi Ltd Boiler controller
JP2003295905A (en) * 2002-04-05 2003-10-17 Hitachi Ltd Controller, operation support system, and operation support service method of thermal power plant
JP2004126652A (en) * 2002-09-30 2004-04-22 Mitsubishi Heavy Ind Ltd Temperature control device
JP2008146371A (en) * 2006-12-11 2008-06-26 Hitachi Ltd Controller of boiler plant
JP2009198137A (en) * 2008-02-25 2009-09-03 Hitachi Ltd Control device and control method for boiler

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212224A1 (en) * 2017-05-16 2018-11-22 郵船商事株式会社 Boiler combustion control system and boiler combustion control method
WO2018211598A1 (en) * 2017-05-16 2018-11-22 郵船商事株式会社 Boiler combustion control system and boiler combustion control method
JPWO2018212224A1 (en) * 2017-05-16 2020-05-21 郵船商事株式会社 Boiler combustion control system and boiler combustion control method
CN107831656A (en) * 2017-10-27 2018-03-23 华润电力(贺州)有限公司 A kind of fired power generating unit coordinated control system energy saving optimizing technology
CN109931581A (en) * 2017-12-19 2019-06-25 赫普科技发展(北京)有限公司 A kind of system that boiler oxygen-enriched combusting combines auxiliary peak-frequency regulation equipment
CN109931581B (en) * 2017-12-19 2024-04-19 赫普能源环境科技股份有限公司 System combining oxygen-enriched combustion with auxiliary peak regulation and frequency modulation equipment of boiler
CN108964090A (en) * 2018-08-06 2018-12-07 哈尔滨工业大学 A kind of control method that supercritical unit can be promoted to participate in the consumption of wind power
CN108964090B (en) * 2018-08-06 2021-07-13 哈尔滨工业大学 Control method capable of promoting supercritical unit to participate in wind power absorption
JPWO2020162607A1 (en) * 2019-02-08 2021-09-09 株式会社Ihi Learning device and boiler control system
WO2020162607A1 (en) * 2019-02-08 2020-08-13 株式会社Ihi Learning device and boiler control system
JP2021021554A (en) * 2019-07-30 2021-02-18 三菱パワー株式会社 Boiler control device, boiler system, power generation plant, and boiler control method
JP7261113B2 (en) 2019-07-30 2023-04-19 三菱重工業株式会社 BOILER CONTROL DEVICE, BOILER SYSTEM, POWER PLANT, AND BOILER CONTROL METHOD
CN111881554B (en) * 2020-06-29 2022-11-25 东北电力大学 Optimization control method for boiler changing along with air temperature
CN111881554A (en) * 2020-06-29 2020-11-03 东北电力大学 Optimization control method for boiler changing along with air temperature
WO2022054193A1 (en) * 2020-09-10 2022-03-17 郵船商事株式会社 Boiler combustion control system and boiler combustion control method
WO2022208846A1 (en) * 2021-04-01 2022-10-06 郵船商事株式会社 Boiler combustion control system and boiler combustion control method for supercritical pressure once-through boiler and ultra supercritical pressure once-through boiler
CN113359428A (en) * 2021-05-24 2021-09-07 大唐东北电力试验研究院有限公司 Supercritical unit fuel calorific value correction control method based on dynamic work coal ratio
CN113359428B (en) * 2021-05-24 2022-07-26 大唐东北电力试验研究院有限公司 Supercritical unit fuel calorific value correction control method based on dynamic work coal ratio

Also Published As

Publication number Publication date
JP5970368B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5970368B2 (en) Boiler control device
US9447963B2 (en) Dynamic tuning of dynamic matrix control of steam temperature
KR101520240B1 (en) Valve control device, gas turbine, and valve control method
JPWO2012090778A1 (en) Condensate flow control device and control method for power plant
CA2747047C (en) Steam temperature control using dynamic matrix control
US20120040299A1 (en) Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
JP4594376B2 (en) Gas heating value control method and gas heating value control device
WO2016104383A1 (en) Combustion controlling device, combustion controlling method, combustion controlling program, and computer-readable recording medium
JP2009300038A (en) Boiler controller and boiler control method
JP2011021758A (en) Method of correcting fuel charging amount for boiler
JP5772644B2 (en) Steam pressure control method
JP2012052785A (en) Steam supply system, method of controlling the same, and method of supplying steam
WO2014208228A1 (en) Boiler control device
JP5162228B2 (en) Boiler equipment
EP2251597A1 (en) Method of controlling oxygen supply in boiler and apparatus therefor
JP5352548B2 (en) Control device, control method, and display method for oxyfuel boiler plant
CN112602024A (en) KPI improvement support system and KPI improvement support method
KR101770534B1 (en) Control device and control method
WO2013061301A1 (en) Gas turbine plant for electric energy production and method for operating said gas turbine plant
CN115479276A (en) Control device, waste incineration facility, control method, and program
RU61349U1 (en) SYSTEM OF AUTOMATIC REGULATION OF POWER OF STEAM-GAS UNIT WITH INFLUENCE ON THE REGULATING BODIES OF THE GAS-TURBINE UNIT AND STEAM TURBINE
JP2009197637A (en) Governor-free control device and governor-free control method
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP6193827B2 (en) Fuel supply device, combustor, gas turbine, and fuel supply method
JP6520317B2 (en) Control method at blast furnace blow-through in blast furnace gas-fired power generation facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R151 Written notification of patent or utility model registration

Ref document number: 5970368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151