JP2014104374A - Static fluid mixing device - Google Patents

Static fluid mixing device Download PDF

Info

Publication number
JP2014104374A
JP2014104374A JP2012256737A JP2012256737A JP2014104374A JP 2014104374 A JP2014104374 A JP 2014104374A JP 2012256737 A JP2012256737 A JP 2012256737A JP 2012256737 A JP2012256737 A JP 2012256737A JP 2014104374 A JP2014104374 A JP 2014104374A
Authority
JP
Japan
Prior art keywords
mixing
outlet
fluid
inlet
static fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012256737A
Other languages
Japanese (ja)
Other versions
JP6046465B2 (en
Inventor
Kenichi Mogami
賢一 最上
Toshiaki Nakada
俊明 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG GROW UP KK
MG Grow Up Corp
Malufuku Suisan Co Ltd
Original Assignee
MG GROW UP KK
MG Grow Up Corp
Malufuku Suisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MG GROW UP KK, MG Grow Up Corp, Malufuku Suisan Co Ltd filed Critical MG GROW UP KK
Priority to JP2012256737A priority Critical patent/JP6046465B2/en
Publication of JP2014104374A publication Critical patent/JP2014104374A/en
Application granted granted Critical
Publication of JP6046465B2 publication Critical patent/JP6046465B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a static fluid mixing device that can reduce electric power consumption of a pressure pump by reducing a pressure loss, and can achieve an increase (promotion of efficiency) of outflow of the fluid subjected to a mixing process.SOLUTION: A static fluid mixing device is disposed of a mixing unit 20 for mixing a plurality of different fluids introduced from an inlet port in a mixing case 10. The mixing unit 20 forms an inflow port 50 between the starting end edges of both elements by arranging the surfaces of a plate-like first element 30 and a second element 40 oppositely to each other, and meanwhile forms an outflow port 51 between terminal edges of both elements. In respective facing surfaces of both elements, a plurality of recess groups having the same depth and size are divided and formed at intervals from the inflow port side toward the outflow port side. Also, opposed recesses are arranged differently in positions so as to come into communication with each other, and the fluid is made to flow from the inflow port 50 side toward the outflow port 51 side, while meandering and repeating convergence and separation between the opposed recesses of the respective recess groups.

Description

本発明は、流体を混合する静止型流体混合装置、具体的には、例えば、液体と液体、液体と気体、粉体と液体、を微細化かつ均一化して混合する静止型流体混合装置に関する。   The present invention relates to a static fluid mixing apparatus that mixes fluids, and more specifically, to a static fluid mixing apparatus that mixes liquids and liquids, liquids and gases, and powders and liquids in a fine and uniform manner.

静止型流体混合装置の一形態として、特許文献1に開示されたものがある。すなわち、特許文献1には、中央部に流体の流入口を形成した円板状の第1拡散エレメントに、円板状の第2拡散エレメントを対向させて配置するとともに、両拡散エレメントの間に中央部側の流入口から流入した流体を周縁部側に向けて半径方向に流動させて拡散・混合する拡散・混合流路を形成した拡散・混合ユニットと、中央部に流体の流出口を形成した円板状の第1集合エレメントに、円板状の第2集合エレメントを対向させて配置すると共に、両集合エレメントの間に周縁部側から流入した流体を中央部側に向けて半径方向に流動させて集合・混合する集合・混合流路を形成した集合・混合ユニットとを具備し、拡散・混合流路の終端部と集合・混合流路の始端部を接続した静止型流体混合装置が開示されている。   There exists what was disclosed by patent document 1 as one form of a static fluid mixing apparatus. That is, in Patent Document 1, a disk-shaped second diffusion element is disposed opposite to a disk-shaped first diffusion element in which a fluid inlet is formed at the center, and between the two diffusion elements. A diffusion / mixing unit that forms a diffusion / mixing channel that diffuses and mixes the fluid flowing in from the inlet on the center side in the radial direction toward the peripheral side, and a fluid outlet in the center The disc-shaped second collective element is arranged opposite to the disc-shaped first collective element, and the fluid flowing from the peripheral side between the two collective elements is radially directed toward the central portion side. A static fluid mixing apparatus comprising an assembly / mixing unit that forms an assembly / mixing channel that flows and collects and mixes, and that connects a terminal end of the diffusion / mixing channel and a start end of the assembly / mixing channel. It is disclosed.

そして、第1・第2拡散エレメントの対向面と第1・第2集合エレメントの対向面には適切な同一の深さと大きさの六角形の凹部群をハニカム構造に形成するとともに、対向する凹部同士を相互に連通するように位置を違えて配置して、拡散・混合流路と集合・混合流路において、流体が蛇行しながら合流と分流(分散)を繰り返しながら半径方向に流動するようにしている。   The opposing surfaces of the first and second diffusing elements and the opposing surfaces of the first and second assembly elements are formed with a hexagonal recess group of appropriate identical depth and size in the honeycomb structure, and the opposing recesses Arrange them at different positions so that they communicate with each other, and in the diffusion / mixing flow path and the collecting / mixing flow path, the fluid flows in the radial direction while repeating the merging and splitting (dispersing) while meandering. ing.

特開平9−52034号公報JP-A-9-52034

ところが、特許文献1に開示された静止型流体混合装置は、中央部側の流入口から流入した流体を周縁部側に向けて半径方向に流動させて拡散・混合する拡散・混合流路と、周縁部側から流入した流体を中央部側に向けて半径方向に流動させて集合・混合する流路構造を同様に形成しているために、混合分散機能の高い拡散・混合流路と比べて,集合・混合側流路は分散数がはるかに少ないにもかかわらず拡散・混合流路と同程度の圧力損失が生じていた。そのため、静止型流体混合装置に流体を加圧して供給する加圧ポンプの電力消費量の低減さらには処理済み流体の流出量の増大(効率化)が望まれていた。   However, the static fluid mixing device disclosed in Patent Document 1 is a diffusion / mixing flow path that diffuses and mixes the fluid flowing in from the inflow port on the center side in the radial direction toward the peripheral side, Compared to diffusion / mixing channels with high mixing / dispersion function because the flow channel structure that gathers and mixes the fluid flowing in from the peripheral side in the radial direction toward the center is formed in the same way. However, the collecting / mixing channel had a pressure loss comparable to that of the diffusion / mixing channel, although the number of dispersions was much smaller. Therefore, it has been desired to reduce the power consumption of the pressurizing pump that pressurizes and supplies the fluid to the static fluid mixing device, and to increase the flow rate (efficiency) of the processed fluid.

そこで、本発明は、圧力損失を低減させて、加圧ポンプの電力消費量の低減化を図ることができるとともに、混合処理済み流体の流出量の増大化(効率化)を図ることができる静止型流体混合装置を提供することを目的とする。   Therefore, the present invention can reduce the pressure loss and reduce the power consumption of the pressurizing pump, and can increase the outflow amount (efficiency) of the mixed processed fluid. An object of the present invention is to provide a mold fluid mixing device.

請求項1記載の発明に係る静止型流体混合装置は、混合処理対象である複数の異なる流体を加圧状態にて導入する導入口を設けた混合ケース内に、導入口から導入された複数の異なる流体を混合する混合ユニットを配設し、混合ケースには混合ユニットにより混合された混合流体を導出する導出口を設けた静止型流体混合装置であって、混合ユニットは、板状の第1エレメントと第2エレメントの面同士を対向状に配置して、両エレメントの始端縁部間を流入口となす一方、両エレメントの終端縁部間を流出口となし、両エレメントの各対向面には同一の深さと大きさを有する複数の凹部群を流入口側から流出口側に向けて間隔をあけて区分して形成するとともに、対向する凹部同士は相互に連通するように位置を違えて配置して、各凹部群の対向する凹部間には流体が蛇行しながら合流と分流を繰り返しながら流入口側から流出口側に向けて流動するように構成し、流出口側に形成した凹部群の凹部の開口面の径は、流入口側に形成した凹部群の凹部の開口面の径に比して小径に形成したことを特徴とする。   The static fluid mixing apparatus according to the first aspect of the present invention includes a plurality of fluids introduced from an introduction port in a mixing case provided with an introduction port for introducing a plurality of different fluids to be mixed in a pressurized state. A static fluid mixing apparatus in which a mixing unit for mixing different fluids is provided, and a mixing case is provided with a lead-out port for leading the mixed fluid mixed by the mixing unit. The surfaces of the element and the second element are arranged so as to face each other, and the gap between the start edge portions of both elements serves as an inflow port, while the end edge portion of both elements serves as an outflow port. Is formed by dividing a plurality of concave portions having the same depth and size from the inlet side toward the outlet side with an interval, and the opposing concave portions are arranged in different positions so as to communicate with each other. Arrange each recess group It is configured to flow from the inlet side toward the outlet side while repeating the merging and branching while the fluid meanders between the opposing concave portions, and the diameter of the opening surface of the concave portion of the concave group formed on the outlet side is Further, it is characterized in that it is formed with a small diameter as compared with the diameter of the opening surface of the concave portion of the concave group formed on the inlet side.

かかる静止型流体混合装置では、例えば加圧ポンプにより導入口を通して混合ケースに混合処理対象である複数の異なる流体を加圧状態にて導入し、混合ケース内に配設した混合ユニットにより導入された複数の異なる流体を混合して、混合された混合流体を導出口から混合ケース外に導出することができる。   In such a static fluid mixing apparatus, for example, a plurality of different fluids to be mixed are introduced into the mixing case through the introduction port by a pressurizing pump in a pressurized state and introduced by a mixing unit disposed in the mixing case. A plurality of different fluids can be mixed, and the mixed fluid can be led out from the mixing case through the outlet.

そして、混合ユニットでは、面同士を対向状に配置した板状の第1エレメントと第2エレメントの始端縁部間である流入口から複数の異なる流体を流入させて、両エレメントの終端縁部間である流出口から流出させるまでの間に、かかる流体を各凹部群の対向する凹部間にて合流と分流を繰り返しながら蛇行させて流動させることにより、堅実に混合流体を生成することができる。その結果、混合流体の生成効率を向上させることができる。   In the mixing unit, a plurality of different fluids are introduced from the inlet port between the first edge of the plate-like first element and the second element, the surfaces of which are arranged to face each other, and between the end edges of both elements. By flowing such a fluid in a meandering manner while repeating the joining and splitting between the opposing concave portions of each concave group until the fluid flows out from the outlet, the mixed fluid can be steadily generated. As a result, the generation efficiency of the mixed fluid can be improved.

この際、間隔をあけて区分して形成した複数の凹部群同士の凹部の開口面の径は、相互に流入口側に比して流出口側を小径に形成している。そのため、連続相と分散相からなる流体が流入口側(上流側)の凹部群間を蛇行しながら流動する際に受けるせん断力により分散相としての流体が微細化された混合流体が生成される。そして、流出口側(下流側)の凹部群に至るまでの間隔を中継流路として、生成された混合流体の流動が中継流路で整流化される。続いて、整流化された混合流体が凹部の開口面の径が小径に形成された流出口側(下流側)の凹部群間を蛇行しながら流動する。この時に受けるせん断力により分散相としての流体がさらに微細化される。   Under the present circumstances, the diameter of the opening surface of the recessed part of several recessed part groups formed by dividing at intervals is mutually formed in the small diameter on the outflow side compared with the inflow side. Therefore, a mixed fluid in which the fluid as the dispersed phase is refined is generated by the shearing force received when the fluid composed of the continuous phase and the dispersed phase flows while meandering between the recesses on the inlet side (upstream side). . And the flow of the produced | generated mixed fluid is rectified | straightened by a relay flow path by using the space | interval to the recessed part group of an outflow port side (downstream side) as a relay flow path. Subsequently, the rectified mixed fluid flows while meandering between the recesses on the outlet side (downstream side) in which the diameter of the opening surface of the recesses is small. The fluid as the dispersed phase is further refined by the shearing force received at this time.

このように、かかる静止型流体混合装置では、流体の流動が整流化される中継流路介して凹部群を区分けして形成しているため、圧力損失を低減させることができる。そのため、静止型流体混合装置に流体を加圧して供給する加圧ポンプの電力消費量の低減を図ることができるとともに、混合処理済み流体の流出量(導出量)の増大化(効率化)を図ることができる。そして、流入口から流出口に至る連続的な流路において、凹部の開口面の径が異なる凹部群により、分散相としての流体が異なるせん断力を段階的に受けながら複数回にわたって微細化されるため、マイクロレベルないしはナノレベルへの微細化生成も堅実にかつ効率良く行うことができる。   As described above, in such a static fluid mixing apparatus, the pressure loss can be reduced because the concave group is formed through the relay flow path in which the fluid flow is rectified. Therefore, it is possible to reduce the power consumption of the pressurizing pump that pressurizes and supplies the fluid to the static fluid mixing device, and to increase (efficiency) the outflow amount (derived amount) of the mixed processing fluid. Can be planned. Then, in a continuous flow path from the inlet to the outlet, the fluid as the disperse phase is refined a plurality of times while receiving different shearing forces in stages by the recesses having different opening surface diameters. Therefore, miniaturization to the micro level or the nano level can be performed steadily and efficiently.

請求項2記載の発明に係る静止型流体混合装置は、請求項1記載の静止型流体混合装置であって、混合ケース内には導入口と連通する導入路が形成されるようにして、導入路には複数の混合ユニットの各流入口を連通させる一方、混合ケース内には導出口と連通する導出路が形成されるようにして、導出路には複数の混合ユニットの各流出口を連通させたことを特徴とする。   A static fluid mixing apparatus according to a second aspect of the present invention is the static fluid mixing apparatus according to the first aspect, wherein an introduction path communicating with the introduction port is formed in the mixing case. The outlets of the plurality of mixing units are communicated with the outlet, and the outlets of the plurality of mixing units are communicated with the outlet. It was made to be characterized.

かかる静止型流体混合装置では、導入口と連通する導入路に複数の混合ユニットの各流入口を連通させるとともに、導出口と連通する導出路に複数の混合ユニットの各流出口を連通させているため、複数の混合ユニットにより同時に複数の流体混合処理が効率良くなされる。この際、混合ユニットの個数は、導入路と導出路の伸延長等を適宜設定することにより、その導出・入路に所望の数だけ適宜連通させることができる。したがって、混合ユニットの個数を増減させることで、混合処理済み流体の流出量(導出量)を適宜設定することができる。   In such a static fluid mixing apparatus, the inlets of the plurality of mixing units are communicated with the introduction path communicating with the inlet, and the outlets of the plurality of mixing units are communicated with the outlet path communicating with the outlet. Therefore, a plurality of fluid mixing processes are efficiently performed simultaneously by the plurality of mixing units. At this time, the number of the mixing units can be appropriately communicated to the derivation / entrance by a desired number by appropriately setting the extension and extension of the introduction path and the derivation path. Therefore, by increasing or decreasing the number of mixing units, the outflow amount (derived amount) of the mixed fluid can be appropriately set.

請求項3記載の発明に係る静止型流体混合装置は、請求項2記載の静止型流体混合装置であって、複数の混合ユニットは多層に重合させて配置するとともに、仮想同一直線に沿わせて各流入口を配置して、各流入口と直交状態に導入路を連通させることで導入路が直状に形成されるようにする一方、仮想同一直線に沿わせて各流出口を配置して、各流出口と直交状態に導出路の始端部を連通させることで導出路の始端部が直状に形成されるようにしたことを特徴とする。   A static fluid mixing apparatus according to a third aspect of the present invention is the static fluid mixing apparatus according to the second aspect, wherein the plurality of mixing units are arranged in a multilayered manner and are arranged along a virtual collinear line. Each inlet is arranged so that the introduction path is formed in a straight shape by communicating the introduction path in a state orthogonal to each inlet, while each outlet is arranged along a virtual collinear line. The start end of the lead-out path is formed in a straight shape by communicating the start end of the lead-out path in a state orthogonal to each outlet.

かかる静止型流体混合装置では、複数の混合ユニットを多層に重合させて配置するとともに、導入路と導出路の始端部が直状に形成されるようにしているため、混合ケース内に所要個数の混合ユニットをコンパクトに配設することができて、各混合ユニットによる流体混合処理を同時に平行して効率良く行うことができる。したがって、混合ケース内にコンパクトに配設された適当な個数の混合ユニットにより適量な混合処理済み流体を生成するとともに、混合ケースから導出させることができる。   In such a static fluid mixing apparatus, a plurality of mixing units are arranged in a multi-layered manner, and the start ends of the introduction path and the discharge path are formed in a straight shape. The mixing units can be arranged in a compact manner, and the fluid mixing processes by the respective mixing units can be efficiently performed in parallel. Accordingly, an appropriate amount of the mixed fluid can be generated and derived from the mixing case by an appropriate number of mixing units arranged in a compact manner in the mixing case.

請求項4記載の発明に係る静止型流体混合装置は、請求項3記載の静止型流体混合装置であって、導入路の軸線と直交する半径方向に伸延する複数の混合ユニットを同一平面上に、かつ、導入路の軸線に沿って複数段に形成したことを特徴とする。   A static fluid mixing apparatus according to a fourth aspect of the present invention is the static fluid mixing apparatus according to the third aspect, wherein a plurality of mixing units extending in a radial direction perpendicular to the axis of the introduction path are arranged on the same plane. And, it is formed in a plurality of stages along the axis of the introduction path.

かかる静止型流体混合装置では、混合ケース内に多数の混合ユニットをコンパクトに配設することができて、各混合ユニットにより同時に混合流体を生成することができる。そのため、多量の混合流体を効率良く生成することができる。   In such a static fluid mixing apparatus, a large number of mixing units can be compactly arranged in the mixing case, and a mixed fluid can be generated simultaneously by each mixing unit. Therefore, a large amount of mixed fluid can be generated efficiently.

請求項5記載の発明に係る静止型流体混合装置は、請求項1〜4のいずれか1項記載の静止型流体混合装置であって、混合ユニットは、流出口側の凹部群の深さを流入口側の凹部群の深さの半分以下に形成して、流出口側の凹部群を二層に形成したことを特徴とする。   A static fluid mixing apparatus according to a fifth aspect of the present invention is the static fluid mixing apparatus according to any one of the first to fourth aspects, wherein the mixing unit has a depth of the recess group on the outlet side. It is characterized in that it is formed in half or less of the depth of the recess group on the inlet side, and the recess group on the outlet side is formed in two layers.

かかる静止型流体混合装置では、流出口側(下流側)の凹部群を二層に形成しているため、二層に形成された流出口側(下流側)の凹部群間をそれぞれ蛇行しながら流動する際に受けるせん断力により分散相としての流体が多量に微細化される。そのため、マイクロレベルないしはナノレベルへの微細化生成が効率良くなされる。   In such a static fluid mixing apparatus, the outlet side (downstream side) concave portion group is formed in two layers, and therefore, the outlet side (downstream side) concave portion group formed in two layers meanders between each other. A large amount of the fluid as the dispersed phase is refined by the shearing force received during the flow. Therefore, micro-level or nano-level miniaturization can be efficiently performed.

請求項6記載の発明に係る静止型流体混合装置は、請求項1〜5のいずれか1項記載の静止型流体混合装置であって、混合ユニットは、リング板状に形成した第1エレメントと第2エレメントの面同士を対向状に配置して、両エレメントの内周縁部間を流入口となす一方、両エレメントの外周縁部間を流出口となし、両エレメントの各対向面には同一の深さと大きさを有する複数の凹部群を、流入口を中心とするリング状に流入口側から流出口側に向けて間隔をあけて区分して形成したことを特徴とする。   A static fluid mixing apparatus according to a sixth aspect of the present invention is the static fluid mixing apparatus according to any one of the first to fifth aspects, wherein the mixing unit includes a first element formed in a ring plate shape. The surfaces of the second elements are arranged in an opposing manner so that the inner peripheral edge of both elements serves as an inflow port, while the outer peripheral edge of both elements serves as an outflow port. A plurality of recesses having a depth and a size are formed in a ring shape with the inflow port as a center, and are divided at intervals from the inflow side toward the outflow side.

かかる静止型流体混合装置では、リング板状に形成して面同士を対向状に配置した第1エレメントと第2エレメントの内周縁部間である流入口から流入した流体が、両エレメント間でその半径方向に放射状に蛇行しながら流動して外周縁部間である流出口から流出される。この際、両エレメント間には流入口を中心とするリング状に複数の凹部群が流入口側から流出口側に向けて間隔をあけて区分されて形成されているため、各凹部群には多数の凹部を配置することができて、各凹部群において分散相としての流体が堅実に微細化される。また、混合ユニットを多層に配置することで、微細化した混合流体を多量に生成することができる。   In such a static fluid mixing device, the fluid flowing in from the inflow port between the inner peripheral edge portions of the first element and the second element, which are formed in a ring plate shape and faced to face each other, flows between the two elements. The fluid flows while meandering radially in the radial direction and flows out from the outlet between the outer peripheral edges. At this time, between the two elements, a plurality of concave portions are formed in a ring shape centering on the inlet, and are formed with an interval from the inlet side toward the outlet side. A large number of recesses can be arranged, and the fluid as the dispersed phase is steadily refined in each recess group. Further, by arranging the mixing units in multiple layers, it is possible to generate a large amount of a refined mixed fluid.

本発明によれば、次のような効果が生起される。すなわち、本発明では、圧力損失を低減させることができるため、静止型流体混合装置に流体を加圧して供給する加圧ポンプの電力消費量の低減を図ることができるとともに、混合処理済み流体の流出量(導出量)の増大化(効率化)を図ることができる。   According to the present invention, the following effects are produced. That is, in the present invention, pressure loss can be reduced, so that it is possible to reduce the power consumption of the pressurizing pump that pressurizes and supplies the fluid to the static fluid mixing device, and the mixing-processed fluid can be reduced. Increase (efficiency) of the outflow amount (derived amount) can be achieved.

本発明に係る静止型流体混合装置を具備する混合流体生成装置の概念説明図。The conceptual explanatory drawing of the mixed fluid production | generation apparatus which comprises the static type fluid mixing apparatus which concerns on this invention. 第1実施形態としての静止型流体混合装置の斜視説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective explanatory view of a static fluid mixing apparatus as a first embodiment. 図2のI-I線断面説明図。II sectional view explanatory drawing of FIG. 図2のII-II線断面説明図。II-II sectional view explanatory drawing of FIG. 混合ユニットの拡大平面説明図(a)と断面拡大側面説明図(b)。Expansive plane explanatory drawing (a) and a cross-sectional enlarged side explanatory drawing (b) of a mixing unit. 第2実施形態としての静止型流体混合装置の斜視説明図。The perspective explanatory view of the static type fluid mixing device as a 2nd embodiment. 図6のIII-III線断面説明図。III-III sectional view explanatory drawing of FIG. 図6のIV-IV線断面説明図。IV-IV sectional view explanatory drawing of FIG. 混合ユニットの一部拡大平面説明図(a)と断面拡大側面説明図(b)。A partially enlarged plan explanatory view (a) and a cross-sectional enlarged side explanatory view (b) of the mixing unit.

以下に、本発明に係る静止型流体混合装置について図面を参照しながら説明するが、その前に静止型流体混合装置を具備する混合流体生成装置について図面を参照しながら説明する。   Hereinafter, a static fluid mixing apparatus according to the present invention will be described with reference to the drawings. Before that, a mixed fluid generating apparatus including the static fluid mixing apparatus will be described with reference to the drawings.

[混合流体生成装置の説明]
図1に示すAは混合流体を生成する混合流体生成装置であり、混合流体生成装置Aは、本発明に係る静止型流体混合装置Mを具備している。本実施形態では、連続相としての流体として水や海水等の処理水Wを採用し、また、分散相としての流体として空気、酸素ガス、窒素ガス等の気体を採用した気液混合流体の生成について説明する。すなわち、混合流体生成装置Aは、処理水Wを収容した上面開口箱型のタンクTの底部に循環パイプJの基端部を接続し、循環パイプJの先端部をタンクT内の処理水W中に上面から挿入して流体を循環させる循環流路Cyを形成している。循環パイプJの中途部には気体供給パイプK1を介して気体供給部K2を連通連結するとともに、気体供給部K2の下流側に位置させて静止型流体混合装置Mを連通連結している。静止型流体混合装置Mは、気体供給部K2から供給された気体と処理水Wの気液混相にせん断力を作用させることで、気体を超微細な気泡を有する気泡群となして処理水Wと混合するように構成している。
[Description of mixed fluid generator]
A shown in FIG. 1 is a mixed fluid generating apparatus that generates a mixed fluid, and the mixed fluid generating apparatus A includes a static fluid mixing apparatus M according to the present invention. In the present embodiment, a treated liquid W such as water or seawater is used as a fluid as a continuous phase, and a gas-liquid mixed fluid using a gas such as air, oxygen gas, or nitrogen gas as a fluid as a dispersed phase is generated. Will be described. That is, the mixed fluid generating apparatus A connects the base end of the circulation pipe J to the bottom of the top-opening box-shaped tank T containing the treated water W, and the distal end of the circulation pipe J is connected to the treated water W in the tank T. A circulation channel Cy that circulates fluid by inserting from above is formed. A gas supply part K2 is connected to the middle part of the circulation pipe J via a gas supply pipe K1, and a stationary fluid mixing device M is connected to the downstream part of the gas supply part K2. The static fluid mixing apparatus M applies a shearing force to the gas-liquid mixed phase of the gas supplied from the gas supply unit K2 and the treated water W to make the gas into a group of bubbles having ultrafine bubbles. It is configured to be mixed with.

タンクTの下流側に位置する循環パイプJの中途部には吸込ポンプPaと吐出ポンプPbとを直列的に隣接させて配設している。そして、上流側に配置した吸込ポンプPaの吐出口と下流側に配置した吐出ポンプPbの吸込口との間に位置する循環パイプJの部分に気体供給パイプK1を介して気体供給部K2を接続している。ここで、吸込ポンプPaの吐出圧は吐出ポンプPbの吸込圧以下に設定している。V1は気体供給パイプK1の中途部に設けた気体供給量調整弁、V2は循環パイプJの先端部に取り付けた圧力調整弁、WkはタンクT内に溶媒である処理水Wを随時供給可能とした処理水供給部である。   A suction pump Pa and a discharge pump Pb are arranged adjacent to each other in the middle of the circulation pipe J located on the downstream side of the tank T in series. Then, a gas supply part K2 is connected to a part of the circulation pipe J located between the discharge port of the suction pump Pa arranged on the upstream side and the suction port of the discharge pump Pb arranged on the downstream side via the gas supply pipe K1. doing. Here, the discharge pressure of the suction pump Pa is set to be equal to or lower than the suction pressure of the discharge pump Pb. V1 is a gas supply amount adjustment valve provided in the middle of the gas supply pipe K1, V2 is a pressure adjustment valve attached to the tip of the circulation pipe J, and Wk can supply treated water W as a solvent into the tank T at any time. The treated water supply unit.

このように構成して、吸込ポンプPaと吐出ポンプPbを協働させることで、それらの間に配設した気体供給部K2から供給される気体が、吸込ポンプPaの吐出口からの吐出圧を受けるとともに、吐出ポンプPbの吸込口からの吸引圧(エジェクタ効果)を受けて、円滑かつ安定して吸入されるようにしている。その結果、処理水Wに混入される気体の量を一定に確保することができる。また、本実施形態では処理水Wと気体との混合流体の生成能力を確保したまま消費電力が小さい吸込ポンプPaと吐出ポンプPbを組み合わせて協働使用することができるので、混合流体生成装置Aの製造コストやランニングコストを低減させることができる。   By configuring the suction pump Pa and the discharge pump Pb in this way, the gas supplied from the gas supply unit K2 disposed between them can reduce the discharge pressure from the discharge port of the suction pump Pa. At the same time, the suction pressure (ejector effect) from the suction port of the discharge pump Pb is received so that the suction is smoothly and stably performed. As a result, a constant amount of gas mixed into the treated water W can be secured. Moreover, in this embodiment, since the suction pump Pa and discharge pump Pb with small power consumption can be used in cooperation, ensuring the production capability of the mixed fluid of the treated water W and the gas, the mixed fluid generator A Manufacturing costs and running costs can be reduced.

例えば、処理水Wと窒素ガスを循環流路Cy中に循環させる作業を一定時間行うことにより、処理水Wに溶存している酸素を放出させるとともに、窒素ガスを処理水W中に溶解させて処理水Wを窒素水となすことができる。静止型流体混合装置Mによれば、例えば、1tの処理水WのDO値(溶存酸素量)を1分以内に1mg/L以下となすことができる。   For example, by performing the operation of circulating the treated water W and the nitrogen gas in the circulation flow path Cy for a certain period of time, oxygen dissolved in the treated water W is released and the nitrogen gas is dissolved in the treated water W. The treated water W can be made into nitrogen water. According to the static fluid mixing apparatus M, for example, the DO value (dissolved oxygen amount) of 1 t of treated water W can be reduced to 1 mg / L or less within 1 minute.

[第1実施形態としての静止型流体混合装置の説明]
第1実施形態としての静止型流体混合装置Mについて、図2〜図5を参照しながら説明する。静止型流体混合装置Mは、図2〜図5に示すように、四角形箱型に形成した混合ケース10内に一方向(本実施形態では左右方向)に伸延する四角形板状に形成した混合ユニット20を多数層状に配設して構成している。混合ケース10は左右方向に伸延する四角形板状の天井部15及び底部16と、天井部15及び底部16の前後左右側縁部間に介設した四角形板状の前・後・左・右側壁部17,17,18,18とにより形成している。底部16の中央部には円形の導入口11を設けて、導入口11から混合処理対象である複数の異なる流体R(本実施形態では処理水Wと気体)を加圧状態にて導入するようにしている。混合ケース10内には混合ユニット20を配設して、混合ユニット20により導入口11から導入された複数の異なる流体Rを混合して混合流体Rm(本実施形態では処理水Wと気体の気液混合流体)を生成するようにしている。混合ケース10の天井部15には導入口11よりも小径で円形の導出口12を設けて、導出口12から混合ユニット20により混合された混合流体Rmを導出するようにしている。そして、導入口11には循環パイプJの中途部の上流側端部を連通連結するとともに、導出口12には循環パイプJの中途部の下流側端部を連通連結している。本実施形態では混合ケース10の上下中央部に導入口11と導出口12を形成し、混合ケース10内の左右側部に一対の混合ユニット20,20をそれぞれ左右対称に配設している。
[Description of Static Fluid Mixing Device as First Embodiment]
A static fluid mixing apparatus M as a first embodiment will be described with reference to FIGS. As shown in FIGS. 2 to 5, the static fluid mixing device M includes a mixing unit formed in a rectangular plate shape extending in one direction (in the left-right direction in the present embodiment) in a mixing case 10 formed in a rectangular box shape. 20 is arranged in multiple layers. The mixing case 10 has a rectangular plate-shaped ceiling portion 15 and a bottom portion 16 extending in the left-right direction, and a rectangular plate-shaped front, rear, left, right side wall interposed between the front and rear, left and right side edges of the ceiling portion 15 and the bottom portion 16. The parts 17, 17, 18 and 18 are formed. A circular inlet 11 is provided at the center of the bottom 16 so that a plurality of different fluids R (treated water W and gas in this embodiment) to be mixed are introduced from the inlet 11 in a pressurized state. I have to. A mixing unit 20 is disposed in the mixing case 10, and a plurality of different fluids R introduced from the introduction port 11 by the mixing unit 20 are mixed to mix the mixed fluid Rm (in this embodiment, the treated water W and the gas gas). Liquid mixture fluid) is generated. The ceiling portion 15 of the mixing case 10 is provided with a circular outlet 12 having a smaller diameter than the inlet 11, and the mixed fluid Rm mixed by the mixing unit 20 is led out from the outlet 12. The upstream end of the middle part of the circulation pipe J is connected to the introduction port 11 and the downstream end of the middle part of the circulation pipe J is connected to the outlet 12. In the present embodiment, the inlet 11 and the outlet 12 are formed in the upper and lower central portions of the mixing case 10, and the pair of mixing units 20, 20 are disposed symmetrically on the left and right sides in the mixing case 10.

混合ケース10内には混合ユニット支持体70を介して多数の混合ユニット20を整然と配設している。混合ユニット支持体70は一方向(本実施形態では左右方向)に伸延する四角形板状に形成した上・下板71,72と、上・下板71,72の前後側縁部間に介設した前・後側壁73,74とから、左右側方が開口された四角形筒状に形成している。75は左側開口部、76は右側開口部である。77は下板の中央部に形成した下開口部であり、下開口部77は導入口11と整合させて形成して、導入口11から下開口部77を通して混合ケース10内に流体Rが流入するようにしている。   A large number of mixing units 20 are arranged in an orderly manner in the mixing case 10 via mixing unit supports 70. The mixing unit support 70 is interposed between upper and lower plates 71 and 72 formed in a rectangular plate shape extending in one direction (left and right direction in this embodiment), and front and rear side edges of the upper and lower plates 71 and 72. From the front and rear side walls 73 and 74, the left and right sides are formed in a square cylinder shape. 75 is a left opening, and 76 is a right opening. Reference numeral 77 denotes a lower opening formed at the center of the lower plate. The lower opening 77 is formed in alignment with the inlet 11, and the fluid R flows into the mixing case 10 from the inlet 11 through the lower opening 77. Like to do.

混合ユニット20は、左右横長の四角形板状に形成した第1エレメント30の下面31と第2エレメント40の上面41である面同士を対向状に配置している。両エレメント30,40の始端縁部(本実施形態では内側端縁部)は導入口11の内径と略同一幅に形成した流入口50となす一方、両エレメント30,40の終端縁部(本実施形態では外側端縁部)は流入口50と略同一幅に形成した流出口51となしている。対向面である各上・下面31,41にはそれぞれ同一の深さと大きさを有する複数(本実施形態では2つ)の凹部群32,33,42,43を流入口側から流出口側に向けて間隔をあけて区分して形成している。   In the mixing unit 20, the lower surface 31 of the first element 30 and the upper surface 41 of the second element 40 that are formed in a laterally long rectangular plate shape are disposed so as to face each other. The starting edge portions (inner end edge portions in this embodiment) of both elements 30 and 40 serve as inflow ports 50 formed to have substantially the same width as the inner diameter of the introduction port 11, while the end edge portions (the main edges of both elements 30 and 40) In the embodiment, the outer end edge portion) is formed as an outlet 51 formed in substantially the same width as the inlet 50. A plurality of (two in this embodiment) recess groups 32, 33, 42, 43 having the same depth and size are provided on the upper and lower surfaces 31, 41, which are opposing surfaces, from the inlet side to the outlet side. It is divided and formed at intervals.

すなわち、凹部群32は、第1エレメント30の下面31の流入口50側に開口形状が(底面視)正六角形で有底筒状の凹部34を幅方向(本実施形態では前後方向)にわたって隙間のない状態で伸延方向(本実施形態では左右方向)に複数列(本実施形態では4列)隣接させて垂設し、凹部34を下方に向けて開口させている。いわゆるハニカム状に多数の凹部34が形成されている。凹部群33は、第1エレメント30の下面31の流出口51側に開口形状が(底面視)正六角形で有底筒状の凹部35を幅方向(本実施形態では前後方向)にわたって隙間のない状態で伸延方向(本実施形態では左右方向)に複数列(本実施形態では5列)隣接させて垂設し、凹部35を下方に向けて開口させている。いわゆるハニカム状に多数の凹部35が形成されている。凹部35の開口面の径は、凹部34の開口面の径の二分の一以下の小径に形成している。そして、凹部35の筒長は凹部34の筒長の二分の一以下の短幅に形成している。   In other words, the recess group 32 has a gap across the width direction (front-rear direction in the present embodiment) of the recess 34 having a regular hexagonal shape and a bottomed cylindrical shape on the inlet 50 side of the lower surface 31 of the first element 30 (viewed from the bottom). In a state where there is no, a plurality of rows (four rows in this embodiment) are adjacent to each other in the extending direction (left and right in this embodiment), and the recesses 34 are opened downward. A large number of recesses 34 are formed in a so-called honeycomb shape. The recess group 33 has a regular hexagonal bottomed cylindrical recess 35 on the outlet 51 side of the lower surface 31 of the first element 30 (viewed from the bottom) and has no gap across the width direction (front-rear direction in this embodiment). In this state, a plurality of rows (5 rows in the present embodiment) are adjacent to each other in the extending direction (the left-right direction in the present embodiment), and the recesses 35 are opened downward. A large number of recesses 35 are formed in a so-called honeycomb shape. The diameter of the opening surface of the recess 35 is formed to be a small diameter that is not more than one-half of the diameter of the opening surface of the recess 34. And the cylinder length of the recessed part 35 is formed in the short width of 1/2 or less of the cylinder length of the recessed part 34. FIG.

また、凹部群42は、第2エレメント40の上面41の流入口50側に底面視正六角形で有底筒状の凹部44を幅方向(本実施形態では前後方向)にわたって隙間のない状態で伸延方向(本実施形態では左右方向)に複数列(本実施形態では4列)隣接させて突設し、凹部44を上方に向けて開口させている。いわゆるハニカム状に多数の凹部44が形成されている。凹部群43は、第2エレメント40の上面41の流出口51側に底面視正六角形で筒状の凹部45を幅方向(本実施形態では前後方向)にわたって隙間のない状態で伸延方向(本実施形態では左右方向)に複数列(本実施形態では5列)隣接させて突設し、凹部45を上方に向けて開口させている。いわゆるハニカム状に多数の凹部45が形成されている。凹部44は凹部34と上下線対称で同一の有底筒状形状となす一方、凹部45は凹部35と上下線対称で同一の有底筒状形状となしている。   Further, the recess group 42 extends a regular hexagonal bottomed cylindrical recess 44 on the inlet 50 side of the upper surface 41 of the second element 40 with no gap in the width direction (front-rear direction in the present embodiment). A plurality of rows (four rows in this embodiment) are adjacent to each other in the direction (left and right in this embodiment), and the recess 44 is opened upward. A large number of recesses 44 are formed in a so-called honeycomb shape. The concave portion group 43 has a regular hexagonal cylindrical concave portion 45 on the outlet 51 side of the upper surface 41 of the second element 40 in the extending direction with no gap in the width direction (front-rear direction in this embodiment) (this embodiment). In the form, it protrudes adjacent to a plurality of rows (5 rows in this embodiment) in the left-right direction, and the recess 45 is opened upward. Many concave portions 45 are formed in a so-called honeycomb shape. The concave portion 44 is symmetrical with the concave portion 34 in the vertical line and has the same bottomed cylindrical shape, while the concave portion 45 is symmetrical with the concave portion 35 in the same bottomed cylindrical shape.

そして、第1・第2エレメント30,40間の流出口51側には複数層(本実施形態では2層)の蛇行流路を形成している。すなわち、凹部群33,43同士の間に四角形板状に形成した分割エレメント80を配設している。そして、分割エレメント80の上・下面にはそれぞれ凹部群81,82を形成している。凹部群81は分割エレメント80の上面に凹部35と同一の有底筒状形状に形成した凹部83を幅方向(本実施形態では前後方向)にわたって隙間のない状態で伸延方向(本実施形態では左右方向)に複数列(本実施形態では5列)隣接させて上方へ向けて突設して、上方に向けて開口させている。また、分割エレメント80の下面には凹部45と同一の有底筒状形状に形成した凹部84を幅方向(本実施形態では前後方向)にわたって隙間のない状態で伸延方向(本実施形態では左右方向)に複数列(本実施形態では5列)下方へ向けて突設して、下方に向けて開口させている。   A plurality of layers (two layers in this embodiment) meandering channels are formed on the outlet 51 side between the first and second elements 30 and 40. That is, the split element 80 formed in the shape of a square plate is disposed between the recess groups 33 and 43. And the recessed part groups 81 and 82 are formed in the upper and lower surfaces of the division | segmentation element 80, respectively. The recess group 81 includes a recess 83 formed in the same bottomed cylindrical shape as the recess 35 on the upper surface of the split element 80 in the extending direction (in this embodiment, left and right in this embodiment) with no gap in the width direction (in this embodiment, the front-rear direction). A plurality of rows (5 rows in the present embodiment) are adjacent to each other in the (direction) and project upward and open upward. Further, a recess 84 formed in the same bottomed cylindrical shape as the recess 45 is formed on the lower surface of the split element 80 in the extending direction (in the present embodiment, in the left-right direction) with no gap in the width direction (in the present embodiment, the front-rear direction). ) Projecting downward in a plurality of rows (5 rows in the present embodiment) and opening downward.

凹部群32を形成する凹部34と凹部群42を形成する凹部44同士は、対向させて配置するとともに相互に連通するように位置を違えて配置している。つまり、凹部34(44)の中心位置に、凹部44(34)の角部46(36)が位置する状態で当接している。したがって、例えば、第1エレメント30の凹部34側から第2エレメント40の凹部44側に流体Rが流れる場合を考えると、流体Rは、2つの流路に分流(分散)されることになる。すなわち、第1エレメント30の凹部34の中央位置に位置された第2エレメント40の角部46は、流体Rを分流する分流部として機能する。逆に、第2エレメント40側から第1エレメント30側に流体Rが流れる場合を考えると、2方から流れてきた流体Rが1つの凹部34に流れ込むことで合流することになる。この場合、第2エレメント40の凹部44の中央位置に位置された第1エレメント30の角部36は、合流部として機能する。   The recesses 34 that form the recess group 32 and the recesses 44 that form the recess group 42 are arranged opposite to each other and arranged at different positions so as to communicate with each other. That is, the corner 46 (36) of the recess 44 (34) is in contact with the center position of the recess 34 (44). Therefore, for example, when the case where the fluid R flows from the concave portion 34 side of the first element 30 to the concave portion 44 side of the second element 40 is considered, the fluid R is divided (distributed) into two flow paths. That is, the corner portion 46 of the second element 40 located at the center position of the recess 34 of the first element 30 functions as a flow dividing portion for dividing the fluid R. On the contrary, when the case where the fluid R flows from the second element 40 side to the first element 30 side is considered, the fluid R flowing from the two directions flows into one concave portion 34 to be joined. In this case, the corner portion 36 of the first element 30 positioned at the center position of the recess 44 of the second element 40 functions as a merging portion.

凹部群33を形成する凹部35と凹部群81を形成する凹部83同士及び凹部群82を形成する凹部84と凹部群43を形成する凹部45同士は、それぞれ上記した対向する凹部34,44同士と同様に相互に連通するように対向させて配置するとともに位置を違えて配置している。つまり、本実施形態では凹部35と凹部45の開口面を相互に整合させて配置し、整合させて配置した凹部35,45とは位置を違えて凹部83,84を配置している。37,47,85,86はそれぞれ凹部35,45,83,84の角部である。このように、第1・第2エレメント30,40の流出口51側には凹部群33,81間及び凹部群82,43間にそれぞれ蛇行流路が形成されて、上下に二層の蛇行流路が形成されるようにしている。なお、第1・第2エレメント30,40の流出口51側の蛇行流路は、分割エレメント80を設けることなく凹部群33,43間に単一の蛇行流路が形成されるようにすることもできる。   The recesses 35 that form the recess group 33 and the recesses 83 that form the recess group 81, and the recesses 84 that form the recess group 82 and the recesses 45 that form the recess group 43 are the above-described opposing recesses 34 and 44, respectively. Similarly, they are arranged to face each other so as to communicate with each other, and are arranged at different positions. That is, in the present embodiment, the opening surfaces of the recess 35 and the recess 45 are arranged so as to be aligned with each other, and the recesses 83 and 84 are arranged at different positions from the aligned recesses 35 and 45. Reference numerals 37, 47, 85, 86 denote corners of the recesses 35, 45, 83, 84, respectively. As described above, meandering channels are formed between the recess groups 33 and 81 and between the recess groups 82 and 43 on the outlet 51 side of the first and second elements 30 and 40, respectively, and two layers of serpentine flows are formed vertically. A path is formed. In addition, the meandering channel on the outlet 51 side of the first and second elements 30 and 40 is configured so that a single meandering channel is formed between the recess groups 33 and 43 without providing the dividing element 80. You can also.

各凹部群32,42、凹部群33,81及び凹部群82,43の間には、第1エレメント30の下面31と第2エレメント40の上面41とにより幅方向(本実施形態では左右方向)に伸延する扁平な中継流路60が形成されている。中継流路60は凹部34,44の約3列分の幅を有している。   Between the respective recess groups 32, 42, the recess groups 33, 81, and the recess groups 82, 43, the lower surface 31 of the first element 30 and the upper surface 41 of the second element 40 are used in the width direction (in this embodiment, the left-right direction). A flat relay channel 60 extending in the direction is formed. The relay channel 60 has a width corresponding to about three rows of the recesses 34 and 44.

このように構成して、流体Rが各凹部群32,42の対向する凹部34,44間を合流と分流を繰り返しながら流入口50側から流出口51側に向けて蛇行しながら流動して混合流体Rmとなる。そして、各凹部群32,42、凹部群33,81及び凹部群82,43の間における第1エレメント30の下面31と第2エレメント40の上面41との間に形成された扁平な中継流路60では混合流体Rmが整流化される。そして、整流化された混合流体Rmが凹部群33,81及び凹部群82,43の対向する凹部35,83間及び凹部84,45間に円滑に分岐・流入されるとともに、合流と分流を繰り返しながら流入口50側から流出口51側に向けて蛇行しながら流動する。この際、凹部35,83,84,45の開口面の径が凹部34,44の開口面の径の二分の一以下の小径に形成されているため、凹部35,83間及び凹部84,45間で受けるせん断力により混合流体Rm中の分散相としての流体Rがさらに微細化される。   With this configuration, the fluid R flows and mixes while meandering from the inlet 50 side to the outlet 51 side while repeating merging and splitting between the opposing concave portions 34, 44 of the concave group 32, 42. Fluid Rm. And the flat relay flow path formed between the lower surface 31 of the 1st element 30 and the upper surface 41 of the 2nd element 40 between each recessed group 32,42, the recessed groups 33,81, and the recessed groups 82,43. In 60, the mixed fluid Rm is rectified. Then, the rectified mixed fluid Rm is smoothly branched and introduced between the concave portions 35 and 83 and the concave portions 84 and 45 of the concave portion groups 33 and 81 and the concave portion groups 82 and 43, and the merging and splitting are repeated. However, it flows while meandering from the inlet 50 side toward the outlet 51 side. At this time, the diameters of the opening surfaces of the recesses 35, 83, 84, 45 are formed to be smaller than one half of the diameter of the opening surface of the recesses 34, 44. The fluid R as the dispersed phase in the mixed fluid Rm is further refined by the shearing force received between them.

混合ユニット支持体70内には導入口11と連通する下開口部77を中心に、その左右側方にそれぞれ多数(本実施形態では10個)の混合ユニット20を線対称となるように多層に段積み状に配設して、左右側の多層の混合ユニット20間の空間に下開口部77から混合ユニット支持体70の上板71の下面まで直状に伸延する導入路13が形成されるようにしている。そして、導入路13には複数の混合ユニット20の各流入口50を連通させている。また、混合ケース10内には左右の流出口51,51と対面する左・右側壁部18,18の内面及び天井部15の内面に沿って導出路14が形成されるようにしている。そして、導出路14の始端側には左右側開口部75,76を介して複数の混合ユニット20の各流出口51を連通させる一方、導出路14の終端側には導出口12を連通させている。   In the mixing unit support 70, a number of mixing units 20 (10 in the present embodiment) are arranged in multiple layers so as to be symmetrical with respect to the left and right sides of the lower opening 77 communicating with the introduction port 11. Arranged in a stacked manner, an introduction path 13 is formed in the space between the multi-layer mixing units 20 on the left and right sides and extending straight from the lower opening 77 to the lower surface of the upper plate 71 of the mixing unit support 70. I am doing so. In addition, each inlet 50 of the plurality of mixing units 20 is communicated with the introduction path 13. In the mixing case 10, a lead-out path 14 is formed along the inner surfaces of the left and right wall portions 18, 18 facing the left and right outlets 51, 51 and the inner surface of the ceiling portion 15. The outlets 51 of the plurality of mixing units 20 are connected to the starting end side of the outlet path 14 through the left and right openings 75 and 76, while the outlet port 12 is connected to the terminal side of the outlet path 14. Yes.

複数(多数)の混合ユニット20は多層に重合させて配置し、上下方向に伸延する仮想同一直線に沿わせて各流入口50を配置して、各流入口50と直交状態に導入路13を連通させることで導入路13が上下方向に直状に形成されるようにしている。また、上下方向に伸延する仮想同一直線に沿わせて各流出口51を配置して、各流出口51と直交状態に導出路14の始端部を連通させることで導出路14の始端部、つまり、左右側開口部75,76に連通する部分が上下方向に直状に形成されるようにしている。   Plural (multiple) mixing units 20 are arranged in a superposed manner, and each inlet 50 is arranged along a virtual collinear line extending in the vertical direction, and the introduction path 13 is orthogonal to each inlet 50. By connecting, the introduction path 13 is formed in a straight shape in the vertical direction. Further, each outlet 51 is arranged along a virtual collinear line extending in the vertical direction, and the start end of the outlet path 14 is communicated with each outlet 51 in a state orthogonal to each outlet 51, that is, the starting end of the outlet path 14, that is, The portions communicating with the left and right side openings 75 and 76 are formed in a straight shape in the vertical direction.

導入路13の軸線と直交する半径方向(本実施形態では水平方向)に伸延する複数(本実施形態では左右に2つ)の混合ユニット20を同一平面上に、かつ、導入路13の軸線に沿って複数段(本実施形態では左右に10段ずつの多数段)に形成している。   A plurality of mixing units 20 (two on the left and right in the present embodiment) extending in a radial direction (horizontal direction in the present embodiment) orthogonal to the axis of the introduction path 13 are arranged on the same plane and on the axis of the introduction path 13. A plurality of stages (in this embodiment, 10 stages on the left and right) are formed.

混合ユニット20はアクリル樹脂等の合成樹脂により各パーツ(構成部材)を形成して、これらを接着剤により一体的に接着することで一体的に構成することも、また、ステンレス鋼等の合金により各パーツを形成して、これらをビス止めにより一体的に組み付けることで一体的に構成するもできる。   The mixing unit 20 can be configured as a single unit by forming each part (component) from a synthetic resin such as an acrylic resin and bonding them together with an adhesive, or by using an alloy such as stainless steel. It is also possible to form an integral part by forming each part and integrally assembling these parts with screws.

上記のように構成した第1実施形態としての静止型流体混合装置Mでは、例えば加圧ポンプである吐出ポンプPbにより導入口11を通して混合ケース10に混合処理対象である複数の異なる流体Rを加圧状態にて導入し、混合ケース10内に配設した混合ユニット20により導入された複数の異なる流体Rを混合して、混合された混合流体Rmを導出口12から混合ケース10外に導出することができる。   In the static fluid mixing apparatus M as the first embodiment configured as described above, for example, a plurality of different fluids R to be mixed are applied to the mixing case 10 through the inlet 11 by the discharge pump Pb which is a pressurizing pump. A plurality of different fluids R introduced by the mixing unit 20 disposed in the mixing case 10 are mixed together, and the mixed fluid Rm is led out of the mixing case 10 through the outlet 12. be able to.

そして、混合ユニット20では、面同士を対向状に配置した板状の第1エレメント30と第2エレメント40の始端縁部間である流入口50から複数の異なる流体Rを流入させて、両エレメント30,40の終端縁部間である流出口51から流出させるまでの間に、かかる流体Rを各凹部群32,33,42,43の対向する凹部34,44間,凹部35,83間及び凹部84,45間にて合流と分流を繰り返しながら蛇行させて流動させることにより、堅実に混合流体Rmを生成することができる。その結果、混合流体Rmの生成効率を向上させることができる。   In the mixing unit 20, a plurality of different fluids R are caused to flow from the inlet 50 between the starting edge portions of the plate-like first element 30 and the second element 40 whose surfaces are opposed to each other. Until the fluid R flows out from the outlet 51 between the terminal edges 30 and 40, the fluid R is disposed between the concave portions 34 and 44 facing each other, between the concave portions 35 and 83, and between the concave portions 35 and 83. The mixed fluid Rm can be steadily generated by meandering and flowing between the recesses 84 and 45 while repeating joining and splitting. As a result, the generation efficiency of the mixed fluid Rm can be improved.

この際、間隔をあけて区分して形成した複数(本実施形態では2組)の凹部群32,33,42,43同士の凹部34,44,凹部35,83及び凹部84,45の開口面の径は、相互に流入口側の凹部34,44に比して流出口側の凹部35,83及び凹部84,45を小径に形成している。そのため、連続相と分散相からなる流体が流入口側(上流側)の凹部群間を蛇行しながら流動する際に受けるせん断力により分散相としての流体Rが微細化された混合流体Rmが生成される。そして、流出口側(下流側)の凹部群33,43に至るまでの間隔を中継流路60として、生成された混合流体の流動が中継流路60を流動する間に整流化される。続いて、整流化された混合流体が凹部の開口面の径が小径に形成された流出口側(下流側)の凹部35,83及び凹部84,45間を蛇行しながら流動する。この時に受けるせん断力により分散相としての流体Rがさらに微細化される。   At this time, the opening surfaces of the recesses 34, 44, the recesses 35, 83, and the recesses 84, 45 of the plurality (two sets in this embodiment) of the recess groups 32, 33, 42, 43 formed by being spaced apart are formed. The diameters of the recesses 35 and 83 and the recesses 84 and 45 on the outlet side are smaller than the recesses 34 and 44 on the inlet side. Therefore, a mixed fluid Rm in which the fluid R as the dispersed phase is refined is generated by the shearing force received when the fluid composed of the continuous phase and the dispersed phase flows while meandering between the recesses on the inlet side (upstream side). Is done. Then, with the interval from the outlet side (downstream side) to the recess groups 33 and 43 as the relay flow path 60, the flow of the generated mixed fluid is rectified while flowing through the relay flow path 60. Subsequently, the rectified mixed fluid flows while meandering between the recesses 35 and 83 and the recesses 84 and 45 on the outlet side (downstream side) in which the diameter of the opening surface of the recess is small. The fluid R as the dispersed phase is further refined by the shearing force received at this time.

このように、かかる静止型流体混合装置Mでは、流体Rの流動が整流化される中継流路60介して凹部群32,42と凹部群33,43とに区分けして形成しているため、圧力損失を低減させることができる。そのため、静止型流体混合装置Mに流体Rを加圧して供給する吐出ポンプPbの電力消費量の低減を図ることができるとともに、処理済みの混合流体Rmの流出量(導出量)の増大化(効率化)を図ることができる。そして、導入口11から導出口12に至る連続的な流路において、凹部の開口面の径が異なる凹部35,83及び凹部84,45間にて、分散相としての流体が異なるせん断力を段階的に受けながら複数回にわたって微細化されるため、マイクロレベルないしはナノレベルへの微細化生成も堅実にかつ効率良く行うことができる。   As described above, in the static fluid mixing apparatus M, since the flow of the fluid R is divided into the recess groups 32 and 42 and the recess groups 33 and 43 through the relay flow path 60 that is rectified, Pressure loss can be reduced. Therefore, it is possible to reduce the power consumption of the discharge pump Pb that pressurizes and supplies the fluid R to the static fluid mixing device M, and to increase the outflow amount (derived amount) of the processed mixed fluid Rm ( Efficiency). Then, in the continuous flow path from the inlet 11 to the outlet 12, the fluid as the dispersed phase has different shearing forces between the concave portions 35 and 83 and the concave portions 84 and 45 having different opening surface diameters. Since it is refined a plurality of times while receiving it, it is possible to perform the refinement generation to the micro level or the nano level steadily and efficiently.

また、導入口11と連通する導入路13に複数の混合ユニット20の各流入口50を連通させるとともに、導出口12と連通する導出路14に複数の混合ユニット20の各流出口51を連通させているため、複数の混合ユニット20により同時に複数の流体混合処理が効率良くなされる。この際、混合ユニット20の個数は、導入路13と導出路14の伸延長等を適宜設定することにより、その導出・入路14,13に所望の数だけ適宜連通させることができる。したがって、混合ユニット20の個数を増減させることで、混合処理済み流体の流出量(導出量)を適宜設定することができる。   In addition, the inlets 50 of the plurality of mixing units 20 are communicated with the introduction path 13 that communicates with the inlet 11, and the outlets 51 of the plurality of mixing units 20 are communicated with the outlet path 14 that communicates with the outlet 12. Therefore, a plurality of fluid mixing processes are efficiently performed simultaneously by the plurality of mixing units 20. At this time, the number of the mixing units 20 can be appropriately communicated with the derivation / entry paths 14 and 13 by a desired number by appropriately setting the extension and extension of the introduction path 13 and the derivation path 14. Accordingly, by increasing or decreasing the number of the mixing units 20, the outflow amount (derived amount) of the mixed fluid can be appropriately set.

複数の混合ユニット20を多層に重合させて配置するとともに、導入路13と導出路14の始端部が直状に形成されるようにしているため、混合ケース10内に所要個数の混合ユニット20をコンパクトに配設することができて、各混合ユニット20による流体混合処理を同時に平行して効率良く行うことができる。したがって、混合ケース10内にコンパクトに配設された適当な個数の混合ユニット20により適量な処理済み混合流体Rmを生成するとともに、混合ケース10から導出させることができる。   Since the plurality of mixing units 20 are arranged in a multi-layered manner, and the starting ends of the introduction path 13 and the outlet path 14 are formed in a straight shape, a required number of mixing units 20 are provided in the mixing case 10. It can arrange | position compactly and can perform the fluid mixing process by each mixing unit 20 simultaneously in parallel efficiently. Therefore, an appropriate amount of the processed mixed fluid Rm can be generated by the appropriate number of the mixing units 20 arranged in a compact manner in the mixing case 10 and can be derived from the mixing case 10.

そして、混合ケース10内には多数の混合ユニット20をコンパクトに配設することができて、各混合ユニット20により同時に混合流体を生成することができる。そのため、多量の混合流体Rmを効率良く生成することができる。   A large number of mixing units 20 can be arranged in the mixing case 10 in a compact manner, and a mixed fluid can be generated simultaneously by each mixing unit 20. Therefore, a large amount of mixed fluid Rm can be generated efficiently.

また、流出口51側(下流側)の凹部群33,43を二層に形成しているため、二層に形成された流出口51側(下流側)の凹部35,83及び凹部84,45間をそれぞれ蛇行しながら流動する際に受けるせん断力により分散相としての流体Rが多量に微細化される。そのため、マイクロレベルないしはナノレベルへの微細化生成が効率良くなされる。   In addition, since the recesses 33 and 43 on the outlet 51 side (downstream side) are formed in two layers, the recesses 35 and 83 and the recesses 84 and 45 on the outlet 51 side (downstream side) formed in two layers. A large amount of the fluid R as the dispersed phase is refined by the shearing force received when flowing while meandering between each other. Therefore, micro-level or nano-level miniaturization can be efficiently performed.

[第2実施形態としての静止型流体混合装置の説明]
第2実施形態としての静止型流体混合装置Mについて、図6〜図9を参照しながら説明する。静止型流体混合装置Mは、図6〜図9に示すように、円筒箱型に形成した混合ケース110内に円盤状に形成した混合ユニット120を多数層状に配設して構成している。混合ケース110は円板状に形成した天井部115と底部116との間に円筒状の周壁部117を介設して形成している。底部116の中央部には円形の導入口111を設けて、導入口111から混合処理対象である複数の異なる流体Rを加圧状態にて導入するようにしている。導入口111から導入された複数の異なる流体Rは、混合ケース110内に配設した混合ユニット120により混合して混合流体Rmを生成するようにしている。天井部116の中央部には導入口111よりも小径で円形の導出口112を設けて、導出口112から混合ユニット120により混合された混合流体Rmを導出するようにしている。そして、導入口111には循環パイプJの中途部の上流側端部を連通連結するとともに、導出口112には循環パイプJの中途部の下流側端部を連通連結している。本実施形態では混合ケース110の上下中央部に導入口111と導出口112を形成し、混合ケース110内の中央部に混合ユニット120を配設している。
[Description of Static Fluid Mixing Device as Second Embodiment]
A static fluid mixing apparatus M as a second embodiment will be described with reference to FIGS. As shown in FIGS. 6 to 9, the static fluid mixing apparatus M is configured by arranging a plurality of mixing units 120 formed in a disk shape in a mixing case 110 formed in a cylindrical box shape. The mixing case 110 is formed by inserting a cylindrical peripheral wall portion 117 between a ceiling portion 115 and a bottom portion 116 formed in a disk shape. A circular inlet 111 is provided at the center of the bottom 116 so that a plurality of different fluids R to be mixed are introduced from the inlet 111 in a pressurized state. A plurality of different fluids R introduced from the inlet 111 are mixed by a mixing unit 120 disposed in the mixing case 110 to generate a mixed fluid Rm. A circular outlet 112 having a smaller diameter than the inlet 111 is provided at the center of the ceiling 116, and the mixed fluid Rm mixed by the mixing unit 120 is led out from the outlet 112. The upstream end of the middle part of the circulation pipe J is connected to the introduction port 111 and the downstream end of the middle part of the circulation pipe J is connected to the outlet 112. In the present embodiment, the inlet 111 and the outlet 112 are formed in the upper and lower central portions of the mixing case 110, and the mixing unit 120 is disposed in the central portion of the mixing case 110.

混合ケース110内には混合ユニット支持体170を介して多数の混合ユニット120を整然と配設している。混合ユニット支持体170は円形板状で上下一対の支持板171,172で形成して、両支持板171,172間を周方向に開口させている。173は周面開口部、174は下側の支持板172の中央部に形成した下開口部であり、下開口部174は導入口111と整合させて形成して、導入口111から下開口部174を通して混合ケース110内に流体Rが流入するようにしている。   A large number of mixing units 120 are arranged in an orderly manner in the mixing case 110 via mixing unit supports 170. The mixing unit support 170 has a circular plate shape and is formed by a pair of upper and lower support plates 171 and 172, and opens between the support plates 171 and 172 in the circumferential direction. 173 is a peripheral opening, 174 is a lower opening formed at the center of the lower support plate 172, and the lower opening 174 is formed in alignment with the inlet 111, and extends from the inlet 111 to the lower opening The fluid R flows into the mixing case 110 through 174.

混合ユニット120は、リング板状に形成した第1エレメント130と第2エレメント140の面同士を対向状に配置して、両エレメント130,140の内周縁部間を流入口150となす一方、両エレメント130,140の外周縁部間を流出口151となしている。両エレメント130,140の各対向面には同一の深さと大きさを有する複数(本実施形態では2つ)の凹部群132,133,142,143を、流入口150を中心とするリング帯状に流入口150側から流出口151側に向けて間隔をあけて区分して形成している。   In the mixing unit 120, the surfaces of the first element 130 and the second element 140 formed in a ring plate shape are arranged so as to face each other, and the inner peripheral edge of both the elements 130 and 140 serves as the inflow port 150. An outlet 151 is formed between the outer peripheral edges of the elements 130 and 140. A plurality of (two in this embodiment) recess groups 132, 133, 142, and 143 having the same depth and size are formed in a ring band shape with the inflow port 150 as the center on each facing surface of both elements 130 and 140. It is formed by being spaced apart from the inlet 150 side toward the outlet 151 side.

すなわち、凹部群132は、第1エレメント130の下面131の中心側である流入口150側に開口形状が(底面視)正六角形で有底筒状の凹部134を周方向に隙間のない状態で半径方向に複数列(本実施形態では3列)隣接させて垂設し、凹部134を下方に向けて開口させている。いわゆるハニカム状に多数の凹部134が形成されている。凹部群133は、第1エレメント130の下面131の周縁側である流出口151側にリング板状に形成した第3エレメント137の上面を重合状態に接続し、第3エレメント137の下面に開口形状が(底面視)正六角形で有底筒状の凹部135を周方向に隙間のない状態で半径方向に複数列(本実施形態では4列)隣接させて垂設し、凹部135を下方に向けて開口させている。いわゆるハニカム状に多数の凹部135が形成されている。凹部135の開口面の径は、凹部134の開口面の径の二分の一以下の小径に形成している。そして、凹部135の筒長と第3エレメント137の肉厚との和が凹部134の筒長と同一となるように形成している。   That is, the recess group 132 has a regular hexagonal opening shape on the inlet 150 side, which is the center side of the lower surface 131 of the first element 130 (viewed from the bottom), and a bottomed cylindrical recess 134 with no gap in the circumferential direction. A plurality of rows (three rows in the present embodiment) are arranged adjacent to each other in the radial direction, and the recesses 134 are opened downward. A large number of recesses 134 are formed in a so-called honeycomb shape. The recess group 133 connects the upper surface of the third element 137 formed in a ring plate shape to the outlet 151 side, which is the peripheral side of the lower surface 131 of the first element 130, in an overlapping state, and has an opening shape on the lower surface of the third element 137. (Bottom view) is a regular hexagonal bottomed cylindrical recess 135 that is vertically arranged adjacent to a plurality of rows (four in this embodiment) in the radial direction with no gap in the circumferential direction, and the recess 135 faces downward. Open. A large number of recesses 135 are formed in a so-called honeycomb shape. The diameter of the opening surface of the recess 135 is formed to be a small diameter that is not more than one-half of the diameter of the opening surface of the recess 134. The sum of the cylinder length of the recess 135 and the thickness of the third element 137 is formed to be the same as the cylinder length of the recess 134.

また、凹部群142は、第2エレメント140の上面141の中心側である流入口150側に底面視正六角形で有底筒状の凹部144を周方向に隙間のない状態で半径方向に複数列(本実施形態では3列)隣接させて突設し、凹部144を上方に向けて開口させている。いわゆるハニカム状に多数の凹部144が形成されている。凹部群143は、第2エレメント140の上面141の周縁側である流出口151側にリング板状に形成した第4エレメント138の下面を重合状態に接続し、第4エレメント138の上面に開口形状が(底面視)正六角形で有底筒状の凹部145を周方向に隙間のない状態で半径方向に複数列(本実施形態では4列)隣接させて突設し、凹部145を上方に向けて開口させている。いわゆるハニカム状に多数の凹部145が形成されている。凹部145の開口面の径は、凹部144の開口面の径の二分の一以下の小径に形成している。そして、凹部135の筒長と第4エレメント138の肉厚との和が凹部144の筒長と同一となるように形成している。   Further, the concave group 142 includes a plurality of rows of radially concave hexagonal bottoms 144 having a regular hexagonal shape when viewed from the bottom on the inlet 150 side, which is the center side of the upper surface 141 of the second element 140, with no gaps in the circumferential direction. (In this embodiment, three rows) are provided adjacent to each other, and the concave portion 144 is opened upward. Many concave portions 144 are formed in a so-called honeycomb shape. The recess group 143 connects the lower surface of the fourth element 138 formed in a ring plate shape to the outlet 151 side, which is the peripheral side of the upper surface 141 of the second element 140, in an overlapped state, and has an opening shape on the upper surface of the fourth element 138 (Bottom view) is a regular hexagonal bottomed cylindrical concave portion 145 that protrudes adjacent to a plurality of rows (four rows in this embodiment) in the radial direction with no gap in the circumferential direction, and the concave portion 145 faces upward. Open. A number of recesses 145 are formed in a so-called honeycomb shape. The diameter of the opening surface of the recess 145 is formed to be a small diameter that is not more than one-half of the diameter of the opening surface of the recess 144. The sum of the cylinder length of the recess 135 and the thickness of the fourth element 138 is formed to be the same as the cylinder length of the recess 144.

対向する凹部134,144同士は、相互に連通するように位置を違えて配置している。つまり、凹部134(144)の中心位置に、凹部144(134)の角部146(136)が位置する状態で当接している。したがって、例えば、第1エレメント130の凹部134側から第2エレメント140の凹部144側に流体Rが流れる場合を考えると、流体Rは、2つの流路に分流(分散)されることになる。すなわち、第1エレメント130の凹部134の中央位置に位置された第2エレメント140の角部146は、流体Rを分流する分流部として機能する。逆に、第2エレメント140側から第1エレメント130側に流体Rが流れる場合を考えると、2方から流れてきた流体Rが1つの凹部134に流れ込むことで合流することになる。この場合、第2エレメント140の凹部144の中央位置に位置された第1エレメント130の角部136は、合流部として機能する。   The opposing recesses 134 and 144 are arranged at different positions so as to communicate with each other. That is, the corner portion 146 (136) of the concave portion 144 (134) is in contact with the central position of the concave portion 134 (144). Therefore, for example, when the case where the fluid R flows from the concave portion 134 side of the first element 130 to the concave portion 144 side of the second element 140 is considered, the fluid R is divided (distributed) into two flow paths. That is, the corner portion 146 of the second element 140 positioned at the center position of the concave portion 134 of the first element 130 functions as a diversion portion for diverting the fluid R. Conversely, when considering the case where the fluid R flows from the second element 140 side to the first element 130 side, the fluid R flowing from the two directions flows into one concave portion 134 and merges. In this case, the corner portion 136 of the first element 130 located at the center position of the concave portion 144 of the second element 140 functions as a merging portion.

また、対向する凹部135,145同士は、それぞれ上記した対向する凹部134,144同士と同様に相互に連通するように位置を違えて配置している。137,147はそれぞれ凹部135,145の角部である。このように、第1・第2エレメント130,140の流出口151側には凹部群133,143間に単一の蛇行流路が形成されている。なお、第3(第4)エレメント130(140)は、第1(第2)エレメント130(140)と一体成形することもできる。また、第1(第2)エレメント130(140)に凹部群132(142)を一体成形することもできる。第1・第2エレメント130,140の流出口151側には、第1実施形態と同様に上下面に凹部群を形成した分割エレメントを配設して、上下に二層の蛇行流路が形成されるようにすることもできる。   The opposing recesses 135 and 145 are arranged at different positions so as to communicate with each other in the same manner as the opposing recesses 134 and 144 described above. Reference numerals 137 and 147 denote corners of the recesses 135 and 145, respectively. As described above, a single meandering channel is formed between the recess groups 133 and 143 on the outlet 151 side of the first and second elements 130 and 140. The third (fourth) element 130 (140) can be integrally formed with the first (second) element 130 (140). Further, the recess group 132 (142) can be integrally formed with the first (second) element 130 (140). On the outlet 151 side of the first and second elements 130 and 140, as in the first embodiment, a split element in which concave and convex groups are formed on the upper and lower surfaces is disposed, and two layers of meandering channels are formed on the upper and lower sides. It can also be made.

このように構成して、各凹部群132,142と凹部群133,143の対向する凹部134,144間と凹部135,145間を流体Rが合流と分流を繰り返しながら流入口150側から流出口151側に向けて蛇行しながら流動するようにしている。また、各凹部群132,142及び凹部群133,143の間には、第1エレメント130の下面131と第2エレメント140の上面141とによりリング帯状で扁平な中継流路160が形成されている。中継流路160は凹部134,144の約3列分の幅を有している。   Constructed in this way, the fluid R repeatedly joins and diverts between the recesses 134, 144 and the recesses 135, 145 of the recess groups 132, 142 and the recess groups 133, 143 facing each other. It is made to flow while meandering toward the 151 side. Further, a flat relay channel 160 having a ring band shape is formed between the respective recess groups 132 and 142 and the recess groups 133 and 143 by the lower surface 131 of the first element 130 and the upper surface 141 of the second element 140. . The relay flow path 160 has a width corresponding to about three rows of the concave portions 134 and 144.

混合ユニット支持体170の支持板171,172間には導入口111と連通する下開口部174を中心に、多数(本実施形態では10個)の混合ユニット120を多層に段積み状に配設して、多層の混合ユニット120の中央部には下開口部174から上側の支持板171の下面まで直状に伸延する導入路113が形成されるようにしている。そして、導入路113には複数の混合ユニット120の各流入口150を連通させている。また、混合ケース110内には流出口151と対面する周壁部117の内周面及び天井部115の内面に沿って導出路114が形成されるようにしている。そして、導出路114の始端側には周端開口部173を介して複数の混合ユニット20の各流出口151を連通させる一方、導出路114の終端側には導出口112を連通させている。   Between the support plates 171 and 172 of the mixing unit support 170, a large number (10 in this embodiment) of the mixing units 120 are arranged in a multi-tiered manner around the lower opening 174 communicating with the inlet 111. In addition, an introduction path 113 that extends straight from the lower opening 174 to the lower surface of the upper support plate 171 is formed at the center of the multilayer mixing unit 120. In addition, each inlet 150 of the plurality of mixing units 120 is communicated with the introduction path 113. In the mixing case 110, a lead-out path 114 is formed along the inner peripheral surface of the peripheral wall portion 117 facing the outlet 151 and the inner surface of the ceiling portion 115. The outlets 151 of the plurality of mixing units 20 are communicated with the starting end side of the outlet path 114 via the peripheral end opening 173, while the outlet port 112 is connected with the terminal side of the outlet path 114.

導入路113の軸線と直交する半径方向(本実施形態では水平方向)に伸延する円盤状の混合ユニット120を導入路113の軸線に沿って複数段(本実施形態では左右に10段ずつの多数段)に形成している。   The disc-shaped mixing unit 120 extending in the radial direction (horizontal direction in the present embodiment) orthogonal to the axis of the introduction path 113 is divided into a plurality of stages along the axis of the introduction path 113 (in this embodiment, a large number of 10 stages on the left and right). Step).

混合ユニット120は、アクリル樹脂等の合成樹脂により各パーツ(構成部材)を形成して、これらを接着剤により一体的に接着することで一体的に構成することも、また、ステンレス鋼等の合金により各パーツを形成して、これらをビス止めにより一体的に組み付けることで一体的に構成するもできる。   The mixing unit 120 may be configured integrally by forming each part (constituent member) with a synthetic resin such as an acrylic resin and integrally bonding them with an adhesive, or an alloy such as stainless steel. Each part can be formed by the above, and these can be integrally assembled by screwing together.

上記のように構成した第2実施形態としての静止型流体混合装置Mでは、リング板状に形成して面同士を対向状に配置した第1エレメント130と第2エレメント140の内周縁部間である流入口150から流入した流体Rが、両エレメント130,140間でその半径方向に放射状に蛇行しながら流動して外周縁部間である流出口151から流出される。この際、両エレメント130,140間には流入口150を中心とするリング状に複数の凹部群132,133,142,143が流入口150側から流出口151側に向けて間隔をあけて区分されて形成されているため、各凹部群132,133,142,143には多数の凹部134,135,144,145を配置することができて、各凹部群132,133,142,143において分散相としての流体Rが堅実に微細化される。また、混合ユニット120を多層に配置することで、微細化した混合流体Rmを多量に生成することができる。   In the static type fluid mixing apparatus M as the second embodiment configured as described above, between the inner peripheral edge portions of the first element 130 and the second element 140 which are formed in a ring plate shape and faced to face each other. The fluid R flowing in from a certain inlet 150 flows between the elements 130 and 140 while meandering radially in the radial direction thereof, and flows out from the outlet 151 between the outer peripheral edges. At this time, a plurality of recess groups 132, 133, 142, and 143 are divided into a ring shape with the inlet 150 as the center between the elements 130 and 140 with an interval from the inlet 150 side toward the outlet 151 side. Therefore, a large number of recesses 134, 135, 144, 145 can be arranged in each recess group 132, 133, 142, 143 and distributed in each recess group 132, 133, 142, 143. The fluid R as the phase is steadily miniaturized. Further, by arranging the mixing units 120 in multiple layers, a large amount of the refined mixed fluid Rm can be generated.

また、混合ユニット120では、第1・第2エレメント130,140の凹部群133,143において、凹部135,145の数が中心部側から周縁部側に向けて漸次増大させているため、流体Rが合流する凹部135,145の数は周縁部側ほど増大するとともに、それに比例して数多く分流(分散)される。そのため、蛇行流路においては流体Rにせん断力が作用して微細化される回数が流体Rの流動方向(周縁部側に向かう半径方向)に沿って漸次増大される。   In the mixing unit 120, the number of the recesses 135 and 145 in the recess groups 133 and 143 of the first and second elements 130 and 140 is gradually increased from the central portion side toward the peripheral portion side. The number of the concave portions 135 and 145 where the water flows merge increases toward the peripheral edge side, and is distributed (distributed) in proportion to the number. Therefore, in the meandering flow path, the number of times that the shearing force acts on the fluid R and is refined gradually increases along the flow direction of the fluid R (radial direction toward the peripheral edge side).

A 混合流体生成装置
M 静止型流体混合装置
Cy 循環流路
J 循環パイプ
K1 気体供給パイプ
K2 気体供給部
R 流体
Rm 混合流体
W 処理水
10 混合ケース
11 導入口
12 導出口
13 導入路
20 混合ユニット
30 第1エレメント
40 第2エレメント
50 流入口
51 流出口
60 中継流路
A Mixing fluid generator M Static type fluid mixing device Cy Circulation channel J Circulation pipe K1 Gas supply pipe K2 Gas supply part R Fluid Rm Mixed fluid W Processed water 10 Mixing case 11 Inlet 12 Outlet 13 Inlet 13 Introducing unit 20 First element 40 Second element 50 Inlet 51 Outlet 60 Relay channel

Claims (6)

混合処理対象である複数の異なる流体を加圧状態にて導入する導入口を設けた混合ケース内に、導入口から導入された複数の異なる流体を混合する混合ユニットを配設し、混合ケースには混合ユニットにより混合された混合流体を導出する導出口を設けた静止型流体混合装置であって、
混合ユニットは、板状の第1エレメントと第2エレメントの面同士を対向状に配置して、両エレメントの始端縁部間を流入口となす一方、両エレメントの終端縁部間を流出口となし、両エレメントの各対向面には同一の深さと大きさを有する複数の凹部群を流入口側から流出口側に向けて間隔をあけて区分して形成するとともに、対向する凹部同士は相互に連通するように位置を違えて配置して、各凹部群の対向する凹部間には流体が蛇行しながら合流と分流を繰り返しながら流入口側から流出口側に向けて流動するように構成し、
流出口側に形成した凹部群の凹部の開口面の径は、流入口側に形成した凹部群の凹部の開口面の径に比して小径に形成したことを特徴とする静止型流体混合装置。
A mixing unit that mixes a plurality of different fluids introduced from the inlet is provided in a mixing case provided with an inlet for introducing a plurality of different fluids to be mixed in a pressurized state. Is a static fluid mixing device provided with a lead-out port for leading the mixed fluid mixed by the mixing unit,
In the mixing unit, the surfaces of the plate-like first element and the second element are arranged so as to face each other, and the gap between the start edge portions of both elements serves as an inlet, while the gap between the terminal edges of both elements serves as an outlet. None, a plurality of recesses having the same depth and size are formed on each opposing surface of both elements with an interval from the inlet side toward the outlet side. It is arranged at different positions so as to communicate with each other, and the fluid flows between the opposing concave portions of each concave group while flowing from the inlet side to the outlet side while repeating merging and branching while meandering. ,
The diameter of the opening surface of the concave portion of the concave group formed on the outlet side is smaller than the diameter of the opening surface of the concave portion of the concave group formed on the inlet side. .
混合ケース内には導入口と連通する導入路が形成されるようにして、導入路には複数の混合ユニットの各流入口を連通させる一方、混合ケース内には導出口と連通する導出路が形成されるようにして、導出路には複数の混合ユニットの各流出口を連通させたことを特徴とする請求項1記載の静止型流体混合装置。   An introduction path that communicates with the inlet is formed in the mixing case, and each inlet of the plurality of mixing units is communicated with the introduction path, while an outlet path that communicates with the outlet is formed in the mixing case. 2. The static fluid mixing apparatus according to claim 1, wherein the outlets of the plurality of mixing units are communicated with the outlet channel as formed. 複数の混合ユニットは多層に重合させて配置するとともに、仮想同一直線に沿わせて各流入口を配置して、各流入口と直交状態に導入路を連通させることで導入路が直状に形成されるようにする一方、仮想同一直線に沿わせて各流出口を配置して、各流出口と直交状態に導出路の始端部を連通させることで導出路の始端部が直状に形成されるようにしたことを特徴とする請求項2記載の静止型流体混合装置。   Multiple mixing units are arranged in multiple layers, and each inlet is arranged along a virtual collinear line, and the introduction path is formed in a straight line by communicating the introduction path in a state orthogonal to each inlet. On the other hand, each outlet is arranged along a virtual collinear line, and the starting end of the outlet path is communicated in a state orthogonal to each outlet, so that the starting end of the outlet path is formed in a straight line. The static fluid mixing apparatus according to claim 2, wherein the static fluid mixing apparatus is configured as described above. 導入路の軸線と直交する半径方向に伸延する複数の混合ユニットを同一平面上に、かつ、導入路の軸線に沿って複数段に形成したことを特徴とする請求項3記載の静止型流体混合装置。   4. The static fluid mixing according to claim 3, wherein a plurality of mixing units extending in a radial direction perpendicular to the axis of the introduction path are formed in a plurality of stages on the same plane and along the axis of the introduction path. apparatus. 混合ユニットは、流出口側の凹部群の深さを流入口側の凹部群の深さの半分以下に形成して、流出口側の凹部群を二層に形成したことを特徴とする請求項1〜4のいずれか1項記載の静止型流体混合装置。   The mixing unit is characterized in that the depth of the concave portion group on the outlet side is formed to be half or less than the depth of the concave portion group on the inlet side, and the concave portion group on the outlet side is formed in two layers. The static fluid mixing apparatus of any one of 1-4. 混合ユニットは、リング板状に形成した第1エレメントと第2エレメントの面同士を対向状に配置して、両エレメントの内周縁部間を流入口となす一方、両エレメントの外周縁部間を流出口となし、両エレメントの各対向面には同一の深さと大きさを有する複数の凹部群を、流入口を中心とするリング状に流入口側から流出口側に向けて間隔をあけて区分して形成したことを特徴とする請求項1〜5のいずれか1項記載の静止型流体混合装置。   In the mixing unit, the surfaces of the first element and the second element formed in a ring plate shape are arranged so as to face each other, and the gap between the inner peripheral edges of both elements serves as an inflow port. There is no outflow port, and a plurality of concave portions having the same depth and size are formed on the opposing faces of both elements in a ring shape with the inflow port as the center, spaced from the inflow side to the outflow side. The static fluid mixing apparatus according to any one of claims 1 to 5, wherein the static fluid mixing apparatus is formed separately.
JP2012256737A 2012-11-22 2012-11-22 Static fluid mixing device Expired - Fee Related JP6046465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256737A JP6046465B2 (en) 2012-11-22 2012-11-22 Static fluid mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256737A JP6046465B2 (en) 2012-11-22 2012-11-22 Static fluid mixing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016204245A Division JP2017039131A (en) 2016-10-18 2016-10-18 Stationary type fluid mixer

Publications (2)

Publication Number Publication Date
JP2014104374A true JP2014104374A (en) 2014-06-09
JP6046465B2 JP6046465B2 (en) 2016-12-14

Family

ID=51026319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256737A Expired - Fee Related JP6046465B2 (en) 2012-11-22 2012-11-22 Static fluid mixing device

Country Status (1)

Country Link
JP (1) JP6046465B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024002A (en) * 2015-07-27 2017-02-02 丸福水産株式会社 Mixture treatment body, mixture treatment method, fluid mixer, air-liquid treatment equipment, and seafood cultivation system
JP2017189717A (en) * 2015-04-07 2017-10-19 アイセル株式会社 Fine particle production unit and production method
JP2018012107A (en) * 2017-10-25 2018-01-25 丸福水産株式会社 Mixing unit, fluid mixer and fluid mixture generation device
WO2018021092A1 (en) * 2016-07-25 2018-02-01 丸福水産株式会社 Mixing process body, mixing process method, mixed production fluid, fluid mixer, fluid mixing processor, fish and shellfish culturing system, and fish and shellfish culturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024502A1 (en) * 1998-10-26 2000-05-04 Matrix Global Technology Ltd. Mixing element body for stationary type mixer
WO2002089989A1 (en) * 2001-05-07 2002-11-14 Epcon Co., Ltd. Mixing, crushing, and pulverizing device, and method of pulverizing substances using the device
JP2004024992A (en) * 2002-06-24 2004-01-29 Atec Japan:Kk Microreacter and chemical reaction method using the same
JP2004255320A (en) * 2003-02-26 2004-09-16 Fujikin Inc Stationary type mixing apparatus
JP2006136777A (en) * 2004-11-11 2006-06-01 Maruwa Biochemical Co Ltd Mixing apparatus for fine bubble
WO2009088085A1 (en) * 2008-01-10 2009-07-16 Mg Grow Up Corp. Static fluid mixer
JP2010023026A (en) * 2008-06-16 2010-02-04 Isel Co Ltd Mixing element, mixing device, mixing method, agitation blade, agitation device, and agitation method
JP2012170898A (en) * 2011-02-22 2012-09-10 Dic Corp Fluid mixing apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024502A1 (en) * 1998-10-26 2000-05-04 Matrix Global Technology Ltd. Mixing element body for stationary type mixer
WO2002089989A1 (en) * 2001-05-07 2002-11-14 Epcon Co., Ltd. Mixing, crushing, and pulverizing device, and method of pulverizing substances using the device
JP2004024992A (en) * 2002-06-24 2004-01-29 Atec Japan:Kk Microreacter and chemical reaction method using the same
JP2004255320A (en) * 2003-02-26 2004-09-16 Fujikin Inc Stationary type mixing apparatus
JP2006136777A (en) * 2004-11-11 2006-06-01 Maruwa Biochemical Co Ltd Mixing apparatus for fine bubble
WO2009088085A1 (en) * 2008-01-10 2009-07-16 Mg Grow Up Corp. Static fluid mixer
US20100276820A1 (en) * 2008-01-10 2010-11-04 Ms Grow Up Corp. Static fluid mixer
JP2010023026A (en) * 2008-06-16 2010-02-04 Isel Co Ltd Mixing element, mixing device, mixing method, agitation blade, agitation device, and agitation method
JP2012170898A (en) * 2011-02-22 2012-09-10 Dic Corp Fluid mixing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189717A (en) * 2015-04-07 2017-10-19 アイセル株式会社 Fine particle production unit and production method
JP2017024002A (en) * 2015-07-27 2017-02-02 丸福水産株式会社 Mixture treatment body, mixture treatment method, fluid mixer, air-liquid treatment equipment, and seafood cultivation system
JP2017047423A (en) * 2015-07-27 2017-03-09 丸福水産株式会社 Mixing treatment body, mixing treatment method, fluid mixer, fluid mixing treatment apparatus, and system for culturing fish and shellfish
WO2018021092A1 (en) * 2016-07-25 2018-02-01 丸福水産株式会社 Mixing process body, mixing process method, mixed production fluid, fluid mixer, fluid mixing processor, fish and shellfish culturing system, and fish and shellfish culturing method
JPWO2018021092A1 (en) * 2016-07-25 2018-07-26 丸福水産株式会社 Mixed processing body, mixed processing method, mixed product fluid, fluid mixer, fluid mixing processing device, fish culture system, and fish culture method
KR20190015238A (en) * 2016-07-25 2019-02-13 마루후쿠스이산 가부시키가이샤 Mixed processing body, mixing treatment method, mixed producing fluid, fluid mixer, fluid mixing processing device, fish culture system and fishery culture method
KR102219725B1 (en) 2016-07-25 2021-02-24 마루후쿠스이산 가부시키가이샤 Mixed treatment body, mixed treatment method, mixed product fluid, fluid mixer, fluid mixing treatment device, seafood farming system and seafood farming method
JP2018012107A (en) * 2017-10-25 2018-01-25 丸福水産株式会社 Mixing unit, fluid mixer and fluid mixture generation device

Also Published As

Publication number Publication date
JP6046465B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP3794687B2 (en) Micro emulsifier
JP3694877B2 (en) Micro mixer
US7909502B2 (en) Static lamination micro mixer
JP6046465B2 (en) Static fluid mixing device
JP4803671B2 (en) Static micro mixer
JP4466682B2 (en) Fluid mixing device
EP2500086B1 (en) Flow channel structure, and mixing method, extraction method, and reaction method for fluids
CN201959734U (en) Micro-mixer adopting asymmetric separating reconstructing fan-shaped cavity structure
JP2005512760A (en) Apparatus for mixing and reacting at least two fluids
JP2006346671A (en) Liquid-liquid interface reactor
KR102074257B1 (en) Cylindrical reverse electrodialysis device
JPWO2016059874A1 (en) Fluid mixing device
JP2014124541A (en) Stationary type fluid mixer
JP3810778B2 (en) Flat plate static mixer
CN109985543B (en) Spindle-shaped passive micro mixer
JP2017039131A (en) Stationary type fluid mixer
JP6234723B2 (en) Fluid mixing device
JP5654291B2 (en) Static fluid mixing device
JP2010000428A (en) Microreactor
CN108159975B (en) Laminated micro mixer
JP2007069137A (en) Micro chemical reaction device
JP2013091011A (en) Static fluid mixing apparatus
JP2016187765A (en) Gas dissolver and carbonated water generator using the same
JP2013150968A (en) Static fluid mixing apparatus
JP6339733B2 (en) Mixing unit, fluid mixing device, and mixed fluid generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161117

R150 Certificate of patent or registration of utility model

Ref document number: 6046465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees