JP5845038B2 - Planar heating element - Google Patents

Planar heating element Download PDF

Info

Publication number
JP5845038B2
JP5845038B2 JP2011215089A JP2011215089A JP5845038B2 JP 5845038 B2 JP5845038 B2 JP 5845038B2 JP 2011215089 A JP2011215089 A JP 2011215089A JP 2011215089 A JP2011215089 A JP 2011215089A JP 5845038 B2 JP5845038 B2 JP 5845038B2
Authority
JP
Japan
Prior art keywords
yarn
conductive
heating element
heat generating
fiber material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011215089A
Other languages
Japanese (ja)
Other versions
JP2013077384A (en
Inventor
隆一 吉岡
隆一 吉岡
Original Assignee
松文産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松文産業株式会社 filed Critical 松文産業株式会社
Priority to JP2011215089A priority Critical patent/JP5845038B2/en
Publication of JP2013077384A publication Critical patent/JP2013077384A/en
Application granted granted Critical
Publication of JP5845038B2 publication Critical patent/JP5845038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Description

本発明は、優れた屈曲耐久性を有する電極部分を備えた面状発熱体に関する。   The present invention relates to a planar heating element including an electrode portion having excellent bending durability.

従来より、室内の床暖房、ホットカーペット等の暖房装置や、結露防止装置又は曇り防止装置に面状発熱体が用いられている。また、防寒用の衣類や車両等の座席には柔軟性のある布帛状の面状発熱体が用いられており、幅広い分野で面状発熱体が実用化されている。   Conventionally, planar heating elements have been used in indoor heating devices such as floor heating and hot carpets, and anti-condensation devices or anti-fogging devices. In addition, a flexible cloth-like sheet heating element is used for a cold clothing or a vehicle seat, and the sheet heating element has been put to practical use in a wide range of fields.

面状発熱体は、通電により発熱する線状材料(ニクロム線、炭素繊維等)を面状に配置して製造される。例えば、特許文献1では、地組織を広い空隙を有する搦織組織や模紗織組織とし、電極部は織密度の高い平織組織にして、電極部以外の地組織の空隙を介して両面の熱可塑性樹脂フィルムを熱圧着した発熱体織物が記載されている。また、特許文献2では、発熱部分を耐熱・非導電性ヤーンと所要の間隔で挿入した炭素繊維とを用いた模紗織で、発熱部分の両側に炭素繊維に電極部分を炭素繊維に交差する方向に導電線を織り込んだ平織で、発熱部分と電極部分との間に耐熱・非導電性ヤーンを用いた平織の緩衝部分を製織し、得られた発熱織布にプラスチックフィルムを接着・積層した面発熱体が記載されている。また、特許文献3では、導電性繊維を含む編織物で形成された発熱部と、この発熱部を通電するための電極部とで構成された面状発熱体において、導電性繊維を、有機繊維とこの有機繊維の表面を被覆するカーボンナノチューブとで構成した面状発熱体が記載されている。   The planar heating element is manufactured by arranging linear materials (nichrome wire, carbon fiber, etc.) that generate heat when energized in a planar shape. For example, in Patent Document 1, the ground structure is a woven or patterned woven structure having a wide gap, the electrode part is a plain woven structure having a high woven density, and thermoplastics on both sides are formed through the gaps of the ground structure other than the electrode part. A heating element fabric obtained by thermocompression bonding a resin film is described. Further, in Patent Document 2, the heat generation part is a pattern weave using a heat-resistant / non-conductive yarn and a carbon fiber inserted at a predetermined interval, and the electrode part intersects the carbon fiber on both sides of the heat generation part. A plain weave woven with conductive wires, and a plain weave cushion part using heat-resistant and non-conductive yarn is woven between the heat generating part and the electrode part, and a plastic film is bonded and laminated to the resulting heat generating woven cloth A heating element is described. Moreover, in patent document 3, in the planar heating element comprised by the heat-generation part formed with the knitted fabric containing a conductive fiber, and the electrode part for supplying with electricity to this heat-generation part, a conductive fiber is made into organic fiber. And a planar heating element composed of carbon nanotubes covering the surface of the organic fiber.

特開平9−326291号公報JP 9-326291 A 特開平11−283731号公報JP-A-11-283373 特開2010−192218号公報JP 2010-192218 A

特許文献1及び2に記載されているように、通電により発熱する炭素繊維を間隔を空けて配置する場合面全体で不均一な発熱分布が生じるようになる。また、発熱繊維がずれないようにプラスチックフィルムで熱圧着しておく必要があり、製造工程が複雑になるとともに製造コストが大きくなるデメリットがある。   As described in Patent Documents 1 and 2, when carbon fibers that generate heat when energized are arranged at intervals, a non-uniform heat generation distribution is generated over the entire surface. In addition, it is necessary to perform thermocompression bonding with a plastic film so that the heating fibers do not shift, and there are disadvantages that the manufacturing process becomes complicated and the manufacturing cost increases.

特許文献3では、織物からなる発熱部に導電性テープを導電性粘着剤で貼着したり、金属繊維を経糸として導入することで電極部を形成する点が記載されているが、導電性テープ又は金属繊維を電極部として用いた場合、屈曲変形すると断線しやすいといった課題がある。   Patent Document 3 describes that an electrode part is formed by sticking a conductive tape to a heat generating part made of a woven fabric with a conductive adhesive or introducing a metal fiber as a warp. Or when a metal fiber is used as an electrode part, there exists a subject that it will be easy to disconnect, if it bends and deforms.

そこで、本発明は、屈曲変形に対して耐久性を有するとともに安定した電気的特性を有する電極部を備えた面状発熱体を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a planar heating element having an electrode portion that has durability against bending deformation and has stable electrical characteristics.

本発明に係る面状発熱体は、絶縁性繊維材料からなる地糸及び導電性材料を表面に被覆した導電性繊維材料からなる発熱糸をそれぞれ経緯方向に配列して製織した発熱部と、前記発熱部に隣接して所定幅で形成されるとともに前記地糸に代えて配列された複数の導電糸及び前記発熱糸を製織した電極部とを備え、前記導電糸は、絶縁性繊維材料からなる芯糸に直径が10μm〜100μmの金属細線ダブルカバーリング加工した抵抗が1Ω/m〜50Ω/mの加工糸である。さらに、前記導電糸は、前記芯糸に前記地糸と同一の絶縁性繊維材料からなる糸を用いている。さらに、前記導電糸は、金属繊維を3,000回/m〜8,000回/mの巻き数でカバーリング加工している。さらに、前記発熱糸は、前記地糸と同一の絶縁性繊維材料の表面にカーボンナノチューブを被覆した導電性繊維材料を用いている。 The planar heating element according to the present invention includes a heating portion in which a ground yarn made of an insulating fiber material and a heating yarn made of a conductive fiber material coated with a conductive material on the surface are arranged in the weft direction and woven, A plurality of conductive yarns formed in a predetermined width adjacent to the heat generating portion and arranged in place of the ground yarn and an electrode portion woven with the heat generating yarn, wherein the conductive yarn is made of an insulating fiber material This is a processed yarn having a resistance of 1 Ω / m to 50 Ω / m obtained by double- covering a metal fine wire having a diameter of 10 μm to 100 μm on the core yarn. Further, in the conductive yarn, a yarn made of the same insulating fiber material as the ground yarn is used for the core yarn. Further, the conductive yarn is covered with metal fibers at a winding number of 3,000 turns / m to 8,000 turns / m. Furthermore, the heat generating yarn uses a conductive fiber material in which the surface of the same insulating fiber material as that of the ground yarn is coated with carbon nanotubes.

本発明に係る面状発熱体は、上記のような構成を有することで、屈曲変形に対して耐久性を有するとともに安定した電気的特性を有する電極部を備えることができる。   Since the planar heating element according to the present invention has the above-described configuration, the planar heating element can include an electrode portion having durability against bending deformation and having stable electrical characteristics.

本発明に係る実施形態に関する平面図である。It is a top view regarding the embodiment concerning the present invention. 導電糸に関する平面図である。It is a top view regarding a conductive yarn. 実施例1に関する測定結果を示すグラフである。3 is a graph showing measurement results regarding Example 1. 実施例2に関する測定結果を示すグラフである。6 is a graph showing measurement results regarding Example 2.

以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described in detail. The embodiments described below are preferable specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is particularly limited in the following description. Unless otherwise specified, the present invention is not limited to these forms.

図1は、本発明に係る実施形態に関する平面図である。図1(a)に示すように、面状発熱体1は、シート状に形成されており、矩形状に形成された発熱部2の両側に隣接して電極部3が形成されている。図1(b)は、発熱部2に関する一部拡大平面図である。発熱部2は、経糸20及び緯糸21を平織で織成された織組織により形成されている。経糸20は、絶縁性繊維材料からなる地糸であり、緯糸21は、導電性材料を表面に被覆した導電性繊維材料からなる発熱糸である。   FIG. 1 is a plan view relating to an embodiment of the present invention. As shown in FIG. 1A, the planar heating element 1 is formed in a sheet shape, and electrode portions 3 are formed adjacent to both sides of a heating portion 2 formed in a rectangular shape. FIG. 1B is a partially enlarged plan view relating to the heat generating portion 2. The heat generating portion 2 is formed of a woven structure in which the warp 20 and the weft 21 are woven in a plain weave. The warp yarn 20 is a ground yarn made of an insulating fiber material, and the weft yarn 21 is a heating yarn made of a conductive fiber material having a surface coated with a conductive material.

地糸に用いる糸としては、比誘電率が4以下の電気的に絶縁性のものが好ましい。具体的には、PET(ポリエチレンテレフタレート)、PTT(ポリトリメチレンテレフタレート)又はPBT(ポリブチレンテレフタレート)等のポリエステル系繊維、ナイロン(ポリアミド繊維)、アラミド(芳香族ポリアミド繊維)、ポリプロピレン又はポリエチレン等のポリオレフィン系繊維、アクリル等の合成繊維、レーヨン、アセテート等の化学繊維、綿、麻、ウール又は絹等の天然繊維が挙げられる。また、これらの繊維を複数種類混合した複合繊維を用いてもよい。糸の繊度は、22dtex〜330dtexが好ましい。   The yarn used for the ground yarn is preferably an electrically insulating one having a relative dielectric constant of 4 or less. Specifically, polyester fibers such as PET (polyethylene terephthalate), PTT (polytrimethylene terephthalate) or PBT (polybutylene terephthalate), nylon (polyamide fiber), aramid (aromatic polyamide fiber), polypropylene or polyethylene, etc. Examples thereof include polyolefin fibers, synthetic fibers such as acrylic, chemical fibers such as rayon and acetate, and natural fibers such as cotton, hemp, wool, and silk. Moreover, you may use the composite fiber which mixed multiple types of these fibers. The fineness of the yarn is preferably 22 dtex to 330 dtex.

発熱糸に用いる糸としては、地糸に用いる絶縁性繊維材料の表面に金属被覆層や炭素被覆層等の導電層を形成した導電性繊維材料からなる糸を用いるとよく、通電可能なものであれば、特に限定されない。金属被覆層を形成した導電性繊維材料としては、絶縁性繊維材料の表面に無電解メッキ処理等の公知の方法により形成したものが挙げられる。また、炭素被覆層を形成した導電性繊維材料としては、カーボンナノチューブを絶縁性繊維材料の表面にバインダーで固着させたものが挙げられる。発熱糸は、用途に合わせて複数本を合糸したものを用いることもできる。   As the yarn used for the heat generating yarn, a yarn made of a conductive fiber material in which a conductive layer such as a metal coating layer or a carbon coating layer is formed on the surface of the insulating fiber material used for the ground yarn may be used. If there is, it will not be specifically limited. Examples of the conductive fiber material on which the metal coating layer is formed include those formed on the surface of the insulating fiber material by a known method such as electroless plating. Examples of the conductive fiber material on which the carbon coating layer is formed include those in which carbon nanotubes are fixed to the surface of the insulating fiber material with a binder. As the exothermic yarn, a combination of a plurality of yarns can be used according to the application.

発熱糸として、地糸と同じ絶縁性繊維材料からなる糸を用いることで、地糸である経糸20及び発熱糸である緯糸21がほぼ同じ伸縮特性を有するようになり、織物に織成した状態でも経方向及び緯方向への伸縮変形及び屈曲変形に対して経糸20及び緯糸21が同じように変形して織組織がほとんどずれることなく耐久性を向上させることができる。また、発熱糸を地糸と同一の繊度で同じ絶縁性繊維材料からなる糸を用いることで、2つの糸を同一の伸縮特性及び屈曲特性を持たせることができるようになり、さらに耐久性を向上させることが可能となる。   By using a yarn made of the same insulating fiber material as the ground yarn as the heating yarn, the warp yarn 20 as the ground yarn and the weft yarn 21 as the heating yarn have substantially the same stretch characteristics, and even when woven into a woven fabric The warp yarn 20 and the weft yarn 21 are deformed in the same way with respect to expansion and contraction deformation and bending deformation in the warp direction and the weft direction, so that the durability can be improved without almost shifting the woven structure. In addition, by using yarns made of the same insulating fiber material with the same fineness as the ground yarn, the two yarns can have the same stretch characteristics and bending characteristics, and further improve durability. It becomes possible to improve.

図1(c)は、電極部3に関する一部拡大平面図である。電極部3は、経糸20の代わりに導電糸30が経方向に複数本配列されており、発熱糸である緯糸21及び導電糸30を平織で織成された織組織により形成されている。   FIG. 1C is a partially enlarged plan view of the electrode unit 3. The electrode unit 3 includes a plurality of conductive yarns 30 arranged in the warp direction instead of the warp yarns 20, and is formed of a woven structure in which wefts 21 and heat conductive yarns 30 that are heat generating yarns are woven in a plain weave.

導電糸30は、長繊維状の金属繊維を絶縁性繊維材料からなる芯糸の周囲にカバーリング加工したものである。芯糸としては、地糸に用いるような繊維材料が挙げられる。金属繊維としては、銅繊維、ニッケル繊維、錫青銅繊維、鉄繊維、銀繊維、ステンレス繊維等が挙げられ、長期間にわたって使用する場合には錆等の劣化が生じにくいニッケル繊維が好ましい。金属繊維は、導電糸30の柔軟性を損なうことなく断線に対する強度を備えていることが望ましく、金属細線の場合には直径が10μm〜100μmの太さのものが好ましい。直径が10μmより細い場合にはカバーリング加工時に断線するおそれがあり、直径が100μmより太くなると、導電糸30の全体の直径が太くなって発熱部の変形特性と異なる特性になり、面状発熱体の変形特性に悪影響を及ぼすようになる。   The conductive yarn 30 is obtained by covering a core fiber made of an insulating fiber material with a long fiber metal fiber. Examples of the core yarn include fiber materials used for ground yarn. Examples of the metal fiber include copper fiber, nickel fiber, tin bronze fiber, iron fiber, silver fiber, and stainless steel fiber, and nickel fiber that is less susceptible to deterioration such as rust when used over a long period of time is preferable. It is desirable that the metal fiber has strength against breakage without impairing the flexibility of the conductive yarn 30. In the case of a metal thin wire, a metal fiber having a diameter of 10 μm to 100 μm is preferable. If the diameter is smaller than 10 μm, there is a risk of disconnection during the covering process. If the diameter is larger than 100 μm, the entire diameter of the conductive yarn 30 becomes thicker, resulting in a characteristic different from the deformation characteristics of the heat generating portion, and the surface heat generation. It will adversely affect the deformation characteristics of the body.

カバーリング加工としては、シングルカバーリング加工及びダブルカバーリング加工があり、図2には、芯糸31の周囲に金属繊維32を2重に巻き付けたダブルカバーリング加工を施した導電糸を示している。このように複数本の金属繊維を交差するように巻き付けることで、金属繊維同士が互いに接触して金属繊維の断線に対して耐久性を有するようになる。なお、巻き付ける金属繊維の本数は2本以上でもよい。   As the covering process, there are a single covering process and a double covering process. FIG. 2 shows a conductive thread that has been subjected to a double covering process in which metal fibers 32 are wrapped around the core thread 31 in a double manner. Yes. In this way, by winding a plurality of metal fibers so as to cross each other, the metal fibers come into contact with each other and have durability against disconnection of the metal fibers. The number of metal fibers to be wound may be two or more.

導電糸30は、電気的に低抵抗のものが望ましく、電気抵抗が1Ω/m〜50Ω/mに設定することが好ましい。電気抵抗が50Ω/mを超えると、電極部3の消費電力が大きくなって発熱しやすくなり、発熱部2が均一に発熱することを妨げるようになる。   The conductive yarn 30 desirably has an electrically low resistance, and the electrical resistance is preferably set to 1 Ω / m to 50 Ω / m. When the electric resistance exceeds 50 Ω / m, the power consumption of the electrode part 3 increases and heat is easily generated, and the heat generating part 2 is prevented from generating heat uniformly.

導電糸30は、カバーリング加工する金属繊維の巻き数を3,000回/m〜8,000回/mに設定することで、芯糸とほぼ同じ特性を有するようになる。そのため、芯糸として緯糸21に用いた絶縁性繊維材料からなる糸を用いることで、緯糸21及び導電糸30が同じような柔軟性及び伸縮性を有するようになって電極部3が屈曲又は伸縮しても、導電糸30が断線したりずれることなく電極部3の変形に追従することが可能となる。そのため、発熱糸である緯糸21及び導電糸30が常時安定した接触状態となって安定した電気的特性を有する電極部を形成することができる。また、導電糸を発熱糸と同一の繊度で同じ絶縁性繊維材料からなる糸を用いることで、2つの糸を同一の伸縮特性及び屈曲特性を持たせることができるようになり、さらに電気的特性を安定させることが可能となる。   The conductive yarn 30 has substantially the same characteristics as the core yarn by setting the number of windings of the metal fiber to be covered to 3,000 times / m to 8,000 times / m. Therefore, by using the yarn made of the insulating fiber material used for the weft 21 as the core yarn, the weft 21 and the conductive yarn 30 have the same flexibility and stretchability, and the electrode portion 3 is bent or stretched. Even in this case, it is possible to follow the deformation of the electrode portion 3 without the conductive yarn 30 being disconnected or displaced. Therefore, the weft yarn 21 and the conductive yarn 30 which are heat generating yarns are always in a stable contact state, and an electrode portion having stable electrical characteristics can be formed. In addition, by using a conductive yarn made of the same insulating fiber material with the same fineness as that of the heat generating yarn, the two yarns can have the same stretch characteristics and bending characteristics, and further electrical characteristics Can be stabilized.

また、経糸20、緯糸21及び導電糸30が同じ絶縁性繊維材料からなる糸を用いることで、面状発熱体全体が同じ伸縮特性及び屈曲特性を有するようになり、面状発熱体全体の変形に対して糸のずれがほとんど生じることのない耐久性を備えるようになる。   Further, by using the warp yarn 20, the weft yarn 21 and the conductive yarn 30 made of the same insulating fiber material, the entire sheet heating element has the same expansion and contraction characteristics and bending characteristics, and the entire sheet heating element is deformed. In contrast, it is provided with durability that causes almost no deviation of the yarn.

発熱部2の発熱量は、発熱糸である緯糸21の単位長さ当りの電気抵抗が一定の場合、発熱部2に供給される電流密度により決定されるが、電流密度は、単位幅(緯糸21の糸長方向と直交する方向の幅)当りの緯糸21の本数(以下「密度本数」という)により決めることができる。そのため、面状発熱体の用途に合わせて緯糸21の密度本数を調整することで、簡単に発熱量を設定することができる。緯糸21の密度本数を調整する場合、緯糸21の間に地糸と同じ絶縁性繊維材料からなる糸を配列して密度本数を少なくすることも可能で、このように密度本数を調整すれば、面状発熱体の伸縮特性及び屈曲特性をほとんど変更することなく発熱量を調整することができる。   The amount of heat generated by the heat generating portion 2 is determined by the current density supplied to the heat generating portion 2 when the electric resistance per unit length of the weft 21 as a heat generating yarn is constant. 21 (width in the direction perpendicular to the yarn length direction)) and the number of wefts 21 (hereinafter referred to as “density number”). Therefore, the calorific value can be easily set by adjusting the density of the wefts 21 in accordance with the use of the planar heating element. When adjusting the number of density of the wefts 21, it is possible to reduce the number of density by arranging yarns made of the same insulating fiber material as the ground yarn between the wefts 21, and by adjusting the number of density in this way, The calorific value can be adjusted without substantially changing the expansion and contraction characteristics and the bending characteristics of the planar heating element.

発熱糸である緯糸21の密度本数に基づいて面状発熱体の発熱設計を行う場合、すべての発熱糸に電極部3から均等に電流が供給されていることが前提となる。上述したように電極部3では緯糸21及び導電糸30が安定した接触状態となっており、さらに1本の緯糸21に複数本の導電糸30が接触しているため、各緯糸21と電極部3との間の電気的接続状態をほぼ同じ状態にすることができる。したがって、各緯糸21にほぼ均等な電流が流れて発熱糸の密度本数による発熱設計が可能となり、発熱部全体が均等に発熱する実用性の高い面状発熱体を実現することができる。   When the heat generation design of the planar heating element is performed based on the density of the weft yarns 21 that are the heat generation yarns, it is assumed that all the heat generation yarns are evenly supplied with current from the electrode unit 3. As described above, in the electrode portion 3, the weft 21 and the conductive yarn 30 are in a stable contact state, and the plurality of conductive yarns 30 are in contact with one weft 21, so that each weft 21 and the electrode portion are in contact with each other. It is possible to make the electrical connection state between the terminals 3 and 3 almost the same. Therefore, almost uniform current flows through each weft 21 so that heat generation can be designed according to the number of heat generation yarns, and a highly practical planar heating element in which the entire heat generating portion generates heat uniformly can be realized.

上述した面状発熱体を製織する場合には、公知の織機を用いて平織により織成することができる。経糸として所定本数の地糸の両側に複数本の導電糸を配列し、緯糸として発熱糸を織り込むことで、発熱部及び電極部を同時に織成することができる。そして、所定間隔を置いて配列された複数本の導電糸により形成された電極部の間に発熱部が形成された織物が製織される。そして、面状発熱体のサイズに応じた経方向の長さで切断することで、発熱部の両側に電極部を形成した面状発熱体を得られる。   When weaving the above-mentioned planar heating element, it can be woven by plain weaving using a known loom. By arranging a plurality of conductive yarns on both sides of a predetermined number of ground yarns as warp yarns and weaving heat generating yarns as weft yarns, the heat generating portion and the electrode portion can be woven simultaneously. Then, a woven fabric in which a heat generating portion is formed between electrode portions formed by a plurality of conductive yarns arranged at a predetermined interval is woven. And the sheet | seat heat generating body which formed the electrode part in the both sides of the heat generating part can be obtained by cut | disconnecting by the length of the longitudinal direction according to the size of the sheet | seat heating element.

面状発熱体のサイズが大きい場合には、経方向に配列した地糸の両側以外に中間部にも導電糸を配列して、面状発熱体の中間部分にも電極部を形成するように構成することもできる。そのため、様々な用途やサイズに対応した面状発熱体を容易に製造することが可能となる。また、製織された面状発熱体に対して電極部をプレスしたり、導電性ペーストを付与して発熱糸と導電糸との導通状態をさらに高めるようにすることもできる。   When the size of the sheet heating element is large, the conductive yarns are arranged in the middle part in addition to the both sides of the ground yarn arranged in the warp direction so that the electrode part is also formed in the middle part of the sheet heating element. It can also be configured. Therefore, it becomes possible to easily manufacture planar heating elements corresponding to various uses and sizes. It is also possible to press the electrode portion against the woven planar heating element or to apply a conductive paste to further enhance the conduction state between the heating yarn and the conductive yarn.

なお、以上説明した例では、緯糸に発熱糸を用いているが、経糸に発熱糸を用いて緯糸を地糸及び導電糸にすることもできる。また、平織以外にも朱子織、斜文織により面状発熱体を織成することも可能で、こうした三大織組織を変化させた織組織を用いることもできる。   In the example described above, the heat generating yarn is used as the weft, but the heat generating yarn is used as the warp to make the weft into a ground yarn and a conductive yarn. In addition to plain weave, a planar heating element can be woven by satin weave or oblique weave, and a woven structure obtained by changing these three major weave structures can also be used.

<実施例1>
地糸として、ポリエステルマルチフィラメントからなる糸(84dtex/36f)を用いた。また、発熱糸として、カーボンナノチューブをポリエステルマルチフィラメントの表面に固着した糸(クラレリビング株式会社製;製品名CNTEC、84dtex/48f、電気抵抗値103Ω/cm)を用いた。
<Example 1>
A yarn (84 dtex / 36f) made of polyester multifilament was used as the ground yarn. In addition, as a heating yarn, a yarn in which carbon nanotubes were fixed to the surface of a polyester multifilament (manufactured by Kuraray Living Co., Ltd .; product name CNTEC, 84 dtex / 48f, electric resistance value 10 3 Ω / cm) was used.

導電糸として、直径50μmの銅細線2本をポリエステルマルチフィラメントからなる糸(167dtex/48f)に巻き付けるカバーリング加工を行った加工糸を用いた。単位長さ当りの電気抵抗値は5Ω/mであった。   As the conductive yarn, a processed yarn subjected to a covering process in which two copper fine wires having a diameter of 50 μm were wound around a yarn (167 dtex / 48 f) made of polyester multifilament was used. The electric resistance value per unit length was 5 Ω / m.

導電糸を16本配列して経糸とし、緯糸に発熱糸を用いて平織により織成した2cm幅のサンプルを作成し、スコット型もみ試験機により疲労試験を行った。疲労試験は、サンプルの一端を固定し、他端を4cm幅で往復移動させてサンプルを90度屈曲させる動作を繰り返し行った。1往復を1回として、1,000回毎に導電糸の電気抵抗を測定して合計25,000回屈曲動作を行った。電気抵抗の測定結果をみると、抵抗値にはほとんど変化が見られなかった。また、1,000回毎に導電糸を顕微鏡で観察したところ、4,000回以上では銅細線に断線した部分が見られるようになったが、導電糸の電気抵抗に影響を及ぼすものではなく、電極部として使用する上で十分な耐久性を備えるものであることが確認できた。   A sample of 2 cm width woven by plain weaving using 16 conductive yarns as warp yarns and exothermic yarns as weft yarns was prepared and subjected to a fatigue test using a Scott-type paddle tester. In the fatigue test, one end of the sample was fixed, and the other end was reciprocated with a width of 4 cm to repeatedly bend the sample 90 degrees. One reciprocation was taken as one time, and the electric resistance of the conductive yarn was measured every 1,000 times to perform a total of 25,000 bending operations. As a result of measuring the electric resistance, there was almost no change in the resistance value. In addition, when the conductive yarn was observed with a microscope every 1,000 times, a broken portion of the copper fine wire was seen at 4,000 times or more, but this did not affect the electrical resistance of the conductive yarn. It has been confirmed that it has sufficient durability for use as an electrode part.

経糸として地糸及び導電糸を配列し、緯糸として発熱糸を配列して、経糸密度200本/インチ及び緯糸密度87本/インチで平織により製織した。製織された織物は、地糸が経方向に配列された発熱部分と、発熱部分の両側にそれぞれ導電糸が16本ずつ経方向に配列された電極部分とが形成されており、発熱部分の緯方向の幅は32cmで、電極部分の緯方向の幅は0.6cmであった。   A ground yarn and a conductive yarn were arranged as warp yarns, and a heat generating yarn was arranged as a weft yarn, and weaved by plain weaving at a warp density of 200 / inch and a weft density of 87 / inch. The woven fabric has a heat generating portion in which ground yarns are arranged in the warp direction and electrode portions in which 16 conductive yarns are arranged in the warp direction on both sides of the heat generating portion. The width in the direction was 32 cm, and the width in the weft direction of the electrode portion was 0.6 cm.

製織された織物を経方向の長さ50cmで切断し、発熱部の両側に一対の電極部が形成された面状発熱体を作成した。面状発熱体は、電極部の間に形成された発熱部が経方向の長さ50cmで緯方向の幅32cmの矩形状に形成され、発熱糸の密度本数が87本/インチであった。   The woven fabric was cut at a length of 50 cm in the warp direction to prepare a planar heating element in which a pair of electrode parts were formed on both sides of the heating part. In the sheet heating element, the heating part formed between the electrode parts was formed in a rectangular shape with a length of 50 cm in the warp direction and a width of 32 cm in the weft direction, and the density of the heating yarn was 87 / inch.

作成した面状発熱体の電極部の端部に導電性接着剤により端子部品を固着し、端子部品に電源を供給して面状発熱体を発熱させた。発熱状態をサーモグラフィで観察したところ全体にムラなく表面温度が上昇しており、全体にほぼ均等に発熱していることが確認できた。   A terminal component was fixed to the end portion of the electrode portion of the produced planar heating element with a conductive adhesive, and power was supplied to the terminal component to cause the planar heating element to generate heat. When the heat generation state was observed by thermography, it was confirmed that the surface temperature rose uniformly and the heat was generated almost uniformly throughout.

また、面状発熱体に印加する電圧を変化させて、電流、電気抵抗、消費電力及び表面温度を測定した。測定の間の外気温度は約28℃であった。測定結果を図3に示す。この測定結果をみると、電圧が上昇するに従い電流はほぼ比例するように上昇し、電気抵抗値は電圧により変動することが少ないことがわかる。そのため、面状発熱体の表面温度の設定を正確に行うことができるようになる。   In addition, the voltage applied to the planar heating element was changed, and the current, electrical resistance, power consumption, and surface temperature were measured. The outside temperature during the measurement was about 28 ° C. The measurement results are shown in FIG. From this measurement result, it can be seen that as the voltage rises, the current rises so as to be approximately proportional, and the electrical resistance value hardly fluctuates depending on the voltage. Therefore, the surface temperature of the sheet heating element can be set accurately.

<実施例2>
実施例1と同じ地糸、発熱糸及び導電糸を用い、経糸として地糸及び導電糸を配列し、緯糸として発熱糸を配列して、経糸密度200本/インチ及び緯糸密度124本/インチで朱子織により製織した。製織された織物は、地糸が経方向に配列された発熱部分と、発熱部分の両側にそれぞれ導電糸が16本ずつ経方向に配列された電極部分とが形成されており、発熱部分の緯方向の幅は32cmで、電極部分の緯方向の幅は0.6cmであった。
<Example 2>
The same ground yarn, heat generating yarn and conductive yarn as in Example 1 were used, the ground yarn and conductive yarn were arranged as the warp, and the heat generating yarn was arranged as the weft, and the warp density was 200 / inch and the weft density was 124 / inch. Weaved with satin weave. The woven fabric has a heat generating portion in which ground yarns are arranged in the warp direction and electrode portions in which 16 conductive yarns are arranged in the warp direction on both sides of the heat generating portion. The width in the direction was 32 cm, and the width in the weft direction of the electrode portion was 0.6 cm.

製織された織物を縦方向の長さ50cmで切断し、発熱部の両側に一対の電極部が形成された面状発熱体を作成した。面状発熱体は、電極部の間に形成された発熱部が経方向の長さ50cmで緯方向の幅32cmの矩形状に形成され、発熱糸の密度本数が124本/インチであった。   The woven fabric was cut at a length of 50 cm in the longitudinal direction to prepare a planar heating element in which a pair of electrode portions were formed on both sides of the heating portion. In the sheet heating element, the heating part formed between the electrode parts was formed in a rectangular shape having a length of 50 cm in the warp direction and a width of 32 cm in the weft direction, and the density of the heating yarns was 124 / inch.

実施例1と同様に、製織された織物を切断して面状発熱体を作成して電極部に端子部品を固着し、端子部品に電源を供給して面状発熱体を発熱させた。発熱状態をサーモグラフィで観察したところ全体にムラなく表面温度が上昇しており、実施例1と同様に、全体にほぼ均等に発熱していることが確認できた。   Similarly to Example 1, the woven fabric was cut to create a planar heating element, the terminal component was fixed to the electrode portion, and power was supplied to the terminal component to cause the planar heating element to generate heat. When the heat generation state was observed by thermography, the surface temperature was increased uniformly, and it was confirmed that heat was generated almost uniformly over the entire surface as in Example 1.

面状発熱体に印加する電圧を変化させて、実施例1と同様に測定を行った。測定結果を図4に示す。この測定結果をみると、実施例1と同様に、電圧が上昇するに従い電流はほぼ比例するように上昇し、電気抵抗値は電圧により変動することが少ないことがわかる。   Measurement was performed in the same manner as in Example 1 by changing the voltage applied to the planar heating element. The measurement results are shown in FIG. From this measurement result, it can be seen that, as in Example 1, as the voltage increases, the current increases so as to be approximately proportional, and the electrical resistance value hardly varies depending on the voltage.

100Vの電圧を印加した状態では、実施例1では、電流値が0.65Aであり、発熱部の発熱糸の密度本数87本/インチとの比率は、
0.65÷87=0.0075
となる。また、実施例2では、電流値が0.91Aであり、発熱部の発熱糸の密度本数124本/インチとの比率は、
0.91÷124=0.0073
となる。したがって、密度本数にほぼ比例して電流値が上昇するようになっており、面状発熱体の発熱糸の密度本数に基づいて電流密度を設定することが可能となる。このように、本発明に係る面状発熱体を用いることで、正確な発熱設計を行うことができるようになる。
In a state in which a voltage of 100 V is applied, in Example 1, the current value is 0.65 A, and the ratio of the density of the heating yarn of the heating portion to 87 yarns / inch is as follows:
0.65 / 87 = 0.0075
It becomes. Further, in Example 2, the current value is 0.91 A, and the ratio of the density of the heating yarn of the heating portion to 124 / inch is:
0.91 / 124 = 0.0073
It becomes. Therefore, the current value increases almost in proportion to the number of densities, and the current density can be set based on the number of density of the heating yarns of the planar heating element. Thus, by using the sheet heating element according to the present invention, it becomes possible to perform accurate heat generation design.

本発明に係る面状発熱体は、発熱量を正確に設定することができることから、発熱体を使用する幅広い用途に対応することができる。例えば、柔軟性及び屈曲耐久性を有していることから、乗り物用の座席シートに使用することができる。また、厚さが薄く柔軟性を有していることから、建築物の屋内用の暖房装置(結露防止装置、防曇装置、床暖房、壁暖房、ホットカーペット等)に使用することができる。また、軽量で柔軟性を備えており、容易に加工できることから、防寒用の衣料品や身の回り品(ジャケット、ベスト等の上着、ひざ掛け、寝具、靴、カイロ等)にも使用できる。さらに、屋根や道路などの屋外設備(融雪装置、凍結防止装置等)、農業用の暖房設備(園芸用敷設マット等)といった用途にも対応可能である。   Since the sheet heating element according to the present invention can accurately set the amount of heat generation, it can correspond to a wide range of applications using the heating element. For example, since it has flexibility and bending durability, it can be used for a seat for a vehicle. Moreover, since it is thin and has flexibility, it can be used for indoor heating devices for buildings (condensation prevention device, anti-fogging device, floor heating, wall heating, hot carpet, etc.). In addition, since it is lightweight and flexible and can be easily processed, it can also be used for clothing for winter and personal belongings (jackets, vests, rugs, bedding, shoes, warmers, etc.). Further, it can be used for outdoor facilities such as roofs and roads (snow melting devices, anti-freezing devices, etc.) and agricultural heating facilities (such as gardening laying mats).

1・・・面状発熱体、2・・・発熱部、3・・・電極部、20・・・経糸、21・・・緯糸、30・・・導電糸、31・・・芯糸、32・・・金属繊維 DESCRIPTION OF SYMBOLS 1 ... Planar heating element, 2 ... Heat generating part, 3 ... Electrode part, 20 ... Warp, 21 ... Weft, 30 ... Conductive yarn, 31 ... Core yarn, 32 ... Metal fibers

Claims (4)

絶縁性繊維材料からなる地糸及び導電性材料を表面に被覆した導電性繊維材料からなる発熱糸をそれぞれ経緯方向に配列して製織した発熱部と、前記発熱部に隣接して所定幅で形成されるとともに前記地糸に代えて配列された複数の導電糸及び前記発熱糸を製織した電極部とを備え、前記導電糸は、絶縁性繊維材料からなる芯糸に直径が10μm〜100μmの金属細線ダブルカバーリング加工した抵抗が1Ω/m〜50Ω/mの加工糸である面状発熱体。 Formed with a predetermined width adjacent to the heat generating portion, and a heat generating portion formed by weaving ground yarn made of insulating fiber material and heat generating yarn made of conductive fiber material coated with a conductive material on the surface in the weft direction. And a plurality of conductive yarns arranged in place of the ground yarn and an electrode portion woven with the heat generating yarn, and the conductive yarn is a metal having a diameter of 10 μm to 100 μm on a core yarn made of an insulating fiber material A planar heating element which is a processed yarn having a resistance of 1 Ω / m to 50 Ω / m obtained by double- covering a thin wire . 前記導電糸は、前記芯糸に前記地糸と同一の絶縁性繊維材料からなる糸を用いている請求項1に記載の面状発熱体。   The planar heating element according to claim 1, wherein the conductive yarn uses a yarn made of the same insulating fiber material as the ground yarn for the core yarn. 前記導電糸は、金属繊維を3,000回/m〜8,000回/mの巻き数でカバーリング加工している請求項1又は2に記載の面状発熱体。   The planar heating element according to claim 1 or 2, wherein the conductive yarn is obtained by covering metal fibers with a winding number of 3,000 turns / m to 8,000 turns / m. 前記発熱糸は、前記地糸と同一の絶縁性繊維材料の表面にカーボンナノチューブを被覆した導電性繊維材料を用いている請求項1又は2に記載の面状発熱体。   The planar heating element according to claim 1 or 2, wherein the heating yarn uses a conductive fiber material in which a carbon nanotube is coated on a surface of the same insulating fiber material as the ground yarn.
JP2011215089A 2011-09-29 2011-09-29 Planar heating element Active JP5845038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011215089A JP5845038B2 (en) 2011-09-29 2011-09-29 Planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011215089A JP5845038B2 (en) 2011-09-29 2011-09-29 Planar heating element

Publications (2)

Publication Number Publication Date
JP2013077384A JP2013077384A (en) 2013-04-25
JP5845038B2 true JP5845038B2 (en) 2016-01-20

Family

ID=48480721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011215089A Active JP5845038B2 (en) 2011-09-29 2011-09-29 Planar heating element

Country Status (1)

Country Link
JP (1) JP5845038B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096418A (en) * 2017-11-20 2019-06-20 株式会社羽生田鉄工所 Heater, heating wire, molding method, and heat treatment method
JP7083996B2 (en) * 2018-06-14 2022-06-14 杉田電線株式会社 Strain sensor element and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089090A (en) * 1983-10-20 1985-05-18 松下電器産業株式会社 Flexible heating wire
JPH09326291A (en) * 1996-06-05 1997-12-16 Unitika Ltd Flat heater element
WO2007110976A1 (en) * 2006-03-29 2007-10-04 Matsushita Electric Industrial Co., Ltd. Sheet heating element and seat making use of the same
JP5512983B2 (en) * 2009-02-17 2014-06-04 国立大学法人北海道大学 Planar heating element

Also Published As

Publication number Publication date
JP2013077384A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
EP2790464B1 (en) Cloth heater
US20080135120A1 (en) Heating Fabric and Manufacturing Method Thereof
CN103959898B (en) Cloth-like heater
EP1335830A2 (en) Thermal textile
JP5752821B1 (en) Planar heating element
CN106676747B (en) Braided intelligent susceptor heating blanket
CN103141155A (en) Planar heating body
EP2971302B1 (en) Electrically conductive fabric
US7759264B2 (en) Textile sheet, method for manufacturing same, and use
JP5887451B1 (en) Planar heating element
JP5845038B2 (en) Planar heating element
KR101382951B1 (en) electro-conductive textile
KR101162715B1 (en) Heating sheet using heating wire
JP5615656B2 (en) Planar heating element
JPH1140329A (en) Flat heating body
WO2017120982A1 (en) Electrothermal component and heat generating method thereof
JP2014096240A (en) Cloth for planar heating element, planar heating element and manufacturing method thereof
JP2015026422A (en) Conductive cloth
KR20190002113U (en) Electrode structure of metal nanowire coated fabric heater
JP5870822B2 (en) Cloth heater
WO1998001009A1 (en) Electrically-heated, flexible and stretchable, shaped fabric
IT201800010666A1 (en) Thermal mattress cover or thermal blanket
RU55782U1 (en) ELECTRIC HEATING FABRIC
KR200435898Y1 (en) flat type pyrogen using with conducted yarn
JPH07161456A (en) Heat generating sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151120

R150 Certificate of patent or registration of utility model

Ref document number: 5845038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250