JP2014117051A - 電源回路及び照明装置 - Google Patents

電源回路及び照明装置 Download PDF

Info

Publication number
JP2014117051A
JP2014117051A JP2012268840A JP2012268840A JP2014117051A JP 2014117051 A JP2014117051 A JP 2014117051A JP 2012268840 A JP2012268840 A JP 2012268840A JP 2012268840 A JP2012268840 A JP 2012268840A JP 2014117051 A JP2014117051 A JP 2014117051A
Authority
JP
Japan
Prior art keywords
voltage
power supply
main electrode
control
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012268840A
Other languages
English (en)
Other versions
JP6037164B2 (ja
Inventor
Takeshi Kato
剛 加藤
Hiroto Nakamura
洋人 中村
Koji Takahashi
浩司 高橋
Hiroyuki Kudo
啓之 工藤
Hirokazu Otake
寛和 大武
Noriyuki Kitamura
紀之 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2012268840A priority Critical patent/JP6037164B2/ja
Priority to US13/830,347 priority patent/US20140159602A1/en
Priority to EP13159452.5A priority patent/EP2755447A1/en
Priority to CN201310104942.XA priority patent/CN103874277B/zh
Publication of JP2014117051A publication Critical patent/JP2014117051A/ja
Application granted granted Critical
Publication of JP6037164B2 publication Critical patent/JP6037164B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/31Phase-control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】部品の発熱を抑制できる電源回路及び照明装置を提供する。
【解決手段】実施形態によれば、電力変換部と、制御部と、制御用電源部と、を備えた電源回路が提供される。前記電力変換部は、電源供給経路を介して供給される導通角制御された交流電圧を変換して負荷に供給する。前記制御部は、前記交流電圧の導通角を検知し、検知した前記導通角に応じて前記電力変換部による電圧の変換を制御する。前記制御用電源部は、前記電源供給経路に電気的に接続された第1分岐経路と、前記第1分岐経路に流れる電流を調整する半導体素子と、前記半導体素子の温度が上限温度以上のときに前記半導体素子に流れる電流を制限する感温素子と、を有し、前記第1分岐経路を介して入力される前記交流電圧を変換して前記制御部に供給する。
【選択図】図1

Description

本発明の実施形態は、電源回路及び照明装置に関する。
導通角制御された交流電圧を所定の電圧に変換して負荷に供給する電源回路がある。こうした電源回路は、例えば、発光ダイオード(Light-emitting diode:LED)などの照明光源を含む照明負荷を備えた照明装置に用いられる。照明用の電源回路は、照明負荷に対して電力を供給するとともに、調光器の導通角制御に同期して電圧の変換を行うことにより、照明光源の調光を行う。電源回路は、交流電圧の導通角を検知し、検知した導通角に応じて電圧の変換を制御する制御部と、制御部に電源を供給する制御用電源部と、を有する。こうした電源回路において、制御用電源部に含まれる部品の発熱を抑制することが望まれる。
特開2011−211132号公報
本発明の実施形態は、部品の発熱を抑制できる電源回路及び照明装置を提供する。
本発明の実施形態によれば、電力変換部と、制御部と、制御用電源部と、を備えた電源回路が提供される。前記電力変換部は、電源供給経路を介して供給される導通角制御された交流電圧を変換して負荷に供給する。前記制御部は、前記交流電圧の導通角を検知し、検知した前記導通角に応じて前記電力変換部による電圧の変換を制御する。前記制御用電源部は、前記電源供給経路に電気的に接続された第1分岐経路と、前記第1分岐経路に流れる電流を調整する半導体素子と、前記半導体素子の温度が上限温度以上のときに前記半導体素子に流れる電流を制限する感温素子と、を有し、前記第1分岐経路を介して入力される前記交流電圧を変換して前記制御部に供給する。
部品の発熱を抑制できる電源回路及び照明装置が提供される。
第1の実施形態に係る照明装置を模式的に表すブロック図である。 第1の実施形態に係る電源回路を模式的に表す回路図である。 図3(a)及び図3(b)は、第1の実施形態に係る制御部の動作を表すグラフ図である。 図4(a)〜図4(c)は、第1の実施形態に係る制御部の動作を表すグラフ図である。 図5(a)〜図5(c)は、第1の実施形態に係る制御部の動作を表すグラフ図である。 第1の実施形態に係る別の電源回路を模式的に表す回路図である。 第2の実施形態に係る電源回路を模式的に表す回路図である。 第2の実施形態に係る別の電源回路を模式的に表す回路図である。 第3の実施形態に係る電源回路を模式的に表す回路図である。 第3の実施形態に係る別の電源回路を模式的に表す回路図である。
以下に、各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施形態)
図1は、第1の実施形態に係る照明装置を模式的に表すブロック図である。
図1に表したように、照明装置10は、照明負荷12(負荷)と、電源回路14と、を備える。照明負荷12は、例えば、発光ダイオード(LED)などの照明光源16を有する。電源回路14は、交流電源2及び調光器3と接続されている。なお、本願明細書において、「接続」とは、電気的な接続を意味し、物理的に接続されていない場合や他の要素を介して接続されている場合も含むものとする。
交流電源2は、例えば、商用電源である。調光器3は、交流電源2の電源電圧VINから導通角制御した交流電圧VCTを生成する。電源回路14は、調光器3から供給される交流電圧VCTを直流電圧VDCに変換して照明負荷12に出力することにより、照明光源を点灯させる。また、電源回路14は、導通角制御された交流電圧VCTに同期して、照明光源16の調光を行う。
調光器3の導通角制御には、例えば、交流電圧のゼロクロスから交流電圧の絶対値が最大値となる期間において導通する位相を制御する位相制御(leading edge)の方式と、交流電圧の絶対値が最大値となってから交流電圧がゼロクロスする期間において遮断する位相を制御する逆位相制御(trailing edge)の方式とがある。
位相制御する調光器3は、回路構成が簡単であり、比較的大きな電力負荷を扱うことができる。しかし、トライアックが使用されている場合は、軽負荷動作が困難で、電源電圧が一時的に低下するいわゆる電源ディップが発生すると不安定動作に陥りやすい。また、容量性負荷を接続した場合は、突入電流が発生するため容量性負荷との相性が悪いなどの特徴がある。
一方、逆位相制御する調光器3は、軽負荷でも動作可能であり、容量性負荷を接続しても突入電流が発生せず、また電源ディップが発生しても動作が安定である。しかし、回路構成が複雑であり、温度が上昇し易いため、重負荷に向かない。また、誘導性負荷を接続した場合は、サージが発生するなどの特徴がある。
本実施形態では、調光器3として、電源電圧VINを供給する一対の電源ラインの一方の端子4、6間に直列に挿入された構成を例示しているが、他の構成でもよい。
電源回路14は、電力変換部20と、制御部21と、制御用電源部22と、電流調整部23と、を有する。電力変換部20は、電源供給経路25を介して供給される交流電圧VCTを照明負荷12に応じた所定の電圧値の直流電圧VDCに変換して照明負荷12に供給する。
制御用電源部22は、電源供給経路25に接続された第1分岐経路40を有する。第1分岐経路40は、入力端子4に接続された配線40aと、入力端子5に接続された配線40bと、を含む。制御用電源部22は、第1分岐経路40を介して入力される交流電圧VCTを制御部21に応じた直流の駆動電圧VDRに変換して、その駆動電圧VDRを制御部21に供給する。
電流調整部23は、制御用電源部22に電気的に接続された第2分岐経路60を有し、第1分岐経路40に流れる電流の一部を第2分岐経路60に流す導通状態と、流さない非導通状態と、を切り替え可能である。これにより、電流調整部23は、例えば、電源供給経路25に流れる電流を調整する。なお、非導通状態には、動作に影響のない微小な電流が第2分岐経路60に流れる場合も含む。非導通状態は、例えば、第2分岐経路60に流れる電流が、導通状態よりも小さい状態である。
制御部21は、交流電圧VCTの導通角を検知する。制御部21は、検知した導通角に対応する制御信号CTLを生成し、その制御信号CTLを電力変換部20に入力する。電力変換部20は、入力された制御信号CTLに応じた電圧値の直流電圧VDCを生成する。すなわち、制御部21は、電力変換部20による直流電圧VDCへの変換を制御する。また、制御部21は、検知した導通角に応じて制御信号CGSを生成し、その制御信号CGSを電流調整部23に入力することにより、電流調整部23の導通状態と非導通状態との間の切り替えを制御する。このように、制御部21は、検知した導通角に応じて電力変換部20と電流調整部23とを制御することにより、調光器3の導通角制御に同期して、照明光源16を調光する。制御部21には、例えば、マイクロプロセッサが用いられる。
図2は、第1の実施形態に係る電源回路を模式的に表す回路図である。
図2に表したように、電力変換部20は、整流回路30と、平滑コンデンサ32と、直流電圧変換部34と、を有する。
整流回路30は、例えば、ダイオードブリッジで構成されている。整流回路30の入力端子30a、30bは、一対の入力端子4、5に接続されている。整流回路30の入力端子30a、30bには、調光器3を介して位相制御または逆位相制御された交流電圧VCTが入力される。整流回路30は、例えば、交流電圧VCTを全波整流し、全波整流後の脈流電圧を高電位端子30cと低電位端子30dとの間に生じさせる。
平滑コンデンサ32は、整流回路30の高電位端子30cと低電位端子30dとの間に接続されている。平滑コンデンサ32は、整流回路30によって整流された脈流電圧を平滑化する。これにより、平滑コンデンサ32の両端には、直流電圧VRE(第1直流電圧)が現れる。
直流電圧変換部34は、平滑コンデンサ32の両端に接続されている。これにより、直流電圧VREが、直流電圧変換部34に入力される。直流電圧変換部34は、直流電圧VREを電圧値の異なる直流電圧VDC(第2直流電圧)に変換し、その直流電圧VDCを電源回路14の出力端子7、8に出力する。照明負荷12は、出力端子7、8に接続されている。照明負荷12は、電源回路14から供給された直流電圧VDCにより、照明光源16を点灯させる。
直流電圧変換部34は、制御部21と接続されている。制御部21は、直流電圧変換部34に制御信号CTLを入力する。直流電圧変換部34は、例えば、制御信号CTLに応じて直流電圧VREを降圧する。これにより、直流電圧変換部34は、例えば、直流電圧VREを、照明負荷12の仕様や調光器3の調光度に応じた直流電圧VDCに変換する。
直流電圧変換部34は、例えば、FETなどのスイッチング素子を有しており、スイッチング素子をオン・オフすることによって直流電圧VREを降圧する。制御部21は、例えば、スイッチング素子のオン・オフのタイミングを規定するデューティ信号を制御信号CTLとして直流電圧変換部34に入力する。これにより、直流電圧VDCの電圧値を、制御信号CTLのデューティ比に応じた値に調整することができる。直流電圧変換部34は、例えば、降圧型のDC−DCコンバータである。
電源回路14は、フィルタコンデンサ26と、抵抗27、28と、をさらに有している。フィルタコンデンサ26は、入力端子4、5の間に接続されている。すなわち、フィルタコンデンサ26は、電源供給経路25に接続されている。フィルタコンデンサ26は、例えば、交流電圧VCTに含まれるノイズを除去する。
抵抗27、28は、入力端子4、5の間に直列に接続されている。抵抗27、28の接続点は、制御部21に接続されている。これにより、抵抗27、28の分圧比に応じた電圧が、交流電圧VCTの絶対値を検出するための検出電圧VRとして制御部21に入力される。
制御用電源部22は、整流素子41〜43と、抵抗44、45と、コンデンサ46、47と、レギュレータ48と、ツェナーダイオード50と、半導体素子51と、を有している。
整流素子41、42は、例えば、ダイオードである。整流素子41のアノードは、配線40aを介して整流回路30の一方の入力端子30aに接続されている。整流素子42のアノードは、配線40bを介して整流回路30の他方の入力端子30bに接続されている。
半導体素子51には、例えば、FETやGaN−HEMTなどが用いられる。以下では、半導体素子51をFET51として説明を行う。この例において、FET51は、エンハンスメント型のnチャネルFETである。FET51は、ソース電極51S(第1主電極)と、ドレイン電極51D(第2主電極)と、ゲート電極51G(制御電極)と、を有する。ドレイン電極51Dの電位は、ソース電極51Sの電位よりも高く設定される。ゲート電極51Gは、ソース電極51Sとドレイン電極51Dとの間に電流の流れる第1状態と、ソース電極51Sとドレイン電極51Dとの間に流れる電流が第1状態よりも小さい第2状態と、を切り替えるために用いられる。第2状態では、ソース電極51Sとドレイン電極51Dとの間に実質的に電流が流れない。
FET51のドレイン電極51Dは、整流素子41のカソード及び整流素子42のカソードに接続されている。すなわち、FET51のドレイン電極51Dは、整流素子41、42を介して電源供給経路25に接続されている。FET51のソース電極51Sは、抵抗44の一端に接続されている。FET51のゲート電極51Gは、ツェナーダイオード50のカソードに接続されている。また、FET51のゲート電極51Gは、抵抗45を介して整流回路30の高電位側の出力端子である高電位端子30cに接続されている。
抵抗44の他端は、整流素子43のアノードに接続されている。整流素子43のカソードは、コンデンサ46の一端及びレギュレータ48の一端に接続されている。レギュレータ48の他端は、制御部21及びコンデンサ47の一端に接続されている。
交流電圧VCTの印加にともなう一方の極性の電流は、整流素子41を介してFET51のドレイン電極51Dに流れる。一方、交流電圧VCTの印加にともなう他方の極性の電流は、整流素子42を介してFET51のドレイン電極51Dに流れる。これにより、FET51のドレイン電極51Dには、交流電圧VCTを全波整流した脈流の電圧が印加される。
ツェナーダイオード50のカソードには、抵抗45を介して、平滑コンデンサ32によって平滑された直流電圧VREが、印加される。これにより、FET51のゲート電極51Gには、ツェナーダイオード50の降伏電圧に応じた実質的に一定の電圧が印加される。これにともない、FET51のドレイン−ソース間に、実質的に一定の電流が流れる。このように、FET51は、定電流素子として機能する。FET51は、第1分岐経路40に流れる電流を調整する。
コンデンサ46は、FET51のソース電極51Sから抵抗44及び整流素子43を介して供給される脈流の電圧を平滑化し、脈流の電圧を直流電圧に変換する。レギュレータ48は、入力された直流電圧から実質的に一定の直流の駆動電圧VDRを生成し、制御部21に出力する。コンデンサ47は、例えば、駆動電圧VDRのノイズの除去などに用いられる。これにより、駆動電圧VDRが制御部21に供給される。
この際、上記のように、FET51のドレイン電極51Dを電源供給経路25に接続し、FET51のゲート電極51Gを整流回路30の高電位端子30cに接続する。すなわち、FET51のドレイン電極51Dに、交流電圧VCTを印加し、FET51のゲート電極51Gに、直流電圧VREを印加する。これにより、例えば、FET51の動作を安定させることができる。整流素子41、42にかかる負荷を抑えることができる。安定した駆動電圧VDRを制御部21に供給することができる。結果として、制御部21の動作を安定させることができる。なお、FET51のドレイン電極51Dに印加される電圧は、平滑コンデンサ32により平滑されていない電圧であればよい。例えば、整流回路30による整流後の脈流電圧でもよい。FET51のゲート電極51Gに印加される電圧は、平滑コンデンサ32により平滑された電圧であればよい。例えば、直流電圧VDCでもよい。
制御用電源部22は、感温素子52と、トランジスタ53と、抵抗54と、をさらに有している。
感温素子52の一端は、トランジスタ53のベースに接続されている。感温素子52の他端は、グランドに接続されている。感温素子52は、例えば、FET51の近傍に配置される。感温素子52は、例えば、FET51に接触した状態で実装される。これにより、感温素子52の温度は、FET51の発熱に応じて変化する。この例において、感温素子52は、正の温度特性を有する。すなわち、感温素子52は、温度の上昇にともなって抵抗値を増加させる。感温素子52には、例えば、PTC(Positive Temperature Coefficient)サーミスタが用いられる。
トランジスタ53のコレクタは、FET51のゲート電極51G、抵抗45及びツェナーダイオード50のカソードに接続されている。トランジスタ53のエミッタは、グランドに接続されている。抵抗54の一端は、感温素子52の一端、及び、トランジスタ53のベースに接続されている。抵抗54の他端は、整流回路30の高電位端子30cに接続されている。
トランジスタ53のベースには、感温素子52と抵抗54との分圧比に応じた電圧が印加される。分圧比は、FET51の温度が低い状態(例えば室温程度)においてトランジスタ53がオフ状態となるように設定される。これにより、FET51の温度が上限温度未満の状態では、上記のように、ツェナーダイオード50の降伏電圧に応じた電圧がFET51のゲート電極51Gに印加され、制御部21に駆動電圧VDRが供給される。
FET51の温度が上昇すると、それにともなって感温素子52の温度が上昇し、感温素子52の抵抗値が増大する。感温素子52の抵抗値が増大すると、トランジスタ53のベースに印加される電圧が上昇する。そして、FET51の温度が上限温度以上になると、トランジスタ53がオフ状態からオン状態に切り替わる。トランジスタ53がオン状態になると、FET51のゲート電位が低下する。例えば、FET51のゲート電位が、グランド電位に落ちる。これにより、FET51のドレイン−ソース間に流れる電流が制限される。
このように、感温素子52は、FET51が上限温度以上のときにFET51に流れる電流を制限するために用いられる。この例では、FET51のゲート電位を変化させ、FET51を第1状態から第2状態にすることによって、FET51に流れる電流を制限する。より具体的には、FET51のドレイン−ソース間に流れる電流を制限する。これにより、例えば、FET51の発熱を抑制することができる。例えば、PTCサーミスタには、キュリー温度に到達すると、抵抗値が2倍以上になるものがある。そこで、FET51の上限温度に近いキュリー温度を持つPTCサーミスタを感温素子52として選定することにより、FET51の発熱を検知し、FET51に流れる電流を抑制することができる。FET51の上限温度は、例えば、140℃〜150℃程度である。なお、この例では、エンハンスメント型のnチャネルFETをFET51として用いた例を示している。FET51は、pチャネル形でもよいし、デプレッション型でもよい。例えば、FET51をpチャネル形とする場合には、ドレイン電極51Dが第1主電極となり、ソース電極51Sが第2主電極となる。すなわち、pチャネル形の場合には、ソース電極51Sの電位が、ドレイン電極51Dの電位よりも高く設定される。感温素子52の抵抗値の変化にともなうFET51のゲート電位の変化は、FET51のタイプに応じて適宜設定すればよい。
電流調整部23は、抵抗61と、スイッチング素子62と、を有している。スイッチング素子62には、例えば、FETやGaN−HEMTなどが用いられる。以下では、スイッチング素子62をFETとして説明を行う。
抵抗61の一端は、FET51のソース電極51Sに接続されている。抵抗61の他端は、スイッチング素子62のドレインに接続されている。スイッチング素子62のゲートは、制御部21に接続されている。制御部21は、スイッチング素子62のゲートに制御信号CGSを入力する。スイッチング素子62には、例えば、ノーマリオフ型が用いられる。例えば、制御部21から入力される制御信号CGSをLoからHiに切り替えることで、スイッチング素子62が、オフ状態からオン状態に変化する。
スイッチング素子62をオン状態にすると、例えば、整流素子41、42、及びFET51を介して、電源供給経路25を流れる電流の一部が、第2分岐経路60に流れる。第1分岐経路40に流れる電流の一部が、第2分岐経路60に流れる。すなわち、スイッチング素子62をオン状態にすることによって、電流調整部23が導通状態となり、スイッチング素子62をオフ状態にすることによって、電流調整部23が非導通状態となる。
スイッチング素子62のソース、ツェナーダイオード50のアノード、コンデンサ46の他端、コンデンサ47の他端、感温素子52の他端、及び、トランジスタ53のエミッタは、整流回路30の低電位端子30dに接続されている。すなわち、制御用電源部22のグランド及び電流調整部23のグランドは、直流電圧変換部34の入力側のグランドと共通化されている。一方、制御部21のグランドは、出力端子8に接続されている。すなわち、制御部21のグランドは、直流電圧変換部34の出力側のグランドと共通化されている。これにより、例えば、制御部21の動作をより安定させることができる。
図3(a)及び図3(b)は、第1の実施形態に係る制御部の動作を表すグラフ図である。
制御部21は、制御用電源部22からの駆動電圧VDRの供給に応じて起動した後、検出電圧VRを基に、調光器3の制御方式の判定を行う。
図3(a)及び図3(b)の横軸は、時間tであり、縦軸は、検出電圧VRである。
図3(a)は、位相制御方式の調光器3から交流電圧VCTが供給された場合の検出電圧VRの波形の一例を表す。
図3(b)は、逆位相制御方式の調光器3から交流電圧VCTが供給された場合の検出電圧VRの波形の一例を表す。
図3(a)及び図3(b)に表したように、制御部21は、検出電圧VRに対して、第1閾値電圧Vth1と、第2閾値電圧Vth2と、を設定する。第2閾値電圧Vth2の絶対値は、第1閾値電圧Vth1の絶対値よりも大きい。制御部21は、検出電圧VRが第1閾値電圧Vth1に達した時点から、検出電圧VRが第2閾値電圧Vth2に達するまでの時間dtを計時する。そして、制御部21は、第1閾値電圧Vth1と第2閾値電圧Vth2との差dVと時間dtとから、傾きdV/dtを求める。制御部21は、この傾きdV/dtが所定値以上であるか否かを判定し、所定値以上である場合に、位相制御方式であると判定し、所定値未満である場合に、逆位相制御方式であると判定する。なお、時間dtの計時は、例えば、内部クロックを用いて行ってもよいし、外部にタイマなどを設けて行ってもよい。
図4(a)〜図4(c)は、第1の実施形態に係る制御部の動作を表すグラフ図である。
制御部21は、調光器3の制御方式の判定を行った後、交流電圧VCTの導通角の検知を行う。
図4(a)〜図4(c)は、位相制御方式と判定された場合の動作例を表す。
図4(a)〜図4(c)の横軸は、時間tである。図4(a)の縦軸は、検出電圧VRの絶対値である。図4(b)の縦軸は、導通角検知信号CDSである。図4(c)の縦軸は、制御信号CGSである。
図4(a)〜図4(c)に表したように、制御部21は、検出電圧VRの絶対値に対して、第3閾値電圧Vth3と、第4閾値電圧Vth4と、を設定する。第4閾値電圧Vth4の絶対値は、第3閾値電圧Vth3の絶対値よりも大きい。第3閾値電圧Vth3は、例えば、検出誤差の生じない範囲で、限りなく接地電位に近く設定される。
制御部21は、検出電圧VRの絶対値が第3閾値電圧Vth3以上であるか否かを判定するとともに、検出電圧VRの絶対値が第4閾値電圧Vth4以上であるか否かを判定する。制御部21は、検出電圧VRの絶対値が第3閾値電圧Vth3以上であると判定したことに応答して、制御信号CGSをLoからHiに切り替えることにより、スイッチング素子62をオンにする。制御部21は、検出電圧VRの絶対値が第4閾値電圧Vth4以上であると判定したことに応答して、制御信号CGSをHiからLoに切り替えることにより、スイッチング素子62をオフにする。また、制御部21は、検出電圧VRの絶対値が第4閾値電圧Vth4以上であると判定したことに応答して、導通角検知信号CDSをLoからHiに切り替える。
制御部21は、検出電圧VRの絶対値が第4閾値電圧Vth4以上であると判定した後、検出電圧VRの絶対値が第4閾値電圧Vth4未満であると判定したことに応答して、導通角検知信号CDSをHiからLoに切り替えるとともに、制御信号CGSをLoからHiに切り替える。そして、制御部21は、検出電圧VRの絶対値が第3閾値電圧Vth3未満であると判定したことに応答して、制御信号CGSをHiからLoに切り替える。
このように制御部21は、検出電圧VRの絶対値が第4閾値電圧Vth4以上である場合に、導通角検知信号CDSをHiに設定し、検出電圧VRの絶対値が第4閾値電圧Vth4未満である場合に、導通角検知信号CDSをLoに設定する。
制御部21は、導通角検知信号CDSがHiに設定されている時間Tonの区間を、調光器3の導通角制御の導通区間と判断する。そして、制御部21は、導通角検知信号CDSがLoに設定されている時間Toffの区間を、調光器3の導通角制御の遮断区間と判断する。これにより、制御部21は、時間Tonと時間Toffとの比率から、交流電圧VCTの導通角を検知する。
制御部21は、交流電圧VCTの導通角を検知した後、その導通角に応じたデューティ比の制御信号CTLを生成し、生成した制御信号CTLを直流電圧変換部34に入力する。これにより、位相制御方式で導通角を制御された交流電圧VCTに応じて、照明光源16が調光される。制御部21は、例えば、交流電圧VCTの供給が停止されるまで、導通角の検知を定期的に実施する。なお、導通角の検知は、例えば、交流電圧VCTの半波毎に毎回行ってもよいし、所定数の半波毎に行ってもよい。
また、制御部21は、上記のように、検出電圧VRの絶対値が第3閾値電圧Vth3以上第4閾値電圧Vth4未満である場合に、制御信号CGSをHi(電流調整部23を導通状態)に設定する。そして、制御部21は、検出電圧VRの絶対値が第3閾値電圧Vth3未満である場合、及び、第4閾値電圧Vth4以上である場合に、制御信号CGSをLo(電流調整部23を非導通状態)に設定する。
このように、電流調整部23の動作を制御することにより、例えば、調光器3を安定して動作させることができる。例えば、コンデンサ46、47に蓄積された電荷を電流調整部23に引き抜くことができる。これにより、駆動電圧VDRを安定して制御部21に供給することができる。すなわち、制御部21の動作をより安定させることができる。
例えば、位相制御方式で導通角制御を行う調光器3にトライアックが用いられ、照明光源16にLEDが用いられているとする。LEDの消費電流は、白熱電球などの消費電流に比べて低い。このため、上記のような動作を行わない場合には、所定値以下の導通角において、トライアックをオンするために必要な保持電流を流すことができず、調光器3の動作が不安定になることがある。
これに対して、本実施形態に係る電源回路14では、上記のように電流調整部23の動作を制御することにより、所定値以下の導通角において、トライアックをオンするために必要な保持電流を電流調整部23(第2分岐経路60)に流すことができる。これにより、調光器3の動作を安定させることができる。
図5(a)〜図5(c)は、第1の実施形態に係る制御部の動作を表すグラフ図である。
図5(a)〜図5(c)は、逆位相制御方式と判定された場合の動作例を表す。
図5(a)〜図5(c)の横軸は、時間tである。図5(a)の縦軸は、検出電圧VRの絶対値である。図5(b)の縦軸は、導通角検知信号CDSである。図5(c)の縦軸は、制御信号CGSである。
図5(a)〜図5(c)に表したように、制御部21は、逆位相制御方式であると判定した場合、検出電圧VRの絶対値に対して、第5閾値電圧Vth5を設定する。そして、制御部21は、検出電圧VRの絶対値が第5閾値電圧Vth5以上であるか否かを判定する。
制御部21は、検出電圧VRの絶対値が第5閾値電圧Vth5以上である場合に、導通角検知信号CDSをHiに設定し、検出電圧VRの絶対値が第5閾値電圧Vth5未満である場合に、導通角検知信号CDSをLoに設定する。そして、制御部21は、位相制御方式の場合と同様に、導通角検知信号CDSがHiに設定されている時間Tonの区間を、調光器3の導通角制御の導通区間と判断し、導通角検知信号CDSがLoに設定されている時間Toffの区間を、調光器3の導通角制御の遮断区間と判断して、時間Tonと時間Toffとの比率から交流電圧VCTの導通角を検知する。
制御部21は、検知した導通角に応じたデューティ比の制御信号CTLを生成し、直流電圧変換部34に入力する。これにより、逆位相制御方式においても、交流電圧VCTに応じて、照明光源16を調光することができる。
また、制御部21は、導通角検知信号CDSのHiからLoへの切り替えに応答して、制御信号CGSをLoからHiに切り替えることにより、スイッチング素子62をオンにする。そして、制御部21は、次の半波の入力にともなう導通角検知信号CDSのLoからHiへの切り替えに応答して、制御信号CGSをHiからLoに切り替えることにより、スイッチング素子62をオフする。すなわち、制御部21は、検知した導通角の導通区間において電流調整部23を非導通状態とし、検知した導通角の遮断区間において電流調整部23を導通状態とする。
逆位相制御方式では、フィルタコンデンサ26に蓄積された電荷の影響により、調光器3の実際の導通区間の時間T1よりも、時間Tonが、長くなってしまう場合がある。時間Tonが時間T1よりも長くなると、例えば、制御信号CTLのデューティ比が変化し、照明光源16の調光の度合いが変化してしまう。
電流調整部23を導通状態にして、電源供給経路25を流れる電流の一部を第2分岐経路60に流すことにより、フィルタコンデンサ26に蓄積された電荷を、電流調整部23(第2分岐経路60)に引き抜くことができる。これにより、電源回路14では、逆位相制御された交流電圧VCTの導通角をより確実に検知することができる。より高精度に照明光源16の調光を行うことができる。
例えば、LEDを負荷とする電源回路が、白熱電球を負荷として想定する位相制御調光器と組み合わせて用いられる場合がある。この場合、調光器の安定動作を行うために、ある程度の電流を電源回路側に引き込む必要がある。このときに、FETを使用した定電流回路が好適に用いられている。入力電圧に対して敷地を設け、FETに流れる電流を制御することで、調光器に応じて必要な電流を設定することができる。また、この回路を利用して制御部への電力供給を行うこともできる。
この回路方式は、FETのソースに接続された抵抗とゲート電圧とにより、供給電流を定めている。このため、接続された抵抗のソースとは逆の端子がグランドに接続された場合は、電流供給を継続することになってしまう。
このような異常モードに陥った場合に、FETに電流が過大に流れる場合は、FET自体が短絡故障することでフェイルセーフの設計が保たれる。しかしながら、導通角制御された交流電圧を用いる場合は、入力電圧が可変されるため、電流が流れ続け、発熱している状態が維持されてしまう場合がある。
また、一部のマイクロプロセッサは、こうした異常モードに対する保護として、所定の温度に到達した際に動作を停止させるサーマルシャットダウン機能を有している。しかしながら、こうした機能を用いてFET51の動作を停止させようとすると、回路構成が複雑になってしまう。また、FET51を介して制御部21に電力を供給する構成であるため、FET51の動作が不安定となった際に、制御部21への電力供給が適正に行われず、プロセッサの機能が利用できない場合もある。
これに対して、本実施形態に係る電源回路14では、制御用電源部22に感温素子52を設け、FET51が上限温度以上のときにFET51に流れる電流を制限している。これにより、例えば、コンデンサ46が短絡して抵抗44の一端がグランドに接続された場合や、スイッチング素子62が短絡して抵抗61の一端がグランドに接続された場合などにおいても、FET51に電流が流れ続け、FET51が上限温度以上まで発熱してしまうことを抑制することができる。また、マイクロプロセッサなどの機能を用いる必要がないので、FET51の加熱保護を簡易な構成で、より確実に行うことができる。
また、FET51に流れる電流を制限すると、制御部21への電力供給が停止し、制御部21の動作が停止する。制御部21の動作が停止すると、直流電圧変換部34への制御信号CTLの入力が停止する。直流電圧変換部34は、制御信号CTLが入力されていない場合、最小値の直流電圧VDCを出力する。例えば、照明光源16がLEDである場合、18V〜20V程度の駆動電圧に対して、2V程度の直流電圧VDCを出力する。従って、照明光源16が消灯する。このように、制御部21や照明負荷12の動作を安定的に停止させることもできる。照明光源16の点滅などといった異常な点灯状態になることを抑制することができる。
図6は、第1の実施形態に係る別の電源回路を模式的に表す回路図である。
図6では、この例の制御用電源部111及び電流調整部23のみを表している。電力変換部20や制御部21などの構成は、上記実施形態の構成と実質的に同じであるから、ここでの図示及び説明は省略する。以下同様に、別の実施形態の説明において、既に説明した部材に関する図示及び説明は省略する。
図6に表したように、制御用電源部111では、感温素子52と抵抗54との位置が、上記の制御用電源部22の感温素子52と抵抗54との位置に対して入れ替えられている。すなわち、この例において、感温素子52の一端は、抵抗54の一端、及び、トランジスタ53のベースに接続されている。感温素子52の他端は、整流回路30の高電位端子30cに接続されている。抵抗54の一端は、トランジスタ53のベースに接続されている。抵抗54の他端は、グランドに接続されている。
この例では、感温素子52が、負の温度特性を有する。すなわち、感温素子52は、温度の上昇にともなって抵抗値を減少させる。感温素子52には、例えば、NTC(Negative Temperature Coefficient)サーミスタが用いられる。
制御用電源部111では、FET51の温度が上昇すると、それにともなって感温素子52の温度が上昇し、感温素子52の抵抗値が減少する。感温素子52の抵抗値が減少すると、トランジスタ53のベースに印加される電圧が上昇する。これにより、制御用電源部22の場合と同様に、FET51が上限温度以上のときに、FET51のゲート電位を低下させて、FET51に流れる電流を制限することができる。
このように、感温素子52の温度特性は、正でもよいし、負でもよい。また、感温素子52は、サーミスタに限ることなく、温度変化に応じて抵抗値を変化させる任意の素子でよい。
(第2の実施形態)
図7は、第2の実施形態に係る電源回路を模式的に表す回路図である。
図7に表したように、制御用電源部121では、トランジスタ53及び抵抗54が省略され、抵抗44の代わりに感温素子52が用いられている。すなわち、この例において、感温素子52は、感温素子52の一端は、FET51のソース電極51Sに接続され、感温素子52の他端は、整流素子43のアノードに接続されている。この例において、感温素子52は、FET51のソース電極51Sとグランドとの間に電気的に接続されている。
この例において、感温素子52は、正の温度特性を有する。感温素子52には、例えば、PTCサーミスタが用いられる。
FET51において、定電流値は、ゲート電位またはソース電位により決定される。FET51の閾値電圧をVt、ゲート電位をVg、ソース電位をVsとするとき、Vt=Vg−Vsの関係を保つように、ドレイン−ソース間に電流を供給する。一方で、ソース電位は、ソース−グランド間のインピーダンス成分により決定される。ドレイン−ソース間の電流をId、ソース−グランド間のインピーダンス成分をZとするとき、ソース電位は、例えば、Vs=Id×Zである。すなわち、Id=(Vg−Vt)/Zであるから、Idを下げるためには、Vgを下げるか、Zを上げるかのいずれかの手段を採用することができる。
制御用電源部121では、FET51の温度が上昇すると、それにともなって感温素子52の温度が上昇し、感温素子52の抵抗値が増加する。感温素子52は、上限温度以上のときのソース電極51Sとグランドとの間の抵抗値を、上限温度未満のときよりも増加させる。すなわち、上記のZを増加させる。これにより、制御用電源部121においても、FET51が上限温度以上のときに、FET51に流れる電流を制限することができる。FET51の発熱を抑制することができる。この例では、FET51がnチャネル形の例を示している。例えば、pチャネル形のFETを用いる場合には、FET51のドレイン電極51Dとソース電極51Sとを入れ替えればよい。すなわち、FET51のドレイン電極51Sとグランドとの間に感温素子52を電気的に接続すればよい。
制御用電源部121の構成においては、感温素子52として、温度ヒューズを用いてもよい。例えば、温度ヒューズの溶断温度をFET51の上限温度に設定し、FET51が上限温度以上となったときに温度ヒューズを溶断させる。これにより、FET51に流れる電流をより確実に制限することができる。すなわち、本願明細書において、「抵抗の増加」には、実質的に絶縁(抵抗値が無限大)された状態も含むものとする。
また、制御用電源部121の構成において、感温素子52は、ヒューズ抵抗でもよい。例えば、ヒューズ抵抗の溶断の定格電流を、上限温度以上となったときにFET51に流れる電流の値に設定する。そして、FET51が上限温度以上となったときに、電流によってヒューズ抵抗を溶断させる。これにより、温度ヒューズの場合と同様に、FET51に流れる電流をより確実に制限することができる。このように、感温素子52は、FET51の温度に直接的に反応する素子でもよいし、電流などを介してFET51の温度に間接的に反応する素子でもよい。なお、ヒューズ抵抗などを感温素子52として用いる場合には、感温素子52を必ずしもFET51の近傍に配置しなくてもよい。
一方で、感温素子52にPTCサーミスタなどを用いた場合には、FET51の温度が上限値以上の状態から上限値未満まで下がった際に、電流の制限を解除する自己復帰型の回路を構成することができる。
図8は、第2の実施形態に係る別の電源回路を模式的に表す回路図である。
図8に表したように、制御用電源部122では、電流調整部23において、抵抗61の代わりに感温素子63が設けられている。感温素子63には、例えば、正の温度特性を有する素子、温度ヒューズまたはヒューズ抵抗のいずれかを用いる。こうすれば、スイッチング素子62の短絡にともなうFET51の発熱も適切に抑制することができる。
(第3の実施形態)
図9は、第3の実施形態に係る電源回路を模式的に表す回路図である。
図9に表したように、制御用電源部131では、第1の実施形態の制御用電源部22に対して、トランジスタ53及び抵抗54が省略されている。そして、制御用電源部131では、感温素子52が、第1分岐経路40とFET51のドレイン電極51Dとの間に電気的に接続されている。感温素子52の一端は、整流素子41のカソード及び整流素子42のカソードに接続されている。感温素子52の他端は、FET51のドレイン電極51Dに接続されている。
この例において、感温素子52には、例えば、正の温度特性を有する素子、温度ヒューズまたはヒューズ抵抗のいずれかが用いられる。
制御用電源部131では、FET51の温度が上昇すると、それにともなって感温素子52の温度が上昇し、感温素子52の抵抗値が増加する。感温素子52は、上限温度以上のときの第1分岐経路40とFET51のドレイン電極51Dとの間の抵抗値を、上限温度未満のときよりも増加させる。これにより、制御用電源部131においても、FET51が上限温度以上のときに、FET51に流れる電流を制限することができる。FET51の発熱を抑制することができる。この例では、FET51がnチャネル形の例を示している。例えば、pチャネル形のFETを用いる場合には、ドレイン電極51Dとソース電極51Sとを入れ替えればよい。すなわち、第1分岐経路40とFET51のソース電極51Sとの間に感温素子52を電気的に接続すればよい。
図10は、第3の実施形態に係る別の電源回路を模式的に表す回路図である。
図10に表したように、制御用電源部132には、制御用電源部131の構成に加えて感温素子55が設けられている。感温素子55は、感温素子52に対して並列に接続されている。これにより、各素子の特性バラツキを抑え、FET51の温度の検知や電流の制限をより適切に行うことができる。なお、並列に接続する感温素子の数は、2つに限ることなく、3つ以上でもよい。また、制御用電源部22や制御用電源部121の構成において、複数の感温素子を並列に接続してもよい。
以上、具体例を参照しつつ実施形態について説明したが、それらに限定されるものではなく、種々の変形が可能である。
例えば、上記実施形態では、負荷として、照明負荷12を示しているが、これに限ることなく、例えば、ヒータなど、導通角制御の必要な任意の負荷でよい。上記実施形態では、電源回路として、照明装置10に用いられる電源回路14を示しているが、これに限ることなく、導通角制御の必要な負荷に対応する任意の電源回路でよい。電力変換部20の変換する電圧は、直流電圧に限ることなく、例えば、実効値の異なる交流電圧でもよいし、脈流電圧でもよい。電力変換部20の変換する電圧は、例えば、接続される負荷に応じて設定すればよい。
本発明のいくつかの実施形態および実施例を説明したが、これらの実施形態または実施例は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態または実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態または実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
2…交流電源、 3…調光器、 4〜8…端子、 10…照明装置、 12…照明負荷(負荷)、 14…電源回路、 16…照明光源、 20…電力変換部、 21…制御部、 22、111、121、122、131、132…制御用電源部、 23…電流調整部、 25…電源供給経路、 26…フィルタコンデンサ、 27、28、44、45、61…抵抗、 30…整流回路、 30a〜30d…端子、 32…平滑コンデンサ、 34…直流電圧変換部、 40…第1分岐経路、 40a、40b…配線、 41〜43…整流素子、 46、47…コンデンサ、 48…レギュレータ、 50…ツェナーダイオード、 51…半導体素子(FET)、 52、55、63…感温素子、 53…トランジスタ、 54…抵抗、 60…第2分岐経路、 62…スイッチング素子

Claims (10)

  1. 電源供給経路を介して供給される導通角制御された交流電圧を変換して負荷に供給する電力変換部と、
    前記交流電圧の導通角を検知し、検知した前記導通角に応じて前記電力変換部による電圧の変換を制御する制御部と、
    前記電源供給経路に電気的に接続された第1分岐経路と、前記第1分岐経路に流れる電流を調整する半導体素子と、前記半導体素子の温度が上限温度以上のときに前記半導体素子に流れる電流を制限する感温素子と、を有し、前記第1分岐経路を介して入力される前記交流電圧を変換して前記制御部に供給する制御用電源部と、
    を備えた電源回路。
  2. 前記半導体素子は、
    第1主電極と、
    前記第1主電極よりも高い電位に設定される第2主電極と、
    前記第1主電極と前記第2主電極との間に電流の流れる第1状態と、前記第1主電極と前記第2主電極との間に流れる電流が前記第1状態よりも小さい第2状態と、を切り替えるための制御電極と、
    を有し、
    前記感温素子は、前記上限温度以上のときに前記制御電極の電位を変化させて前記半導体素子を前記第1状態から前記第2状態にする請求項1記載の電源回路。
  3. 前記半導体素子は、
    第1主電極と、
    前記第1主電極よりも高い電位に設定される第2主電極と、
    前記第1主電極と前記第2主電極との間に電流の流れる第1状態と、前記第1主電極と前記第2主電極との間に流れる電流が前記第1状態よりも小さい第2状態と、を切り替えるための制御電極と、
    を有し、
    前記感温素子は、前記第1主電極とグランドとの間に電気的に接続され、前記上限温度以上のときの前記第1主電極とグランドとの間の抵抗値を、前記上限温度未満のときよりも増加させる請求項1記載の電源回路。
  4. 前記半導体素子は、
    第1主電極と、
    前記第1主電極よりも高い電位に設定される第2主電極と、
    前記第1主電極と前記第2主電極との間に電流の流れる第1状態と、前記第1主電極と前記第2主電極との間に流れる電流が前記第1状態よりも小さい第2状態と、を切り替えるための制御電極と、
    を有し、
    前記感温素子は、前記第1分岐経路と前記第2主電極との間に電気的に接続され、前記上限温度以上のときの前記第1分岐経路と前記第2主電極との間の抵抗値を、前記上限温度未満のときよりも増加させる請求項1記載の電源回路。
  5. 前記第1主電極に電気的に接続された第2分岐経路を有し、前記第1分岐経路に流れる電流の一部を前記第2分岐経路に流す導通状態と、流さない非導通状態と、を切り替え可能な電流調整部を、さらに備えた請求項2〜4のいずれか1つに記載の電源回路。
  6. 前記電力変換部は、前記交流電圧を整流する整流回路と、整流後の電圧を平滑化して第1直流電圧に変換する平滑コンデンサと、前記第1直流電圧を電圧値の異なる第2直流電圧に変換する直流電圧変換部と、を含み、
    前記第2主電極には、前記平滑コンデンサにより平滑されていない電圧が印加され、
    前記制御電極には、前記平滑コンデンサにより平滑された電圧が印加される請求項2〜5のいずれか1つに記載の電源回路。
  7. 前記制御用電源部のグランドは、前記直流電圧変換部の入力側のグランドと共通化され、
    前記制御部のグランドは、前記直流電圧変換部の出力側のグランドと共通化されている請求項6記載の電源回路。
  8. 前記感温素子は、PTCサーミスタである請求項1〜7のいずれか1つに記載の電源回路。
  9. 前記負荷は、照明光源を含む照明負荷であり、
    前記交流電圧は、調光器から供給され、
    前記制御部は、検知した前記導通角に応じて前記電力変換部を制御することにより、前記調光器の導通角制御に同期して前記照明光源を調光する請求項1〜8のいずれか1つに記載の電源回路。
  10. 照明光源を含む照明負荷と、
    請求項1〜9のいずれか1つに記載の電源回路と、
    を備えた照明装置。
JP2012268840A 2012-12-07 2012-12-07 電源回路及び照明装置 Active JP6037164B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012268840A JP6037164B2 (ja) 2012-12-07 2012-12-07 電源回路及び照明装置
US13/830,347 US20140159602A1 (en) 2012-12-07 2013-03-14 Power supply circuit and luminaire
EP13159452.5A EP2755447A1 (en) 2012-12-07 2013-03-15 Power supply circuit and luminaire
CN201310104942.XA CN103874277B (zh) 2012-12-07 2013-03-28 电源电路及照明装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268840A JP6037164B2 (ja) 2012-12-07 2012-12-07 電源回路及び照明装置

Publications (2)

Publication Number Publication Date
JP2014117051A true JP2014117051A (ja) 2014-06-26
JP6037164B2 JP6037164B2 (ja) 2016-11-30

Family

ID=47998169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268840A Active JP6037164B2 (ja) 2012-12-07 2012-12-07 電源回路及び照明装置

Country Status (4)

Country Link
US (1) US20140159602A1 (ja)
EP (1) EP2755447A1 (ja)
JP (1) JP6037164B2 (ja)
CN (1) CN103874277B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187811A (ja) * 2013-03-22 2014-10-02 Toshiba Lighting & Technology Corp 電源回路及び照明装置
KR20160089760A (ko) * 2015-01-20 2016-07-28 현대모비스 주식회사 차량 램프용 led 패키지
JP2018156913A (ja) * 2017-03-21 2018-10-04 株式会社小糸製作所 点灯回路および車両用灯具
JP2020202630A (ja) * 2019-06-07 2020-12-17 ニチコン株式会社 照明用電源およびその保護回路
JP2020201774A (ja) * 2019-06-11 2020-12-17 ニチコン株式会社 照明用電源およびその保護回路

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140217082A1 (en) * 2011-06-22 2014-08-07 Shenzhen Xishuo Technology Company Limited Electric blanket and a low voltage and constant temperature controlling device thereof
JP6155703B2 (ja) * 2013-03-04 2017-07-05 セイコーエプソン株式会社 光源装置及びプロジェクター
TW201607372A (zh) * 2014-08-01 2016-02-16 Color Chip Technology Co Ltd 發光二極體之多段電源控制電路
TWI723421B (zh) * 2019-06-12 2021-04-01 宏碁股份有限公司 電源供應器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007953A (ja) * 2002-04-23 2004-01-08 Onkyo Corp スイッチング電源
JP2006141193A (ja) * 2004-10-14 2006-06-01 Roland Corp スイッチング電源装置
JP2012109211A (ja) * 2010-10-28 2012-06-07 Mitsumi Electric Co Ltd 照明用電源装置および保持電流の制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1478213A4 (en) * 2002-02-20 2005-03-09 Matsushita Electric Ind Co Ltd LIGHTING DEVICE WITH ELECTRODE-FREE DISCHARGE LAMP, ELECTRODEVELESS FLUORESCENT LAMP OF THE LIGHT BULB TYPE AND LIGHTING DEVICE WITH DISCHARGE LAMP
JP2004201480A (ja) * 2002-12-20 2004-07-15 Honda Motor Co Ltd インバータ制御式発電装置
CN100446353C (zh) * 2005-12-28 2008-12-24 上海科正电子科技有限公司 智能遥控灯座装置
US8558470B2 (en) * 2006-01-20 2013-10-15 Point Somee Limited Liability Company Adaptive current regulation for solid state lighting
CN101141843A (zh) * 2007-04-27 2008-03-12 杭州鸿雁电器有限公司 一种控制电子镇流器输出功率的方法及电子镇流器
US8487546B2 (en) * 2008-08-29 2013-07-16 Cirrus Logic, Inc. LED lighting system with accurate current control
JP4600583B2 (ja) * 2008-09-10 2010-12-15 東芝ライテック株式会社 調光機能を有する電源装置及び照明器具
CN101646288B (zh) * 2009-08-27 2012-08-29 佛山市美博照明有限公司 适用于传统调光器的调光方法及其led可调光驱动电源
WO2011084525A1 (en) * 2009-12-16 2011-07-14 Exclara, Inc. Adaptive current regulation for solid state lighting
CN102026453B (zh) * 2010-12-31 2014-04-30 崧顺电子(深圳)有限公司 一种led电源调光控制装置
JP5740570B2 (ja) * 2011-03-04 2015-06-24 パナソニックIpマネジメント株式会社 照明システム
JP2012199077A (ja) * 2011-03-22 2012-10-18 Panasonic Corp 照明装置
CN102186283B (zh) * 2011-03-23 2013-06-12 矽力杰半导体技术(杭州)有限公司 一种可控硅调光电路、调光方法以及应用其的一种led驱动电路
CN202135377U (zh) * 2011-07-21 2012-02-01 北京源点新智科技有限公司 Led可调光驱动电源控制电路及其控制模块

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007953A (ja) * 2002-04-23 2004-01-08 Onkyo Corp スイッチング電源
JP2006141193A (ja) * 2004-10-14 2006-06-01 Roland Corp スイッチング電源装置
JP2012109211A (ja) * 2010-10-28 2012-06-07 Mitsumi Electric Co Ltd 照明用電源装置および保持電流の制御方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187811A (ja) * 2013-03-22 2014-10-02 Toshiba Lighting & Technology Corp 電源回路及び照明装置
KR20160089760A (ko) * 2015-01-20 2016-07-28 현대모비스 주식회사 차량 램프용 led 패키지
KR102352411B1 (ko) * 2015-01-20 2022-01-18 현대모비스 주식회사 차량 램프용 led 패키지
JP2018156913A (ja) * 2017-03-21 2018-10-04 株式会社小糸製作所 点灯回路および車両用灯具
JP2020202630A (ja) * 2019-06-07 2020-12-17 ニチコン株式会社 照明用電源およびその保護回路
JP7256075B2 (ja) 2019-06-07 2023-04-11 ニチコン株式会社 照明用電源およびその保護回路
JP2020201774A (ja) * 2019-06-11 2020-12-17 ニチコン株式会社 照明用電源およびその保護回路
JP7267845B2 (ja) 2019-06-11 2023-05-02 ニチコン株式会社 照明用電源およびその保護回路

Also Published As

Publication number Publication date
US20140159602A1 (en) 2014-06-12
JP6037164B2 (ja) 2016-11-30
CN103874277B (zh) 2018-05-08
CN103874277A (zh) 2014-06-18
EP2755447A1 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP6037164B2 (ja) 電源回路及び照明装置
CN108200685B (zh) 用于可控硅开关控制的led照明系统
JP6103478B2 (ja) 電源回路及び照明装置
JP6086318B2 (ja) 電源回路及び照明装置
US9572224B2 (en) Bleeder protection using thermal foldback
EP3128815B1 (en) Light-dimming device
US20150237693A1 (en) High Voltage Converter without Auxiliary Winding
EP3128814B1 (en) Light-dimming device
TWI565358B (zh) 具備多級驅動階段和電壓/負載調整率控制之發光二極體照明裝置
JP2015065040A (ja) 電源装置及び照明装置
JP2015185360A (ja) 点灯回路及び照明装置及び照明システム
JP6103348B2 (ja) 電源回路及び照明装置
JP6358013B2 (ja) 電源装置及び照明装置
US10440797B2 (en) Lighting device and illuminating fixture
JP6032076B2 (ja) 検出回路、電源回路及び照明装置
JP6217959B2 (ja) 電源回路及び照明装置
JP2015185377A (ja) 点灯回路及び照明装置及び照明システム
JP2018156730A (ja) 調光装置
JP6296339B2 (ja) 点灯回路及び照明装置
CN116963355A (zh) 点亮装置和照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161019

R151 Written notification of patent or utility model registration

Ref document number: 6037164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151