JP2014124541A - Stationary type fluid mixer - Google Patents

Stationary type fluid mixer Download PDF

Info

Publication number
JP2014124541A
JP2014124541A JP2012281025A JP2012281025A JP2014124541A JP 2014124541 A JP2014124541 A JP 2014124541A JP 2012281025 A JP2012281025 A JP 2012281025A JP 2012281025 A JP2012281025 A JP 2012281025A JP 2014124541 A JP2014124541 A JP 2014124541A
Authority
JP
Japan
Prior art keywords
mixing
diffusion
flow path
fluid
downstream side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012281025A
Other languages
Japanese (ja)
Inventor
Kenichi Mogami
賢一 最上
Toshiaki Nakada
俊明 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG GROW UP KK
MG Grow Up Corp
Malufuku Suisan Co Ltd
Original Assignee
MG GROW UP KK
MG Grow Up Corp
Malufuku Suisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MG GROW UP KK, MG Grow Up Corp, Malufuku Suisan Co Ltd filed Critical MG GROW UP KK
Priority to JP2012281025A priority Critical patent/JP2014124541A/en
Publication of JP2014124541A publication Critical patent/JP2014124541A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a stationary type fluid mixer capable of achieving an increase (efficiency) in the amount of outflow of a mixing-processed fluid, by reducing pressure loss to reduce electric power consumption of a pressurizing pump.SOLUTION: A plurality of diffusing-mixing cases formed in a flat box shape and having an inflow port formed in a central part of an upstream sidewall, are coaxially arranged; a gathering flow passage forming body formed in a short-width cylindrical shape and having a gathering flow passage inside, is interposed between the mutual adjacent diffusing-mixing cases; and a tail end gathering flow passage forming body formed in a cover shape, having a tail end gathering flow passage inside and forming an outflow port in a central part, is continuously provided on a downstream sidewall of the diffusing-mixing case positioned on the most downstream side. A diffusing-mixing flow passage for making a plurality of different fluids flowed in from the inflow port meander and flow in the radial direction toward the peripheral edge part side, is formed inside the respective diffusing-mixing cases, and the fluid can be diffused and mixed via the diffusing-mixing flow passage.

Description

本発明は、流体を混合する静止型流体混合装置、具体的には、例えば、液体と液体、液体と気体、粉体と液体、を微細化かつ均一化して混合する静止型流体混合装置に関する。   The present invention relates to a static fluid mixing apparatus that mixes fluids, and more specifically, to a static fluid mixing apparatus that mixes liquids and liquids, liquids and gases, and powders and liquids in a fine and uniform manner.

静止型流体混合装置の一形態として、特許文献1に開示されたものがある。すなわち、特許文献1には、中央部に流体の流入口を形成した円板状の第1拡散エレメントに、円板状の第2拡散エレメントを対向させて配置するとともに、両拡散エレメントの間に中央部側の流入口から流入した流体を周縁部側に向けた半径方向に流動させて拡散・混合する拡散・混合流路を形成した拡散・混合ユニットと、中央部に流体の流出口を形成した円板状の第1集合エレメントに、円板状の第2集合エレメントを対向させて配置すると共に、両集合エレメントの間に周縁部側から流入した流体を中央部側に向けた半径方向に流動させて集合・混合する集合・混合流路を形成した集合・混合ユニットとを具備し、拡散・混合流路の終端部と集合・混合流路の始端部を接続した静止型流体混合装置が開示されている。   There exists what was disclosed by patent document 1 as one form of a static fluid mixing apparatus. That is, in Patent Document 1, a disk-shaped second diffusion element is disposed opposite to a disk-shaped first diffusion element in which a fluid inlet is formed at the center, and between the two diffusion elements. A diffusion / mixing unit that forms a diffusion / mixing flow path that diffuses and mixes fluid flowing in from the inlet on the center side in the radial direction toward the peripheral side, and a fluid outlet in the center The disc-shaped second collective element is arranged opposite to the disc-shaped first collective element, and the fluid flowing from the peripheral portion side between the collective elements is radially directed toward the central portion side. A static fluid mixing apparatus comprising an assembly / mixing unit that forms an assembly / mixing channel that flows and collects and mixes, and that connects a terminal end of the diffusion / mixing channel and a start end of the assembly / mixing channel. It is disclosed.

そして、第1・第2拡散エレメントの対向面と第1・第2集合エレメントの対向面には適切な同一の深さと大きさの六角形の凹部群をハニカム構造に形成するとともに、対向する凹部同士を相互に連通するように位置を違えて配置して、拡散・混合流路と集合・混合流路において、流体が蛇行しながら合流と分流(分散)を繰り返しながら半径方向に流動するようにしている。   The opposing surfaces of the first and second diffusing elements and the opposing surfaces of the first and second assembly elements are formed with a hexagonal recess group of appropriate identical depth and size in the honeycomb structure, and the opposing recesses Arrange them at different positions so that they communicate with each other, and in the diffusion / mixing flow path and the collecting / mixing flow path, the fluid flows in the radial direction while repeating the merging and splitting (dispersing) while meandering. ing.

特開平9−52034号公報JP-A-9-52034

ところが、特許文献1に開示された静止型流体混合装置は、中央部側の流入口から流入した流体を周縁部側に向けて半径方向に流動させて拡散・混合する拡散・混合流路と、周縁部側から流入した流体を中央部側に向けて半径方向に流動させて集合・混合する流路構造を同様に形成しているために、混合分散機能の高い拡散・混合流路と比べて,集合・混合側流路は分散数がはるかに少ないにもかかわらず拡散・混合流路と同程度の圧力損失が生じていた。そのため、静止型流体混合装置に流体を加圧して供給する加圧ポンプの電力消費量の低減さらには処理済み流体の流出量の増大(効率化)が望まれていた。   However, the static fluid mixing device disclosed in Patent Document 1 is a diffusion / mixing flow path that diffuses and mixes the fluid flowing in from the inflow port on the center side in the radial direction toward the peripheral side, Compared to diffusion / mixing channels with high mixing / dispersion function because the flow channel structure that gathers and mixes the fluid flowing in from the peripheral side in the radial direction toward the center is formed in the same way. However, the collecting / mixing channel had a pressure loss comparable to that of the diffusion / mixing channel, although the number of dispersions was much smaller. Therefore, it has been desired to reduce the power consumption of the pressurizing pump that pressurizes and supplies the fluid to the static fluid mixing device, and to increase the flow rate (efficiency) of the processed fluid.

そこで、本発明は、圧力損失を低減させて、加圧ポンプの電力消費量の低減化を図ることができるとともに、混合処理済み流体の流出量の増大化(効率化)を図ることができる静止型流体混合装置を提供することを目的とする。   Therefore, the present invention can reduce the pressure loss and reduce the power consumption of the pressurizing pump, and can increase the outflow amount (efficiency) of the mixed processed fluid. An object of the present invention is to provide a mold fluid mixing device.

請求項1記載の発明に係る静止型流体混合装置は、扁平箱状に形成して上流側壁の中央部に流入口を形成した複数の拡散・混合ケースを同軸的に配置し、隣接する拡散・混合ケース同士の間には短幅筒状に形成して内部に集合流路を有する集合流路形成体を介設して、最下流側に位置する拡散・混合ケースの下流側壁には蓋状に形成して内部に終端集合流路を有するとともに、中央部に終端流出口を形成した終端集合流路形成体を連設して構成し、各拡散・混合ケースの内部には、流入口から流入した複数の異なる流体を周縁部側に向けた半径方向に蛇行流動させる拡散・混合流路を形成して、拡散・混合流路を通して流体を拡散・混合可能となし、各拡散・混合ケースの下流側壁の周縁部には連通孔を形成して、集合流路形成体内の集合流路を介して連通孔に下流側に隣接する拡散・混合ケースの流入口を連通させ、最下流側に位置する拡散・混合ケースに形成した連通孔には、終端集合流路形成体内の終端集合流路を介して終端集合流路形成体の終端流出口を連通させたことを特徴とする。   The static fluid mixing apparatus according to the invention of claim 1 is formed by arranging a plurality of diffusion / mixing cases formed in a flat box shape and having an inflow port in the central portion of the upstream side wall in a coaxial manner. A collecting channel forming body having a collecting channel formed inside is formed between the mixing cases, and a lid is formed on the downstream side wall of the diffusion / mixing case located on the most downstream side. And a terminal aggregate channel forming body having a terminal outlet channel in the center and a terminal outlet channel forming body formed in a central portion. A diffusion / mixing flow path is formed in which a plurality of different fluids that flow in a meandering direction in the radial direction toward the peripheral edge, and the fluid can be diffused / mixed through the diffusion / mixing flow path. A communication hole is formed in the peripheral edge of the downstream side wall to The inlet of the diffusion / mixing case adjacent to the downstream side is connected to the communication hole via the communication hole, and the communication hole formed in the diffusion / mixing case located on the most downstream side has a terminal collective flow in the terminal assembly flow channel forming body. The terminal outlet of the terminal aggregate flow path forming body is communicated with each other through a path.

かかる静止型流体混合装置では、例えば加圧ポンプにより最上流側の拡散・混合ケースに形成した流入口を通してこの拡散・混合ケース内に混合処理対象である複数の異なる流体を加圧状態にて流入させて、拡散・混合ケース内に形成した拡散・混合流路を通して流体を拡散・混合することができる。そして、拡散・混合された流体(混合流体)は拡散・混合ケースの下流側壁の周縁部に形成し連通孔から集合流路形成体内の集合流路を通して下流側に隣接する拡散・混合ケースの流入口に流入させることができる。最終的に、最下流側に位置する拡散・混合ケース内の拡散・混合流路を通して拡散・混合された流体(混合流体)は、拡散・混合ケースの連通孔から終端集合流路形成体の終端集合流路を通して終端流出口から流出される。   In such a static fluid mixing apparatus, for example, a plurality of different fluids to be mixed are introduced into the diffusion / mixing case in a pressurized state through an inlet formed in the diffusion / mixing case on the most upstream side by a pressurizing pump. Thus, the fluid can be diffused and mixed through the diffusion / mixing flow path formed in the diffusion / mixing case. Then, the diffused / mixed fluid (mixed fluid) is formed at the peripheral edge of the downstream side wall of the diffusion / mixing case and flows downstream of the diffusion / mixing case adjacent to the downstream side from the communication hole through the collecting channel in the collecting channel forming body. Can flow into the inlet. Finally, the fluid (mixed fluid) diffused and mixed through the diffusion / mixing flow path in the diffusion / mixing case located on the most downstream side passes through the communicating hole of the diffusion / mixing case to the end of the end aggregate flow path forming body. It flows out from the terminal outlet through the collecting channel.

この際、集合流路は、隣接する拡散・混合ケースの対面する側壁同士と、その間に介在させた短幅筒状の集合流路形成体とにより扁平空間状に形成している。そのため、混合流体は、集合流路内を周縁部側から中央部側(集合流路形成体の半径方向)に向けて円滑に流動されて、集合流路内での圧力損失が低減される。その結果、静止型流体混合装置に流体を加圧して供給する加圧ポンプの電力消費量の低減を図ることができるとともに、混合処理済み流体の流出量(導出量)の増大化(効率化)を図ることができる。   At this time, the collecting flow path is formed in a flat space shape by the side walls facing each other of the adjacent diffusion / mixing cases and the short-width cylindrical collecting flow path forming body interposed therebetween. Therefore, the mixed fluid is smoothly flowed from the peripheral edge side toward the central portion side (radial direction of the collecting flow path forming body) in the collecting flow path, and the pressure loss in the collecting flow path is reduced. As a result, it is possible to reduce the power consumption of the pressurizing pump that pressurizes and supplies fluid to the static fluid mixing device, and to increase the outflow amount (derived amount) of the mixed fluid (efficiency) Can be achieved.

そして、拡散・混合ケースは、集合流路形成体を介して所要個数だけ直列的に連通連結することで、所要個数の拡散・混合流路を配設することができる。そのため、複数の異なる流体は、各拡散・混合流路内にて合流と分流が繰り返されながら蛇行状に流動されて、堅実に混合される。その結果、混合流体の生成効率を向上させることができる。また、拡散・混合ケースの個数を増減させることで、混合処理済み流体の流出量(導出量)を適宜設定することができる。   The required number of diffusion / mixing channels can be arranged by connecting the required number of diffusion / mixing cases in series via the collecting channel forming body. Therefore, a plurality of different fluids flow in a meandering manner while being merged and divided in each diffusion / mixing channel, and are mixed firmly. As a result, the generation efficiency of the mixed fluid can be improved. Further, by increasing / decreasing the number of diffusion / mixing cases, the outflow amount (derived amount) of the mixed fluid can be set as appropriate.

請求項2記載の発明に係る静止型流体混合装置は、請求項1記載の静止型流体混合装置であって、各拡散・混合ケースは、リング板状に形成した上流側壁としての第1エレメントと円板状に形成した下流側壁としての第2エレメントの内面同士を対向させて配置し、両エレメントの周縁部間には筒状の周壁を介設して扁平箱状に形成し、両エレメントの各対向面にはそれぞれ同一の深さと大きさを有する多数の凹部を中央部側から周縁部側に向けてリング状に配置して凹部群を形成するとともに、対向する凹部群の凹部同士は相互に連通するように位置を違えて配置して、対向する凹部間には流体が蛇行しながら合流と分流を繰り返しながら半径方向に流動する拡散・混合流路を形成し、各拡散・混合ケースに形成した凹部群の凹部の開口面の径は、漸次、下流側に配置された拡散・混合ケースの凹部の開口面の径を小径に形成したことを特徴とする。   A static fluid mixing apparatus according to a second aspect of the present invention is the static fluid mixing apparatus according to the first aspect, wherein each diffusion / mixing case includes a first element as an upstream side wall formed in a ring plate shape. The inner surface of the second element as the downstream side wall formed in a disc shape is arranged facing each other, and a cylindrical peripheral wall is interposed between the peripheral portions of both elements to form a flat box shape. A plurality of recesses having the same depth and size are arranged on each facing surface in a ring shape from the center side toward the peripheral side to form a recess group, and the recesses of the opposing recess groups are mutually connected. A diffusion / mixing flow path that flows in the radial direction while repeating the merging and splitting flow while the fluid meanders is formed between the opposing recesses so as to communicate with each other. Opening surface of the concave portion of the formed concave group Diameter gradually, characterized in that the formation of the diameter of the opening surface of the concave portion of the diffusion and mixing casing disposed downstream in diameter.

かかる静止型流体混合装置では、各拡散・混合ケースに形成した凹部群の凹部の開口面の径は、漸次、下流側に配置された拡散・混合ケースの凹部の開口面の径を小径に形成しているため、混合流体が凹部の開口面の径が小径に形成された下流側の凹部群間を蛇行しながら流動した際に受けるせん断力により分散相としての流体が漸次微細化される。   In such a static fluid mixing device, the diameter of the opening surface of the concave portion of the concave group formed in each diffusion / mixing case is gradually reduced to the diameter of the opening surface of the concave portion of the diffusion / mixing case disposed on the downstream side. Therefore, the fluid as the dispersed phase is gradually refined by the shearing force received when the mixed fluid flows while meandering between the recesses on the downstream side where the diameter of the opening surface of the recesses is small.

このように、分散相としての流体が漸次異なるせん断力を受けながら複数回にわたって微細化されるため、マイクロレベルないしはナノレベルへの微細化生成も堅実にかつ効率良く行うことができる。   As described above, the fluid as the dispersed phase is refined a plurality of times while being gradually subjected to different shearing forces, so that the micro-scale or nano-level refinement generation can be performed steadily and efficiently.

請求項3記載の発明に係る静止型流体混合装置は、請求項1又は2記載の静止型流体混合装置であって、第1エレメントと第2エレメントとの間に第1エレメントよりも小径のリング板状に形成した中間エレメントを配置し、中間エレメントの少なくとも一側面には凹部群を形成するとともに、その凹部群と対向する第1エレメントないしは第2エレメントの凹部群との間に拡散・混合流路を形成して、第1エレメントと第2エレメントとの間に複数の拡散・混合流路を層状に形成したことを特徴とする。   A static fluid mixing apparatus according to a third aspect of the present invention is the static fluid mixing apparatus according to the first or second aspect, wherein the ring has a smaller diameter than the first element between the first element and the second element. An intermediate element formed in a plate shape is arranged, a recess group is formed on at least one side surface of the intermediate element, and a diffusion / mixed flow is formed between the recess group of the first element or the second element facing the recess group. A path is formed, and a plurality of diffusion / mixing channels are formed in layers between the first element and the second element.

かかる静止型流体混合装置では、第1エレメントと第2エレメントとの間に複数の拡散・混合流路を層状に形成しているため、複数層状に形成された拡散・混合流路内をそれぞれ蛇行しながら流動する際に受けるせん断力により分散相としての流体が多量に微細化される。そのため、マイクロレベルないしはナノレベルへの微細化生成が効率良くなされる。   In such a static fluid mixing device, since a plurality of diffusion / mixing channels are formed in layers between the first element and the second element, each of the diffusion / mixing channels formed in a plurality of layers meanders. However, the fluid as the dispersed phase is refined in a large amount by the shearing force received when flowing. Therefore, micro-level or nano-level miniaturization can be efficiently performed.

請求項4記載の発明に係る静止型流体混合装置は、請求項3記載の静止型流体混合装置であって、拡散・混合流路は、漸次、下流側に配置された拡散・混合ケース内の拡散・混合流路の層数を増大させて形成したことを特徴とする。   A static fluid mixing apparatus according to a fourth aspect of the present invention is the static fluid mixing apparatus according to the third aspect, wherein the diffusion / mixing flow path is gradually formed in a diffusion / mixing case disposed on the downstream side. The diffusion / mixing channel is formed with an increased number of layers.

かかる静止型流体混合装置では、漸次、拡散・混合ケース内の拡散・混合流路の凹部の径を小径となすとともに、拡散・混合流路の層数を増大させることができるため、分散相としての流体が下流側に流動される過程で段階的にかつ堅実に微細化される。そして、微細化された混合流体が多量に生成される。   In such a static fluid mixing device, the diameter of the concave portion of the diffusion / mixing channel in the diffusion / mixing case can be gradually reduced and the number of layers of the diffusion / mixing channel can be increased. In the process in which the fluid is flowed downstream, it is refined stepwise and steadily. A large amount of the refined mixed fluid is generated.

本発明によれば、次のような効果が生起される。すなわち、本発明では、圧力損失を低減させることができるため、静止型流体混合装置に流体を加圧して供給する加圧ポンプの電力消費量の低減を図ることができるとともに、混合処理済み流体の流出量(導出量)の増大化(効率化)を図ることができる。   According to the present invention, the following effects are produced. That is, in the present invention, pressure loss can be reduced, so that it is possible to reduce the power consumption of the pressurizing pump that pressurizes and supplies the fluid to the static fluid mixing device, and the mixing-processed fluid can be reduced. Increase (efficiency) of the outflow amount (derived amount) can be achieved.

本発明に係る静止型流体混合装置を具備する混合流体生成装置の概念説明図。The conceptual explanatory drawing of the mixed fluid production | generation apparatus which comprises the static type fluid mixing apparatus which concerns on this invention. 静止型流体混合装置の分解説明図。Exploded view of a static fluid mixing device. 静止型流体混合装置の断面正面説明図。Cross-sectional front explanatory drawing of a static type fluid mixing apparatus. 第1拡散・混合ケースの分解説明図。Exploded view of the first diffusion / mixing case. 第1拡散・混合ケースの第2エレメントの底面視説明図。The bottom view explanatory drawing of the 2nd element of a 1st spreading | diffusion and mixing case. 第2拡散・混合ケースの分解説明図。Exploded view of the second diffusion / mixing case. 第2拡散・混合ケースの第2エレメントの底面視説明図。The bottom view explanatory drawing of the 2nd element of a 2nd spreading | diffusion and mixing case. 第3拡散・混合ケースの分解説明図。Exploded view of the third diffusion / mixing case. 第3拡散・混合ケースの第2エレメントの底面視説明図。The bottom view explanatory drawing of the 2nd element of a 3rd spreading | diffusion and mixing case.

以下に、本発明に係る静止型流体混合装置について図面を参照しながら説明するが、その前に静止型流体混合装置を具備する混合流体生成装置について図面を参照しながら説明する。   Hereinafter, a static fluid mixing apparatus according to the present invention will be described with reference to the drawings. Before that, a mixed fluid generating apparatus including the static fluid mixing apparatus will be described with reference to the drawings.

[混合流体生成装置の説明]
図1に示すAは混合流体を生成する混合流体生成装置であり、混合流体生成装置Aは、本発明に係る静止型流体混合装置Mを具備している。本実施形態では、連続相としての流体として水や海水等の処理水Wを採用し、また、分散相としての流体として空気、酸素ガス、窒素ガス等の気体を採用した気液混合流体の生成について説明する。すなわち、混合流体生成装置Aは、処理水Wを収容した上面開口箱型のタンクTの底部に循環パイプJの基端部を接続し、循環パイプJの先端部をタンクT内の処理水W中に上面から挿入して流体を循環させる循環流路Cyを形成している。循環パイプJの中途部には気体供給パイプK1を介して気体供給部K2を連通連結するとともに、気体供給部K2の下流側に位置させて静止型流体混合装置Mを連通連結している。静止型流体混合装置Mは、気体供給部K2から供給された気体と処理水Wの気液混相にせん断力を作用させることで、気体を超微細な気泡を有する気泡群となして処理水Wと混合するように構成している。
[Description of mixed fluid generator]
A shown in FIG. 1 is a mixed fluid generating apparatus that generates a mixed fluid, and the mixed fluid generating apparatus A includes a static fluid mixing apparatus M according to the present invention. In the present embodiment, a treated liquid W such as water or seawater is used as a fluid as a continuous phase, and a gas-liquid mixed fluid using a gas such as air, oxygen gas, or nitrogen gas as a fluid as a dispersed phase is generated. Will be described. That is, the mixed fluid generating apparatus A connects the base end of the circulation pipe J to the bottom of the top-opening box-shaped tank T containing the treated water W, and the distal end of the circulation pipe J is connected to the treated water W in the tank T. A circulation channel Cy that circulates fluid by inserting from above is formed. A gas supply part K2 is connected to the middle part of the circulation pipe J via a gas supply pipe K1, and a stationary fluid mixing device M is connected to the downstream part of the gas supply part K2. The static fluid mixing apparatus M applies a shearing force to the gas-liquid mixed phase of the gas supplied from the gas supply unit K2 and the treated water W to make the gas into a group of bubbles having ultrafine bubbles. It is configured to be mixed with.

タンクTの下流側に位置する循環パイプJの中途部には吸込ポンプPaと吐出ポンプPbとを直列的に隣接させて配設している。そして、上流側に配置した吸込ポンプPaの吐出口と下流側に配置した吐出ポンプPbの吸込口との間に位置する循環パイプJの部分に気体供給パイプK1を介して気体供給部K2を接続している。ここで、吸込ポンプPaの吐出圧は吐出ポンプPbの吸込圧以下に設定している。V1は気体供給パイプK1の中途部に設けた気体供給量調整弁、V2は循環パイプJの先端部に取り付けた圧力調整弁、V3は三方切替弁である。Rcは混合流体を回収する回収部であり、回収部Rcは三方切替弁V3を介して静止型流体混合装置Mの直下流側に位置する循環パイプJの中途部に接続している。WkはタンクT内に溶媒である処理水Wを随時供給可能とした処理水供給部である。   A suction pump Pa and a discharge pump Pb are arranged adjacent to each other in the middle of the circulation pipe J located on the downstream side of the tank T in series. Then, a gas supply part K2 is connected to a part of the circulation pipe J located between the discharge port of the suction pump Pa arranged on the upstream side and the suction port of the discharge pump Pb arranged on the downstream side via the gas supply pipe K1. doing. Here, the discharge pressure of the suction pump Pa is set to be equal to or lower than the suction pressure of the discharge pump Pb. V1 is a gas supply amount adjustment valve provided in the middle of the gas supply pipe K1, V2 is a pressure adjustment valve attached to the tip of the circulation pipe J, and V3 is a three-way switching valve. Rc is a recovery unit that recovers the mixed fluid, and the recovery unit Rc is connected to a midway portion of the circulation pipe J located on the downstream side of the static fluid mixing device M via a three-way switching valve V3. Wk is a treated water supply unit that can supply treated water W as a solvent into the tank T as needed.

このように構成して、吸込ポンプPaと吐出ポンプPbを協働させることで、それらの間に配設した気体供給部K2から供給される気体が、吸込ポンプPaの吐出口からの吐出圧を受けるとともに、吐出ポンプPbの吸込口からの吸引圧(エジェクタ効果)を受けて、円滑かつ安定して吸入されるようにしている。その結果、処理水Wに混入される気体の量を一定に確保することができる。また、本実施形態では処理水Wと気体との混合流体の生成能力を確保したまま消費電力が小さい吸込ポンプPaと吐出ポンプPbを組み合わせて協働使用することができるので、混合流体生成装置Aの製造コストやランニングコストを低減させることができる。また、生成された混合流体は三方切替弁V3を切替操作することで循環パイプJから回収部Rcに回収することができる。したがって、混合流体は循環パイプJ中に所定回数ないしは所定時間循環させた後に回収部Rcから回収することも、また、静止型流体混合装置Mに1回通過させる(1パス)だけで回収部Rcから回収することもできる。   By configuring the suction pump Pa and the discharge pump Pb in this way, the gas supplied from the gas supply unit K2 disposed between them can reduce the discharge pressure from the discharge port of the suction pump Pa. At the same time, the suction pressure (ejector effect) from the suction port of the discharge pump Pb is received so that the suction is smoothly and stably performed. As a result, a constant amount of gas mixed into the treated water W can be secured. Moreover, in this embodiment, since the suction pump Pa and discharge pump Pb with small power consumption can be used in cooperation, ensuring the production capability of the mixed fluid of the treated water W and the gas, the mixed fluid generator A Manufacturing costs and running costs can be reduced. The generated mixed fluid can be recovered from the circulation pipe J to the recovery unit Rc by switching the three-way switching valve V3. Accordingly, the mixed fluid is circulated through the circulation pipe J a predetermined number of times or for a predetermined time and then recovered from the recovery unit Rc. Alternatively, the mixed fluid is passed through the static fluid mixing device M only once (one pass). It can also be recovered from.

例えば、処理水Wと窒素ガスを循環流路Cy中に循環させる作業を一定時間行うことにより、処理水Wに溶存している酸素を放出させるとともに、窒素ガスを処理水W中に溶解させて処理水Wを混合流体としての窒素水となすことができる。静止型流体混合装置Mによれば、例えば、1tの処理水WのDO値(溶存酸素量)を1分以内に1mg/L以下となすことができる。   For example, by performing the operation of circulating the treated water W and the nitrogen gas in the circulation flow path Cy for a certain period of time, oxygen dissolved in the treated water W is released and the nitrogen gas is dissolved in the treated water W. The treated water W can be made into nitrogen water as a mixed fluid. According to the static fluid mixing apparatus M, for example, the DO value (dissolved oxygen amount) of 1 t of treated water W can be reduced to 1 mg / L or less within 1 minute.

[静止型流体混合装置の説明]
静止型流体混合装置Mについて、図2〜図9を参照しながら説明する。静止型流体混合装置Mは、図2及び図3に示すように、扁平箱状に形成した複数(本実施形態では3個)の第1〜第3拡散・混合ケース10,20,30を同軸的に配置している。そして、隣接する第1・第2拡散・混合ケース10,20同士の間と第2・第3拡散・混合ケース20,30に短幅筒状に形成して内部に第1・第2集合流路f1,f2を有する第1・第2集合流路形成体40,50を介設している。また、最下流側に位置する第3拡散・混合ケース30の下流側壁には、蓋状に形成した終端集合流路形成体60を連設している。70は循環パイプJの上流側接続端部であり、上流側接続端部70は第1拡散・混合ケース10の後述する流入口18に接続している。71は上流側接続端部70の先端周縁部に連設した上流側接続用鍔体である。72は循環パイプJの下流側接続端部であり、下流側接続端部72は終端集合流路形成体60の後述する終端流出口63に接続している。73は下流側接続端部72の基端周縁部に連設した下流側接続用鍔体である。
[Description of static fluid mixing device]
The static fluid mixing apparatus M will be described with reference to FIGS. As shown in FIGS. 2 and 3, the static fluid mixing apparatus M coaxially connects a plurality (three in this embodiment) of first to third diffusion / mixing cases 10, 20, 30 formed in a flat box shape. Are arranged. Then, between the adjacent first and second diffusion / mixing cases 10 and 20 and between the second and third diffusion / mixing cases 20 and 30, the first and second collective flows are formed in a short cylindrical shape. First and second collective flow path forming bodies 40, 50 having paths f1, f2 are interposed. Further, a terminal aggregate flow path forming body 60 formed in a lid shape is connected to the downstream side wall of the third diffusion / mixing case 30 located on the most downstream side. Reference numeral 70 denotes an upstream connection end of the circulation pipe J, and the upstream connection end 70 is connected to an inlet 18 described later of the first diffusion / mixing case 10. Reference numeral 71 denotes an upstream connection housing which is connected to the peripheral edge of the upstream connection end 70. Reference numeral 72 denotes a downstream connection end portion of the circulation pipe J, and the downstream connection end portion 72 is connected to a terminal outlet 63 described later of the terminal assembly flow path forming body 60. Reference numeral 73 denotes a downstream connection housing connected to the peripheral edge of the proximal end of the downstream connection end 72.

静止型流体混合装置Mは、アクリル樹脂等の合成樹脂により各パーツ(構成部材)、つまり、第1〜第3拡散・混合ケース10,20,30と第1・第2集合流路形成体40,50と終端集合流路形成体60と上流側接続用鍔体71を有する上流側接続端部70と下流側接続用鍔体73を有する下流側接続端部72をそれぞれ形成して、これらを接着剤により一体的に接着することで一体的に構成することができる。また、ステンレス鋼等の合金により各パーツを形成して、これらをビス止めにより一体的に組み付けることで一体的に構成するもできる。   The static type fluid mixing device M is made of synthetic resin such as acrylic resin, so that each part (constituent member), that is, the first to third diffusion / mixing cases 10, 20, and 30 and the first and second collective flow path forming bodies 40 is formed. , 50, a terminal assembly flow passage forming body 60, an upstream connection end portion 70 having an upstream connection housing 71 and a downstream connection end portion 72 having a downstream connection housing 73, respectively. By integrally bonding with an adhesive, it can be configured integrally. Moreover, each part can be formed of an alloy such as stainless steel, and these parts can be integrally assembled by screwing.

各拡散・混合ケース10,20,30は、リング板状に形成した上流側壁としての第1エレメント11,21,31と、円板状に形成した下流側壁としての第2エレメント12,22,32の内面同士を対向させて配置して、両エレメント11,12,21,22,31,32の周縁部間にはそれぞれ筒状の周壁13,23,33を介設して扁平箱状に形成している。各拡散・混合ケース10,20,30の上流側壁である第1エレメント11,21,31の中央部には、円形の流入口18,28,38を形成している。各拡散・混合ケース10,20,30の下流側壁である第2エレメント12,22,32の周縁部には、その周縁部に沿わせて小径円径口である多数の連通孔19,29,39を一定の間隔をあけて形成している。   Each diffusion / mixing case 10, 20, 30 includes a first element 11, 21, 31 as an upstream side wall formed in a ring plate shape, and a second element 12, 22, 32 as a downstream side wall formed in a disk shape. The inner surfaces of the elements 11, 12, 21, 22, 31, 32 are arranged in a flat box shape between the peripheral edges of the elements 11, 12, 21, 22, 31, 32. doing. Circular inflow ports 18, 28, and 38 are formed at the center of the first elements 11, 21, and 31, which are the upstream side walls of the diffusion / mixing cases 10, 20, and 30. A plurality of communication holes 19, 29, which are small-diameter circular ports along the peripheral edge of the second element 12, 22, 32, which are the downstream side walls of the diffusion / mixing cases 10, 20, 30. 39 are formed at regular intervals.

複数の異なる流体Rを混合して生成された混合流体(本実施形態では処理水Wと気体の気液混合流体)Rmは、下流側接続端部72を介して循環パイプJの下流側に導出されるようにしている。循環パイプJ内に導出された混合流体Rmは、1パスで生成された後に、三方切替弁V3を切替操作することで循環パイプJから回収部Rcに回収することができる。また、循環パイプJを所定回数循環させて分散相のより微細化を実現した後に、三方切替弁V3を切替操作することで循環パイプJから回収部Rcに回収することもできる。   A mixed fluid (mixed fluid W of the treated water W and gas in this embodiment) Rm generated by mixing a plurality of different fluids R is led to the downstream side of the circulation pipe J through the downstream connection end 72. To be. The mixed fluid Rm led into the circulation pipe J can be recovered from the circulation pipe J to the recovery unit Rc by switching the three-way switching valve V3 after being generated in one pass. In addition, after the circulation pipe J is circulated a predetermined number of times to achieve a finer dispersed phase, the three-way switching valve V3 can be switched to recover from the circulation pipe J to the recovery unit Rc.

(第1拡散・混合ケースの説明)
第1拡散・混合ケース10について、図4及び図5を参照しながら具体的に説明する。すなわち、第1拡散・混合ケース10は、第1・第2エレメント11,12の各対向面にそれぞれ同一の深さと大きさ(開口面形状)を有する多数の凹部16,17を略円形リング状の仮想線に沿わせて配置するとともに、中央部側から周縁部側(周壁13側)に向けて複数列(本実施形態では3列)を配列することにより凹部群14,15を形成(本実施形態では一体成形)している。そして、対向する凹部群14,15の凹部16,17同士は、相互に連通するように位置を違えて配置している。
(Explanation of first diffusion / mixing case)
The first diffusion / mixing case 10 will be specifically described with reference to FIGS. 4 and 5. That is, the first diffusion / mixing case 10 has a plurality of concave portions 16 and 17 having the same depth and size (opening surface shape) on the opposing surfaces of the first and second elements 11 and 12, respectively, in a substantially circular ring shape. Are arranged along the imaginary line, and a plurality of rows (three rows in the present embodiment) are arranged from the central portion side toward the peripheral portion side (peripheral wall 13 side) to form the recess groups 14 and 15 (this In the embodiment, it is integrally formed). And the recessed parts 16 and 17 of the recessed part groups 14 and 15 which oppose are arrange | positioned in a different position so that it may mutually communicate.

上記のように形成した両凹部群14,15の対向する凹部16,17間には、流体Rが蛇行しながら合流と分流を繰り返しながら半径方向に流動する第1拡散・混合流路F1を形成している。つまり、第1拡散・混合ケース10の内部には、流入口18から流入した複数の異なる流体Rを周縁部側に向けた半径方向に蛇行流動させる第1拡散・混合流路F1を形成して、第1拡散・混合流路F1を通して流体Rを拡散・混合可能となしている。   A first diffusion / mixing flow path F1 is formed between the opposing recesses 16 and 17 of the both recess groups 14 and 15 formed as described above, and the fluid R flows in the radial direction while repeating joining and splitting while meandering. doing. That is, a first diffusion / mixing flow path F1 is formed in the first diffusion / mixing case 10 to meander a plurality of different fluids R flowing in from the inlet 18 in a radial direction toward the peripheral edge. The fluid R can be diffused and mixed through the first diffusion / mixing flow path F1.

第2・第3拡散・混合ケース20,30は、前記した第1拡散・混合ケース10と基本的構造を同じくしているが、漸次、下流側に配置された拡散・混合ケース20,30内設けた第2・第3拡散・混合流路F2,F3の層数を増大させて形成している点で異なる。つまり、本実施形態では、図3に示すように、第1拡散・混合ケース10の第1拡散・混合流路F1を1層形成し、第2拡散・混合ケース20の第2拡散・混合流路F2を2層形成し、第3拡散・混合ケース30の第3拡散・混合流路F3を4層形成している。   The second and third diffusion / mixing cases 20 and 30 have the same basic structure as the first diffusion / mixing case 10 described above, but gradually inside the diffusion / mixing cases 20 and 30 arranged on the downstream side. The difference is that the number of layers of the provided second and third diffusion / mixing channels F2 and F3 is increased. That is, in this embodiment, as shown in FIG. 3, the first diffusion / mixing flow path F1 of the first diffusion / mixing case 10 is formed as one layer, and the second diffusion / mixing flow of the second diffusion / mixing case 20 is formed. Two layers of the path F2 are formed, and four layers of the third diffusion / mixing flow path F3 of the third diffusion / mixing case 30 are formed.

(第2拡散・混合ケースの説明)
第2拡散・混合ケース20について、図6及び図7を参照しながら具体的に説明する。すなわち、第2拡散・混合ケース20は、第1・第2エレメント21,22の各対向面にそれぞれ同一の深さと大きさ(開口面形状)を有する多数の凹部26,27を略六角形リング状の仮想線に沿わせて配置するとともに、中央部側から周縁部側(周壁23側)に向けて複数列(本実施形態では4列)を配列することにより凹部群24,25を形成(本実施形態では一体成形)している。そして、対向する凹部群24,25間には第1・第2中間エレメント81,82を配置している。
(Explanation of second diffusion / mixing case)
The second diffusion / mixing case 20 will be specifically described with reference to FIGS. 6 and 7. That is, the second diffusing / mixing case 20 includes a plurality of concave portions 26 and 27 having the same depth and size (opening surface shape) on the opposing surfaces of the first and second elements 21 and 22, respectively. Are arranged along a virtual imaginary line, and a plurality of rows (four rows in the present embodiment) are arranged from the central portion side toward the peripheral portion side (peripheral wall 23 side) to form the recess groups 24 and 25 ( In this embodiment, it is integrally formed). The first and second intermediate elements 81 and 82 are disposed between the opposing recess groups 24 and 25.

第1・第2中間エレメント81,82は第1エレメント21よりも小径のリング板状に形成して、第1・第2中間エレメント81,82の各一側面に凹部群84,85を形成している。本実施形態では、第1中間エレメント81の上面に凹部群84を突出状に一体成形し、また、第2中間エレメント82の下面に凹部群85を垂下状に一体成形している。凹部群84は凹部26と同形状に形成した凹部86を凹部群24と同様に配列して形成している一方、凹部群85は凹部27と同形状に形成した凹部87を凹部群24と同様に配列して形成している。そして、対向する凹部群84,25の凹部86,27同士は、相互に連通するように位置を違えて配置して、その間に第2拡散・混合流路F2を形成している。一方、対向する凹部群24,85の凹部26,87同士は、相互に連通するように位置を違えて配置して、その間に第2拡散・混合流路F2を形成している。なお、第1・第2中間エレメント81,82は一体成形して、その上下面に凹部群84,85を一体成形することもできる。   The first and second intermediate elements 81 and 82 are formed in a ring plate shape having a smaller diameter than the first element 21, and concave portions 84 and 85 are formed on each side surface of the first and second intermediate elements 81 and 82. ing. In the present embodiment, the recess group 84 is integrally formed on the upper surface of the first intermediate element 81 so as to protrude, and the recess group 85 is integrally formed on the lower surface of the second intermediate element 82 in a hanging manner. The recess group 84 is formed by arranging the recesses 86 formed in the same shape as the recesses 26 in the same manner as the recess group 24, while the recess group 85 has the recesses 87 formed in the same shape as the recesses 27 as in the recess group 24 It is arranged to form. And the recessed part 86,27 of the recessed part groups 84 and 25 which opposes arrange | positions in a position so that it may mutually communicate, and forms the 2nd spreading | diffusion and mixing flow path F2 between them. On the other hand, the recesses 26 and 87 of the opposing recess groups 24 and 85 are arranged at different positions so as to communicate with each other, and a second diffusion / mixing flow path F2 is formed therebetween. The first and second intermediate elements 81 and 82 can be integrally formed, and the recess groups 84 and 85 can be integrally formed on the upper and lower surfaces thereof.

このように、第2拡散・混合ケース20では、流体Rが蛇行しながら合流と分流を繰り返しながら半径方向に流動する第2拡散・混合流路F2を2層に形成している。つまり、第2拡散・混合ケース20の内部には、流入口28から流入した複数の異なる流体R(ないしは混合流体Rm)が周縁部側に向けた半径方向に蛇行流動される第2拡散・混合流路F2を2層に形成して、両第2拡散・混合流路F2,F2を通して流体R(ないしは混合流体Rm)を並列状に拡散・混合可能となしている。   As described above, in the second diffusion / mixing case 20, the second diffusion / mixing flow path F2 in which the fluid R flows in the radial direction while repeating joining and splitting while meandering is formed in two layers. That is, in the second diffusion / mixing case 20, a plurality of different fluids R (or mixed fluids Rm) flowing in from the inflow port 28 are meanderingly flowed in the radial direction toward the peripheral edge side. The flow path F2 is formed in two layers, and the fluid R (or mixed fluid Rm) can be diffused and mixed in parallel through the second diffusion / mixing flow paths F2 and F2.

(第3拡散・混合ケースの説明)
第3拡散・混合ケース30について、図8及び図9を参照しながら具体的に説明する。すなわち、第3拡散・混合ケース30は、第1・第2エレメント31,32の各対向面にそれぞれ同一の深さと大きさ(開口面形状)を有する多数の凹部36,37を略六角形リング状の仮想線に沿わせて配置するとともに、中央部側から周縁部側(周壁33側)に向けて複数列(本実施形態では4列)を配列することにより凹部群34,35を形成(本実施形態では一体成形)している。そして、対向する凹部群34,35間には第1・第2中間エレメント91,92を配置している。
(Explanation of third diffusion / mixing case)
The third diffusion / mixing case 30 will be specifically described with reference to FIGS. 8 and 9. That is, the third diffusing / mixing case 30 includes a plurality of concave portions 36 and 37 having the same depth and size (opening surface shape) on the opposing surfaces of the first and second elements 31 and 32, respectively. Are formed along a virtual imaginary line, and a plurality of rows (four rows in the present embodiment) are arranged from the central portion side toward the peripheral portion side (peripheral wall 33 side) to form the recess groups 34 and 35 ( In this embodiment, it is integrally formed). The first and second intermediate elements 91 and 92 are disposed between the opposing recess groups 34 and 35.

第1・第2中間エレメント91,92は第1エレメント31よりも小径のリング板状に形成して、第1・第2中間エレメント91,92の各一側面に凹部群94,95を形成している。本実施形態では、第1中間エレメント91の上面に凹部群94を突出状に一体成形し、また、第2中間エレメント92の下面に凹部群95を垂下状に一体成形している。凹部群94は凹部36と同形状に形成した凹部96を凹部群34と同様に配列して形成している一方、凹部群95は凹部37と同形状に形成した凹部97を凹部群34と同様に配列して形成している。   The first and second intermediate elements 91 and 92 are formed in a ring plate shape having a smaller diameter than the first element 31, and concave portions 94 and 95 are formed on each side surface of the first and second intermediate elements 91 and 92. ing. In the present embodiment, the concave group 94 is integrally formed on the upper surface of the first intermediate element 91 in a protruding manner, and the concave group 95 is integrally formed on the lower surface of the second intermediate element 92 in a hanging manner. The recess group 94 is formed by arranging the recesses 96 formed in the same shape as the recesses 36 in the same manner as the recess group 34, while the recess group 95 is formed of the recesses 97 formed in the same shape as the recesses 37 as in the recess group 34. It is arranged to form.

そして、対向する凹部群94,35の凹部96,37同士は、相互に連通するように位置を違えて配置して、その間に第3拡散・混合流路F3を形成している。また、対向する凹部群95,34の凹部97,38同士は、相互に連通するように位置を違えて配置して、その間に第3拡散・混合流路F3を形成している。また、凹部群94と凹部群95との間に第3拡散・混合流路F3を形成している。このように、第3拡散・混合流路F3を4層に形成している。なお、第1・第2中間エレメント91,92は一体成形して、その上下面に凹部群94,95を一体成形することもできる。   And the recessed part 96,37 of the recessed part groups 94 and 35 which oppose is arrange | positioned in a position so that it may mutually communicate, and the 3rd spreading | diffusion and mixing flow path F3 is formed among them. Further, the concave portions 97 and 38 of the opposing concave group 95 and 34 are arranged at different positions so as to communicate with each other, and a third diffusion / mixing flow path F3 is formed therebetween. Further, a third diffusion / mixing flow path F <b> 3 is formed between the recess group 94 and the recess group 95. In this way, the third diffusion / mixing flow path F3 is formed in four layers. The first and second intermediate elements 91 and 92 can be integrally formed, and the concave and convex groups 94 and 95 can be integrally formed on the upper and lower surfaces thereof.

このように、第3拡散・混合ケース30では、流体Rが蛇行しながら合流と分流を繰り返しながら半径方向に流動する第3拡散・混合流路F3を4層に形成している。つまり、第3拡散・混合ケース30の内部には、流入口38から流入した複数の異なる流体R(ないしは混合流体Rm)が周縁部側に向けた半径方向に蛇行流動される第3拡散・混合流路F3を4層に形成して、各第3拡散・混合流路F3を通して流体R(ないしは混合流体Rm)を並列状に拡散・混合可能となしている。   As described above, in the third diffusion / mixing case 30, the third diffusion / mixing flow path F <b> 3 that flows in the radial direction while repeating the merging and splitting while the fluid R meanders is formed in four layers. That is, in the third diffusion / mixing case 30, a plurality of different fluids R (or mixed fluids Rm) flowing in from the inflow port 38 meanderingly flow in the radial direction toward the peripheral edge side. The flow path F3 is formed in four layers, and the fluid R (or mixed fluid Rm) can be diffused and mixed in parallel through the third diffusion / mixing flow paths F3.

(集合流路形成体の説明)
第1拡散・混合ケース10と第2拡散・混合ケース20の間に介設した第1集合流路形成体40は、図3に示すように、第1拡散・混合ケース10の周壁13と同径の短幅筒状に形成するとともに、周壁13よりもやや短幅に形成している。そして、第1集合流路形成体40と第1拡散・混合ケース10の第2エレメント12と第2拡散・混合ケース20の第1エレメント21とにより扁平円板状の空間を形成して、この空間を第1集合流路f1となしている。また、第1集合流路形成体40内の第1集合流路f1を介して連通孔19に下流側に隣接する第2拡散・混合ケース20の流入口28を連通させている。
(Explanation of aggregate flow path forming body)
As shown in FIG. 3, the first collective flow path forming body 40 interposed between the first diffusion / mixing case 10 and the second diffusion / mixing case 20 is the same as the peripheral wall 13 of the first diffusion / mixing case 10. It is formed in a short cylindrical shape with a diameter and is slightly shorter than the peripheral wall 13. Then, a flat disk-shaped space is formed by the first collecting flow path forming body 40, the second element 12 of the first diffusion / mixing case 10, and the first element 21 of the second diffusion / mixing case 20, The space is defined as the first collective flow path f1. Further, the inlet 28 of the second diffusion / mixing case 20 adjacent to the downstream side is connected to the communication hole 19 through the first collecting flow path f1 in the first collecting flow path forming body 40.

第2拡散・混合ケース20と第3拡散・混合ケース30の間に介設した第2集合流路形成体50は、図3に示すように、第2拡散・混合ケース20の周壁23と同径の短幅筒状に形成するとともに、周壁23よりもやや短幅に形成している。そして、第2集合流路形成体50と第2拡散・混合ケース20の第2エレメント22と第3拡散・混合ケース30の第1エレメント31とにより扁平円板状の空間を形成して、この空間を第2集合流路f2となしている。また、第2集合流路形成体50内の第2集合流路f2を介して連通孔29に下流側に隣接する第3拡散・混合ケース30の流入口38を連通させている。なお、本実施形態では第2集合流路形成体50と第1集合流路形成体40を同一形状(共通形状)に形成している。   As shown in FIG. 3, the second aggregate flow path forming body 50 interposed between the second diffusion / mixing case 20 and the third diffusion / mixing case 30 is the same as the peripheral wall 23 of the second diffusion / mixing case 20. It is formed in a short cylindrical shape with a diameter and is slightly shorter than the peripheral wall 23. Then, a flat disk-shaped space is formed by the second collecting flow path forming body 50, the second element 22 of the second diffusion / mixing case 20, and the first element 31 of the third diffusion / mixing case 30, and this The space is defined as a second collective flow path f2. Further, the inlet 38 of the third diffusion / mixing case 30 adjacent to the downstream side is connected to the communication hole 29 via the second collecting channel f2 in the second collecting channel forming body 50. In the present embodiment, the second collecting flow path forming body 50 and the first collecting flow path forming body 40 are formed in the same shape (common shape).

最下流側に位置する第3拡散・混合ケース30に連設した終端集合流路形成体60は、図3に示すように、周壁61と、周壁61の下流側端面に張設した下流側端壁62とから形成している。そして、周壁61は第3拡散・混合ケース30の周壁33と同径の短幅筒状に形成するとともに、周壁33よりもやや短幅に形成している。なお、本実施形態では周壁61を第1第・2集合流路形成体40,50と同一形状(共通形状)に形成している。下流側端壁62は中央部に終端流出口63を有する円形リング板状に形成している。本実施形態では終端流出口63と流出口18,28,38を同径の円形状に形成している。第3拡散・混合ケース30に形成した連通孔39には、終端集合流路形成体60内の終端集合流路f3を介して終端流出口63を連通させている。   As shown in FIG. 3, the terminal aggregate flow path forming body 60 connected to the third diffusion / mixing case 30 located on the most downstream side includes a peripheral wall 61 and a downstream end extending from the downstream end face of the peripheral wall 61. And a wall 62. The peripheral wall 61 is formed in a short cylindrical shape having the same diameter as the peripheral wall 33 of the third diffusion / mixing case 30 and is formed slightly shorter than the peripheral wall 33. In the present embodiment, the peripheral wall 61 is formed in the same shape (common shape) as the first and second collective flow path forming bodies 40 and 50. The downstream end wall 62 is formed in a circular ring plate shape having a terminal outlet 63 at the center. In this embodiment, the terminal outlet 63 and the outlets 18, 28, 38 are formed in a circular shape having the same diameter. A terminal outlet 63 is communicated with the communication hole 39 formed in the third diffusion / mixing case 30 via a terminal collective flow path f 3 in the terminal collective flow path forming body 60.

(より具体的な構成の説明)
第1〜第3拡散・混合ケース10,20,30内に形成した凹部群14,15,24,25(84,85),34,35(94,95)の凹部16,17,26,27(86,87),36,37(96,97)の開口面の径は、漸次、下流側に配置された各拡散・混合ケース10,20,30の凹部16,17,26,27(86,87),36,37(96,97)の開口面の径を小径に形成するとともに、凹部の深さも短幅に形成している。すなわち、凹部16,17の開口面の内径よりも凹部26,27(86,87)の開口面の内径を小径に形成し、かつ、凹部26,27の開口面の内径よりも凹部36,37(96,97)の開口面の内径を小径に形成している。そして、凹部16,17の深さよりも凹部26,27(86,87)の深さを短幅に形成し、かつ、凹部26,27の開口面の径よりも凹部36,37(96,97)の深さを短幅に形成している。
(Explanation of more specific configuration)
The concave portions 16, 17, 26, 27 of the concave groups 14, 15, 24, 25 (84, 85), 34, 35 (94, 95) formed in the first to third diffusion / mixing cases 10, 20, 30 (86, 87), 36, 37 (96, 97), the diameter of the opening surface gradually decreases the concave portions 16, 17, 26, 27 (86 of each diffusion / mixing case 10, 20, 30 disposed on the downstream side. , 87), 36, 37 (96, 97), the diameter of the opening is made small, and the depth of the recess is also made short. That is, the inner diameter of the opening surfaces of the recesses 26 and 27 (86, 87) is smaller than the inner diameter of the opening surfaces of the recesses 16 and 17, and the recesses 36 and 37 are smaller than the inner diameter of the opening surfaces of the recesses 26 and 27. The inner diameter of the opening surface of (96, 97) is formed to be small. The depths of the recesses 26 and 27 (86, 87) are made shorter than the depths of the recesses 16 and 17, and the recesses 36 and 37 (96 and 97) are formed larger than the diameter of the opening surface of the recesses 26 and 27. ) Is formed with a short width.

このように構成して、流体Rないしは混合流体Rmが凹部16,17,26,27(86,87),36,37(96,97)の開口面の内径が小径に形成された凹部群14,15,24,25(84,85),34,35(94,95)間を蛇行しながら流動した際には、流動時に受けるせん断力により分散相としての流体Rが漸次微細化される。この際、分散相としての流体Rは、上流側から下流側に流動する間に、各拡散・混合ケース10,20,30内において、漸次、異なるせん断力を受けながら複数回にわたって微細化されるため、マイクロレベルないしはナノレベルへの微細化生成も堅実にかつ効率良くなされる。   Constituting in this way, the fluid R or the mixed fluid Rm is a recess group 14 in which the inner diameters of the opening surfaces of the recesses 16, 17, 26, 27 (86, 87), 36, 37 (96, 97) are made smaller. , 15, 24, 25 (84, 85), 34, 35 (94, 95), the fluid R as a dispersed phase is gradually refined by the shearing force received during the flow. At this time, the fluid R as a dispersed phase is refined a plurality of times while gradually receiving different shearing forces in each diffusion / mixing case 10, 20, and 30 while flowing from the upstream side to the downstream side. Therefore, miniaturization generation to the micro level or the nano level is also performed steadily and efficiently.

次に、第1〜第3拡散・混合流路F1,F2,F3を形成する凹部群14,15,24,25,34,35,81,82,94,95の構成をより具体的に説明する。すなわち、第1拡散・混合ケース10において、凹部群14は、第1エレメント11の上面に開口形状が(平面視)正六角形で有底筒状の凹部16を、流入口18を中心とする円周方向にわたって隙間のない状態で半径方向に複数列(本実施形態では3列)隣接させて凸状に一体成形し、凹部16を下方に向けて開口させている。いわゆるハニカム状に多数の凹部16が形成されて、凹部16内には正六角柱状の空間が形成されている。そして、凹部群14は、一側半部と他側半部とが線対称となるように、凹部16を整然と配置して形成している。   Next, the configuration of the recess groups 14, 15, 24, 25, 34, 35, 81, 82, 94, 95 that form the first to third diffusion / mixing channels F1, F2, F3 will be described more specifically. To do. That is, in the first diffusion / mixing case 10, the recess group 14 includes a circular hexagon centered on the inlet 18, with a concave hexagon 16 having a regular hexagonal opening shape on the upper surface of the first element 11 (in plan view). A plurality of rows (three rows in this embodiment) are adjacent to each other in the radial direction with no gaps in the circumferential direction, and are integrally formed in a convex shape, and the concave portion 16 is opened downward. A large number of recesses 16 are formed in a so-called honeycomb shape, and regular hexagonal columnar spaces are formed in the recesses 16. The recess group 14 is formed by orderly arranging the recesses 16 so that the one-side half and the other-side half are line-symmetric.

また、凹部群15は第2エレメント12の下面に開口形状が(平面視)正六角形で有底筒状の凹部17を、円周方向にわたって隙間のない状態で半径方向に複数列(本実施形態では3列)隣接させて凸状に一体成形し、凹部17を下方に向けて開口させている。いわゆるハニカム状に多数の凹部17が形成が形成されて、凹部17内には正六角柱状の空間が形成されている。そして、凹部群15は、一側半部と他側半部とが線対称となるように、凹部17を整然と配置して形成している。   The recess group 15 includes a plurality of rows of recesses 17 having a regular hexagonal shape and a bottomed cylindrical shape on the lower surface of the second element 12 (plan view) in a radial direction with no gaps in the circumferential direction (this embodiment). In this case, three rows are formed adjacent to each other in a convex shape, and the concave portion 17 is opened downward. A large number of concave portions 17 are formed in a so-called honeycomb shape, and a regular hexagonal columnar space is formed in the concave portion 17. The recess group 15 is formed by arranging the recesses 17 in an orderly manner so that the one-side half and the other-side half are axisymmetric.

凹部群14を形成する凹部16と凹部群15を形成する凹部17同士は、対向させて配置するとともに相互に連通するように位置を違えて配置している。つまり、凹部16(17)の中心位置に、凹部17(16)の角部17a(16a)が位置する状態で当接している。したがって、例えば、第1エレメント11の凹部16側から第2エレメント12の凹部17側に流体Rが流れる場合を考えると、流体Rは、2つの流路に分流(分散)されることになる。すなわち、第1エレメント11の凹部16の中央位置に位置された第2エレメント12の角部17aは、流体Rを分流する分流部として機能する。逆に、第2エレメント12側から第1エレメント11側に流体Rが流れる場合を考えると、2方から流れてきた流体Rが1つの凹部16に流れ込むことで合流することになる。この場合、第2エレメント12の凹部17の中央位置に位置された第1エレメント11の角部16aは、合流部として機能する。   The recesses 16 that form the recess group 14 and the recesses 17 that form the recess group 15 are arranged opposite to each other and arranged at different positions so as to communicate with each other. That is, the corner portion 17a (16a) of the concave portion 17 (16) is in contact with the central position of the concave portion 16 (17). Therefore, for example, when the case where the fluid R flows from the concave portion 16 side of the first element 11 to the concave portion 17 side of the second element 12 is considered, the fluid R is divided (distributed) into two flow paths. That is, the corner portion 17a of the second element 12 positioned at the center position of the recess 16 of the first element 11 functions as a flow dividing portion for dividing the fluid R. On the contrary, when the case where the fluid R flows from the second element 12 side to the first element 11 side is considered, the fluid R flowing from two directions flows into one concave portion 16 to be joined. In this case, the corner 16a of the first element 11 positioned at the center position of the recess 17 of the second element 12 functions as a merging portion.

同様に、第2拡散・混合ケース20において、第1エレメント21の凹部群24と第2中間エレメント82の凹部群85を対面させて配置するとともに、第1中間エレメント81の凹部群84と第2エレメント22の凹部群25を対面させて配置している。そして、凹部26(87)の中心位置に、凹部87(26)の角部87a(26a)が位置する状態で当接して、分流部ないしは混合部として機能するようにしている。また、凹部27(86)の中心位置に、凹部86(27)の角部86a(27a)が位置する状態で当接して、分流部ないしは混合部として機能するようにしている。ここで、各凹部26,27,86,87は、同一の深さと大きさ(開口面形状)を有する正六角形の有底筒状に形成されて、各凹部36,37,96,97内には正六角柱状の空間が形成されている。   Similarly, in the second diffusion / mixing case 20, the concave group 24 of the first element 21 and the concave group 85 of the second intermediate element 82 are arranged to face each other, and the concave group 84 and the second of the first intermediate element 81 are arranged in the second case. The recesses 25 of the element 22 are arranged facing each other. And it contacts with the center position of the recessed part 26 (87) in the state in which the corner | angular part 87a (26a) of the recessed part 87 (26) is located, and it is made to function as a diversion part or a mixing part. Further, the central portion of the concave portion 27 (86) is brought into contact with the corner portion 86a (27a) of the concave portion 86 (27) so as to function as a diversion portion or a mixing portion. Here, each recessed part 26,27,86,87 is formed in the bottomed cylindrical shape of the regular hexagon which has the same depth and magnitude | size (opening surface shape), and in each recessed part 36,37,96,97. A regular hexagonal columnar space is formed.

同様に、第3拡散・混合ケース30において、第1エレメント31の凹部群34と第2中間エレメント92の凹部群95を対面させて配置し、また、第1中間エレメント91の凹部群94と第2中間エレメント92の凹部群95を対面させて配置し、また、第1中間エレメント91の凹部群94と第2エレメント32の凹部群35を対面させて配置している。そして、凹部36(97)の中心位置に、凹部97(36)の角部97a(36a)が位置する状態で当接して、分流部ないしは混合部として機能するようにしている。また、凹部96(97)の中心位置に、凹部97(96)の角部97a(96a)が位置する状態で当接して、分流部ないしは混合部として機能するようにしている。また、凹部96(37)の中心位置に、凹部37(96)の角部37a(96a)が位置する状態で当接して、分流部ないしは混合部として機能するようにしている。ここで、各凹部36,37,96,97は、同一の深さと大きさ(開口面形状)を有する正六角形の有底筒状に形成されて、各凹部36,37,96,97内には正六角柱状の空間が形成されている。   Similarly, in the third diffusion / mixing case 30, the concave group 34 of the first element 31 and the concave group 95 of the second intermediate element 92 are arranged facing each other, and the concave group 94 of the first intermediate element 91 and the first The concave group 95 of the second intermediate element 92 is arranged to face each other, and the concave group 94 of the first intermediate element 91 and the concave group 35 of the second element 32 are arranged to face each other. Then, the central portion of the concave portion 36 (97) is brought into contact with the corner portion 97a (36a) of the concave portion 97 (36) so as to function as a diversion portion or a mixing portion. Further, the central portion of the concave portion 96 (97) is in contact with the corner portion 97a (96a) of the concave portion 97 (96) so as to function as a diversion portion or a mixing portion. Further, the central portion of the concave portion 96 (37) is brought into contact with the corner portion 37a (96a) of the concave portion 37 (96) so as to function as a diversion portion or a mixing portion. Here, each recessed part 36,37,96,97 is formed in the bottomed cylindrical shape of the regular hexagon which has the same depth and magnitude | size (opening surface shape), and in each recessed part 36,37,96,97. A regular hexagonal columnar space is formed.

なお、本実施形態では凹部の開口面形状を正六角形となしているが、凹部の開口面形状は何らこの形状に限られるものではなく、円形、正四角形、正八角形等に形成することもできる。   In this embodiment, the shape of the opening surface of the recess is a regular hexagon. However, the shape of the opening surface of the recess is not limited to this shape, and may be a circle, a regular square, a regular octagon, or the like. .

(作用効果の説明)
上記のように構成した本実施形態に係る静止型流体混合装置Mでは、例えば加圧ポンプである吐出ポンプPbにより流入口18を通して第1拡散・混合ケース10内に混合処理対象である複数の異なる流体Rを加圧状態にて導入し、第1拡散・混合ケース10内に形成した第1拡散・混合流路F1中、第2拡散・混合ケース20内に形成した第2拡散・混合流路F2中、及び、第3拡散・混合ケース30内に形成した第3拡散・混合流路F3中に複数の異なる流体Rを順次流動させることで、複数の異なる流体Rを混合して、混合された混合流体Rmを終端流出口63から循環パイプJの下流側に導出することができる。
(Explanation of effects)
In the static fluid mixing apparatus M according to the present embodiment configured as described above, for example, a plurality of different mixing targets in the first diffusion / mixing case 10 through the inlet 18 by the discharge pump Pb which is a pressurizing pump. A second diffusion / mixing channel formed in the second diffusion / mixing case 20 in the first diffusion / mixing channel F <b> 1 formed in the first diffusion / mixing case 10 by introducing the fluid R in a pressurized state. A plurality of different fluids R are sequentially flowed in F2 and the third diffusion / mixing flow path F3 formed in the third diffusion / mixing case 30 to mix and mix a plurality of different fluids R. The mixed fluid Rm can be led out from the terminal outlet 63 to the downstream side of the circulation pipe J.

そして、流体Rは、凹部群14と凹部群15との間に形成されている第1拡散・混合流路F1中を流動する際に、凹部16,17間にて合流と分流を繰り返して蛇行流動する。また、凹部群84と凹部群25との間に形成されている第2拡散・混合流路F2中、及び、凹部群85と凹部群24との間に形成されている第2拡散・混合流路F2中を流動する際に、凹部26,87間、凹部86,27間にて合流と分流を繰り返して蛇行流動する。また、凹部群94と凹部群35との間に形成されている第3拡散・混合流路F3中、及び、凹部群95と凹部群34との間に形成されている第3拡散・混合流路F3中、及び、凹部群94と凹部群95との間に形成されている第3拡散・混合流路F3中を流動する際に、凹部36,97間、凹部96,97間及び凹部96,37間にて合流と分流を繰り返して蛇行流動する。かかる蛇行流動時には分散相としての流体Rがせん断力を受けて均一に微細化された混合流体Rmが生成される。   Then, when the fluid R flows in the first diffusion / mixing flow path F1 formed between the recess group 14 and the recess group 15, the fluid R meanders by repeatedly joining and splitting between the recesses 16 and 17. To flow. Further, the second diffusion / mixing flow formed in the second diffusion / mixing flow path F <b> 2 formed between the concave group 84 and the concave group 25 and between the concave group 85 and the concave group 24. When flowing in the path F <b> 2, the fluid flows in a meandering manner by repeating merging and splitting between the recesses 26 and 87 and between the recesses 86 and 27. Further, a third diffusion / mixing flow formed in the third diffusion / mixing flow path F3 formed between the concave group 94 and the concave group 35 and between the concave group 95 and the concave group 34. When flowing in the path F3 and the third diffusion / mixing flow path F3 formed between the recess group 94 and the recess group 95, the recesses 36 and 97, the recesses 96 and 97, and the recess 96 , 37 meander and flow in a meandering manner. During such a meandering flow, the fluid R as a dispersed phase receives a shearing force, and a mixed fluid Rm that is uniformly refined is generated.

この際、第1拡散・混合流路F1と第2拡散・混合流路F2とを接続する第1集合流路f1、第2拡散・混合流路F2と第3拡散・混合流路F3とを接続する第2集合流路f2、及び、第3拡散・混合流路F3に接続する終端集合流路f3では、混合流体Rmが周縁部側から中心部側へ何の障害もなく直状に円滑に流動されるため、集合流路内での圧力損失が低減される。その結果、静止型流体混合装置Mに流体Rを加圧して供給する吐出ポンプPbの電力消費量の低減を図ることができるとともに、混合処理済み流体Rmの流出量(導出量)の増大化(効率化)を図ることができる。そして、各集合流路f1,f2,f3において混合流体Rm流動が整流化されるため、各流入口18,28,38への流入ないしは終端流出口63への流出が円滑になされて、その点からも圧力損失を軽減することができる。   At this time, the first diffusion channel / mixing channel F1, the second diffusion / mixing channel F2, and the third diffusion / mixing channel F3 are connected to the first diffusion / mixing channel F1 and the second diffusion / mixing channel F2. In the second collective flow path f2 to be connected and the terminal collective flow path f3 to be connected to the third diffusion / mixing flow path F3, the mixed fluid Rm smoothly goes straight from the peripheral edge side to the central side without any obstacles. Therefore, the pressure loss in the collecting channel is reduced. As a result, it is possible to reduce the power consumption of the discharge pump Pb that pressurizes and supplies the fluid R to the static fluid mixing device M, and to increase the outflow amount (derived amount) of the mixed fluid Rm ( Efficiency). Since the flow of the mixed fluid Rm is rectified in each of the collective flow paths f1, f2, and f3, the inflow to the inflow ports 18, 28, and 38 or the outflow to the terminal outflow port 63 is smoothly performed. Therefore, pressure loss can be reduced.

第1〜第3拡散・混合ケース10,20,30は、第1・第2集合流路形成体40,50を介して所要個数だけ直列的に連通連結することで、所要個数の第1〜第3拡散・混合流路F1,F2,F3を配設することができる。つまり、形態の異なる第1〜第3拡散・混合ケース10,20,30の内、一つないしは二つの異なる形態を所要個数だけ第1・第2集合流路形成体40,50を介して連通連結することで、多種多様の組み合わせ形態を採用することができる。このように、静止型流体混合装置Mを第1〜第3拡散・混合ケース10,20,30の多種多様の組み合わせ形態となすことができるため、混合流体Rmの生成効率を向上させることができるとともに、混合処理済み流体Rmの流出量(導出量)を適宜設定することができる。   The required number of first to third diffusion / mixing cases 10, 20, 30 are connected in series through the first and second collecting flow path forming bodies 40, 50 in series. Third diffusion / mixing channels F1, F2, and F3 can be provided. That is, of the first to third diffusion / mixing cases 10, 20, 30 having different forms, one or two different forms of the required number are passed through the first and second collective flow path forming bodies 40, 50. A variety of combination forms can be adopted by connecting them in communication. As described above, since the static fluid mixing device M can be formed in various combinations of the first to third diffusion / mixing cases 10, 20, and 30, the generation efficiency of the mixed fluid Rm can be improved. At the same time, the outflow amount (derived amount) of the mixed fluid Rm can be set as appropriate.

A 混合流体生成装置
M 静止型流体混合装置
Cy 循環流路
J 循環パイプ
K1 気体供給パイプ
K2 気体供給部
R 流体
Rm 混合流体
W 処理水
10,20,30 第1〜第3拡散・混合ケース
11,21,31 第1エレメント
12,22,32 第2エレメント
13,23,33 周壁
18,28,38 流入口
19,29,39 連通孔
A Mixing fluid generator M Static fluid mixing device Cy Circulating flow path J Circulating pipe K1 Gas supply pipe K2 Gas supply part R Fluid Rm Mixed fluid W Processed water 10, 20, 30 First to third diffusion / mixing cases 11, 21,31 First element 12,22,32 Second element 13,23,33 Peripheral wall 18,28,38 Inlet 19,29,39 Communication hole

Claims (4)

扁平箱状に形成して上流側壁の中央部に流入口を形成した複数の拡散・混合ケースを同軸的に配置し、隣接する拡散・混合ケース同士の間には短幅筒状に形成して内部に集合流路を有する集合流路形成体を介設して、最下流側に位置する拡散・混合ケースの下流側壁には蓋状に形成して内部に終端集合流路を有するとともに、中央部に終端流出口を形成した終端集合流路形成体を連設して構成し、
各拡散・混合ケースの内部には、流入口から流入した複数の異なる流体を周縁部側に向けた半径方向に蛇行流動させる拡散・混合流路を形成して、拡散・混合流路を通して流体を拡散・混合可能となし、
各拡散・混合ケースの下流側壁の周縁部には連通孔を形成して、集合流路形成体内の集合流路を介して連通孔に下流側に隣接する拡散・混合ケースの流入口を連通させ、
最下流側に位置する拡散・混合ケースに形成した連通孔には、終端集合流路形成体内の終端集合流路を介して終端集合流路形成体の終端流出口を連通させた
ことを特徴とする静止型流体混合装置。
A plurality of diffusion / mixing cases formed in a flat box shape and having an inlet in the central portion of the upstream side wall are coaxially arranged, and between adjacent diffusion / mixing cases, a short-width cylindrical shape is formed. A collective flow path forming body having an internal collective flow path is interposed, a downstream side wall of the diffusion / mixing case located on the most downstream side is formed in a lid shape and has a terminal collective flow path inside, and a center Constructed by connecting a terminal aggregate flow path forming body with a terminal outlet formed in the part,
Inside each diffusion / mixing case, a diffusion / mixing flow path is formed in which a plurality of different fluids flowing in from the inflow port meandering in the radial direction toward the peripheral edge, and the fluid flows through the diffusion / mixing flow path. No diffusion / mixing,
A communication hole is formed in the peripheral edge of the downstream side wall of each diffusion / mixing case, and the inlet of the diffusion / mixing case adjacent to the downstream side is connected to the communication hole via the collecting channel in the collecting channel forming body. ,
The communication hole formed in the diffusion / mixing case located on the most downstream side is characterized in that the terminal outlet of the terminal assembly channel forming body communicates with the terminal assembly channel in the terminal assembly channel forming body. A stationary fluid mixing device.
各拡散・混合ケースは、リング板状に形成した上流側壁としての第1エレメントと円板状に形成した下流側壁としての第2エレメントの内面同士を対向させて配置し、両エレメントの周縁部間には筒状の周壁を介設して扁平箱状に形成し、
両エレメントの各対向面にはそれぞれ同一の深さと大きさを有する多数の凹部を中央部側から周縁部側に向けてリング状に配置して凹部群を形成するとともに、対向する凹部群の凹部同士は相互に連通するように位置を違えて配置して、対向する凹部間には流体が蛇行しながら合流と分流を繰り返しながら半径方向に流動する拡散・混合流路を形成し、
各拡散・混合ケースに形成した凹部の開口面の径は、漸次、下流側に配置された拡散・混合ケースの凹部の開口面の径を小径に形成した
ことを特徴とする請求項1記載の静止型流体混合装置。
Each diffusion / mixing case is arranged so that the inner surfaces of the first element as the upstream side wall formed in the ring plate shape and the second element as the downstream side wall formed in the disk shape are opposed to each other, and between the peripheral portions of both elements In the form of a flat box with a cylindrical peripheral wall,
A plurality of recesses having the same depth and size are arranged in a ring shape from the center side toward the peripheral side on each facing surface of both elements to form a recess group, and the recesses of the opposing recess groups They are arranged at different positions so as to communicate with each other, and a diffusion / mixing flow path that flows in the radial direction while repeating merging and splitting while the fluid meanders between the opposing concave portions,
The diameter of the opening surface of the recessed part formed in each diffusion / mixing case is formed so that the diameter of the opening surface of the recessed part of the diffusion / mixing case disposed on the downstream side gradually becomes smaller. Static fluid mixing device.
第1エレメントと第2エレメントとの間に第1エレメントよりも小径のリング板状に形成した中間エレメントを配置し、中間エレメントの少なくとも一側面には凹部群を形成するとともに、その凹部群と対向する第1エレメントないしは第2エレメントの凹部群との間に拡散・混合流路を形成して、
第1エレメントと第2エレメントとの間に複数の拡散・混合流路を層状に形成した
ことを特徴とする請求項1又は2記載の静止型流体混合装置。
An intermediate element formed in the shape of a ring plate having a smaller diameter than the first element is disposed between the first element and the second element, and a recess group is formed on at least one side surface of the intermediate element and is opposed to the recess group. A diffusion / mixing flow path is formed between the first element and the second element recess group
The static fluid mixing apparatus according to claim 1 or 2, wherein a plurality of diffusion / mixing flow paths are formed in layers between the first element and the second element.
拡散・混合流路は、漸次、下流側に配置された拡散・混合ケース内の拡散・混合流路の層数を増大させて形成した
ことを特徴とする請求項3記載の静止型流体混合装置。
4. The static fluid mixing apparatus according to claim 3, wherein the diffusion / mixing flow path is formed by gradually increasing the number of layers of the diffusion / mixing flow path in the diffusion / mixing case disposed on the downstream side. .
JP2012281025A 2012-12-25 2012-12-25 Stationary type fluid mixer Pending JP2014124541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281025A JP2014124541A (en) 2012-12-25 2012-12-25 Stationary type fluid mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281025A JP2014124541A (en) 2012-12-25 2012-12-25 Stationary type fluid mixer

Publications (1)

Publication Number Publication Date
JP2014124541A true JP2014124541A (en) 2014-07-07

Family

ID=51404524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281025A Pending JP2014124541A (en) 2012-12-25 2012-12-25 Stationary type fluid mixer

Country Status (1)

Country Link
JP (1) JP2014124541A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024002A (en) * 2015-07-27 2017-02-02 丸福水産株式会社 Mixture treatment body, mixture treatment method, fluid mixer, air-liquid treatment equipment, and seafood cultivation system
JP2017189717A (en) * 2015-04-07 2017-10-19 アイセル株式会社 Fine particle production unit and production method
WO2018021092A1 (en) * 2016-07-25 2018-02-01 丸福水産株式会社 Mixing process body, mixing process method, mixed production fluid, fluid mixer, fluid mixing processor, fish and shellfish culturing system, and fish and shellfish culturing method
JP2018132293A (en) * 2017-02-15 2018-08-23 有限会社浦野技研 Manufacturing device and manufacturing method of slurry ice

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952034A (en) * 1995-08-11 1997-02-25 Kankyo Kagaku Kogyo Kk Static type mixer
JPH09173807A (en) * 1974-08-26 1997-07-08 Kankyo Kagaku Kogyo Kk Stationary type fluid mixer
JPH09173803A (en) * 1995-12-25 1997-07-08 Kanebo Foods Ltd Manufacture for carbonic acid solution
JPH10216495A (en) * 1997-02-12 1998-08-18 Kankyo Kagaku Kogyo Kk Static fluid mixer
JPH119980A (en) * 1997-06-24 1999-01-19 Kankyo Kagaku Kogyo Kk Stationary fluid mixing device
JP2008105008A (en) * 2006-03-03 2008-05-08 Mg Grow Up:Kk Static fluid mixing apparatus
US20100236134A1 (en) * 2007-10-22 2010-09-23 Mg Grow Up Corp. Emulsion fuel and process and equipment for the production of the same
JP2011121020A (en) * 2009-12-14 2011-06-23 Isel Co Ltd Mixing element, mixing device, mixing method, stirring blade, stirring device, and stirring method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173807A (en) * 1974-08-26 1997-07-08 Kankyo Kagaku Kogyo Kk Stationary type fluid mixer
JPH0952034A (en) * 1995-08-11 1997-02-25 Kankyo Kagaku Kogyo Kk Static type mixer
JPH09173803A (en) * 1995-12-25 1997-07-08 Kanebo Foods Ltd Manufacture for carbonic acid solution
JPH10216495A (en) * 1997-02-12 1998-08-18 Kankyo Kagaku Kogyo Kk Static fluid mixer
JPH119980A (en) * 1997-06-24 1999-01-19 Kankyo Kagaku Kogyo Kk Stationary fluid mixing device
JP2008105008A (en) * 2006-03-03 2008-05-08 Mg Grow Up:Kk Static fluid mixing apparatus
US20100236134A1 (en) * 2007-10-22 2010-09-23 Mg Grow Up Corp. Emulsion fuel and process and equipment for the production of the same
JP2011121020A (en) * 2009-12-14 2011-06-23 Isel Co Ltd Mixing element, mixing device, mixing method, stirring blade, stirring device, and stirring method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189717A (en) * 2015-04-07 2017-10-19 アイセル株式会社 Fine particle production unit and production method
JP2017024002A (en) * 2015-07-27 2017-02-02 丸福水産株式会社 Mixture treatment body, mixture treatment method, fluid mixer, air-liquid treatment equipment, and seafood cultivation system
JP2017047423A (en) * 2015-07-27 2017-03-09 丸福水産株式会社 Mixing treatment body, mixing treatment method, fluid mixer, fluid mixing treatment apparatus, and system for culturing fish and shellfish
WO2018021092A1 (en) * 2016-07-25 2018-02-01 丸福水産株式会社 Mixing process body, mixing process method, mixed production fluid, fluid mixer, fluid mixing processor, fish and shellfish culturing system, and fish and shellfish culturing method
JPWO2018021092A1 (en) * 2016-07-25 2018-07-26 丸福水産株式会社 Mixed processing body, mixed processing method, mixed product fluid, fluid mixer, fluid mixing processing device, fish culture system, and fish culture method
KR20190015238A (en) * 2016-07-25 2019-02-13 마루후쿠스이산 가부시키가이샤 Mixed processing body, mixing treatment method, mixed producing fluid, fluid mixer, fluid mixing processing device, fish culture system and fishery culture method
CN109475827A (en) * 2016-07-25 2019-03-15 丸福水产株式会社 Mixed processing body, mixed processing method, mixing generate fluid, flow mixer, fluid mixed processing device, fish and shellfish cultivating system and fish and shellfish cultivation method
KR102219725B1 (en) * 2016-07-25 2021-02-24 마루후쿠스이산 가부시키가이샤 Mixed treatment body, mixed treatment method, mixed product fluid, fluid mixer, fluid mixing treatment device, seafood farming system and seafood farming method
CN109475827B (en) * 2016-07-25 2021-11-05 丸福水产株式会社 Mixed treatment body, mixing treatment method, mixed produced fluid, fluid mixer, fluid mixing treatment device, fish/shellfish culture system, and fish/shellfish culture method
JP2018132293A (en) * 2017-02-15 2018-08-23 有限会社浦野技研 Manufacturing device and manufacturing method of slurry ice
JP7060397B2 (en) 2017-02-15 2022-04-26 有限会社浦野技研 Slurry ice manufacturing equipment and manufacturing method

Similar Documents

Publication Publication Date Title
JP4589451B2 (en) Static fluid mixing device
Nisisako et al. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces
JP3794687B2 (en) Micro emulsifier
JP4589449B2 (en) Reformed fuel oil, method for producing the same, and apparatus for producing the same
JP2014124541A (en) Stationary type fluid mixer
JP4680946B2 (en) Static fluid mixing device
CN102151504A (en) Micro mixer with unsymmetrical separation and recombination fan-shaped cavity structures
JP6046465B2 (en) Static fluid mixing device
JP2006528542A (en) Extraction method using static micromixer
US10350522B2 (en) Truncated filter capsule
WO2016035704A1 (en) Seawater desalination system and energy recovery apparatus
JP2004085431A (en) Mixing apparatus for high-speed liquid chromatograph
JP2008264640A (en) Mixing apparatus
WO2014163018A1 (en) Seawater desalination system and energy recovery apparatus
JP6234723B2 (en) Fluid mixing device
KR20180018006A (en) Nano-bubble generator
JP5826421B1 (en) Gas dissolver and carbonated water generator using the same
JP2017039131A (en) Stationary type fluid mixer
JP2013150968A (en) Static fluid mixing apparatus
CN208583497U (en) Shower and shower set
JP5654291B2 (en) Static fluid mixing device
KR20180026238A (en) Nano-bubble generator
JP6339733B2 (en) Mixing unit, fluid mixing device, and mixed fluid generating device
JP6154962B2 (en) High concentration carbonated spring generator
JP2012200715A (en) Mixing agitator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110