JP2014114525A - Flat type insulation-coated electroconductive body - Google Patents

Flat type insulation-coated electroconductive body Download PDF

Info

Publication number
JP2014114525A
JP2014114525A JP2012270856A JP2012270856A JP2014114525A JP 2014114525 A JP2014114525 A JP 2014114525A JP 2012270856 A JP2012270856 A JP 2012270856A JP 2012270856 A JP2012270856 A JP 2012270856A JP 2014114525 A JP2014114525 A JP 2014114525A
Authority
JP
Japan
Prior art keywords
conductive
yarn
base material
conductive base
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012270856A
Other languages
Japanese (ja)
Other versions
JP6085162B2 (en
Inventor
Kazuaki Shibata
和明 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBATA TECHNO TEX KK
Original Assignee
SHIBATA TECHNO TEX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBATA TECHNO TEX KK filed Critical SHIBATA TECHNO TEX KK
Priority to JP2012270856A priority Critical patent/JP6085162B2/en
Publication of JP2014114525A publication Critical patent/JP2014114525A/en
Application granted granted Critical
Publication of JP6085162B2 publication Critical patent/JP6085162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a flat type insulation-coated electroconductive body which is flat, has a high designability, is not recognized as a lead wire, fits to the skin of a person, is high in heat radiation capability of resistance heat generated during conduction, has an insulating function from surroundings, is flexible to freely deform, and is capable of being cut and sew to use.SOLUTION: A flat type insulation-coated electroconductive body 10 includes; an electroconductive base material 11 for conduction, which is obtained by weaving electroconductive yarns formed by winding a copper wire on a polyester fiber yarn spirally in one direction; and non-electroconductive base materials 21, 26 which are obtained by weaving non-electroconductive yarns comprising polyester fibers, and are bonded to both sides of the electroconductive base material 11 so as to cover the sides for electrical insulation from surroundings.

Description

本発明は、電気・電子機器に電流を供給する等の目的で、電流を通すための通電体に関するものである。   The present invention relates to a current-carrying member for passing a current for the purpose of supplying a current to an electric / electronic device.

この種の通電体としては、リード線が広く用いられている。リード線は、銅等の単線又は複数素線の撚線よりなる導体が、非導電性の樹脂被覆材で覆われてなり、外形的には「線」であるから、面積的なスペースをとらず、また、比較的自由に曲げられる利点がある。また、導体は被覆材により周囲と電気的に絶縁されており、樹脂被覆材をむいて導体を露出させれば半田付けや圧着等で電気的接続が可能である。   A lead wire is widely used as this kind of electric conductor. The lead wire is a conductor composed of a single wire such as copper or a stranded wire of a plurality of strands and is covered with a non-conductive resin coating material, and is externally a “wire”. In addition, there is an advantage that it can be bent relatively freely. Further, the conductor is electrically insulated from the surroundings by the covering material, and if the conductor is exposed by peeling the resin covering material, it can be electrically connected by soldering, crimping or the like.

しかし、その導体は単線にしろ複数素線の撚線にしろほとんどが断面略円形であり、複数本素線だと断面略長円形のものもあるが、いずれにしても外形的には前述のとおり「線」の範疇を出ないので表面積が小さく、このため通電時に発生する抵抗熱の放熱性が低い。そして、大電流を流そうとすると導体の断面積を大きくするために直径を大きくする必要があり、嵩高になるとともに、しなやかさが減少するという問題がある。また、リード線は、人がこれを見ればリード線であることがすぐに分かってしまい、デザイン性に乏しい。また、電流を通すリード線と認識されてしまうという意味でも、樹脂被覆材は人の肌に馴染みの悪いものであるという意味でも、人はリード線に接触すると違和感を覚える。   However, even if the conductor is a single wire or a twisted wire of a plurality of strands, most of them have a substantially circular cross section. As described above, since it does not fall within the category of “line”, the surface area is small, and therefore the heat dissipation of resistance heat generated during energization is low. And if it is going to send a large electric current, in order to enlarge the cross-sectional area of a conductor, it is necessary to enlarge a diameter, and while it becomes bulky, there exists a problem that a flexibility reduces. Moreover, if a lead wire sees this, it will be immediately understood that it is a lead wire, and its design is poor. Moreover, a person feels uncomfortable when he / she touches a lead wire, either in the sense that it is recognized as a lead wire through which an electric current passes, or in a sense that the resin coating material is unfamiliar to human skin.

ところで、特許文献1〜5には、通常の可紡性繊維に導電性の金属線材を撚って形成した混合糸、及び、その混合糸を織成してなる導電性織物が記載されている。特許文献1〜4の導電性織物は電磁波の遮蔽を目的とするものであり、したがってアース電位等におけばよいことから、電流を通すものでない。よって、短絡や感電の問題がないため、導電性織物を非導電物で覆う必要のないものである。現にこの導電性織物は、表面に露出する導電性金属線材の面積の割合をできるだけ大きくすることによってより大きな電磁波遮蔽性能を発揮しており、導電性金属線材を非導電物で覆ってはいない。また、特許文献5の織物及び編物は電流を流すためのものであるが、非導電物で覆われたものではない。なお、特許文献2には、導電性織物を二枚の薄い有機合成樹脂シートで挟んで接着若しくは加熱圧着してシート状にしたものの記載がある。有機合成樹脂シートは、導電性金属線材の防錆を目的とするものであることから、水密であって、通気性が悪いものと考えられる。また、シート状であることから柔軟性に乏しく、縫製加工を行うと縫着された部位より裂けてしまうおそれもある。   By the way, Patent Documents 1 to 5 describe a mixed yarn formed by twisting a conductive metal wire to a normal spinnable fiber, and a conductive fabric formed by weaving the mixed yarn. The conductive fabrics of Patent Documents 1 to 4 are intended to shield electromagnetic waves, and therefore do not pass current because they only need to be at ground potential. Therefore, since there is no problem of a short circuit or an electric shock, it is not necessary to cover the conductive fabric with a non-conductive material. Actually, this conductive fabric exhibits a greater electromagnetic shielding performance by making the proportion of the area of the conductive metal wire exposed on the surface as large as possible, and the conductive metal wire is not covered with a non-conductive material. Moreover, although the textile fabric and knitted fabric of patent document 5 are for sending an electric current, they are not covered with the nonelectroconductive material. Patent Document 2 describes that a conductive fabric is sandwiched between two thin organic synthetic resin sheets and bonded or thermocompression bonded into a sheet shape. Since the organic synthetic resin sheet is intended to prevent rust of the conductive metal wire, it is considered to be watertight and poor in air permeability. Further, since it is in the form of a sheet, it is poor in flexibility, and when sewing is performed, there is a risk of tearing from the sewn part.

特開2006−124900号公報JP 2006-124900 A 特開2011−179162号公報JP 2011-179162 A 特開平10−280208号公報Japanese Patent Laid-Open No. 10-280208 特開2007−277745号公報JP 2007-277745 A 特開2011−74512号公報JP 2011-74512 A

そこで、本発明は、平型をなし、デザイン性が高く、リード線という認識がされず、人の肌に馴染みが良く、通電時に発生する抵抗熱の放熱性が高く、周囲との絶縁機能もあり、しなやかで自由に変形でき、裁断加工や縫製加工をして使用することもできる平型絶縁被覆通電体を提供することを目的とする。   Therefore, the present invention is flat, has high design, is not recognized as a lead wire, is familiar to human skin, has high heat dissipation of resistance heat generated when energized, and has an insulating function from the surroundings. It is an object of the present invention to provide a flat insulation coated conductive body that can be flexibly and freely deformed and can be used after being cut or sewn.

上記課題を解決するために、本発明の平型絶縁被覆通電体は、芯糸に線状金属が一方向に螺旋状に巻かれてなる導電糸、芯糸に帯状金属が螺旋状に巻かれてなる導電糸、糸の表面に導電性被膜が形成されてなる導電糸、及び、導電物を含む材料を紡糸してなる導電糸からなる群から選ばれる少なくとも1種の導電糸を織成してなる、通電するための導電性基材と、熱可塑性樹脂繊維よりなる非導電糸を織成してなり、前記導電性基材の片面又は両面に当該面を被覆して周囲と電気的に絶縁するために接合された、非導電性基材とを備えたものとした。   In order to solve the above-described problems, the flat insulation coated conductive body of the present invention includes a conductive thread in which a linear metal is spirally wound in one direction around a core thread, and a strip metal is spirally wound around the core thread. Woven at least one conductive yarn selected from the group consisting of conductive yarn formed by forming a conductive film on the surface of the yarn, and conductive yarn obtained by spinning a material containing a conductive material. In order to electrically insulate the surroundings by covering the surface of one side or both sides of the conductive base material with a conductive base material for energization and a non-conductive yarn made of thermoplastic resin fibers. A joined non-conductive substrate was provided.

本発明の平型絶縁被覆通電体によれば、平型をなし、デザイン性が高く、リード線という認識がされず、人の肌に馴染みが良く、通電時に発生する抵抗熱の放熱性が高く、周囲との絶縁機能もあり、しなやかで自由に変形でき、裁断加工や縫製加工をして使用することもできるという優れた効果を奏する。   According to the flat insulation coated conductive body of the present invention, it is flat, has high design, is not recognized as a lead wire, is familiar to human skin, and has high heat dissipation of resistance heat generated during energization. Also, it has an insulating function with respect to the surroundings, can be deformed flexibly and freely, and has an excellent effect that it can be used after being cut or sewn.

実施例1の平型絶縁被覆通電体の一部を示し、(a)は斜視図、(b)は断面図である。A part of flat type insulation coating electrically-conductive body of Example 1 is shown, (a) is a perspective view, (b) is sectional drawing. 同平型絶縁被覆通電体の、(a)は銅線をS方向に撚った導電糸の一部の平面図、(b)は銅線をZ方向に撚った導電糸の一部の平面図、(c)は導電性基材の一部の斜視図である。(A) is a plan view of a part of a conductive yarn in which a copper wire is twisted in the S direction, and (b) is a part of the conductive yarn in which the copper wire is twisted in the Z direction. A top view and (c) are some perspective views of an electroconductive base material. 実施例2の平型絶縁被覆通電体の一部を示し、(a)は斜視図、(b)は断面図である。A part of flat type insulation coating electrically-conductive body of Example 2 is shown, (a) is a perspective view, (b) is sectional drawing. 実施例3の平型絶縁被覆通電体の一部を示し、(a)は斜視図、(b)は断面図である。A part of flat type insulation coating electrically-conductive body of Example 3 is shown, (a) is a perspective view, (b) is sectional drawing. 実施例4の平型絶縁被覆通電体の一部を示し、(a)は斜視図、(b)は断面図である。A part of flat type insulation coating electrically-conductive body of Example 4 is shown, (a) is a perspective view, (b) is sectional drawing. 同平型絶縁被覆通電体の、(a)は導電糸の一部の平面図、(b)は導電性基材の一部の斜視図である。FIG. 2A is a plan view of a part of a conductive yarn, and FIG. 2B is a perspective view of a part of a conductive base material of the same flat type insulating covering conductive body. 実施例5の平型絶縁被覆通電体の一部を示し、(a)は斜視図、(b)は断面図である。A part of flat type insulation coating electrically-conductive body of Example 5 is shown, (a) is a perspective view, (b) is sectional drawing. 帯状金属の断面を線状金属の仮想線断面と対比して示す断面図である。It is sectional drawing which shows the cross section of a strip | belt-shaped metal as contrasted with the virtual line cross section of a linear metal. 帯状金属の製造工程を示し、(a)は箔状金属を帯状に切断する図、(b)は金属線を扁平状に圧縮する図である。The manufacturing process of a strip | belt-shaped metal is shown, (a) is a figure which cuts a foil-shaped metal into a strip | belt shape, (b) is a figure which compresses a metal wire flatly.

(1)導電性基材
導電性基材は、通電するためのものであり、芯糸に線状金属が一方向に螺旋状に巻かれてなる導電糸、芯糸に帯状金属が螺旋状に巻かれてなる導電糸、糸の表面に導電性被膜が形成されてなる導電糸、及び、導電物を含む材料を紡糸してなる導電糸からなる群から選ばれる少なくとも1種の導電糸を織成してなるもの(織布)とする。
(1) Conductive base material The conductive base material is for energization, and is a conductive thread in which a linear metal is spirally wound in one direction around a core thread, and a strip metal is spiraled around the core thread. Weaving at least one conductive yarn selected from the group consisting of a conductive yarn wound, a conductive yarn having a conductive coating formed on the surface of the yarn, and a conductive yarn obtained by spinning a material containing a conductive material. It shall be (woven fabric).

導電性基材(織布)の組織としては、特に限定されないが、平織、綾織等を例示できる。平織は、導電糸間の間隔を大きくできて放熱効果が高い点で好ましい。導電性基材(織布)の糸密度は、糸の太さによっても異なり、特に限定されないが、2.54cm(1インチ)当り、2〜50本が好ましい。この糸密度が2本未満では、織布としての形状を維持することが難しくなると共に、導電糸同士の接触不良が起こるおそれがある。一方、50本を超えると、導電糸が密になり放熱効果が低下する。経糸の糸密度と緯糸の糸密度は、同じであってもよいし、異なっていてもよい。経糸に用いられる導電糸と緯糸に用いられる導電糸は、同じであってもよいし、異なっていてもよい。経糸及び緯糸に用いられる導電糸を異ならせることで、織布の向きによって特性を変えることができる。   Although it does not specifically limit as a structure | tissue of an electroconductive base material (woven fabric), A plain weave, twill, etc. can be illustrated. Plain weaving is preferable in that the distance between the conductive yarns can be increased and the heat dissipation effect is high. The yarn density of the conductive substrate (woven fabric) varies depending on the thickness of the yarn and is not particularly limited, but is preferably 2 to 50 per 2.54 cm (1 inch). If the yarn density is less than two, it is difficult to maintain the shape as a woven fabric, and there is a risk of poor contact between the conductive yarns. On the other hand, if the number exceeds 50, the conductive yarns become dense and the heat dissipation effect is reduced. The yarn density of the warp and the yarn density of the weft may be the same or different. The conductive yarn used for the warp and the conductive yarn used for the weft may be the same or different. By making the conductive yarns used for the warp and the weft different, the characteristics can be changed depending on the direction of the woven fabric.

(1−1)芯糸に線状金属が一方向に螺旋状に巻かれてなる導電糸
この導電糸は、伸縮性を持たせることができ、可織性に優れる。また、線状金属の径次第で、低抵抗の導電糸を形成することができる。
(1-1) Conductive yarn in which a linear metal is spirally wound in one direction around a core yarn This conductive yarn can have stretchability and is excellent in woven property. Further, depending on the diameter of the linear metal, a low resistance conductive yarn can be formed.

芯糸は、紡績糸でもフィラメント糸でもよい。糸の繊維材料としては、特に限定されないが、合成繊維、天然繊維、ガラス繊維、岩石繊維等を例示できる。合成繊維の原料としては、ポリエステル、ナイロン、アクリル、ポリウレタン等の熱可塑性樹脂や、レーヨン、キュプラ、アセテート等を例示できる。天然繊維としては、綿、麻、リンネル、羊毛、絹、カシミヤ等を例示できる。糸の線密度としては、特に限定されないが、20〜300デニールを例示できる。   The core yarn may be a spun yarn or a filament yarn. Although it does not specifically limit as a fiber material of a thread | yarn, A synthetic fiber, a natural fiber, glass fiber, a rock fiber etc. can be illustrated. Examples of raw materials for synthetic fibers include thermoplastic resins such as polyester, nylon, acrylic, and polyurethane, rayon, cupra, and acetate. Examples of natural fibers include cotton, hemp, linen, wool, silk, cashmere and the like. Although it does not specifically limit as linear density of a thread | yarn, 20-300 denier can be illustrated.

線状金属の金属材料としては、特に限定されないが、銅、アルミニウム、銀、ニッケル等を例示できる。銅とアルミニウムは、導電性と柔軟性が高いことから好ましい。線状金属の太さは、特に限定されないが、30〜150μmが好ましい。30μm未満では大電流を流すことが難しくなり、150μmを超えると切断等の加工がし難くなる。   Although it does not specifically limit as a metal material of a linear metal, Copper, aluminum, silver, nickel etc. can be illustrated. Copper and aluminum are preferable because of high conductivity and flexibility. Although the thickness of a linear metal is not specifically limited, 30-150 micrometers is preferable. If it is less than 30 μm, it is difficult to flow a large current, and if it exceeds 150 μm, it is difficult to perform processing such as cutting.

(1−2)芯糸に帯状金属が螺旋状に巻かれてなる導電糸
この導電糸は、伸縮性を持たせることができ、可織性に優れる。また、前記線状金属は、折れたときに非導電性基材の織り目の隙間から突き抜けやすいが、帯状金属は幅があるため、折れたときに非導電性基材の織り目の隙間から突き抜けにくく、絶縁性能を維持することができる。また、帯状金属は、厚さを抑えることができ、織物としてのフレキシブル性を保つことができる。また、図8に示すように、同じ専有断面積の複数本の線状金属6と比べて帯状金属5の方が空隙7が少ない分だけ導電性が高くなり、大電流に対応することができる。また、帯状金属は、線状金属より芯糸に食い込み難いので、芯糸の繊維にストレッチ素材を使用した場合には、芯糸に食い込むことなくストレッチ性のある導電糸を形成することができる。
(1-2) Conductive thread formed by spirally winding a band-shaped metal around a core thread This conductive thread can have stretchability and is excellent in woven property. In addition, the linear metal easily penetrates through the gap of the non-conductive base material when folded, but the band-like metal has a width, so it is difficult to penetrate through the gap of the non-conductive base material when folded. Insulation performance can be maintained. In addition, the band-shaped metal can suppress the thickness and can maintain flexibility as a woven fabric. Further, as shown in FIG. 8, the band-like metal 5 has higher conductivity by a smaller amount of the gap 7 than the plurality of linear metals 6 having the same exclusive sectional area, and can cope with a large current. . Further, since the band-shaped metal is less likely to bite into the core yarn than the linear metal, when a stretch material is used for the fiber of the core yarn, a stretchable conductive yarn can be formed without biting into the core yarn.

芯糸は、紡績糸でもフィラメント糸でもよい。糸の繊維材料としては、特に限定されないが、上記(1−1)で例示したものを同様に例示できる。糸の線密度としては、特に限定されないが、20〜300デニールを例示できる。   The core yarn may be a spun yarn or a filament yarn. Although it does not specifically limit as a fiber material of a thread | yarn, What was illustrated by said (1-1) can be illustrated similarly. Although it does not specifically limit as linear density of a thread | yarn, 20-300 denier can be illustrated.

帯状金属の態様は、特に限定されないが、図9(a)に示すように、ポリエステルフィルム等の樹脂フィルムを貼りあわせた金属箔又は金属箔8を帯状に切断した帯状金属5や、図9(b)に示すように、金属線9を扁平状に圧縮した帯状金属5等を例示できる。帯状金属の金属材料としては、特に限定されないが、銅、アルミニウム、銀、ニッケル等を例示できる。銅とアルミニウムは、導電性と柔軟性が高いことから好ましい。帯状金属の厚さは、特に限定されないが、5〜100μmを例示できる。帯状金属の幅は、特に限定されないが、0.1〜2mmを例示できる。   Although the aspect of a strip | belt-shaped metal is not specifically limited, as shown to Fig.9 (a), the strip | belt-shaped metal 5 which cut | disconnected the metal foil or metal foil 8 which bonded resin films, such as a polyester film, in strip shape, or FIG. As shown in b), for example, a band-shaped metal 5 obtained by compressing a metal wire 9 into a flat shape can be exemplified. Although it does not specifically limit as a metal material of a strip | belt-shaped metal, Copper, aluminum, silver, nickel etc. can be illustrated. Copper and aluminum are preferable because of high conductivity and flexibility. Although the thickness of a strip | belt-shaped metal is not specifically limited, 5-100 micrometers can be illustrated. Although the width | variety of a strip | belt-shaped metal is not specifically limited, 0.1-2 mm can be illustrated.

(1−3)糸の表面に導電性被膜が形成されてなる導電糸
糸は、紡績糸でもフィラメント糸でもよい。糸の繊維材料としては、特に限定されないが、上記(1−1)で例示したものを同様に例示できる。糸の線密度としては、特に限定されないが、20〜300デニールを例示できる。
(1-3) The conductive yarn obtained by forming a conductive film on the surface of the yarn may be a spun yarn or a filament yarn. Although it does not specifically limit as a fiber material of a thread | yarn, What was illustrated by said (1-1) can be illustrated similarly. Although it does not specifically limit as linear density of a thread | yarn, 20-300 denier can be illustrated.

導電性被膜の材料としては、特に限定されないが、金属、金属酸化物、炭素等を例示できる。導電性被膜の被覆方法としては、特に限定されないが、メッキ、蒸着、粉体塗布等を例示できる。   Although it does not specifically limit as a material of a conductive film, A metal, a metal oxide, carbon etc. can be illustrated. The method for coating the conductive film is not particularly limited, and examples thereof include plating, vapor deposition, and powder coating.

(1−4)導電物を含む糸原料を紡糸してなる導電糸
導電物としては、特に限定されないが、金属粉、炭素粉等を例示できる。糸原料は、合成繊維の原料でよく、ポリエステル、ナイロン、アクリル、ポリウレタン等の熱可塑性樹脂や、レーヨン、キュプラ、アセテート等を例示できる。糸の線密度としては、特に限定されないが、20〜300デニールを例示できる。紡糸される糸は、紡績糸でもフィラメント糸でもよい。
(1-4) Conductive yarn formed by spinning a yarn raw material containing a conductive material The conductive material is not particularly limited, and examples thereof include metal powder and carbon powder. The yarn raw material may be a synthetic fiber raw material, and examples thereof include thermoplastic resins such as polyester, nylon, acrylic, and polyurethane, rayon, cupra, and acetate. Although it does not specifically limit as linear density of a thread | yarn, 20-300 denier can be illustrated. The yarn to be spun may be a spun yarn or a filament yarn.

(2)非導電性基材
非導電性基材は、前記導電性基材の片面又は両面に当該面を被覆して周囲と電気的に絶縁するために接合されたものであり、熱可塑性樹脂繊維よりなる非導電糸を織成してなるもの(織布)とする。非導電性の程度については、非導電性基材の面抵抗が非導電性基材の面抵抗に対して5000倍以上であることが好ましく、10000倍以上であることがより好ましい。
(2) Non-conductive base material The non-conductive base material is a thermoplastic resin that is joined to cover one surface or both surfaces of the conductive base material to electrically insulate the surface from the surrounding surface. A non-conductive yarn made of fibers is woven (woven fabric). Regarding the degree of non-conductivity, the surface resistance of the non-conductive substrate is preferably 5000 times or more, more preferably 10,000 times or more with respect to the surface resistance of the non-conductive substrate.

非導電性基材(織布)の組織としては、特に限定されないが、平織、綾織等を例示できる。非導電性基材(織布)の糸密度は、糸の太さによっても異なり、特に限定されないが、2.54cm(1インチ)当り、30〜100本が好ましい。この糸密度が30本未満では、織布に隙間ができすぎて絶縁性が低下するおそれがある。一方、100本を超えると、製織加工が困難になる。経糸の糸密度と緯糸の糸密度は、同じであってもよいし、異なっていてもよい。経糸に用いられる非導電糸と緯糸に用いられる非導電糸は、同じであってもよいし、異なっていてもよい。   Although it does not specifically limit as a structure | tissue of a nonelectroconductive base material (woven fabric), A plain weave, twill, etc. can be illustrated. The yarn density of the non-conductive substrate (woven fabric) varies depending on the thickness of the yarn and is not particularly limited, but is preferably 30 to 100 per 2.54 cm (1 inch). If the yarn density is less than 30, the gap may be formed in the woven fabric, which may reduce the insulation. On the other hand, when the number exceeds 100, weaving becomes difficult. The yarn density of the warp and the yarn density of the weft may be the same or different. The non-conductive yarn used for the warp and the non-conductive yarn used for the weft may be the same or different.

(2−1)非導電糸
熱可塑性樹脂繊維よりなる非導電糸を用いることにより、それを織成してなる非導電性基材はその一部分をはんだごて等で加熱溶融して剥くことができるので、同部分に露出した導電性基材にハンダ付けすることが容易になり、電気・電子機器に電流を供給する等の目的で使用される通電体としての使い勝手が良くなる。
(2-1) Non-conductive yarn By using a non-conductive yarn made of thermoplastic resin fiber, the non-conductive base material formed by weaving it can be partially melted with a soldering iron and peeled off. It becomes easy to solder to the conductive substrate exposed in the same part, and the usability as an electric current body used for the purpose of supplying electric current to the electric / electronic device is improved.

熱可塑性樹脂繊維の原料としては、特に限定されないが、ポリエステル、ナイロン、アクリル、ポリウレタン等を例示できる。非導電糸の線密度は、特に限定されないが、20〜900デニールが好ましい。20デニール未満では、非導電性基材の強度が不足するおそれがある。一方、900デニールを超えると、電気的に接合する場合に、非導電性基材の除去が困難になる。   Although it does not specifically limit as a raw material of a thermoplastic resin fiber, Polyester, nylon, an acryl, a polyurethane etc. can be illustrated. The linear density of the non-conductive yarn is not particularly limited, but is preferably 20 to 900 denier. If it is less than 20 denier, the strength of the non-conductive substrate may be insufficient. On the other hand, when it exceeds 900 deniers, it is difficult to remove the non-conductive substrate when electrically joining.

(2−2)接合構造
導電性基材と非導電性基材との接合構造は、特に限定されないが、織布であることの通気性及びフレキシブル性を維持できることから、それぞれの織布を接結糸で縫い合わせるように織り込む接合構造や、一方の織布の経糸を、他方の織布の緯糸に掛止する接合構造等を、好ましい例として挙げることができる。
(2-2) Joining structure The joining structure of the conductive base material and the non-conductive base material is not particularly limited. However, since the breathability and flexibility of being a woven fabric can be maintained, the respective woven fabrics are connected. Preferred examples include a joining structure that is woven so as to sew together with a binding yarn, and a joining structure in which a warp of one woven fabric is hooked on a weft of the other woven fabric.

図1、2に示す本発明の実施例1の平型絶縁被覆通電体10は、導電性基材11と、導電性基材11の両面に当該面を被覆するように接合された非導電性基材21、26とを備えたものである。   1 and 2, a flat insulating covering electric conductor 10 according to the first embodiment of the present invention includes a conductive base material 11 and a non-conductive member joined to cover both surfaces of the conductive base material 11. The substrate 21 and the substrate 26 are provided.

導電性基材11は、50デニールのポリエステル繊維の紡績糸よりなる芯糸15に太さ100μmの1本の線状金属としての銅線16をS方向に巻いてなる導電糸12と、同様の芯糸15に太さ100μmの1本の銅線16をZ方向に巻いてなる導電糸13とを交互に配列して経糸に用い、50デニールのポリエステル繊維の紡績糸よりなる芯糸17に太さ40μmの1本の銅線18をS方向に巻いてなる導電糸14と、同様の芯17に太さ40μmの1本の銅線18をZ方向に巻いてなる導電糸19とを交互に配列して緯糸に用い、経糸及び緯糸の糸密度を共に約35本/インチとして平織で織成してなる織布である。   The conductive base material 11 is the same as the conductive yarn 12 formed by winding a copper wire 16 as a single linear metal having a thickness of 100 μm in the S direction around a core yarn 15 made of a spun yarn of 50 denier polyester fiber. Conductive yarns 13 formed by winding one copper wire 16 having a thickness of 100 μm on the core yarn 15 in the Z direction are alternately used as warp yarns, and the core yarn 17 made of spun yarn of 50 denier polyester fiber is used as a thick yarn. Conductive yarn 14 in which one copper wire 18 having a thickness of 40 μm is wound in the S direction and conductive yarn 19 in which one copper wire 18 having a thickness of 40 μm is wound in the Z direction on a similar core 17 alternately. This is a woven fabric that is arranged and used for wefts, and is woven with plain weaves with a warp and weft density of about 35 yarns / inch.

一方の非導電性基材21は、150デニールのポリエステル繊維の紡績糸よりなる非導電糸20を経糸22と緯糸23とに用い、経糸22及び緯糸23の糸密度を共に約70本/インチにして平織で織成してなる織布である。他方の非導電性基材26も、150デニールのポリエステル繊維の紡績糸よりなる非導電糸20を経糸27と緯糸28とに用い、経糸27及び緯糸28の糸密度を共に約70本/インチにして平織で織成してなる織布である。   One non-conductive substrate 21 uses non-conductive yarn 20 made of a spun yarn of 150 denier polyester fiber as warp yarn 22 and weft yarn 23, and the density of both warp yarn 22 and weft yarn 23 is about 70 / inch. This is a woven fabric made of plain weave. The other non-conductive substrate 26 also uses the non-conductive yarn 20 made of a spun yarn of 150 denier polyester fiber as the warp yarn 27 and the weft yarn 28, and the density of both the warp yarn 27 and the weft yarn 28 is about 70 / inch. This is a woven fabric made of plain weave.

導電性基材11と二枚の非導電性基材21、26とは、50デニールのポリエステル繊維の紡績糸を接結糸29として用い、この接結糸29で縫い合わせるように織り込む、すなわち、ぞれぞれの織布11、21、26の一部の経糸に接結糸29を掛合させることによって接合されている。   The conductive base material 11 and the two non-conductive base materials 21 and 26 use 50 denier spun yarn of polyester fiber as the binding yarn 29, and are woven so as to be sewn together with the binding yarn 29, that is, The woven fabrics 11, 21, and 26 are joined by engaging the binding yarns 29 with some warp yarns.

本実施例の平型絶縁被覆通電体10によれば、次の(a)〜(i)の効果が得られる。
(a)導電性基材11の両面に非導電性基材21、26を設けた3層構造により、導電性基材11が平型絶縁被覆通電体10の両表面に露出せず、周囲との絶縁機能を有している。
(b)導電性基材11も非導電性基材21、26も織物なので、しなやかで、柔軟性があり、自由に変形させることができ、裁断加工や縫製加工をして使用することもできる。
(c)非導電性基材21、26は熱可塑性のポリエステル繊維糸よりなる非導電糸20で形成されていることから、その一部分をはんだごて等で加熱溶融して剥くことができ、同部分に露出した導電性基材11の銅線16、18にハンダ付けすることが容易になり、電気・電子機器に電流を供給する等の目的で使用される通電体としての使い勝手が良い。
According to the flat type insulation coating body 10 of the present embodiment, the following effects (a) to (i) can be obtained.
(A) Due to the three-layer structure in which the non-conductive base materials 21 and 26 are provided on both surfaces of the conductive base material 11, the conductive base material 11 is not exposed on both surfaces of the flat insulation coating current-carrying body 10, Insulation function.
(B) Since both the conductive base material 11 and the non-conductive base materials 21 and 26 are woven fabrics, they are flexible and flexible, can be freely deformed, and can be used after being cut or sewn. .
(C) Since the non-conductive base materials 21 and 26 are formed of the non-conductive yarn 20 made of a thermoplastic polyester fiber yarn, a part of the non-conductive base material 21 and 26 can be heated and melted with a soldering iron or the like. It becomes easy to solder to the copper wires 16 and 18 of the conductive base material 11 exposed to the part, and it is easy to use as a current-carrying member used for the purpose of supplying current to electric / electronic devices.

(d)銅線16が、導電性基材11の両面全体に広がって粗であり(メッシュ状)、従って銅線16の表面積が従来のリード線の線状の導体の表面積と比べて非常に大きいため、通電時に発生する抵抗熱の放熱性が高い。
(e)導電性基材11及び二枚の非導電性基材21、26が織物で構成されていることから、通気性があり、その点でも放熱効果が高い。このため、大電流を通しても、平型絶縁被覆通電体10の温度が上がりにくい。
(f)平型をなし、デザイン性が高く、リード線という認識がされない。また、織物よりなるため、人の肌に馴染みが良い。このため、人は平型絶縁被覆通電体10は接触しても違和感を覚えず、親和性がよい。
(D) The copper wire 16 spreads over both surfaces of the conductive base material 11 and is rough (mesh shape), and therefore the surface area of the copper wire 16 is much larger than the surface area of the linear conductor of the conventional lead wire. Because it is large, it has high heat dissipation of resistance heat generated during energization.
(E) Since the conductive base material 11 and the two non-conductive base materials 21 and 26 are made of woven fabric, there is air permeability, and the heat dissipation effect is also high in that respect. For this reason, even when a large current is passed, the temperature of the flat insulating covering conductive body 10 is unlikely to rise.
(F) It is flat and has high design and is not recognized as a lead wire. In addition, because it is made of woven fabric, it is familiar to human skin. For this reason, even if a person touches the flat insulation coating electrical conductor 10, it does not feel strange, and the affinity is good.

(g)線径が異なる二種類の銅線16、18を用いることで、線径が太い銅線16方向には電流を多く流すことができ、線径が細い銅線18方向にはしなやかさを持たせられる。
(h)導電性基材11の経糸及び緯糸に、銅線16、18をS方向に巻いた導電糸12、14と銅線16、18をZ方向に巻いた導電糸13、19とを交互に配列していることから、織物がカールすることを防ぐことができる。
(i)接結糸29によって導電性基材11と二枚の非導電性基材21、26とが接合されていることから、平型絶縁被覆通電体10が折り曲げられた場合に、導電糸12、13、14、19が平型絶縁被覆通電体10の表面に露出することを防ぐことができる。
(G) By using two types of copper wires 16 and 18 having different wire diameters, a large amount of current can flow in the direction of the copper wire 16 having a large wire diameter, and flexibility in the direction of the copper wire 18 having a small wire diameter. Can be held.
(H) The conductive yarns 12 and 14 in which the copper wires 16 and 18 are wound in the S direction and the conductive yarns 13 and 19 in which the copper wires 16 and 18 are wound in the Z direction are alternately arranged on the warp and the weft of the conductive substrate 11 Therefore, the fabric can be prevented from curling.
(I) Since the conductive base material 11 and the two non-conductive base materials 21 and 26 are joined together by the binding yarn 29, the conductive yarn is produced when the flat insulating covering conductive body 10 is bent. It is possible to prevent 12, 13, 14, and 19 from being exposed on the surface of the flat insulating covering conductive body 10.

図3に示す実施例2の平型絶縁被覆通電体30は、導電性基材31と、導電性基材31の両面に当該面を被覆するように接合された非導電性基材41、46とを備えたものである。   A flat insulating covering electric current body 30 of Example 2 shown in FIG. 3 includes a conductive base 31 and non-conductive bases 41 and 46 joined to cover both surfaces of the conductive base 31. It is equipped with.

導電性基材31は、実施例1の平型絶縁被覆通電体10の導電性基材11と同じである。   The conductive base material 31 is the same as the conductive base material 11 of the flat insulating coating conductive body 10 of the first embodiment.

一方の非導電性基材41は、150デニールのポリエステル繊維の紡績糸よりなる非導電糸40を経糸42と緯糸43とに用い、経糸42及び緯糸43の糸密度を共に約70本/インチにして平織で織成してなる織布である。他方の非導電性基材46も、150デニールのポリエステル繊維の紡績糸よりなる非導電糸40を経糸47と緯糸48とに用い、経糸47及び緯糸48の糸密度を共に約70本/インチにして平織で織成してなる織布である。   One non-conductive substrate 41 uses non-conductive yarn 40 made of a spun yarn of 150 denier polyester fiber as warp yarn 42 and weft yarn 43, and the density of both warp yarn 42 and weft yarn 43 is about 70 / inch. This is a woven fabric made of plain weave. The other non-conductive substrate 46 also uses a non-conductive yarn 40 made of a spun yarn of 150 denier polyester fiber as the warp 47 and the weft 48, and the density of both the warp 47 and the weft 48 is about 70 / inch. This is a woven fabric made of plain weave.

導電性基材31と二枚の非導電性基材41、46とは、一方の非導電性基材41の一部の緯糸43に他方の非導電性基材46の一部の経糸47が掛止されることによって接合されている。   The conductive base material 31 and the two non-conductive base materials 41 and 46 include a part of the weft 43 of one non-conductive base material 41 and a part of the warp yarn 47 of the other non-conductive base material 46. It is joined by being hooked.

実施例2の平型絶縁被覆通電体30によれば、実施例1の平型絶縁被覆通電体10で得られる(a)〜(h)の効果に加え、次の(j)の効果が得られる。
(j)一方の非導電性基材41の一部の緯糸43に他方の非導電性基材46の一部の経糸47が掛止されることによって、導電性基材31と二枚の非導電性基材41、46とが接合されていることから、導電性基材31と二枚の非導電性基材41、46とを強固に接合することができる。
According to the flat type insulation coating electric conductor 30 of Example 2, the following effect (j) is obtained in addition to the effects (a) to (h) obtained by the flat type insulation coating electric conductor 10 of Example 1. It is done.
(J) A part of the warp 47 of the other non-conductive substrate 46 is hooked on a part of the weft 43 of the other non-conductive substrate 41, whereby the conductive substrate 31 and the two non-conductive substrates Since the conductive base materials 41 and 46 are joined, the conductive base material 31 and the two non-conductive base materials 41 and 46 can be firmly joined.

図4に示す実施例3の平型絶縁被覆通電体50は、導電性基材51と、導電性基材11の片面に当該面を被覆するように接合された非導電性基材52とを備えたものである。   A flat insulating covering conductive body 50 of Example 3 shown in FIG. 4 includes a conductive substrate 51 and a non-conductive substrate 52 bonded to cover one surface of the conductive substrate 11. It is provided.

導電性基材51は、実施例1の平型絶縁被覆通電体10の導電性基材11と同じである。   The conductive base material 51 is the same as the conductive base material 11 of the flat insulating coating conductive body 10 of the first embodiment.

非導電性基材52は、実施例1の平型絶縁被覆通電体10の非導電性基材21と同じである。   The non-conductive base material 52 is the same as the non-conductive base material 21 of the flat insulation coating conductive body 10 of the first embodiment.

導電性基材51と非導電性基材52とは、50デニールのポリエステル繊維糸を接結糸53に用い、この接結糸53で縫い合わせるように織り込む、すなわち、ぞれぞれの織布51、52の一部の経糸に接結糸53を掛合させることによって接合されている。   The conductive base material 51 and the non-conductive base material 52 use 50 denier polyester fiber yarns as the binding yarns 53, and are woven so as to be sewn together with the binding yarns 53. , 52 are joined by engaging the binding yarn 53 with a part of the warp.

実施例3の平型絶縁被覆通電体50によれば、実施例1の平型絶縁被覆通電体10で得られる効果(a)〜(i)の効果(但し(a)は次の(a’)となる。)に加え、次の(k)の効果が得られる。
(a’)導電性基材51の片面に非導電性基材52を設けた2層構造により、導電性基材11が平型絶縁被覆通電体10の片表面に露出せず、該片表面については周囲との絶縁機能を有している。
(k)非導電性基材52を導電性基材51の片面にだけに設けることで、上記絶縁機能を有しながら、製造プロセスを簡略化できる。例えば、平型絶縁被覆通電体を別の布等に縫着する場合に、別の布等により絶縁機能が得られれば、別の布等と接する面には非導電性基材が不要となる。また、導電性基材が内側になるように平型絶縁被覆通電体を折り曲げることで絶縁性が得られる。
According to the flat type insulation coating electric conductor 50 of Example 3, the effects (a) to (i) obtained by the flat type insulation coating electric conductor 10 of Example 1 (however, (a) is the following (a ′ In addition to the above, the following effect (k) can be obtained.
(A ′) Due to the two-layer structure in which the non-conductive base material 52 is provided on one side of the conductive base material 51, the conductive base material 11 is not exposed on one surface of the flat insulating covering conductive body 10, Has an insulating function with respect to the surroundings.
(K) By providing the non-conductive substrate 52 only on one surface of the conductive substrate 51, the manufacturing process can be simplified while having the above insulating function. For example, when an insulating function is obtained by using another cloth or the like when a flat insulating coating conductor is sewn on another cloth or the like, a non-conductive base material is not required on the surface in contact with the other cloth or the like. . Further, the insulating property can be obtained by bending the flat insulating coating energizing body so that the conductive base material is inside.

図5、6に示す実施例4の平型絶縁被覆通電体60は、導電性基材61と、導電性基材61の両面に当該面を被覆するように接合された非導電性基材71、76とを備えたものである。   5 and 6, a flat insulating covering conductive body 60 of Example 4 includes a conductive base 61 and a non-conductive base 71 joined to cover both surfaces of the conductive base 61. , 76.

導電性基材61は、厚さが12μmのポリエステルフィルムに厚さが9μmの銅箔を貼着し、0.38mmの幅にスリットした一本の帯状銅66を、50デニールのポリエステル繊維の紡績糸よりなる芯糸65に螺旋状に巻きつけてなる導電糸62を経糸及び緯糸に用い、経糸及び緯糸の糸密度を共に約35本/インチにして平織で織成した織布である。なお、導電糸62の作成は、例えば、特開2009−30183号公報に記載の方法を用いる。   The conductive substrate 61 is made of a polyester film having a thickness of 12 μm, a copper foil having a thickness of 9 μm adhered, and a single strip of copper 66 slit to a width of 0.38 mm, which is made of 50 denier polyester fiber. This is a woven fabric in which a conductive yarn 62 spirally wound around a core yarn 65 is used as a warp and a weft, and the density of both the warp and the weft is about 35 / inch and is woven in a plain weave. For example, the method described in JP 2009-30183 A is used to create the conductive yarn 62.

二枚の非導電性基材71、76は、実施例1の平型絶縁被覆通電体10の非導電性基材21、26と同じである。   The two non-conductive base materials 71 and 76 are the same as the non-conductive base materials 21 and 26 of the flat insulating coating conductive body 10 of the first embodiment.

また、導電性基材61と二枚の非導電性基材71、76との接合も、実施例1の平型絶縁被覆通電体10の接合と同じように、50デニールのポリエステル繊維の紡績糸を接結糸79に用い、この接結糸79で縫い合わせるように織り込む、すなわち、ぞれぞれの織布61、71、76の一部の経糸に接結糸79を掛合させることによって接合されている。   Further, in the same manner as the joining of the flat insulating coated conductive body 10 of Example 1, the joining of the conductive base 61 and the two non-conductive bases 71 and 76 is a spun yarn of 50 denier polyester fiber. Is used as a binding thread 79 and is woven so as to be sewn with the binding thread 79, that is, by joining the binding thread 79 to some warps of the respective woven fabrics 61, 71, 76. ing.

実施例4の平型絶縁被覆通電体60によれば、実施例1の平型絶縁被覆通電体10で得られる(a)〜(f)、(i)の効果に加え、次の(l)〜(n)の効果が得られる。
(l)帯状銅66を巻きつけた導電糸62を用いることで、導電性基材61の柔軟性が高くなる。
(m)また、導電糸62の銅の表面積が大きくなることで、放熱効果を高くすることができる。
(n)また、帯状銅66を巻きつけた導電糸62を用いることで、帯状銅66が折れた場合に、帯状銅66が非導電性基材71、76を貫通して平型絶縁被覆通電体60の表面に露出し難くなる。
According to the flat type insulation coating electric conductor 60 of Example 4, in addition to the effects (a) to (f) and (i) obtained by the flat type insulation coating electric conductor 10 of Example 1, the following (l) The effect of (n) is acquired.
(L) By using the conductive yarn 62 around which the strip-shaped copper 66 is wound, the flexibility of the conductive base material 61 is increased.
(M) Moreover, the heat dissipation effect can be enhanced by increasing the copper surface area of the conductive yarn 62.
(N) Further, by using the conductive yarn 62 around which the strip-shaped copper 66 is wound, when the strip-shaped copper 66 is broken, the strip-shaped copper 66 penetrates the non-conductive base materials 71 and 76 and is supplied with the flat insulation coating. It becomes difficult to be exposed on the surface of the body 60.

図7に示す実施例5の平型絶縁被覆通電体80は、導電性基材81と、導電性基材81の片面に当該面を被覆するように接合された非導電性基材82とを備えたものである。   A flat insulating covering conductive body 80 of Example 5 shown in FIG. 7 includes a conductive base material 81 and a non-conductive base material 82 joined to cover one surface of the conductive base material 81. It is provided.

導電性基材81は、実施例4の平型絶縁被覆通電体60の導電性基材61と同じである。   The conductive base material 81 is the same as the conductive base material 61 of the flat insulation coating conductive body 60 of the fourth embodiment.

非導電性基材82は、実施例1の平型絶縁被覆通電体10の非導電性基材21と同じである。   The non-conductive base material 82 is the same as the non-conductive base material 21 of the flat insulating coating conductive body 10 of the first embodiment.

導電性基材81と非導電性基材82とは、50デニールのポリエステル繊維の紡績糸を接結糸83に用い、この接結糸83で縫い合わせるように織り込む、すなわち、ぞれぞれの織布81、82の一部の経糸に接結糸83を掛合させることによって接合されている。   The conductive base material 81 and the non-conductive base material 82 are woven so that a spun yarn of 50 denier polyester fiber is used as the binding yarn 83 and the binding yarn 83 is sewed together. Bonding is performed by hooking a binding yarn 83 on a part of the warps of the fabrics 81 and 82.

実施例5の平型絶縁被覆通電体80によれば、実施例1の平型絶縁被覆通電体10で得られる(b)〜(f)、(i)の効果、実施例3の平型絶縁被覆通電体50で得られる(a’)(k)の効果、及び実施例4の平型絶縁被覆通電体60で得られる(l)〜(n)の効果が得られる。   According to the flat insulation coating conductive body 80 of the fifth embodiment, the effects (b) to (f) and (i) obtained by the flat insulation coating conductive body 10 of the first embodiment, and the flat insulation of the third embodiment. The effects (a ′) and (k) obtained with the coated electric conductor 50 and the effects (l) to (n) obtained with the flat insulating coated electric conductor 60 of Example 4 are obtained.

[実施例1〜5の変更例]
導電性基材11,31,51,61,81に代えて、糸の表面に導電性被膜が形成されてなる導電糸を織成してなる導電性基材(織布)を用いても、各実施例と同様の効果が得られる。この導電糸の具体例としては、ポリエステルの紡績糸又はフィラメント糸の表面に銅メッキ又は炭素粉塗布等で導電性被膜が形成されたものを用いることができる。
[Modification of Examples 1 to 5]
Instead of the conductive base material 11, 31, 51, 61, 81, a conductive base material (woven fabric) formed by weaving a conductive yarn in which a conductive film is formed on the surface of the yarn is used. The same effect as the example can be obtained. As a specific example of this conductive yarn, a polyester spun yarn or filament yarn having a conductive coating formed by copper plating or carbon powder coating can be used.

また、導電性基材11,31,51,61,81に代えて、導電物を含む糸材料を紡糸してなる導電糸を織成してなる導電性基材(織布)を用いても、各実施例と同様の効果が得られる。この導電糸の具体例としては、金属粉又は炭素粉を含むポリエステル又はナイロンを紡糸してなる紡績糸又はフィラメント糸を用いることができる。   Further, instead of the conductive base materials 11, 31, 51, 61, 81, each of the conductive base materials (woven fabrics) formed by weaving conductive yarns formed by spinning a yarn material containing a conductive material can be used. The same effect as the embodiment can be obtained. As a specific example of the conductive yarn, a spun yarn or a filament yarn obtained by spinning polyester or nylon containing metal powder or carbon powder can be used.

なお、本発明は前記実施例及びその変更例に限定されるものではなく、例えば以下のように、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。
(1)非導電性基材の組織を綾織にする。
(2)導電糸をポリエステル繊維糸に複数(例えば2本)の銅線をS方向又はZ方向に巻いてなるものとする。
(3)導電糸をポリエステル繊維糸に複数(例えば2本)の帯状銅を螺旋状に巻いてなるものとする。
In addition, this invention is not limited to the said Example and its modification, For example, as follows, it can also be changed suitably and embodied in the range which does not deviate from the meaning of invention.
(1) The texture of the non-conductive substrate is made twill.
(2) A plurality of (for example, two) copper wires are wound around the polyester fiber yarn in the S direction or the Z direction.
(3) A plurality of (for example, two) strips of copper are wound around a polyester fiber yarn in a spiral shape.

10,30,50,60,80 平型絶縁被覆通電体
11,31,51,61,81 導電性基材
12,13,32,,33,34,39,62 導電糸
15,17,65 芯糸
20,40 非導電糸
16,18,36,38 銅線
21,26,41,46,52,71,76,82 非導電性基材
49,53,79,83 接結糸
66 帯状銅
10, 30, 50, 60, 80 Flat-type insulation coating conductor 11, 31, 51, 61, 81 Conductive base material 12, 13, 32, 33, 34, 39, 62 Conductive yarn 15, 17, 65 cores Yarn 20, 40 Non-conductive yarn 16, 18, 36, 38 Copper wire 21, 26, 41, 46, 52, 71, 76, 82 Non-conductive base material 49, 53, 79, 83 Binding yarn 66 Banded copper

Claims (4)

芯糸に線状金属が一方向に螺旋状に巻かれてなる導電糸、芯糸に帯状金属が螺旋状に巻かれてなる導電糸、糸の表面に導電性被膜が形成されてなる導電糸、及び、導電物を含む材料を紡糸してなる導電糸からなる群から選ばれる少なくとも1種の導電糸を織成してなる、通電するための導電性基材と、
熱可塑性樹脂繊維よりなる非導電糸を織成してなり、前記導電性基材の片面又は両面に当該面を被覆して周囲と電気的に絶縁するために接合された、非導電性基材とを備えた平型絶縁被覆通電体。
Conductive yarn in which a linear metal is spirally wound in one direction around the core yarn, conductive yarn in which a strip metal is spirally wound around the core yarn, and conductive yarn in which a conductive coating is formed on the surface of the yarn And a conductive base material for energization formed by weaving at least one type of conductive yarn selected from the group consisting of conductive yarns obtained by spinning a material containing a conductive material,
A non-conductive base material formed by weaving non-conductive yarns made of thermoplastic resin fibers and bonded to one side or both sides of the conductive base material to cover the surface and electrically insulate it from the surroundings. Equipped with a flat insulation coating electric conductor.
前記導電性基材の組織は、平織である請求項1記載の平型絶縁被覆通電体。   The flat insulating coating energized body according to claim 1, wherein the structure of the conductive base material is a plain weave. 前記導電性基材と前記非導電性基材との接合構造は、それぞれの基材を接結糸で縫い合わせるように織り込む接合構造である請求項1又は2記載の平型絶縁被覆通電体。   The flat insulating coating electrification body according to claim 1 or 2, wherein the joining structure of the conductive base material and the non-conductive base material is a joint structure in which the base materials are woven together so as to be sewn together with a binding thread. 前記導電性基材と前記非導電性基材との接合構造は、いずれか一方の基材の経糸を他方の基材の緯糸に掛止する接合構造である請求項1又は2記載の平型絶縁被覆通電体。   3. The flat mold according to claim 1, wherein the joining structure of the conductive substrate and the non-conductive substrate is a joining structure in which a warp of one of the substrates is hooked on a weft of the other substrate. Insulation coated electrical conductor.
JP2012270856A 2012-12-11 2012-12-11 Flat insulation sheath Active JP6085162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012270856A JP6085162B2 (en) 2012-12-11 2012-12-11 Flat insulation sheath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012270856A JP6085162B2 (en) 2012-12-11 2012-12-11 Flat insulation sheath

Publications (2)

Publication Number Publication Date
JP2014114525A true JP2014114525A (en) 2014-06-26
JP6085162B2 JP6085162B2 (en) 2017-02-22

Family

ID=51170833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270856A Active JP6085162B2 (en) 2012-12-11 2012-12-11 Flat insulation sheath

Country Status (1)

Country Link
JP (1) JP6085162B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143457A1 (en) * 2017-02-06 2018-08-09 日立金属株式会社 Tube
JP2020079471A (en) * 2018-11-12 2020-05-28 林撚糸株式会社 Fabric containing soldering part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101921497B1 (en) * 2017-12-26 2018-11-26 권은순 method of making rigid fabrics coated by clothing fibers and the fabrics made by thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4116467Y1 (en) * 1965-10-08 1966-07-29
JP2010510393A (en) * 2006-10-10 2010-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Textile connecting electronic devices
JP2011074512A (en) * 2009-09-29 2011-04-14 Fukui Prefecture ELECTROCONDUCTIVE YARN FOR e-TEXTILE AND WOVEN OR KNITTED FABRIC USING THE SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4116467Y1 (en) * 1965-10-08 1966-07-29
JP2010510393A (en) * 2006-10-10 2010-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Textile connecting electronic devices
JP2011074512A (en) * 2009-09-29 2011-04-14 Fukui Prefecture ELECTROCONDUCTIVE YARN FOR e-TEXTILE AND WOVEN OR KNITTED FABRIC USING THE SAME

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143457A1 (en) * 2017-02-06 2018-08-09 日立金属株式会社 Tube
CN110291319A (en) * 2017-02-06 2019-09-27 日立金属株式会社 Pipe
JPWO2018143457A1 (en) * 2017-02-06 2019-11-21 日立金属株式会社 tube
EP3578862A4 (en) * 2017-02-06 2020-12-16 Hitachi Metals, Ltd. Tube
JP7183795B2 (en) 2017-02-06 2022-12-06 日立金属株式会社 tube
US11543056B2 (en) 2017-02-06 2023-01-03 Hitachi Metals, Ltd. Tube
JP2020079471A (en) * 2018-11-12 2020-05-28 林撚糸株式会社 Fabric containing soldering part
JP7295555B2 (en) 2018-11-12 2023-06-21 林撚糸株式会社 Fabric containing soldered parts

Also Published As

Publication number Publication date
JP6085162B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5510302B2 (en) Connection member, manufacturing method thereof, and connection structure
JP4880913B2 (en) Conductive fabric and metal fabric
US20080135120A1 (en) Heating Fabric and Manufacturing Method Thereof
EP1339259A1 (en) Electric heating fabric
JP2005525480A (en) Conductive yarn containing metal fibers
JP6949320B2 (en) Conductive stretch continuous body
TWI728508B (en) Electric heating cloth having gaps and connection structure thereof
US11248316B2 (en) Electromagnetic shielding fabric and yarn for its manufacture
JP2011074512A (en) ELECTROCONDUCTIVE YARN FOR e-TEXTILE AND WOVEN OR KNITTED FABRIC USING THE SAME
JP6085162B2 (en) Flat insulation sheath
EP3610416B1 (en) Rfid tag
CN204146387U (en) Radiation-proof anti-static fabric and radiation protection antistatic clothing dress
JP3195050U (en) Stretchable flat current conductor
JP5887451B1 (en) Planar heating element
JP5463776B2 (en) Skin material for vehicle interior parts
JP6910627B2 (en) Sewing thread for sewing machines used in electric circuits
KR101393264B1 (en) electro-conductive textile for low voltage
EP3521007A1 (en) Heatable fabric
WO2020110159A1 (en) Thermal mattress cover or thermal blanket
JP5845038B2 (en) Planar heating element
KR20100088500A (en) Planar element with electromagnetic waves shielding function
JP2016017241A (en) Cloth material
WO2017102615A1 (en) Method for manufacturing a panel of fabric and kit for creating a wearable electronic item
RU2543966C2 (en) Flexible heating element
CN211319755U (en) Elastic conductive braided belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6085162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250