JP2011074512A - ELECTROCONDUCTIVE YARN FOR e-TEXTILE AND WOVEN OR KNITTED FABRIC USING THE SAME - Google Patents

ELECTROCONDUCTIVE YARN FOR e-TEXTILE AND WOVEN OR KNITTED FABRIC USING THE SAME Download PDF

Info

Publication number
JP2011074512A
JP2011074512A JP2009224962A JP2009224962A JP2011074512A JP 2011074512 A JP2011074512 A JP 2011074512A JP 2009224962 A JP2009224962 A JP 2009224962A JP 2009224962 A JP2009224962 A JP 2009224962A JP 2011074512 A JP2011074512 A JP 2011074512A
Authority
JP
Japan
Prior art keywords
conductive
yarn
textile
fiber
woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009224962A
Other languages
Japanese (ja)
Other versions
JP5352795B2 (en
Inventor
Atsushi Masuda
敦士 増田
Tetsuhiko Murakami
哲彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to JP2009224962A priority Critical patent/JP5352795B2/en
Publication of JP2011074512A publication Critical patent/JP2011074512A/en
Application granted granted Critical
Publication of JP5352795B2 publication Critical patent/JP5352795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive yarn having physical properties of being woven in a general woven fabric-weaving process and characteristics of electric resistance of ≤50 Ω/m and an electroconductive yarn in which an e-textile constituted by using the electroconductive yarn in wiring, etc., maintains electric characteristics even when deformed. <P>SOLUTION: A core part is constituted by a fiber material having physical properties equivalent to that of a main constituent fiber material of woven fabric using an electroconductive yarn for an e-textile and the fiber material is spirally wound with a plurality of electroconductive fiber materials in a number of windings of 3,000 times in 1 m in such a way that ≥50% of the surface area of the fiber material is covered with the electroconductive fiber to give the electroconductive yarn for an e-textile having an electric resistance of ≤50 Ω/m. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子機器とテキスタイルが融合したウエアラブルコンピュータや防爆防塵機能等の高機能作業服、電気製品や自動車などの様々な工業製品の電子部材として用いられるe-テキスタイルに使用する導電糸およびそれを用いたテキスタイル製品を提供する。   The present invention relates to a wearable computer in which an electronic device and a textile are fused, high-functional work clothes such as an explosion-proof and dust-proof function, and a conductive yarn used for an e-textile used as an electronic member of various industrial products such as electric products and automobiles, and the like. We provide textile products using

近年ウエアラブルコンピュータに代表されるように電子機器と織編物が融合したe−テキスタイルと称される各種テキスタイル製品開発が行われている。電子機器と織編物を融合する手段の一つとして織編物製造工程で導電糸を配置する方法があり、この場合織編物製造工程で問題なく製品を製造するには、この導電糸が織編物を構成する繊維素材と同等の力学特性を有することが不可欠となる。また、e−テキスタイルを使用する場合、テキスタイルの特性である柔軟性を要求される用途において様々な外力等による変形が発生し、それに伴いe−テキスタイルの構造自体も変形が生じて電気特性が低下する等の変化が起こる。特にハンダ等が困難であるため導電糸間および導電糸と他の電子部材との接続部は物理的接触により導通を確保するため、変形により接触面積が変化して導通状態が低下する等の問題がある。そのためにe−テキスタイルが変形の前後で電気特性が変化して製品性能の保証もしくは耐久性に問題が生じるために、実際には織編物製造工程で導電糸を配置する織編物との一体化が困難な状況である。   In recent years, as represented by wearable computers, various textile products called e-textiles in which electronic devices and knitted fabrics are fused have been developed. One method for fusing electronic equipment and woven or knitted fabric is to arrange conductive yarns in the woven or knitted fabric manufacturing process. It is essential to have the same mechanical properties as the constituent fiber material. In addition, when e-textile is used, deformation due to various external forces, etc. occurs in applications that require flexibility, which is a characteristic of the textile, and as a result, the structure of the e-textile itself is also deformed, resulting in a decrease in electrical characteristics. Changes occur. In particular, since soldering is difficult, the connection between the conductive yarns and the connecting portion between the conductive yarns and other electronic members are ensured by physical contact, so the contact area changes due to deformation and the conductive state decreases. There is. For this reason, the electrical characteristics of the e-textile change before and after the deformation, resulting in problems in product performance guarantee or durability. It is a difficult situation.

最も一般的な導電繊維は銅等の金属繊維であり、金属繊維以外の導電糸としては、導電性カーボンブラックや金属粉等の導電性粒子を熱可塑性ポリマー全体に分散させた導電性繊維、もしくは導電性成分を非導電性ポリマーで完全に包みこんだ芯鞘型複合繊維あるいは導電性成分が繊維表面に露出したタイプの複合繊維させた繊維、非導電性繊維にめっき処理を行った繊維等があり、様々な導電化技術を駆使してこれまでに開発されてきている(非特許文献1など)。これらの方法で導電性繊維に伸長性を付与した例として特許文献1が挙げられる。 The most common conductive fiber is a metal fiber such as copper, and as the conductive yarn other than the metal fiber, a conductive fiber in which conductive particles such as conductive carbon black and metal powder are dispersed throughout the thermoplastic polymer, or A core-sheath type composite fiber in which the conductive component is completely encapsulated with a non-conductive polymer, a fiber made of a composite fiber in which the conductive component is exposed on the fiber surface, a fiber obtained by plating the non-conductive fiber, etc. Yes, it has been developed so far by making full use of various conductive technologies (Non-Patent Document 1, etc.). Patent document 1 is mentioned as an example which provided the extensibility to the electroconductive fiber by these methods.

伸張変形可能な導電性素材としては、特許文献2の導電性繊維をニット構造体にする方法、特許文献3の導電性素材をカラミ織りしたテープ等の方法も開発されている。 As a conductive material that can be stretched and deformed, a method of making a conductive fiber of Patent Document 2 into a knit structure, and a method of wrapping a conductive material of Patent Document 3 with calami have been developed.

これらの問題を解決するために福井県工業技術センターでは導電糸を使用する織編物の他の構成繊維素材と同等の物性を有する繊維素材で芯部を構成し、その繊維素材のまわりに複数の導電性繊維素材を螺旋状に巻き付ける方法にて、導電糸を使用する織編物の他の構成繊維素材と同等の物性を有し、屈曲耐久性も高い導電糸を開発している。   To solve these problems, the Fukui Prefectural Industrial Technology Center makes up the core with fiber materials that have the same physical properties as other constituent fiber materials of woven and knitted fabrics that use conductive yarns. We have developed conductive yarns that have the same physical properties as other constituent fiber materials of woven and knitted fabrics that use conductive yarns and that have high bending durability by a method of winding conductive fiber materials in a spiral shape.

特許公開2003−313727Patent Publication 2003-313727 実用新案公開平6−59488Utility Model Publication 6-59488 特許公開平10−163674Patent Publication 10-163674

「FUTURE TEXTILE」,株式会社繊維社,第1章5-14 導電性繊維の体積抵抗率制御“FUTURE TEXTILE”, Textile Co., Ltd., Chapter 1 5-14 Volume resistivity control of conductive fibers 「福井県工業技術センター研究報告書No.23」,福井県工業技術センター,平成18年9月30日発行,p37〜39"Fukui Prefectural Industrial Technology Center Research Report No. 23", Fukui Prefectural Industrial Technology Center, published on September 30, 2006, p37-39

多くの金属繊維はわずかな伸長で破断するなど伸長性が乏しく、さらに弾性率が高いため捻りや屈曲等の変形が困難となる。そのため織物製造工程では破断による導電性の低下や残留捻れによる金属繊維の大変形により織編物形状の不具合が発生する。また、伸長可能な金属繊維の場合は、伸長に反比例して断面積が減少するため電気抵抗値が大幅に増加することになり、変形の前後で同等の電気特性を維持することは不可能である。   Many metal fibers have poor extensibility, such as breaking by slight extension, and are difficult to deform such as twisting and bending due to their high elastic modulus. For this reason, in the woven fabric production process, a problem in the shape of the woven or knitted fabric occurs due to a decrease in conductivity due to breakage or a large deformation of metal fibers due to residual twist. In the case of stretchable metal fibers, the cross-sectional area decreases in inverse proportion to the elongation, so that the electrical resistance value increases significantly, and it is impossible to maintain the same electrical characteristics before and after deformation. is there.

非特許文献1および特許文献1に記載される金属繊維以外の導電糸の場合は、織編物製造工程で問題なく製品を製造可能であるが、電気抵抗が低く、かつこれらの繊維は変形に伴い電気抵抗が著しく増加するため変形の前後で同等の電気特性を維持することはできない。   In the case of conductive yarns other than the metal fibers described in Non-Patent Document 1 and Patent Document 1, products can be manufactured without problems in the woven / knitted fabric manufacturing process, but the electrical resistance is low, and these fibers are deformed. Since the electrical resistance is remarkably increased, the same electrical characteristics cannot be maintained before and after deformation.

伸張変形可能な導電性素材として開発された特許文献2のニット生地や特許文献3のテープ形状の場合は一定以上の巾があり、繊維として一般的な織機等の繊維加工機で取り扱うことが不可能であるため実用性に欠ける。   In the case of the knitted fabric of Patent Document 2 developed as an electrically conductive material that can be stretched and deformed and the tape shape of Patent Document 3, the width is more than a certain value, and it is difficult to handle the fiber by a general fiber processing machine such as a loom. Because it is possible, it lacks practicality.

非特許文献2の導電糸は織物製造工程で問題なく製品を製造可能であるが、導電性を有する表面部分、つまり導電糸が表面に配置される割合が小さいため、変形時に導電糸接触部分の電気抵抗が変化して安定した特性を発揮できないため、実用性に欠ける。
Although the conductive yarn of Non-Patent Document 2 can produce a product without any problem in the textile manufacturing process, since the proportion of the conductive surface portion, that is, the conductive yarn is arranged on the surface, is small, Since the electrical resistance changes and cannot exhibit stable characteristics, it lacks practicality.

繊維素材で芯部を構成し、その繊維素材のまわりに複数の導電性繊維素材を1m間に3,000回以上8,000回以下の巻き数で螺旋状に巻き付けた導電糸であって、螺旋状に巻き付けた導電性繊維素材が前記繊維素材の表面積の50%以上80%以下を被っていることを特徴とする。
前記導電性繊維素材が直径20μm以上100μm以下の金属繊維で構成され、導電糸の線の電気抵抗が1Ω/m以上50Ω/m以下であることを特徴とする。
織編物用導電糸をたて糸の一部もしくはよこ糸の一部もしくはその両方に使用して構成されることを特徴とする。
織編物用導電糸を編糸の一部もしくは挿入糸の一部もしくはその両方に使用して構成されることを特徴とする。

A conductive yarn in which a core portion is configured with a fiber material, and a plurality of conductive fiber materials are spirally wound around the fiber material at a winding number of 3,000 times or more and 8,000 times or less within 1 m, The conductive fiber material wound spirally covers 50% to 80% of the surface area of the fiber material.
The conductive fiber material is composed of metal fibers having a diameter of 20 μm or more and 100 μm or less, and the electric resistance of the wire of the conductive yarn is 1 Ω / m or more and 50 Ω / m or less.
A conductive yarn for knitting or knitting is used for a part of a warp yarn, a part of a weft yarn, or both.
The conductive yarn for woven or knitted fabric is configured to be used for a part of the knitting yarn and / or a part of the insertion yarn.

本発明に係るe−テキスタイル用導電糸は上記のような構成を有することで、織物製造工程で問題なく織物内にe−テキスタイル用導電糸を配置した製品を製造可能であり、このテキスタイル製品を変形した場合もe−テキスタイル用導電糸および導電糸接触部分の電気抵抗はほぼ一定で安定した特性を発揮することが可能となる。
Since the conductive yarn for e-textile according to the present invention has the above-described configuration, a product in which the conductive yarn for e-textile is arranged in the fabric can be manufactured without any problem in the fabric manufacturing process. Even when it is deformed, the electric resistance of the conductive yarn for the e-textile and the conductive yarn contact portion is almost constant and stable characteristics can be exhibited.

e−テキスタイル用導電糸の概略平面図Schematic plan view of conductive yarn for e-textile 無安定マルチバイブレータ回路図Astable multivibrator circuit diagram 織物内の回路で配線が接触する場合の織物組織Textile structure when wiring contacts in a circuit in the fabric 織物内の回路で配線が非接触で交錯する場合の織物組織Textile texture when the wiring crosses in a non-contact manner in the circuit in the fabric

以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described in detail. The embodiments described below are preferable specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is particularly limited in the following description. Unless otherwise specified, the present invention is not limited to these forms.

図1は、本発明に係る実施形態に関する概略平面図である。e−テキスタイル用導電糸1は、芯部にe−テキスタイル用導電糸を使用する織編物の他の構成繊維素材と同じもしくは同等の物性を有する繊維素材2が疑似円形であり、そのまわりを螺旋形状に導電性繊維3および4が巻き付いて構成する。   FIG. 1 is a schematic plan view of an embodiment according to the present invention. In the conductive yarn for e-textile 1, a fiber material 2 having the same or equivalent physical properties as other constituent fiber materials of the woven or knitted fabric using the e-textile conductive yarn in the core is a pseudo circle, and spirals around it. Conductive fibers 3 and 4 are wound around the shape.

e−テキスタイル用導電糸を使用する織編物の他の構成繊維素材と同等の物性とは、最大試験力と最大歪みが±20%以内であることが好ましい。織編物の他の構成繊維素材と比較して20%以上物性が異なる場合は、製織工程での破断、もしくはゆるみ等によりe−テキスタイル用導電糸を使用する織編物品位が低下するため好ましくない。
最大試験力と最大歪みが±20%以内であれば芯部に使用する繊維素材に特に限定はなく、例えば、ポリエチレンテレフタレートやPTT(ポリトリメチレンテレフタレート)、PBT(ポリブチレンテレフタレート)等のポリエステル系繊維、ナイロン(ポリアミド繊維)、アラミド(芳香族ポリアミド繊維)、ポリプロピレンやポリエチレン等のポリオレフイン系繊維、アクリル等の合成繊維、レーヨン、アセテート等の化学繊維、綿、麻、ウール、絹等の天然繊維があげられる、これら単一素材でなく2種類以上の素材が複合された混紡糸や複合糸であってもよい。
The physical properties equivalent to other constituent fiber materials of the woven or knitted fabric using the conductive yarn for e-textile are preferably such that the maximum test force and the maximum strain are within ± 20%. When the physical properties are different by 20% or more compared with other constituent fiber materials of the woven or knitted fabric, it is not preferable because the woven or knitted article using the conductive yarn for e-textile deteriorates due to breakage or loosening in the weaving process. .
If the maximum test force and the maximum strain are within ± 20%, the fiber material used for the core is not particularly limited. For example, polyesters such as polyethylene terephthalate, PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), etc. Fibers, nylon (polyamide fiber), aramid (aromatic polyamide fiber), polyolefin fibers such as polypropylene and polyethylene, synthetic fibers such as acrylic, chemical fibers such as rayon and acetate, natural fibers such as cotton, hemp, wool and silk In addition to these single materials, a blended yarn or a composite yarn in which two or more materials are combined may be used.

本発明のe−テキスタイル用導電糸はカバーリング加工により芯部を構成する繊維素材に螺旋状に複数の導電性繊維巻き付けたカバーリング糸である。カバーリング糸と類似の構造を構成できるのであれば、撚糸でもかまわない。なお、螺旋状に巻き付いている導電性繊維3および4の巻き付く方向は、逆方向、同方向のいずれでもよい。   The conductive yarn for e-textile of the present invention is a covering yarn in which a plurality of conductive fibers are spirally wound around a fiber material constituting a core portion by a covering process. A twisted yarn may be used as long as a structure similar to the covering yarn can be formed. Note that the winding direction of the conductive fibers 3 and 4 wound in a spiral may be either the reverse direction or the same direction.

本発明を構成する導電性繊維を芯部に螺旋状に巻き付ける回数は1m間に3,000回以上8,000回以下が好ましい。
螺旋状に巻き付ける回数が1m間に3,000回より少ない場合は芯部に使用する繊維素材と比較して20%以上物性がことなるため、製織工程での導電糸の破断、もしくは導電糸のゆるみによる織物品位の低下が発生するため好ましくない。
また、螺旋状に巻き付ける回数1m間に8,000回と多すぎても、芯部に使用する繊維素材との物性差が生じるため、製織工程での導電糸の破断、もしくは導電糸のゆるみによる織物品位の低下が発生するため好ましくない。さらに螺旋状に巻き付ける回数が多くなると生産性も低下するので、実用的にも好ましくない。
The number of times the conductive fiber constituting the present invention is spirally wound around the core is preferably 3,000 times or more and 8,000 times or less per 1 m.
When the number of times spirally wound is less than 3,000 times per 1 meter, the physical properties will be 20% or more compared to the fiber material used for the core part. This is not preferable because the fabric quality is deteriorated by loosening.
In addition, even if the number of times of winding in a spiral is too large, such as 8,000 times in 1 m, a difference in physical properties from the fiber material used for the core portion occurs, so the conductive yarn breaks in the weaving process or the conductive yarn loosens. This is not preferable because the quality of the fabric is deteriorated. Further, since the productivity decreases when the number of times of spiral winding is increased, it is not preferable from a practical viewpoint.

本発明を構成する螺旋状に巻き付ける導電性繊維は2本以上の複数本で構成されていればよく、図1のように2本で構成するのが生産性の面から好ましい。螺旋状に巻き付ける導電性繊維1本で構成する場合、織編物製造工程での屈曲変形やテキスタイル製品後の屈曲疲労にて導電性繊維が破断し導通が無くなるが、2本以上あれば1本の一部が破断してももう1本が補完するため導電糸としての電気特性を維持することが可能となるからである。   The conductive fibers wound in a spiral shape constituting the present invention may be composed of two or more, and it is preferable from the viewpoint of productivity that it is composed of two as shown in FIG. When it is composed of one conductive fiber wound spirally, the conductive fiber breaks due to bending deformation in the woven or knitted fabric manufacturing process or bending fatigue after the textile product, and there is no conduction. This is because even if one portion is broken, the other one is complemented, so that the electrical characteristics as the conductive yarn can be maintained.

螺旋状に巻き付けた導電性繊維がe−テキスタイル用導電糸の表面積の50%以上80%以下を被っていることが好ましい。導電繊維でe−テキスタイル用導電糸の表面を被う割合が50%より少ない場合は、2本のe−テキスタイル用導電糸を上下に重ねた場合、上下の重なる糸の方向により上下のe−テキスタイル用導電糸間が電気的に絶縁状態になる場合ができるので、e−テキスタイル用導電糸を用いて配線したテキスタイル製品が変形にたいして不安定となり好ましくない。
また、e−テキスタイル用導電糸の表面積の80%より大きい面積を覆う場合は、前述の螺旋状に巻き付ける回数が多い場合と同様で芯部に使用する繊維素材との物性差が生じるため、製織工程での導電糸の破断、もしくは導電糸のゆるみによる織物品位の低下が発生するため好ましくない。
It is preferable that the conductive fiber wound spirally covers 50% to 80% of the surface area of the conductive yarn for e-textile. When the ratio of the conductive fiber covering the surface of the conductive yarn for e-textile is less than 50%, when two conductive yarns for e-textile are stacked one above the other, the upper and lower e- Since the textile conductive yarns may be electrically insulated, the textile product wired using the e-textile conductive yarns becomes unstable with respect to deformation, which is not preferable.
In addition, when covering an area larger than 80% of the surface area of the conductive yarn for e-textile, there is a difference in physical properties from the fiber material used for the core as in the case where the number of times of spiral winding is large. This is not preferable because the quality of the fabric is deteriorated due to the breaking of the conductive yarn in the process or the loosening of the conductive yarn.

螺旋状に巻き付ける導電性繊維は金属繊維が好ましい。金属繊維以外の導電性繊維で構成すると電気抵抗が高くなるため、e−テキスタイル用導電糸には適さない。 The conductive fiber to be spirally wound is preferably a metal fiber. When the conductive fiber other than the metal fiber is used, the electric resistance is increased, so that it is not suitable for the conductive yarn for e-textile.

金属繊維の直径は直径20μm以上100μm以下であることが好ましい。直径が20μmより細い金属繊維の場合、カバーリング加工時に金属繊維の破断等が生じるため巻き付けることが困難であり適さない。100μmより大きい金属繊維の場合は、金属繊維の破断等が生じるため巻き付ける金属繊維だけでも本発明導電糸の直径が400μm、芯部の繊維素材を含めると500μm以上となるためウエアラブルコンピュータや防爆防塵機能等の高機能作業服、電気製品や自動車などの様々な工業製品の電子部材として用いられるe-テキスタイルとして適さない。 The diameter of the metal fiber is preferably 20 μm or more and 100 μm or less. In the case of a metal fiber having a diameter smaller than 20 μm, it is difficult to wind the metal fiber because it breaks the metal fiber during the covering process. In the case of a metal fiber larger than 100 μm, the metal fiber breaks, etc., so that the diameter of the conductive yarn of the present invention is 400 μm and the core fiber material is 500 μm or more even with only the metal fiber to be wound. It is not suitable as an e-textile used as an electronic member for various industrial products such as high-performance work clothes, electrical products and automobiles.

e−テキスタイル用導電糸の線の電気抵抗は1Ω/m以上50Ω/m以下であることが好ましい。電気気抵抗が50Ω/mより大きい場合は、消費電力が大きくなり回路が発熱する、電気的に不安定になりノイズが発生する、信号等の送信が困難になる等の様々な問題が発生するため好ましくない。また、直径100μm以下の金属繊維を使用するため、e−テキスタイル用導電糸の線の電気抵抗は1Ω/m以上となるが、e−テキスタイル用導電糸の特性を満たすなら1Ω/m以下であってもよい。 The electric resistance of the wire of the conductive yarn for e-textile is preferably 1 Ω / m or more and 50 Ω / m or less. If the electrical resistance is greater than 50Ω / m, various problems such as increased power consumption and circuit heat generation, electrical instability and noise, and transmission of signals, etc. become difficult. Therefore, it is not preferable. In addition, since a metal fiber having a diameter of 100 μm or less is used, the electric resistance of the wire of the conductive yarn for e-textile is 1 Ω / m or more, but if the characteristic of the conductive yarn for e-textile is satisfied, it is 1 Ω / m or less. May be.

螺旋状に巻き付ける金属繊維は銅、リン性銅等の銅系合金、銀、鉄、ステンレス、導電性を有するその他の金属合金等の金属繊維があげられる。螺旋状に巻き付いている複数の導電性繊維が各々別の素材の金属繊維で構成されていても、e−テキスタイル用導電糸として要求される物性と電気特性を満たしていればよい。 Examples of the metal fiber to be wound spirally include metal fibers such as copper-based alloys such as copper and phosphorous copper, silver, iron, stainless steel, and other metal alloys having conductivity. Even if the plurality of conductive fibers wound in a spiral are made of metal fibers of different materials, it is only necessary to satisfy the physical properties and electrical characteristics required for the conductive yarn for e-textile.

次に、実施例により本発明を具体的に説明する。 Next, the present invention will be described specifically by way of examples.

実施例
ポリエステル糸(264dtex/80f)z600t/mを使用した織物にたて糸およびよこ糸として配置する導電糸として、ポリエステル糸(264dtex/80f)z600t/mを芯部とし、螺旋状に巻き付けるどうでん導電性繊維に銅繊維(理研株式会社製、Φ=50μm)を2本使用し、カバーリング撚糸機(片岡エンジニアリング株式会社製PF−D−230)を使用して最初にz3,500t/m、次に逆方向のs7,000t/m巻き付けて作成した。
Example Polyester yarn (264 dtex / 80f) z600 t / m as a conductive yarn to be arranged as a warp and weft yarn in a fabric using polyester yarn (264 dtex / 80f) z 600 t / m. Using two copper fibers (Riken Co., Ltd., Φ = 50 μm) as the conductive fiber, and using a covering twisting machine (PF-D-230 manufactured by Kataoka Engineering Co., Ltd.), first z3,500 t / m, then And s7,000 t / m wound in the reverse direction.

比較例1として、実施例と同じ糸構成であるが、螺旋状に巻き付ける回数を少なくして表面に配置する導電繊維の割合を少なくした。具体的には、ポリエステル糸(264dtex/80f)z600t/mを芯部とし、螺旋状に巻き付ける導電性繊維に銅繊維(理研株式会社製、Φ=50μm)を2本使用し、カバーリング撚糸機(片岡エンジニアリング株式会社製PF−D−230)を使用して最初にz3,500t/m、次に逆方向のs3,500t/m巻き付けて作成した。 As Comparative Example 1, the yarn configuration is the same as that of the example, but the number of conductive fibers disposed on the surface is reduced by reducing the number of times of spiral winding. Specifically, a polyester yarn (264 dtex / 80f) z600 t / m is used as the core, and two copper fibers (Φ = 50 μm) are used as the conductive fibers wound spirally, and a covering twisting machine. (PF-D-230, manufactured by Kataoka Engineering Co., Ltd.) was used to wind first at z3,500 t / m and then s3,500 t / m in the reverse direction.

比較例としては金属繊維単体の事例として理研電線株式会社の銅線(Φ=50μm×1f;比較例2)、さらにメッキ繊維の事例として日本蚕毛染色(株)のナイロン銀めっき繊維(264dtex/80f;比較例3)を用いた。 As a comparative example, a copper wire of Riken Electric Wire Co., Ltd. (Φ = 50 μm × 1f; Comparative Example 2) as an example of a metal fiber alone, and a nylon silver plated fiber (264 dtex / 80f; Comparative Example 3) was used.

導電性能の評価方法は次のとおりである。
〔電気抵抗値〕
1本の繊維を15cm以上の長さにカットして、10サンプルを採取する。このサンプルの両端を金属端子と50Ωの抵抗にて直流回路を構成し、安定化電源(KIKUSUI製 PMC18−3)にて5Vの直流電圧を印加して50Ωの固定抵抗の電圧をデジタルテスター(HIOKI製3801デジタルハイテスター)にて測定し、下記式で電気抵抗値(線抵抗)を算出する。電気抵抗値は、算出した10個のサンプルの電気抵抗値の相加平均値とする。
電気抵抗値(Ω/m)=(5−E)/((E/50)×L)
E:固定抵抗の測定電圧(V) L:サンプルの電気抵抗測定長(m)
The method for evaluating the conductive performance is as follows.
[Electric resistance value]
One fiber is cut into a length of 15 cm or more, and 10 samples are collected. A DC circuit is configured with a metal terminal and 50Ω resistance at both ends of this sample, and a 5V DC voltage is applied by a stabilized power supply (PMK18-3 manufactured by KIKUSUI) to apply a 50Ω fixed resistance voltage to a digital tester (HIOKI). Measured by a 3801 digital high tester), and an electric resistance value (wire resistance) is calculated by the following formula. The electric resistance value is an arithmetic average value of the calculated electric resistance values of ten samples.
Electrical resistance value (Ω / m) = (5-E) / ((E / 50) × L)
E: Fixed resistance measurement voltage (V) L: Sample electrical resistance measurement length (m)

実施例および比較例1〜3、ポリエステル糸(264dtex/80f)z600t/mの物性は引張試験機(島津製作所製オートグラフ)にて評価した。   The physical properties of Examples and Comparative Examples 1 to 3 and polyester yarn (264 dtex / 80f) z600 t / m were evaluated with a tensile tester (manufactured by Shimadzu Corporation, Autograph).

また製織性の評価は、ポリエステル糸(264dtex/80f)z600t/mをたて糸、よこ糸に使用し、実施例および比較例1から3の導電糸をたて糸、よこ糸の一部にストライプに配列してレピア織機(株式会社石川製作所製 2100UH−JU−160型)にて製織し、織機の稼働率および製織後の織物形状の目視判定にて行った。 Evaluation of weaving property was conducted by using polyester yarn (264 dtex / 80f) z600 t / m for warp yarn and weft yarn and arranging the conductive yarns of Examples and Comparative Examples 1 to 3 in stripes on a part of warp yarn and weft yarn. Weaving was performed using a loom (2100UH-JU-160, manufactured by Ishikawa Seisakusho Co., Ltd.), and the operation rate of the loom and the woven fabric shape after weaving were visually determined.

実施例および比較例1〜3の各試料の電気抵抗値、物性値の試験結果および製織性の評価結果を表1に示す。

















※ポリエステル糸は物性比較のために記載
Table 1 shows the electrical resistance values, physical property test results, and weaving evaluation results of the samples of Examples and Comparative Examples 1 to 3.

















* Polyester yarn is included for comparison of physical properties

表1の電気抵抗値から明らかなように、実施例は50Ω/m以下の電気抵抗値を示し、電気信号を伝達するには十分な導電性能が得られている。比較例1,2は50Ω/m以下の電気抵抗値を示しており電気信号を伝達するには十分な導電性能が得られているが、比較例3は電気抵抗が高く電気信号を伝達する材料として好ましくない。 As is apparent from the electrical resistance values in Table 1, the examples show electrical resistance values of 50 Ω / m or less, and a sufficient conductive performance for transmitting electrical signals is obtained. Comparative Examples 1 and 2 show an electric resistance value of 50 Ω / m or less and a sufficient conductive performance for transmitting an electric signal is obtained, but Comparative Example 3 has a high electric resistance and transmits an electric signal. It is not preferable.

表1の物性値から明らかなように、実施例および比較例1は最大試験力および最大歪みともにポリエステル糸(264dtex/80f)z600t/mとほぼ同等(±10%以内)の値を示し、織編物製造工程で問題がないことがわかる。これに対し比較例2の銅線の場合は、物性値があまりにも異なる(最大試験力が5%以下、最大歪みが50%以下)ため織編物製造工程で破断およびゆるみ等の問題が発生し、好ましくないことがわかる。 As is clear from the physical property values in Table 1, in Example and Comparative Example 1, both the maximum test force and the maximum strain were substantially the same (within ± 10%) as the polyester yarn (264 dtex / 80f) z600 t / m. It can be seen that there is no problem in the knitting manufacturing process. On the other hand, in the case of the copper wire of Comparative Example 2, the physical property values are too different (the maximum test force is 5% or less, the maximum strain is 50% or less), and problems such as breakage and loosening occur in the woven / knitted fabric manufacturing process. It turns out that it is not preferable.

e−テキスタイル用導電糸の変形安定性を評価するために、織物上に図2のLEDが点灯する無安定マルチバイブレータ回路を構成した。ポリエステル糸(264dtex/80f)z600t/mをたて糸、よこ糸に使用し、この回路を構成する配線としてたて糸およびよこ糸の一部に実施例1および比較例1の導電糸を使用してレピア織機(株式会社石川製作所製 2100UH−JU−160型)で織物内に回路を構築し、その後LED、抵抗、コンデンサ、トランジスタ、電源の各電子部品を織物上に配置・接続して無安定マルチバイブレータ回路織物を作成した。
なお、織物内の回路で配線が接触する場合は図3の織物組織で構成し、また配線が接触せずに交錯する場合は図4の織物組織で構成した。
In order to evaluate the deformation stability of the conductive yarn for e-textile, an astable multivibrator circuit in which the LED of FIG. Polyester yarn (264 dtex / 80f) z600 t / m is used for warp yarn and weft yarn, and the conductive yarn of Example 1 and Comparative Example 1 is used as a part of warp yarn and weft yarn as wiring constituting this circuit. (1100UH-JU-160, manufactured by Ishikawa Seisakusho Co., Ltd.), a circuit is built in the fabric, and then the electronic components such as LEDs, resistors, capacitors, transistors, and power supplies are placed and connected on the fabric to create an unstable multivibrator circuit fabric. Created.
In addition, when the wiring contacted in the circuit in the fabric, the wiring structure of FIG. 3 was used, and when the wiring intersected without contacting, the wiring structure of FIG. 4 was used.

実施例および比較例1の導電部被覆率は、デジタルマイクロスコープ(ソニック株式会社製 BS−D8000)にて測定した。測定結果は表2に示す。 The conductive part coverage of Examples and Comparative Example 1 was measured with a digital microscope (BS-D8000 manufactured by Sonic Corporation). The measurement results are shown in Table 2.

試作した無安定マルチバイブレータ回路織物の変形安定性は、織物のたて、よこ、ななめ方向に回路の中心で一定角度に曲げた場合のLEDの点滅状態を目視で判定して評価した。各々の方向に各5回ずつ変形させ、評価した判定結果を表2に示す。















The deformation stability of the prototype astable multivibrator circuit fabric was evaluated by visually judging the blinking state of the LED when the fabric was bent at a certain angle at the center of the circuit in the warp, weft and tan direction. Table 2 shows the evaluation results obtained by changing the shape in each direction five times.















表2の判定結果から明らかなように、実施例は導電部被覆率が50%以上あるので実施例を配線として織り込んだテキスタイル回路を変形した場合も安定した電気回路の性能を示している。それに対し、比較例1は導電部被覆率が50%より少ないためテキスタイル回路を大きく曲げた場合には特性が不安定となり、回路の機能を維持できないことがわかる。配線の接触部分を手で押さえた状態で曲げ変形を付加すると大きな変形でもLEDの点滅が確認でき電気回路の安定性が増すことより、導電部被覆率が50%より小さい場合は曲げ変形時に導電糸間の接触不良による電気抵抗の変化が回路性能を低下させることがわかる。
As is apparent from the determination results in Table 2, the example has a conductive part coverage of 50% or more, and therefore, even when the textile circuit incorporating the example as a wiring is deformed, the performance of the electric circuit is stable. On the other hand, in Comparative Example 1, the conductive portion coverage is less than 50%, and thus it can be seen that when the textile circuit is greatly bent, the characteristics become unstable and the function of the circuit cannot be maintained. If bending deformation is applied with the wiring contact part held by hand, LED flashing can be confirmed even with large deformation, and the stability of the electric circuit is increased. It can be seen that a change in electrical resistance due to poor contact between yarns reduces circuit performance.

本発明に係るe−テキスタイル用導電糸は織物製造工程で問題なく織物内にe−テキスタイル用導電糸を配置した製品を製造可能であり、このテキスタイル製品を変形した場合もe−テキスタイル用導電糸および導電糸接触部分の電気抵抗はほぼ一定で安定した特性を発揮できる。これにより変形を伴う場所でも安定した電気特性を維持できるe−テキスタイルとして、電子機器と衣料が融合したウエアラブルコンピュータの部材、テキスタイルに電気回路を構築する部材、テキスタイルとセンサーを融合する部材、フレキシブルアンテナの部材、フレキシブル電池の部材、防爆防塵機能の作業服等の部材として、電気製品や自動車などの様々な産業用途に幅広く用いることが可能となる。 The conductive yarn for e-textile according to the present invention can produce a product in which the conductive yarn for e-textile is arranged in the woven fabric without any problem in the textile manufacturing process, and even when this textile product is deformed, the conductive yarn for e-textile In addition, the electric resistance of the conductive yarn contact portion is almost constant and can exhibit stable characteristics. As an e-textile that can maintain stable electrical characteristics even in places with deformation, it is a wearable computer member that combines electronic equipment and clothing, a member that constructs an electric circuit in the textile, a member that combines the textile and the sensor, a flexible antenna As a member of the above, a member of a flexible battery, a member of work clothes having an explosion-proof and dust-proof function, it can be widely used for various industrial uses such as electric products and automobiles.

1 e−テキスタイル用導電糸
2 芯部を構成する繊維素材
3 螺旋状に巻き付く導電性繊維(下側)
4 螺旋状に巻き付く導電性繊維(上側)
11 電源3V
12 LED
13 LED
14 固定抵抗1KΩ
15 固定抵抗10KΩ
16 固定抵抗10KΩ
17 固定抵抗1KΩ
18 コンデンサ10mF
19 コンデンサ10mF
20 トランジスタ
21 トランジスタ
31 たて糸に配列したe−テキスタイル用導電糸
32 よこ糸に配列したe−テキスタイル用導電糸
33 たて糸とよこ糸のe−テキスタイル用導電糸が接触状態で交錯
34 たて糸とよこ糸のe−テキスタイル用導電糸が接触状態で交錯

1 Conductive yarn for e-textile 2 Fiber material constituting core 3 Conductive fiber wound in a spiral (lower side)
4 Conductive fiber wound up spirally (upper side)
11 Power supply 3V
12 LED
13 LED
14 Fixed resistance 1KΩ
15 Fixed resistance 10KΩ
16 Fixed resistance 10KΩ
17 Fixed resistance 1KΩ
18 capacitor 10mF
19 Capacitor 10mF
20 transistors
21 transistors
31 Conductive yarn for e-textile arranged in warp
32 Conductive yarn for e-textile arranged in weft
33 Crossing the conductive yarn for e-textile of warp and weft in contact
34 Crossing warp and weft conductive yarns for contact with e-textile

Claims (4)

繊維素材で芯部を構成し、その繊維素材のまわりに複数の導電性繊維素材を1m間に3,000回以上8,000回以下の巻き数で螺旋状に巻き付けた導電糸であって、螺旋状に巻き付けた導電性繊維素材が前記繊維素材の表面積の50%以上80%以下を被っていることを特徴とする織編物用導電糸。 A conductive yarn in which a core portion is configured with a fiber material, and a plurality of conductive fiber materials are spirally wound around the fiber material at a winding number of 3,000 times or more and 8,000 times or less within 1 m, A conductive yarn for woven or knitted fabric, wherein the conductive fiber material wound spirally covers 50% to 80% of the surface area of the fiber material. 前記導電性繊維素材が直径20μm以上100μm以下の金属繊維で構成され、導電糸の線の電気抵抗が1Ω/m以上50Ω/m以下であることを特徴とする。請求項1に記載の織編物用導電糸。 The conductive fiber material is composed of metal fibers having a diameter of 20 μm or more and 100 μm or less, and the electric resistance of the wire of the conductive yarn is 1 Ω / m or more and 50 Ω / m or less. The conductive yarn for woven or knitted fabric according to claim 1. 請求項1から3の何れかに記載する織編物用導電糸をたて糸の一部もしくはよこ糸の一部もしくはその両方に使用して構成されることを特徴とする織物。 A woven fabric comprising the conductive yarn for woven or knitted fabric according to any one of claims 1 to 3 as a part of a warp, a part of a weft, or both. 請求項1から3の何れかに記載する織編物用導電糸を編糸の一部もしくは挿入糸の一部もしくはその両方に使用して構成されることを特徴とする編物。
A knitted fabric comprising the conductive yarn for woven or knitted fabric according to any one of claims 1 to 3 as a part of a knitting yarn and / or a part of an insertion yarn.
JP2009224962A 2009-09-29 2009-09-29 Woven knitted fabric using conductive yarn for e-textile Active JP5352795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009224962A JP5352795B2 (en) 2009-09-29 2009-09-29 Woven knitted fabric using conductive yarn for e-textile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009224962A JP5352795B2 (en) 2009-09-29 2009-09-29 Woven knitted fabric using conductive yarn for e-textile

Publications (2)

Publication Number Publication Date
JP2011074512A true JP2011074512A (en) 2011-04-14
JP5352795B2 JP5352795B2 (en) 2013-11-27

Family

ID=44018780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009224962A Active JP5352795B2 (en) 2009-09-29 2009-09-29 Woven knitted fabric using conductive yarn for e-textile

Country Status (1)

Country Link
JP (1) JP5352795B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057830A1 (en) * 2011-10-21 2013-04-25 京セミ株式会社 Functional thread provided with semiconductor functional element, and method for manufacturing functional thread provided with semiconductor functional element
JP2013147767A (en) * 2012-01-19 2013-08-01 Fukui Prefecture Electronic component mounting weave, electronic component mounting body and fabric using the same
JP2014114525A (en) * 2012-12-11 2014-06-26 Shibata Techno Tex Kk Flat type insulation-coated electroconductive body
JP2015219170A (en) * 2014-05-20 2015-12-07 松山毛織株式会社 Radiation shield material
JP2016123549A (en) * 2014-12-26 2016-07-11 日本毛織株式会社 Liquid detection cloth
KR20160136402A (en) * 2014-03-24 2016-11-29 도이체 인스티튜트 퓌어 텍스틸-운트 파저포슝 덴켄도르프 Sensor yarn
JP2018076617A (en) * 2016-11-09 2018-05-17 富士通株式会社 Composite yarn, production method of composite yarn, composite, production method of composite, and electronic instrument
JP2018104869A (en) * 2016-12-28 2018-07-05 株式会社Xenoma Conductive yarn, elastic wiring, sensor system and wearable device
CN111227812A (en) * 2020-01-16 2020-06-05 武汉纺织大学 All-fiber-based flexible sensor and preparation method and application thereof
JP2022109899A (en) * 2021-01-15 2022-07-28 ユニチカトレーディング株式会社 Electroconductive composite yarn

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239044A (en) * 1985-04-11 1986-10-24 旭化成株式会社 Conductive fiber material
JPS6399341A (en) * 1986-10-11 1988-04-30 旭化成株式会社 Conductive composite material
JP3054797U (en) * 1998-06-09 1998-12-18 財団法人中國紡織工業研究中心 Conductive yarn
JP2004016461A (en) * 2002-06-17 2004-01-22 Ta Lai Sporting Goods Enterprises Co Ltd Production method and product of conductive cloth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239044A (en) * 1985-04-11 1986-10-24 旭化成株式会社 Conductive fiber material
JPS6399341A (en) * 1986-10-11 1988-04-30 旭化成株式会社 Conductive composite material
JP3054797U (en) * 1998-06-09 1998-12-18 財団法人中國紡織工業研究中心 Conductive yarn
JP2004016461A (en) * 2002-06-17 2004-01-22 Ta Lai Sporting Goods Enterprises Co Ltd Production method and product of conductive cloth

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057830A1 (en) * 2011-10-21 2013-04-25 京セミ株式会社 Functional thread provided with semiconductor functional element, and method for manufacturing functional thread provided with semiconductor functional element
JPWO2013057830A1 (en) * 2011-10-21 2015-04-02 スフェラーパワー株式会社 Functional yarn with semiconductor functional element and manufacturing method thereof
JP2013147767A (en) * 2012-01-19 2013-08-01 Fukui Prefecture Electronic component mounting weave, electronic component mounting body and fabric using the same
JP2014114525A (en) * 2012-12-11 2014-06-26 Shibata Techno Tex Kk Flat type insulation-coated electroconductive body
KR20160136402A (en) * 2014-03-24 2016-11-29 도이체 인스티튜트 퓌어 텍스틸-운트 파저포슝 덴켄도르프 Sensor yarn
KR102314909B1 (en) * 2014-03-24 2021-10-21 도이체 인스티튜트 퓌어 텍스틸-운트 파저포슝 덴켄도르프 Sensor yarn
JP2015219170A (en) * 2014-05-20 2015-12-07 松山毛織株式会社 Radiation shield material
JP2016123549A (en) * 2014-12-26 2016-07-11 日本毛織株式会社 Liquid detection cloth
JP2018076617A (en) * 2016-11-09 2018-05-17 富士通株式会社 Composite yarn, production method of composite yarn, composite, production method of composite, and electronic instrument
JP2018104869A (en) * 2016-12-28 2018-07-05 株式会社Xenoma Conductive yarn, elastic wiring, sensor system and wearable device
CN111227812A (en) * 2020-01-16 2020-06-05 武汉纺织大学 All-fiber-based flexible sensor and preparation method and application thereof
CN111227812B (en) * 2020-01-16 2022-10-11 武汉纺织大学 All-fiber-based flexible sensor and preparation method and application thereof
JP2022109899A (en) * 2021-01-15 2022-07-28 ユニチカトレーディング株式会社 Electroconductive composite yarn
JP7419410B2 (en) 2021-01-15 2024-01-22 ユニチカトレーディング株式会社 conductive composite yarn

Also Published As

Publication number Publication date
JP5352795B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5352795B2 (en) Woven knitted fabric using conductive yarn for e-textile
CA2493145C (en) Electrically conductive yarn
Dias Electronic textiles: Smart fabrics and wearable technology
US9388514B2 (en) Method of producing electrically conductive metal composite yarn having increased yield strength, composite yarn produced by the method and embroidered circuit produced using the composite yarn
JP4773952B2 (en) Electrically conductive elastic composite yarn, method of manufacturing the same, and article including the same
KR102651217B1 (en) Braided piezoelectric elements, fabric-shaped piezoelectric elements using braided piezoelectric elements, and devices using them
CN112888817B (en) Cloth with electrode wiring
SE1551703A1 (en) Electrically conductive yarn and product containing this yarn
WO2019230730A1 (en) Electrode-wiring-equipped cloth material
EP2971302B1 (en) Electrically conductive fabric
CN105895199A (en) Flexible stretchable and washable conductive connecting piece
JP2018073997A (en) Braided string piezoelectric element and device using same
JP6689119B2 (en) Piezoelectric element using braid form and device using them
TW201639998A (en) Conductive textile
JP2018009259A (en) Electric circuit sewing thread
JP6085162B2 (en) Flat insulation sheath
CN211208005U (en) Elastic conductive wire
JP6624968B2 (en) Piezoelectric sensor
TW201830744A (en) Structure for use in piezoelectric element, braided piezoelectric element, fabric-like piezoelectric element using braided piezoelectric element, and device using these
JP2015183345A (en) Electric conductive slit yarn and method for producing the same
CN212152627U (en) Elastic conductive ribbon
CN211947456U (en) Elastic conductive wire
TWM562302U (en) Signaling yarn
RU182617U1 (en) TISSUE THREAD
JP2017120863A (en) Braid-like piezoelectric element, cloth-like piezoelectric element arranged by use of braid-like piezoelectric element, and devices arranged by use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5352795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250