JP2014108772A - Storage circuit - Google Patents

Storage circuit Download PDF

Info

Publication number
JP2014108772A
JP2014108772A JP2012265659A JP2012265659A JP2014108772A JP 2014108772 A JP2014108772 A JP 2014108772A JP 2012265659 A JP2012265659 A JP 2012265659A JP 2012265659 A JP2012265659 A JP 2012265659A JP 2014108772 A JP2014108772 A JP 2014108772A
Authority
JP
Japan
Prior art keywords
power generation
pair
electrode
generation means
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012265659A
Other languages
Japanese (ja)
Other versions
JP6027420B2 (en
Inventor
Goro Yamaguchi
五郎 山口
Yasuhiro Kubota
康弘 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2012265659A priority Critical patent/JP6027420B2/en
Publication of JP2014108772A publication Critical patent/JP2014108772A/en
Application granted granted Critical
Publication of JP6027420B2 publication Critical patent/JP6027420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the use number of diodes used in a rectifying circuit to reduce cost.SOLUTION: A storage circuit is provided with: n pieces of power generation means generating the electric power at both electrodes by deformation; n diode pairs for rectification; and a capacitor pair for power storage. One electrode of each power generation means is connected to an intermediate point Dm between the diodes of each diode pair, and the other electrode of each power generation means is short-circuited with each other and is connected to an intermediate point Cm between the capacitors of each capacitor pair. The cathode-side electrodes of each diode pair are short-circuited mutually and are connected to one electrode of the capacitor pair, and the anode-side electrodes of each diode pair are mutually short-circuited and are connected to the other electrode of the capacitor pair.

Description

本発明は、整流回路に用いるダイオードの使用数を大幅に削減でき、コストの低減を図りうる蓄電回路に関する。   The present invention relates to a power storage circuit that can significantly reduce the number of diodes used in a rectifier circuit and can reduce costs.

近年、車両の走行安全性を高めるため、タイヤの空気圧や温度を測定し、その情報を無線で車体側に送信してドライバーに知らせるタイヤ空気圧監視システム(以下、TPMSと略記)の開発が進められている。このようなTPMSでは、タイヤの空気圧センサや送信機などのために電源が必要であり、その電源として例えば圧電素子を用いた発電装置が提案されている。   In recent years, a tire pressure monitoring system (hereinafter abbreviated as TPMS) has been developed to measure the tire pressure and temperature and send the information wirelessly to the vehicle body to inform the driver in order to increase vehicle safety. ing. In such a TPMS, a power source is required for a tire pressure sensor, a transmitter, and the like, and a power generation device using, for example, a piezoelectric element as the power source has been proposed.

しかし前記発電装置では、圧電素子単体での発電電力が微小であるため、より大きな電力を得るには、圧電素子を複数個接続する必要がある。   However, in the power generation device, since the generated power of the piezoelectric element alone is very small, it is necessary to connect a plurality of piezoelectric elements in order to obtain larger power.

他方、圧電素子には交流電圧が誘起される。そのため、複数の圧電素子を並列接続した場合には、各素子毎に誘起する電圧がその極性によって互いにキャンセル(相殺)し合うという問題がある。従って、複数の圧電素子からの電気エネルギーを蓄電するためには、図11に示すように、各圧電素子aに整流回路bを接続して交流電圧を直流電圧に変換し、それらをコンデンサc等に蓄電させる必要がある(例えば特許文献1の図6参照。)。   On the other hand, an alternating voltage is induced in the piezoelectric element. Therefore, when a plurality of piezoelectric elements are connected in parallel, there is a problem that voltages induced for each element cancel each other out depending on their polarities. Therefore, in order to store electric energy from a plurality of piezoelectric elements, as shown in FIG. 11, a rectifier circuit b is connected to each piezoelectric element a to convert an AC voltage into a DC voltage, and these are converted into a capacitor c or the like. (See, for example, FIG. 6 of Patent Document 1).

しかし同図のように前記整流回路bでは、1つの圧電素子aに対して4つのダイオードb1、b1が必要である。従って複数の圧電素子aを用いた蓄電回路Aや発電装置の場合、ダイオードb1の使用数が多大となって、コストの上昇や回路の複雑化を招くという問題が生じる。   However, as shown in the figure, the rectifier circuit b requires four diodes b1 and b1 for one piezoelectric element a. Therefore, in the case of the power storage circuit A or the power generation apparatus using the plurality of piezoelectric elements a, the number of diodes b1 used is increased, resulting in a problem that the cost is increased and the circuit is complicated.

特表2009−542169号公報Special table 2009-542169 gazette

そこで本発明は、整流回路に用いるダイオードの使用数を大幅に削減でき、コストの上昇や回路の複雑化を抑制しうる蓄電回路を提供することを目的としている。   In view of the above, an object of the present invention is to provide a power storage circuit that can significantly reduce the number of diodes used in a rectifier circuit and can suppress an increase in cost and circuit complexity.

上記課題を解決するために、本願請求項1の発明は、被装着物に取り付きかつ変形により両極に電力を発生させるn個(複数)の発電手段と、一対のダイオードを直列接続したn個の整流用のダイオード対と、一対のコンデンサを直列接続した1個の蓄電用のコンデンサ対とを具える蓄電回路であって、
各前記発電手段の一方の電極は、各前記ダイオード対のダイオード間の中間点Dmに接続され、
かつ各前記発電手段の他方の電極は、互いに短絡されかつ前記コンデンサ対のコンデンサ間の中間点Cmに接続されるとともに、
各前記ダイオード対のカソード側電極同士は、互いに短絡されかつ前記コンデンサ対の一方の電極と接続され、
かつ各前記ダイオード対のアノード側電極同士は、互いに短絡されかつ前記コンデンサ対の他方の電極と接続されることを特徴としている。
In order to solve the above-mentioned problem, the invention of claim 1 of the present application is such that n (a plurality of) power generating means that are attached to an attachment and generate electric power at both poles by deformation, and n pieces of diodes connected in series with a pair of diodes. A power storage circuit comprising a rectifying diode pair and one power storage capacitor pair in which a pair of capacitors are connected in series,
One electrode of each of the power generation means is connected to an intermediate point Dm between the diodes of each of the diode pairs,
And the other electrode of each of the power generating means is short-circuited to each other and connected to an intermediate point Cm between the capacitors of the capacitor pair,
The cathode side electrodes of each of the diode pairs are short-circuited to each other and connected to one electrode of the capacitor pair,
The anode-side electrodes of each diode pair are short-circuited to each other and connected to the other electrode of the capacitor pair.

また請求項2では、前記被装着物は、タイヤであることを特徴としている。   According to a second aspect of the present invention, the attached object is a tire.

また請求項3では、各前記発電手段は、並列接続された複数の発電素子からなり、かつ1つの発電手段をなす前記複数の発電素子は、タイヤ周方向の接地領域長さよりも長い間隔を隔てて互いに離間することを特徴としている。   According to a third aspect of the present invention, each of the power generation means includes a plurality of power generation elements connected in parallel, and the plurality of power generation elements forming one power generation means are spaced apart from each other by an interval longer than the length of the ground contact area in the tire circumferential direction. It is characterized by being separated from each other.

また請求項4では、各前記発電手段は、1つの発電素子からなることを特徴としている。   According to a fourth aspect of the present invention, each of the power generation means includes one power generation element.

また請求項5は、タイヤに取り付きかつ変形により両極に電力を発生させるn個(複数)の発電手段と、一対のダイオードを直列接続した1個の整流用のダイオード対と、一対のコンデンサを直列接続した1個の蓄電用のコンデンサ対とを具える蓄電回路であって、
各前記発電手段は、1つの発電素子からなり、かつ各前記発電手段は、タイヤ周方向の接地領域長さよりも長い間隔を隔てて互いに離間するとともに、
各前記発電手段の一方の電極同士は、互いに短絡されかつ前記ダイオード対のダイオード間の中間点Dmに接続され、
各前記発電手段の他方の電極同士は、互いに短絡されかつ前記コンデンサ対のコンデンサ間の中間点Cmに接続され、
前記ダイオード対のカソード側電極は、前記コンデンサ対の一方の電極と接続され、
前記ダイオード対のアノード側電極は、前記コンデンサ対の他方の電極と接続されるとともに、
各前記発電手段の他方の電極とコンデンサ対の前記中間点Cmとの間、又は各前記発電手段の一方の電極とダイオード対の前記中間点Dmとの間に、タイヤ回転時の接地領域内に位置する発電手段のみを、前記中間点Cm又は中間点Dmと接続するスイッチング手段を設けたことを特徴としている。
Further, according to the fifth aspect, n (plurality) power generating means that are attached to the tire and generate electric power in both poles by deformation, one rectifying diode pair in which a pair of diodes are connected in series, and a pair of capacitors are connected in series. A storage circuit comprising a single connected capacitor pair for storage,
Each of the power generation means is composed of one power generation element, and each of the power generation means is separated from each other with an interval longer than the contact area length in the tire circumferential direction,
One electrode of each of the power generation means is short-circuited to each other and connected to an intermediate point Dm between the diodes of the diode pair,
The other electrodes of the power generation means are short-circuited to each other and connected to an intermediate point Cm between the capacitors of the capacitor pair,
The cathode side electrode of the diode pair is connected to one electrode of the capacitor pair,
The anode side electrode of the diode pair is connected to the other electrode of the capacitor pair,
Between the other electrode of each of the power generation means and the intermediate point Cm of the capacitor pair, or between one electrode of each of the power generation means and the intermediate point Dm of the diode pair, within a grounding region during tire rotation. It is characterized in that switching means for connecting only the power generation means located with the intermediate point Cm or the intermediate point Dm is provided.

第1発明の蓄電回路は、下記の「発明を実施するための形態」の欄で説明する如く、1つの発電手段(発電素子等)に対して2つのダイオードを用いることにより、複数の発電手段からの交流電圧を、それぞれ直流電圧に変換して前記コンデンサに蓄電させることができる。従って、ダイオードの使用数を半減させることができ、蓄電回路において、コストの上昇や回路の複雑化を抑制することが可能となる。   The power storage circuit of the first invention uses a plurality of power generation means by using two diodes for one power generation means (power generation element, etc.) as described in the section “DETAILED DESCRIPTION OF THE INVENTION” below. Can be stored in the capacitor after being converted into a DC voltage. Therefore, the number of diodes used can be halved, and an increase in cost and circuit complexity can be suppressed in the power storage circuit.

第2発明の蓄電回路では、タイヤの接地領域長さよりも長い周方向間隔を隔ててタイヤに取り付く複数の発電手段(発電素子等)に対して、2つのダイオードを用いることにより、複数の発電手段からの交流電圧を、それぞれ直流電圧に変換して前記コンデンサに蓄電させることができる。従って、スイッチング手段が必要となるものの、ダイオードの使用数が2つのみとなり、蓄電回路において、コストの上昇や回路の複雑化を抑制することが可能となる。   In the power storage circuit of the second invention, a plurality of power generation means are used by using two diodes for a plurality of power generation means (power generation elements, etc.) attached to the tire with a circumferential interval longer than the length of the ground contact area of the tire. Can be stored in the capacitor after being converted into a DC voltage. Accordingly, although switching means is required, only two diodes are used, and it is possible to suppress an increase in cost and circuit complexity in the power storage circuit.

本発明の蓄電回路が、タイヤの発電装置に使用された場合の一実施例を示す斜視図である。It is a perspective view which shows one Example at the time of being used for the electric power generating apparatus of the tire of the electrical storage circuit of this invention. (A)は前記発電装置を概念的に示す周方向断面図、(B)はそのタイヤ軸方向の部分拡大断面図である。(A) is a circumferential cross-sectional view conceptually showing the power generator, and (B) is a partially enlarged cross-sectional view in the tire axial direction. 圧電素子の一例を概念的に示す断面図である。It is sectional drawing which shows an example of a piezoelectric element notionally. 第1発明の蓄電回路における第1実施形態の回路図である。It is a circuit diagram of a 1st embodiment in a power storage circuit of the 1st invention. (A)、(B)は蓄電回路における電気の流れを示す回路図である。(A), (B) is a circuit diagram which shows the flow of electricity in an electrical storage circuit. 第1発明の蓄電回路における第2実施形態の回路図である。It is a circuit diagram of 2nd Embodiment in the electrical storage circuit of 1st invention. 第2実施形態における発電素子のグループ分けを説明する略断面図である。It is a schematic sectional drawing explaining grouping of the electric power generation element in 2nd Embodiment. 第2発明の蓄電回路の回路図である。It is a circuit diagram of the electrical storage circuit of 2nd invention. 第2発明における発電素子及び加速度センサの配置を示す概念図である。It is a conceptual diagram which shows arrangement | positioning of the electric power generation element and acceleration sensor in 2nd invention. 加速度センサの出力曲線による接地領域の認識方法を説明するグラフである。It is a graph explaining the recognition method of the earthing | grounding area | region by the output curve of an acceleration sensor. 従来の蓄電回路を示す回路図である。It is a circuit diagram which shows the conventional electrical storage circuit.

以下、本発明の実施の形態について、詳細に説明する。図1、2は、本発明の蓄電回路1が採用されたタイヤ用の発電装置11の一実施例を示す斜視図であって、以下に前記蓄電回路1を発電装置11とともに説明する。   Hereinafter, embodiments of the present invention will be described in detail. 1 and 2 are perspective views illustrating an embodiment of a tire power generation device 11 in which the power storage circuit 1 of the present invention is employed. The power storage circuit 1 will be described below together with the power generation device 11.

本例の発電装置11は、被装着物Tである空気入りタイヤ12のタイヤ内腔面12Sに取り付き、接地時のタイヤ変形により発電を行う。具体的には、前記発電装置11は、タイヤ内腔面12Sに沿って配される樹脂製の環状帯体14と、該環状帯体14の内周面に形成される蓄電回路1と、この蓄電回路1を覆う絶縁シート15(図2に示す。)とを含んで構成される。   The power generation apparatus 11 of this example is attached to the tire lumen surface 12S of the pneumatic tire 12 that is the attachment T, and generates power by tire deformation at the time of ground contact. Specifically, the power generation device 11 includes a resin-made annular band 14 disposed along the tire lumen surface 12S, the power storage circuit 1 formed on the inner peripheral surface of the annular band 14, An insulating sheet 15 (shown in FIG. 2) covering the power storage circuit 1 is included.

前記環状帯体14は、絶縁性の樹脂製材料からなり、本例では、タイヤ内腔面12Sの直径と実質的に等しい外径を有する。これにより前記環状帯体14は、タイヤ内腔面12Sと密着でき、空気入りタイヤ12の接地変形を、前記蓄電回路1の発電手段2に確実に伝達させることができる。前記環状帯体14を形成する樹脂材料としては、特に規制されないが、空気入りタイヤ12の接地変形に追従して変形するため、繊維強化プラスチックが好適であり、その厚さは0.4〜0.6mmが好ましい。   The annular belt 14 is made of an insulating resin material, and in this example, has an outer diameter substantially equal to the diameter of the tire lumen surface 12S. As a result, the annular band 14 can be in close contact with the tire lumen surface 12S, and the ground deformation of the pneumatic tire 12 can be reliably transmitted to the power generation means 2 of the power storage circuit 1. The resin material for forming the annular band 14 is not particularly limited, but is preferably made of fiber reinforced plastic because it deforms following the ground deformation of the pneumatic tire 12, and its thickness is 0.4-0. .6 mm is preferred.

又、本例の発電装置11は、前記空気入りタイヤ12との位置ずれを防止するための位置ずれ防止手段16を具える。前記位置ずれ防止手段16は、前記タイヤ内腔面12S又は前記環状帯体14の外周面の一方に形成される凹部16Aと、前記タイヤ内腔面12S又は前記環状帯体14の外周面の他方に形成される凸部16Bとからなる。そして、前記凹部16Aと凸部16Bとが互いに嵌り合うことにより、前記位置ずれ、特にタイヤ回転に伴う周方向の位置ずれが防止される。   Further, the power generation device 11 of this example includes a misalignment prevention means 16 for preventing misalignment with the pneumatic tire 12. The displacement prevention means 16 includes a recess 16A formed on one of the tire lumen surface 12S or the outer peripheral surface of the annular band 14, and the other of the tire lumen surface 12S or the outer peripheral surface of the annular band 14. Convex part 16B formed in this. Then, the recesses 16A and the protrusions 16B are fitted to each other, so that the displacement, particularly the circumferential displacement due to tire rotation is prevented.

前記凹部16Aおよび凸部16Bは、少なくとも1以上、好ましくは複数、例えば6個程度形成される。なお複数形成される場合には、タイヤ周方向に等間隔を隔てて隔設される。前記凹部16Aおよび凸部16Bの断面形状としては、位置ずれ防止等の観点から断面矩形状(正方形状を含む。)が好ましい。前記凹部16Aおよび凸部16Bのサイズについては特に規制されないが、位置ずれ防止及び接地変形の観点から、深さ(又は高さ)としては10〜20mmの範囲、タイヤ軸方向長さとしては80〜100mmの範囲、タイヤ周方向巾としては10〜30mmの範囲が好ましい。   The concave portions 16A and the convex portions 16B are formed in at least one, preferably a plurality, for example, about six. When a plurality of tires are formed, they are spaced at equal intervals in the tire circumferential direction. The cross-sectional shapes of the concave portions 16A and the convex portions 16B are preferably rectangular in cross section (including a square shape) from the viewpoint of preventing displacement. The size of the concave portion 16A and the convex portion 16B is not particularly restricted, but from the viewpoint of preventing displacement and ground deformation, the depth (or height) is in the range of 10 to 20 mm, and the tire axial length is 80 to 80. The range of 100 mm and the tire circumferential width are preferably 10 to 30 mm.

又、前記凸部16Bは、接地変形の観点からゴム弾性体で形成するのが好ましく、特に、前記タイヤ内腔面12Sを形成するタイヤゴムと略同硬度のゴム弾性体で形成するのが好ましい。なお「略同硬度」とは、ゴム硬度の差が10°以下を意味し、又前記ゴム硬度は、JIS−K6253に基づきデュロメータータイプAにより、23℃の環境下で測定したデュロメータA硬さを意味する。   The convex portion 16B is preferably formed of a rubber elastic body from the viewpoint of ground deformation, and particularly preferably formed of a rubber elastic body having substantially the same hardness as the tire rubber forming the tire lumen surface 12S. The “substantially the same hardness” means a difference in rubber hardness of 10 ° or less, and the rubber hardness is a durometer A hardness measured in a 23 ° C. environment using a durometer type A based on JIS-K6253. means.

次に、第1発明の蓄電回路1は、前記図4に示すように、変形により両極2a、2bに電力を発生させるn個(複数)の発電手段2と、各発電手段2に接続される合計n個の整流用のダイオード対3と、各発電手段2からの電気エネルギーを蓄電する合計1個の蓄電用のコンデンサ対4とを具える。前記n個(複数)の発電手段2は、前記環状帯体14の内周面に間隔を有して取り付く。   Next, as shown in FIG. 4, the power storage circuit 1 of the first invention is connected to n (plurality) of power generation means 2 that generates power in both poles 2 a and 2 b by deformation, and to each power generation means 2. A total of n rectifying diode pairs 3 and a total of one capacitor pair 4 for storing electrical energy from each power generation means 2 are provided. The n (plurality) of power generation means 2 are attached to the inner circumferential surface of the annular band 14 with a gap.

第1発明における第1実施形態の蓄電回路1では、各前記発電手段2は、1つの発電素子5から形成される。特に本例では、タイヤ軸方向両側に2列の発電素子列5R(図1、2に示す。)が形成され、かつ各発電素子列5Rが、タイヤ周方向に等間隔を隔てて配される例えば24個の発電素子5から形成される場合が示される。従って本例では、合計48個(n=48)の発電手段2(発電素子5)が、環状帯体14を介して、空気入りタイヤ12(被装着物Tに相当)に取り付いている。   In the power storage circuit 1 according to the first embodiment of the first invention, each of the power generation means 2 is formed of one power generation element 5. In particular, in this example, two power generation element arrays 5R (shown in FIGS. 1 and 2) are formed on both sides in the tire axial direction, and each power generation element array 5R is arranged at equal intervals in the tire circumferential direction. For example, a case where 24 power generating elements 5 are formed is shown. Therefore, in this example, a total of 48 (n = 48) power generation means 2 (power generation elements 5) are attached to the pneumatic tire 12 (corresponding to the attachment T) via the annular belt body 14.

前記発電素子5として、本例では圧電素子が好適に採用される。図3に概念的に示すように、圧電素子は、周知の如く、例えば圧電セラミックス板5aと、それに接合した金属板5bとから構成される。そして圧電素子(発電素子5)が前記環状帯体14を介してタイヤ変形に応じて撓むことにより、圧電セラミックス板5a側の電極2aと、金属板5b側の電極2bと間に交流電圧が発生する。   As the power generation element 5, a piezoelectric element is preferably employed in this example. As conceptually shown in FIG. 3, the piezoelectric element is composed of, for example, a piezoelectric ceramic plate 5 a and a metal plate 5 b bonded thereto, as is well known. Then, the piezoelectric element (power generation element 5) bends according to the tire deformation through the annular band 14, so that an alternating voltage is generated between the electrode 2a on the piezoelectric ceramic plate 5a side and the electrode 2b on the metal plate 5b side. Occur.

そして前記発電素子5である発電手段2からの交流電圧を蓄電するため、前記図4に示すように、前記蓄電回路1は、各発電手段2に接続されるn個の整流用のダイオード対3と、1個のコンデンサ対4とを具える。   And in order to store the alternating voltage from the electric power generation means 2 which is the said electric power generation element 5, as shown in the said FIG. 4, the said electrical storage circuit 1 is the n rectifier diode pairs 3 connected to each electric power generation means 2. And one capacitor pair 4.

各ダイオード対3は、それぞれ、直列接続された一対のダイオード3A、3Bから形成される。又前記コンデンサ対4は、直列接続された一対のコンデンサ4A、4Bから形成される。   Each diode pair 3 is formed of a pair of diodes 3A and 3B connected in series. The capacitor pair 4 is formed of a pair of capacitors 4A and 4B connected in series.

各発電手段2の一方の電極2aは、各前記ダイオード対3におけるダイオード3A、3B間の中間点Dmに接続される。又各発電手段2の他方の電極2bは、互いに短絡されるとともに、前記コンデンサ対4におけるコンデンサ4A、4B間の中間点Cmに接続される。又各前記ダイオード対3のカソード側電極3a同士は、互いに短絡されるとともに、前記コンデンサ対4の一方の電極4aと接続される。又各前記ダイオード対3のアノード側電極3b同士は、互いに短絡されるとともに、前記コンデンサ対4の他方の電極4bと接続される。   One electrode 2a of each power generation means 2 is connected to an intermediate point Dm between the diodes 3A and 3B in each diode pair 3. The other electrode 2b of each power generation means 2 is short-circuited to each other and connected to an intermediate point Cm between the capacitors 4A and 4B in the capacitor pair 4. The cathode-side electrodes 3 a of each diode pair 3 are short-circuited with each other and connected to one electrode 4 a of the capacitor pair 4. The anode-side electrodes 3b of each diode pair 3 are short-circuited with each other and connected to the other electrode 4b of the capacitor pair 4.

このような蓄電回路1では、図5(A)に示すように、発電手段2に例えばプラスの誘起電圧が生じた場合には、発電手段2のプラス側の電極2a→中間点Dm→ダイオード3A→コンデンサ4A→中間点Cm→発電手段2のマイナス側の電極2bの経路(実線の矢印で示す。)で電気が流れ、コンデンサ4Aに電気が蓄電される。逆に、発電手段2に例えばマイナスの誘起電圧が生じた場合には、図5(B)に示すように、発電手段2のマイナス側の電極2b→中間点Cm→コンデンサ4B→ダイオード3B→中間点Dm→発電手段2のプラス側の電極2aの経路(破線の矢印で示す。)で電気が流れ、コンデンサ4Bに電気が蓄電される。   In such a storage circuit 1, as shown in FIG. 5A, when a positive induced voltage is generated in the power generation means 2, for example, the positive electrode 2a of the power generation means 2 → the intermediate point Dm → the diode 3A. → Capacitor 4A → Intermediate point Cm → Electricity flows through the path (shown by the solid line arrow) of the negative electrode 2b of the power generation means 2, and electricity is stored in the capacitor 4A. On the contrary, when a negative induced voltage is generated in the power generating means 2, for example, as shown in FIG. 5B, the negative electrode 2b of the power generating means 2 → the intermediate point Cm → the capacitor 4B → the diode 3B → the intermediate. Electricity flows along the path of the point Dm → the positive electrode 2a of the power generation means 2 (indicated by a broken arrow), and electricity is stored in the capacitor 4B.

つまり前記蓄電回路1では、発電手段2に係わらず、各発電手段2に発生するプラス側の誘起電圧は、コンデンサ4Aに蓄電され、かつマイナス側の誘起電圧は、コンデンサ4Bに蓄電される。しかも発電手段2、2間ではプラス側、マイナス側のどちらの極性に電圧が誘起したとしても、互いに電流を流す経路を有さないため、発電手段2、2間での電流の流れ込みはない。又発電手段2に誘起したプラス側、マイナス側のそれぞれの電圧は、直列接続されたコンデンサ4A、4Bに蓄電されるため、互いに電圧を相殺することなくコンデンサ対4に電気エネルギーを蓄電することができる。   That is, in the power storage circuit 1, regardless of the power generation means 2, the positive induced voltage generated in each power generation means 2 is stored in the capacitor 4A, and the negative induced voltage is stored in the capacitor 4B. Moreover, no current flows between the power generation means 2 and 2 because there is no path for current to flow between the power generation means 2 and 2 even if a voltage is induced in either the positive side or the negative side. In addition, since the positive and negative voltages induced in the power generation means 2 are stored in the capacitors 4A and 4B connected in series, electric energy can be stored in the capacitor pair 4 without canceling out the voltages. it can.

従って、前記蓄電回路1では、従来の蓄電回路に比して、整流用のダイオードの使用数を半減でき、コストの低減や回路の簡略化を図ることができる。   Therefore, in the power storage circuit 1, the number of rectifying diodes used can be halved as compared with the conventional power storage circuit, and the cost can be reduced and the circuit can be simplified.

次に図6、7に、第1発明における第2実施形態の蓄電回路1を示す。第2実施形態の蓄電回路1では、各前記発電手段2は、並列接続された複数の発電素子5から形成される。そして、1つの発電手段2をなす前記複数の発電素子5は、タイヤ周方向の接地領域長さLよりも長い間隔を隔てて互いに離間して配される。   Next, FIGS. 6 and 7 show a power storage circuit 1 according to a second embodiment of the first invention. In the power storage circuit 1 of the second embodiment, each of the power generation means 2 is formed from a plurality of power generation elements 5 connected in parallel. The plurality of power generation elements 5 constituting one power generation means 2 are spaced apart from each other with an interval longer than the ground contact region length L in the tire circumferential direction.

具体的には、図7に示すように、本例では例えば24個の発電素子5が周方向に間隔を隔てて配されている。この24個の発電素子5は、複数(本例では4つ)のグループGa〜Gd(総称するとき、グループGと呼ぶ。)に区分されており、各グループGが1つの発電手段2を形成する。又、同じグループGに属する発電素子5同士は、接地領域長さLよりも長い間隔を隔てて互いに離間している。   Specifically, as shown in FIG. 7, in this example, for example, 24 power generating elements 5 are arranged at intervals in the circumferential direction. The 24 power generating elements 5 are divided into a plurality (four in this example) of groups Ga to Gd (referred to collectively as group G), and each group G forms one power generating means 2. To do. The power generating elements 5 belonging to the same group G are separated from each other with an interval longer than the grounding region length L.

そして、同じグループGに属する発電素子5同士は、互いに並列接続される。なお各前記発電手段2の一方の電極2aは、前記第1実施形態と同様、各前記ダイオード対3の中間点Dmに接続され、かつ各前記発電手段2の他方の電極2bは、互いに短絡されかつ前記コンデンサ対4の中間点Cmに接続されるとともに、各前記ダイオード対3のカソード側電極同士3aは、互いに短絡されかつ前記コンデンサ対4の一方の電極4aと接続され、かつ各前記ダイオード対3のアノード側電極3b同士は、互いに短絡されかつ前記コンデンサ対4の他方の電極4bと接続される。   The power generating elements 5 belonging to the same group G are connected in parallel to each other. As in the first embodiment, one electrode 2a of each power generating means 2 is connected to the intermediate point Dm of each diode pair 3, and the other electrode 2b of each power generating means 2 is short-circuited to each other. The cathode-side electrodes 3a of the diode pairs 3 are short-circuited to each other and connected to one electrode 4a of the capacitor pair 4, and connected to the intermediate point Cm of the capacitor pair 4. 3 anode side electrodes 3b are short-circuited to each other and connected to the other electrode 4b of the capacitor pair 4.

この第2実施形態の場合、1つのグループG内では、2つ以上の発電素子5は同時に接地しない。従って、同じグループGに属する発電素子5同士を並列接続した場合にも、その出力は互いに干渉しない。従って、1つのグループGに対して1つのダイオード対3を接続した場合にも、コンデンサ対4に電気エネルギーを蓄電することができる。この場合、ダイオードの使用数をさらに削減することができ。   In the case of the second embodiment, in one group G, two or more power generating elements 5 are not grounded at the same time. Therefore, even when the power generation elements 5 belonging to the same group G are connected in parallel, their outputs do not interfere with each other. Therefore, even when one diode pair 3 is connected to one group G, electric energy can be stored in the capacitor pair 4. In this case, the number of diodes used can be further reduced.

ここで正規リムにリム組みしかつ正規内圧を充填した状態のタイヤに正規荷重を負荷した時に接地するタイヤ周方向の接地外端位置をEとしたとき、各接地外端位置Eを通るタイヤ半径方向線Xe、Xe間の領域を接地領域Yという。そして、発電素子5が取り付く取付け面(本例ではタイヤ内腔面12S)上にて測定した前記接地領域Yの周方向長さを前記接地領域長さLと呼ぶ。又前記発電素子5、5間の間隔は、前記取付け面上で測定した周方向の間隔を意味する。   Here, when the outer peripheral contact position in the tire circumferential direction that contacts the ground when a normal load is applied to the tire that is assembled with the normal rim and filled with the normal internal pressure is E, the tire radius that passes through each outer contact outer position E A region between the direction lines Xe and Xe is referred to as a ground region Y. The circumferential length of the ground contact area Y measured on the mounting surface (the tire lumen surface 12S in this example) to which the power generating element 5 is attached is referred to as the ground contact area length L. The distance between the power generation elements 5 and 5 means a circumferential distance measured on the mounting surface.

なお前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば"Design Rim" 、或いはETRTOであれば "Measuring Rim"を意味する。前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TR A であれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATIONPRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE"を意味するが、乗用車用タイヤの場合には180kPaとする。又前記「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY"である。   The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO means "Measuring Rim". The “regular internal pressure” is the air pressure defined by the standard for each tire. The maximum air pressure for JATMA, the maximum value described in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATIONPRESSURES” for TR A, ETRTO Means "INFLATION PRESSURE", but in the case of passenger car tires, it is 180 kPa. The “regular load” is the load specified by the standard for each tire. The maximum load capacity shown in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” is the maximum load capacity for JATMA and TRA for TRA If it is ETRTO, it is "LOAD CAPACITY".

次に、図8〜10に、第2発明における蓄電回路1を示す。この第2発明の蓄電回路1は、複数の発電手段2と、1個の整流用のダイオード対3と、1個の蓄電用のコンデンサ対4と、スイッチング手段7とを具える。各前記発電手段2は、1つの発電素子5からなり、かつ各前記発電手段2は、前記接地領域長さLよりも長い間隔を隔てて周方向に隔置される。   Next, FIGS. 8 to 10 show a power storage circuit 1 according to the second invention. The power storage circuit 1 of the second invention comprises a plurality of power generation means 2, one rectifying diode pair 3, one power storage capacitor pair 4, and switching means 7. Each of the power generation means 2 includes one power generation element 5, and each of the power generation means 2 is spaced in the circumferential direction with an interval longer than the grounding region length L.

各前記発電手段2の一方の電極2a同士は、互いに短絡されかつ前記ダイオード対3の中間点Dmに接続される。各前記発電手段2の他方の電極2b同士は、互いに短絡されかつ前記コンデンサ対4の中間点Cmに接続される。前記ダイオード対3のカソード側電極3aは、前記コンデンサ対4の一方の電極4aと接続される。前記ダイオード対3のアノード側電極3bは、前記コンデンサ対4の他方の電極4bと接続される。   One electrode 2 a of each power generation means 2 is short-circuited to each other and connected to the intermediate point Dm of the diode pair 3. The other electrodes 2 b of the power generation means 2 are short-circuited with each other and connected to the intermediate point Cm of the capacitor pair 4. The cathode side electrode 3 a of the diode pair 3 is connected to one electrode 4 a of the capacitor pair 4. The anode side electrode 3 b of the diode pair 3 is connected to the other electrode 4 b of the capacitor pair 4.

又各前記発電手段2の他方の電極2bとコンデンサ対4の前記中間点Cmとの間、又は各前記発電手段2の一方の電極2aとダイオード対3の前記中間点Dmとの間に、スイッチング手段7が介在する。このスイッチング手段7は、タイヤ回転時の接地領域Y内に位置する発電手段2のみを、前記中間点Cm又は中間点Dmと接続する。   Further, switching is performed between the other electrode 2b of each power generation means 2 and the intermediate point Cm of the capacitor pair 4 or between one electrode 2a of each power generation means 2 and the intermediate point Dm of the diode pair 3. Means 7 are interposed. This switching means 7 connects only the power generation means 2 located in the ground contact area Y during tire rotation to the intermediate point Cm or the intermediate point Dm.

具体的には、図9に示すように、まずタイヤ12が、前記接地領域長さLより大きい周方向長さを有する複数の周方向領域Jに等区分される。そして各周方向領域Jの周方向中央位置に、発電手段2(1つの発電素子5からなる)が配される。従って、発電手段2は、接地領域長さLよりも長い間隔を隔てて周方向に配される。   Specifically, as shown in FIG. 9, first, the tire 12 is equally divided into a plurality of circumferential regions J having a circumferential length larger than the ground contact region length L. The power generation means 2 (consisting of one power generation element 5) is disposed at the circumferential center position of each circumferential region J. Therefore, the power generation means 2 is arranged in the circumferential direction with an interval longer than the ground contact region length L.

又本例では、各前記発電手段2の他方の電極2bと、コンデンサ対4の前記中間点Cmとの間に、スイッチング手段7が介在し、接地領域Y内に位置する発電手段2の電極2bのみを前記中間点Cmと接続する。   In this example, the switching means 7 is interposed between the other electrode 2b of each power generation means 2 and the intermediate point Cm of the capacitor pair 4, and the electrode 2b of the power generation means 2 located in the ground region Y. Only the intermediate point Cm.

このスイッチング手段7の使用により、ダイオードの使用数を2つにまで削減することができる。ここで、スイッチング手段7により接地領域外の発電手段2の接続を断つ理由は、走行中、タイヤ12には種々な振動が発生し、接地領域外の発電手段2においてもある程度の誘起電圧が発生するためである。従って、接地領域外の発電手段2の接続を断つことで、この接地領域外の発電手段2による電気エネルギーの相殺を防止することが可能になる。   By using the switching means 7, the number of diodes used can be reduced to two. Here, the reason for disconnecting the power generation means 2 outside the grounding area by the switching means 7 is that various vibrations are generated in the tire 12 during traveling, and some induced voltage is also generated in the power generation means 2 outside the grounding area. It is to do. Therefore, by canceling the connection of the power generation means 2 outside the ground area, it becomes possible to prevent the electric energy from being canceled by the power generation means 2 outside the ground area.

前記スイッチング手段7として特に規制されないが、本例では、例えば2つの加速度センサ8A、8Bと、その出力信号により接地領域Y内の発電手段2を認識する認識手段9と、スイッチ10とを含んで構成される。   Although not particularly restricted as the switching means 7, this example includes, for example, two acceleration sensors 8A and 8B, a recognition means 9 for recognizing the power generation means 2 in the grounding region Y by its output signal, and a switch 10. Composed.

図9に示すように、本例では、4個の発電手段2が配される場合が例示される。詳しくは、タイヤ12を、4つの周方向領域J1〜J4に等区分し、各周方向領域J1〜J4の周方向中央位置に発電手段2が配される。   As shown in FIG. 9, in this example, a case where four power generation means 2 are arranged is illustrated. Specifically, the tire 12 is equally divided into four circumferential regions J1 to J4, and the power generation means 2 is arranged at the circumferential center position of each circumferential region J1 to J4.

前記2つの加速度センサ8A、8Bは、周方向に90度の角度を隔てた2位置に取り付く。本例では、周方向領域J1、J2間の境界位置に加速度センサ8Aが、又周方向領域J1、J4間の境界位置に加速度センサ8Bが取り付く。各加速度センサ8A、8Bは、図10に示すように、タイヤ回転時の加速度をサイン曲線で出力するが、加速度センサ8A、8Bの取り付け位置が90度ずれているため、その出力信号(サイン曲線)FA、FBも周方向に90°位相がずれている。   The two acceleration sensors 8A and 8B are attached at two positions separated by an angle of 90 degrees in the circumferential direction. In this example, the acceleration sensor 8A is attached to the boundary position between the circumferential regions J1 and J2, and the acceleration sensor 8B is attached to the boundary position between the circumferential regions J1 and J4. As shown in FIG. 10, each acceleration sensor 8A, 8B outputs the acceleration at the time of tire rotation as a sine curve. However, since the mounting positions of the acceleration sensors 8A, 8B are shifted by 90 degrees, the output signals (sine curves) ) FA and FB are also 90 ° out of phase in the circumferential direction.

本例では、一方の加速度センサ8Aは、3時、9時の回転位置のとき出力が0で、12時の回転位置のとき出力が最大(max)となるように、ゲインの向きが設定されている。又他方の加速度センサ8Bは、3時、9時の回転位置のとき出力が0で、6時の回転位置のとき出力が最大(max)となるように、ゲインの向きが設定されている。   In this example, the direction of the gain is set so that one of the acceleration sensors 8A has an output of 0 at the 3 o'clock and 9 o'clock rotational positions and a maximum (max) output at the 12 o'clock rotational position. ing. The direction of the gain of the other acceleration sensor 8B is set so that the output is 0 when the rotation position is 3 o'clock and 9 o'clock and the output is maximum (max) when the rotation position is 6 o'clock.

従って、加速度センサ8A、8Bの出力の+、−を組み合わせることにより、どの周方向領域J1〜J4が接地するかを判定することができる。
即ち、図10に示すように、
・周方向領域J3は、加速度センサ8Aが+、かつ加速度センサ8Bが−の時に接地、
・周方向領域J4は、加速度センサ8Aが+、かつ加速度センサ8Bが+の時に接地、
・周方向領域J1は、加速度センサ8Aが−、かつ加速度センサ8Bが+の時に接地、
・周方向領域J2は、加速度センサ8Aが−、かつ加速度センサ8Bが−の時に接地
する。
Therefore, it is possible to determine which of the circumferential regions J1 to J4 is grounded by combining + and − of the outputs of the acceleration sensors 8A and 8B.
That is, as shown in FIG.
The circumferential region J3 is grounded when the acceleration sensor 8A is + and the acceleration sensor 8B is-
The circumferential region J4 is grounded when the acceleration sensor 8A is + and the acceleration sensor 8B is +
The circumferential region J1 is grounded when the acceleration sensor 8A is-and the acceleration sensor 8B is +
The circumferential direction region J2 is grounded when the acceleration sensor 8A is-and the acceleration sensor 8B is-.

即ち、接地領域Y内の発電手段2を認識できる。このようなセンサ出力に基づいた周方向領域J1〜J4の接地の判定は、前記認識手段9によって行われ、又認識手段9によりスイッチ10が回路を入/切する。なおスイッチング手段7は、前記環状帯体14に取り付けることができ、このスイッチング手段7の電源も、前記蓄電回路1から供給することができる。なお接地領域Y内に位置する発電手段2の認識方法としては、タイヤ回転位置を検知する例えばエンコーダなどの回転位置検知器を、タイヤ、ホイール、車軸などに取り付け、タイヤ回転中の各発電手段2の位置を絶えず認識することにより行いうるなど、種々の方法が採用しうる。   That is, the power generation means 2 in the grounding area Y can be recognized. The determination of the grounding of the circumferential regions J1 to J4 based on the sensor output is performed by the recognition means 9, and the switch 10 turns on / off the circuit by the recognition means 9. The switching means 7 can be attached to the annular band 14, and the power of the switching means 7 can also be supplied from the power storage circuit 1. As a method for recognizing the power generation means 2 located in the ground contact area Y, a rotation position detector such as an encoder for detecting the tire rotation position is attached to the tire, wheel, axle, etc., and each power generation means 2 during tire rotation is attached. Various methods can be employed, such as being able to be performed by constantly recognizing the position of the.

又前記蓄電回路1は、タイヤ用の発電装置11に採用する以外に、例えば人が歩行する際の床の撓みや振動を利用して発電する発電システム、例えば自動車などの通過による道路や橋などの構造体の振動を利用して発電する発電システム、例えば工場内の機械の振動などを利用して発電する発電システム等、種々な発電システムに採用することができる。又発電素子5としても、圧電素子以外に、例えば磁歪素子を用いて振動等から得られる磁力線の変化をコイルなどによって電気エネルギに変換して使用するなど、種々のものが採用しうる。   The power storage circuit 1 may be used in a power generation device 11 for tires, for example, a power generation system that generates power using floor bending or vibration when a person walks, for example, a road or a bridge by passing an automobile or the like. The present invention can be applied to various power generation systems such as a power generation system that generates power using the vibration of the structure, for example, a power generation system that generates power using vibration of a machine in a factory. In addition to the piezoelectric element, various elements such as a magnetostrictive element, such as a change in the lines of magnetic force obtained from vibration or the like, may be used as the power generation element 5 by using a coil or the like.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

1 蓄電回路
2 発電手段
2a、2b 電極
3 ダイオード対
3A、3B ダイオード
3a カソード側電極
3b アノード側電極
4 コンデンサ対
4A、4B コンデンサ
4a、4b 電極
5 発電素子
7 スイッチング手段
12 タイヤ
L 接地領域長さ
T 被装着物
DESCRIPTION OF SYMBOLS 1 Power storage circuit 2 Electric power generation means 2a, 2b Electrode 3 Diode pair 3A, 3B Diode 3a Cathode side electrode 3b Anode side electrode 4 Capacitor pair 4A, 4B Electrode 4a, 4b Electrode 5 Electric power generation element 7 Switching means 12 Tire L Grounding area length T Attachment

Claims (5)

被装着物に取り付きかつ変形により両極に電力を発生させるn個(複数)の発電手段と、一対のダイオードを直列接続したn個の整流用のダイオード対と、一対のコンデンサを直列接続した1個の蓄電用のコンデンサ対とを具える蓄電回路であって、
各前記発電手段の一方の電極は、各前記ダイオード対のダイオード間の中間点Dmに接続され、
かつ各前記発電手段の他方の電極は、互いに短絡されかつ前記コンデンサ対のコンデンサ間の中間点Cmに接続されるとともに、
各前記ダイオード対のカソード側電極同士は、互いに短絡されかつ前記コンデンサ対の一方の電極と接続され、
かつ各前記ダイオード対のアノード側電極同士は、互いに短絡されかつ前記コンデンサ対の他方の電極と接続されることを特徴とする蓄電回路。
N power generators that are attached to an attachment and generate electric power in both poles by deformation, n rectifying diode pairs in which a pair of diodes are connected in series, and one in which a pair of capacitors are connected in series A power storage circuit comprising a pair of capacitors for power storage,
One electrode of each of the power generation means is connected to an intermediate point Dm between the diodes of each of the diode pairs,
And the other electrode of each of the power generating means is short-circuited to each other and connected to an intermediate point Cm between the capacitors of the capacitor pair,
The cathode side electrodes of each of the diode pairs are short-circuited to each other and connected to one electrode of the capacitor pair,
An anode side electrode of each diode pair is short-circuited to each other and connected to the other electrode of the capacitor pair.
前記被装着物は、タイヤであることを特徴とする請求項1記載の蓄電回路。   The power storage circuit according to claim 1, wherein the attachment object is a tire. 各前記発電手段は、並列接続された複数の発電素子からなり、かつ1つの発電手段をなす前記複数の発電素子は、タイヤ周方向の接地領域長さよりも長い間隔を隔てて互いに離間することを特徴とする請求項2記載の蓄電回路。   Each of the power generation means is composed of a plurality of power generation elements connected in parallel, and the plurality of power generation elements forming one power generation means are separated from each other with an interval longer than the length of the ground contact area in the tire circumferential direction. The power storage circuit according to claim 2, wherein: 各前記発電手段は、1つの発電素子からなることを特徴とする請求項1又は2記載の蓄電回路。   3. The power storage circuit according to claim 1, wherein each of the power generation means includes one power generation element. タイヤに取り付きかつ変形により両極に電力を発生させるn個(複数)の発電手段と、一対のダイオードを直列接続した1個の整流用のダイオード対と、一対のコンデンサを直列接続した1個の蓄電用のコンデンサ対とを具える蓄電回路であって、
各前記発電手段は、1つの発電素子からなり、かつ各前記発電手段は、タイヤ周方向の接地領域長さよりも長い間隔を隔てて互いに離間するとともに、
各前記発電手段の一方の電極同士は、互いに短絡されかつ前記ダイオード対のダイオード間の中間点Dmに接続され、
各前記発電手段の他方の電極同士は、互いに短絡されかつ前記コンデンサ対のコンデンサ間の中間点Cmに接続され、
前記ダイオード対のカソード側電極は、前記コンデンサ対の一方の電極と接続され、
前記ダイオード対のアノード側電極は、前記コンデンサ対の他方の電極と接続されるとともに、
各前記発電手段の他方の電極とコンデンサ対の前記中間点Cmとの間、又は各前記発電手段の一方の電極とダイオード対の前記中間点Dmとの間に、タイヤ回転時の接地領域内に位置する発電手段のみを、前記中間点Cm又は中間点Dmと接続するスイッチング手段を設けたことを特徴とする蓄電回路。
N (several) power generating means attached to the tire and generating electric power in both poles by deformation, one rectifying diode pair in which a pair of diodes are connected in series, and one power storage in which a pair of capacitors are connected in series A storage circuit comprising a capacitor pair for
Each of the power generation means is composed of one power generation element, and each of the power generation means is separated from each other with an interval longer than the contact area length in the tire circumferential direction,
One electrode of each of the power generation means is short-circuited to each other and connected to an intermediate point Dm between the diodes of the diode pair,
The other electrodes of the power generation means are short-circuited to each other and connected to an intermediate point Cm between the capacitors of the capacitor pair,
The cathode side electrode of the diode pair is connected to one electrode of the capacitor pair,
The anode side electrode of the diode pair is connected to the other electrode of the capacitor pair,
Between the other electrode of each of the power generation means and the intermediate point Cm of the capacitor pair, or between one electrode of each of the power generation means and the intermediate point Dm of the diode pair, within a grounding region during tire rotation. A power storage circuit comprising switching means for connecting only the power generation means positioned to the intermediate point Cm or the intermediate point Dm.
JP2012265659A 2012-12-04 2012-12-04 Power storage circuit Active JP6027420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012265659A JP6027420B2 (en) 2012-12-04 2012-12-04 Power storage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012265659A JP6027420B2 (en) 2012-12-04 2012-12-04 Power storage circuit

Publications (2)

Publication Number Publication Date
JP2014108772A true JP2014108772A (en) 2014-06-12
JP6027420B2 JP6027420B2 (en) 2016-11-16

Family

ID=51029653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012265659A Active JP6027420B2 (en) 2012-12-04 2012-12-04 Power storage circuit

Country Status (1)

Country Link
JP (1) JP6027420B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333145A (en) * 2014-10-18 2015-02-04 刘跃进 Electric vehicle-used rechargeable tire and tire-type wireless charging belt system
JP2017017831A (en) * 2015-06-30 2017-01-19 帝人株式会社 Energy harvesting device
JP7175486B1 (en) 2022-04-19 2022-11-21 雄三 安形 Tire with power generation function and vehicle equipped with it

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165517A (en) * 1990-10-30 1992-06-11 Tokimec Inc Interface circuit using electromagnetic induction coupling
JPH095724A (en) * 1995-04-18 1997-01-10 Pilot Corp:The Power source device, charge response medium set consisting of the power source device and charge response medium, hand writing liquid crystal board set, impressing means containing its power source device and writing means for hand writing liquid crystal board
JP2006232195A (en) * 2005-02-28 2006-09-07 Bridgestone Corp Power supply device for tire
JP2008087512A (en) * 2006-09-29 2008-04-17 Toyoda Gosei Co Ltd Tire power generation device, tire sensor using the same, and tire rigidity varying device
JP2009542169A (en) * 2006-06-21 2009-11-26 エプコス アクチエンゲゼルシャフト Piezoelectric generator
WO2010119716A1 (en) * 2009-04-15 2010-10-21 株式会社村田製作所 Piezoelectric power generator
JP2011239510A (en) * 2010-05-07 2011-11-24 Bridgestone Corp Power generator in tire
JP2012152041A (en) * 2011-01-19 2012-08-09 Saitama Univ Contactless power supply system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165517A (en) * 1990-10-30 1992-06-11 Tokimec Inc Interface circuit using electromagnetic induction coupling
JPH095724A (en) * 1995-04-18 1997-01-10 Pilot Corp:The Power source device, charge response medium set consisting of the power source device and charge response medium, hand writing liquid crystal board set, impressing means containing its power source device and writing means for hand writing liquid crystal board
JP2006232195A (en) * 2005-02-28 2006-09-07 Bridgestone Corp Power supply device for tire
JP2009542169A (en) * 2006-06-21 2009-11-26 エプコス アクチエンゲゼルシャフト Piezoelectric generator
JP2008087512A (en) * 2006-09-29 2008-04-17 Toyoda Gosei Co Ltd Tire power generation device, tire sensor using the same, and tire rigidity varying device
WO2010119716A1 (en) * 2009-04-15 2010-10-21 株式会社村田製作所 Piezoelectric power generator
JP2011239510A (en) * 2010-05-07 2011-11-24 Bridgestone Corp Power generator in tire
JP2012152041A (en) * 2011-01-19 2012-08-09 Saitama Univ Contactless power supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333145A (en) * 2014-10-18 2015-02-04 刘跃进 Electric vehicle-used rechargeable tire and tire-type wireless charging belt system
JP2017017831A (en) * 2015-06-30 2017-01-19 帝人株式会社 Energy harvesting device
JP7175486B1 (en) 2022-04-19 2022-11-21 雄三 安形 Tire with power generation function and vehicle equipped with it
JP2023159006A (en) * 2022-04-19 2023-10-31 雄三 安形 Tire with power generation function and vehicle with the same mounted thereon

Also Published As

Publication number Publication date
JP6027420B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
EP1848103B1 (en) Tire with electric-power generation device
JP6027420B2 (en) Power storage circuit
US20200023693A1 (en) Tire assembly, tire monitoring system, and tire monitoring method
US8418544B2 (en) Bending transducer for generating electrical energy from mechanical deformations
US9579936B2 (en) Tire deformation sensor and tire inflation system
JP2008526596A (en) Tire module and pneumatic tire having tire module
JP2008087512A (en) Tire power generation device, tire sensor using the same, and tire rigidity varying device
JP2009018716A (en) Tire electric power supply system
JP7292644B2 (en) Tire assembly, tire monitoring system and method
JP2016088473A (en) Tire assembly
US20150115887A1 (en) Transport vehicle, charging system and electricity-generating tire
CN214057141U (en) Power generation sensing transmission device
WO2021020046A1 (en) System for supplying power during travel
CN104736379A (en) Energy transmission device and energy transmission arrangement
WO2015037244A1 (en) Electric power generation device, tire assembly, and autonomous electric power generation system
JP5947698B2 (en) Tire power generator
KR101713238B1 (en) Tire monitoring device and vehicle comprising the same
US10050566B2 (en) Generator for automobile using flexible piezoelectric device
JP2019179039A5 (en)
JP6088908B2 (en) Deformation state detection method of tire sensor, tire contact state estimation method, and tire contact state estimation device
JP2011084123A (en) Power generator by tire having double structure
EP2415619A1 (en) Self-powered sensing module and system for monitoring the conditions of the tyres of a vehicle provided with at least one self-powered sensing module
KR101107721B1 (en) Self generation system for vehicle
KR101326584B1 (en) Electric energy obtaining device and tire having it and energy supplying method using it
EP3967525A1 (en) Piezoelectric tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6027420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250