JP2008264640A - Mixing apparatus - Google Patents

Mixing apparatus Download PDF

Info

Publication number
JP2008264640A
JP2008264640A JP2007108819A JP2007108819A JP2008264640A JP 2008264640 A JP2008264640 A JP 2008264640A JP 2007108819 A JP2007108819 A JP 2007108819A JP 2007108819 A JP2007108819 A JP 2007108819A JP 2008264640 A JP2008264640 A JP 2008264640A
Authority
JP
Japan
Prior art keywords
groove
mixing
liquid
mixer
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007108819A
Other languages
Japanese (ja)
Inventor
Masahide Gunji
昌秀 軍司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007108819A priority Critical patent/JP2008264640A/en
Publication of JP2008264640A publication Critical patent/JP2008264640A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid mixing apparatus which is small-sized and has high efficiency in regard to the mixing apparatus which is used for mixing minute quantity of liquid in fields of chemical analysis, synthesis or the like. <P>SOLUTION: Two members (A, B), on each surface of which a zigzag shaped groove 11 is provided by scoring and a through hole 12 is provided by boring at one end of the groove, are prepared and fellow surfaces on each of which the groove 11 is provided by scoring are joined. A space surrounded by the groove and the member becomes a flow passage, and the through holes 12 at both ends of the flow passage become an inflow port or an outflow port to constitute the mixing apparatus 10. When mixing liquid is circulated in the mixing apparatus 10, mixing liquid mutually produces vortex flow at a point where the flow passages cross. Thus, the mixing efficiency of the mixing apparatus is improved by providing a large number of intersection points of the flow passages. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は化学分析や合成などの分野において微小な量の液体を混合するための混合器に関し、例えば液体クロマトグラフにおいて溶離液を混合するための混合器として利用するのに適するものである。   The present invention relates to a mixer for mixing a minute amount of liquid in fields such as chemical analysis and synthesis, and is suitable for use as a mixer for mixing an eluent in a liquid chromatograph, for example.

液体クロマトグラフでは、カラムに流入する移動相の組成が経時的に変化するグラジエント分析法がある。例えば、図4(a)に示されるように、移動相A液を100%、移動相B液を0%という送液状態から分析を開始し、徐々に移動相A液の送液比率を減少させる一方で移動相B液の送液比率を増加させ、最終的に移動相A液を0%、移動相B液を100%に変化させることで、カラムでの試料の保持力を変化させながら分析するものである。図4(a)では、横軸は時間を示し、縦軸のA,BはそれぞれA液100%、B液100%を示している。   In the liquid chromatograph, there is a gradient analysis method in which the composition of the mobile phase flowing into the column changes with time. For example, as shown in FIG. 4 (a), the analysis is started from the state where the mobile phase A liquid is 100% and the mobile phase B liquid is 0%, and the mobile phase A liquid feeding ratio is gradually reduced. While increasing the liquid feed ratio of the mobile phase B liquid, and finally changing the mobile phase A liquid to 0% and the mobile phase B liquid to 100%, while changing the holding power of the sample in the column To analyze. In FIG. 4A, the horizontal axis indicates time, and A and B on the vertical axis indicate liquid A 100% and liquid B 100%, respectively.

グラジエント分析法のための液体クロマトグラフを図4(b)に示す。移動相1A,1Bを送液するための送液流路上にそれぞれの送液ポンプ2A,2Bが設けられている。送液ポンプ2A,2Bはモータの回転数を制御することによって送液量を調節する。送液流路は混合器Mで合流しており、混合器Mは移動相1Aと1Bを混合して分析流路に送液するようになっている。分析流路にはインジェクタ4(試料注入部)を介して分離カラム5が設けられる。カラム5はカラムオーブン6により一定温度に保たれ、その下流に検出器7が設けられている。インジェクタ4から注入された試料は、混合器Mで混合された移動相により分離カラム5に導かれて成分ごとに分離され、分離された試料成分は検出器7で検出され、制御・処理装置8でデータ処理が行なわれる。送液ポンプ2A及び2Bは制御・処理装置8によってそれぞれの送液量が制御され、所定の送液プログラムに沿って送液量が変化させられる。   A liquid chromatograph for the gradient analysis method is shown in FIG. The liquid feed pumps 2A and 2B are provided on the liquid feed passages for feeding the mobile phases 1A and 1B, respectively. The liquid feed pumps 2A and 2B adjust the liquid feed amount by controlling the number of rotations of the motor. The liquid feed channels are joined by the mixer M, and the mixer M mixes the mobile phases 1A and 1B and feeds them to the analysis channel. A separation column 5 is provided in the analysis flow path via an injector 4 (sample injection part). The column 5 is kept at a constant temperature by a column oven 6, and a detector 7 is provided downstream thereof. The sample injected from the injector 4 is guided to the separation column 5 by the mobile phase mixed in the mixer M and separated for each component. The separated sample component is detected by the detector 7, and the control / processing device 8. Data processing is performed at. Each of the liquid feed pumps 2A and 2B is controlled by the control / processing device 8 so that the liquid feed amount is changed in accordance with a predetermined liquid feed program.

グラジエント分析法では、移動相の組成が経時的に変化するので、混合器Mにおいて安定した混合が行なわれなければ分析の精度に非常に大きな影響を与えることとなる。   In the gradient analysis method, since the composition of the mobile phase changes with time, if the mixing is not performed in the mixer M, the accuracy of the analysis is greatly affected.

図5(a)に従来の混合器を示す。混合器30は流入口31と流出口32の間に混合部を構成している。混合部は、図5(b)に示すような円盤33が複数重ねられており、個々の円盤33には流れ方向に延びる長溝34aと、長溝の下流側に円形溝34bとが刻設されている。上流側から円盤33に流入する混合液は、破線で示した矢印のように、溝の形状に沿って流れ、円形溝34bに穿設された貫通孔35を経て次の円盤の長溝34aに流れ込む。混合液は、溝形状に沿って流れることで、渦を形成する。これにより、液体の混合が促進される。   FIG. 5A shows a conventional mixer. The mixer 30 constitutes a mixing unit between the inlet 31 and the outlet 32. In the mixing portion, a plurality of disks 33 as shown in FIG. 5B are stacked, and each disk 33 has a long groove 34a extending in the flow direction and a circular groove 34b on the downstream side of the long groove. Yes. The mixed liquid flowing into the disk 33 from the upstream side flows along the shape of the groove as indicated by an arrow indicated by a broken line, and flows into the long groove 34a of the next disk through the through hole 35 formed in the circular groove 34b. . The mixed liquid flows along the groove shape to form a vortex. Thereby, mixing of the liquid is promoted.

出願人は、他に特許文献1〜3の混合器を提案している。
特許第3780917号 特許第3824160号 特許第3873929号
The applicant has proposed other mixers of Patent Documents 1 to 3.
Japanese Patent No. 3780917 Patent No. 3824160 Japanese Patent No. 3873929

従来の混合器は、円形溝で形成される渦により混合を促進するものであるが、互いに混ざりにくい液を用いる場合には、混合が不十分となる。円盤の数を増やせば、溝部分の内容積が大きくなり、混合器を通過するために要する時間が長大となるので、特に微小流量(数μ/分)の分析には適さない。本発明は、混合効率が高い混合器を提供することを目的とする。   A conventional mixer promotes mixing by a vortex formed by circular grooves, but mixing is insufficient when liquids that are difficult to mix with each other are used. Increasing the number of disks increases the internal volume of the groove and increases the time required to pass through the mixer, and is not particularly suitable for analyzing a minute flow rate (several μ / min). An object of this invention is to provide a mixer with high mixing efficiency.

上記課題に鑑みなされた本発明に係る混合器は、液体流入口から流入する液体を混合する混合部を有する混合器であって、前記混合部は、第1の部材と第2の部材が接合されてなり、前記第1の部材及び前記第2の部材には溝が刻設され、前記第1の部材と前記第2の部材の接合面で各々の溝が第1の流路及び第2の流路を形成し、前記第1の流路と第2の流路が交差することを特徴とする。   The mixer according to the present invention made in view of the above problems is a mixer having a mixing section that mixes liquid flowing in from a liquid inlet, and the mixing section is formed by joining a first member and a second member. Grooves are formed in the first member and the second member, and each groove is a first flow path and a second at the joint surface of the first member and the second member. The first flow path and the second flow path intersect each other.

この構成により、一方の部材の溝が刻設された部分と、他方の部材の溝が刻設されない部分とに囲まれた空間が形成され、この空間が混合液を流通する流路となり、また、一方の部材の溝が刻設された部分と、他方の部材の溝が刻設された部分とに囲まれた空間が、流路の交差点となる。   With this configuration, a space surrounded by a portion where the groove of one member is engraved and a portion where the groove of the other member is not engraved is formed, and this space becomes a flow path through which the mixed liquid flows. The space surrounded by the portion where the groove of one member is engraved and the portion where the groove of the other member is engraved is the intersection of the flow paths.

刻設する溝はジグザグ形状とすることで、混合器内の流路に多数の交差点が形成される。   The grooves to be engraved have a zigzag shape, so that a large number of intersections are formed in the flow path in the mixer.

本発明の混合器によれば、一方の流路と他方の流路との交差点において、一方の流路を流れる混合液の流れにより、他方の流路を流れる混合液の流れの向きと交差する方向に流れの力を与えることで渦が生じる。この渦により混合が促進され、混合器によって安定した混合が得られる。安定した混合により、高精度な分析結果を得ることができる。   According to the mixer of the present invention, at the intersection of one flow path and the other flow path, the flow of the mixed liquid flowing in one flow path intersects the direction of the flow of the mixed liquid flowing in the other flow path. A vortex is created by applying a flow force in the direction. Mixing is promoted by this vortex, and stable mixing is obtained by the mixer. Highly accurate analysis results can be obtained by stable mixing.

本発明に係る混合器について、以下、図に沿って詳細に説明する。図1は、本発明の思想に基づく混合器の構成要素の概略を図示したものである。第1の板状部材10Aには、表面に溝11Aが刻設されており、溝の一端が他の要素との接続部12Aが設けられている。溝はジグザグ形状であり、溝の一端に設けられた接続部12Aは板状部材10Aを貫通するように穿設された貫通孔である。同様に、第2の板状部材2Bも溝11Bと接続部12Bを有する。この例では、部材10Aと部材10Bは同一形状のもので、材質として、ステンレス( 例えばSUS316など)を用いることができ、溝の加工にはプレス加工やエッチング加工により形成することが可能である。   Hereinafter, the mixer according to the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows components of a mixer based on the idea of the present invention. The first plate-like member 10A is provided with a groove 11A on the surface, and one end of the groove is provided with a connecting portion 12A with another element. The groove has a zigzag shape, and the connecting portion 12A provided at one end of the groove is a through hole formed so as to penetrate the plate-like member 10A. Similarly, the 2nd plate-shaped member 2B also has the groove | channel 11B and the connection part 12B. In this example, the member 10A and the member 10B have the same shape, stainless steel (eg, SUS316) can be used as the material, and the groove can be formed by pressing or etching.

第1の部材10Aと第2の部材10Bとを各々溝が刻設された面を接合して、混合器10が構成される。混合器10中、実線で描かれた部分は部材10Aによる部分、破線で描かれた部分は部材10Bによる部分を示している。部材10Bの外形は部材10Aの外形と一致している。   The mixer 10 is configured by joining the first member 10A and the second member 10B to the surfaces on which grooves are formed. In the mixer 10, a portion drawn by a solid line indicates a portion by the member 10A, and a portion drawn by a broken line shows a portion by the member 10B. The outer shape of the member 10B matches the outer shape of the member 10A.

図2は、混合器10の各部の断面と、混合器10に混合液を流通させたときの混合液の流れの向きを示している。A−A’断面は、混合器10に外部から混合液を流入する流入口の部分を図示している。部材10Aの接続部12A(貫通孔)が混合液の流入口となっている。混合液は、貫通孔に沿って混合器10に流入する。   FIG. 2 shows a cross section of each part of the mixer 10 and the direction of the flow of the mixed liquid when the mixed liquid is circulated through the mixer 10. The A-A ′ cross section shows the portion of the inlet that allows the liquid mixture to flow into the mixer 10 from the outside. The connecting portion 12A (through hole) of the member 10A serves as an inlet for the mixed liquid. The mixed liquid flows into the mixer 10 along the through hole.

B−B’断面は、一端を接続部12Aと接する溝11Aを図示している。部材10Bについては、対応する部分に溝が刻設されておらず、溝11Aと、部材10Bとに囲まれた空間が流路を形成している。混合液は形成された流路に沿って流れる。   The B-B ′ cross section illustrates a groove 11 </ b> A that has one end in contact with the connecting portion 12 </ b> A. For the member 10B, no groove is formed in the corresponding portion, and a space surrounded by the groove 11A and the member 10B forms a flow path. The mixed liquid flows along the formed flow path.

C−C’断面は、部材10Aに刻設された溝11Aと部材10Bに刻設された溝11Bの一端とが接合する部分を図示している。混合液の流入口からみて、溝10Aと溝10Bとが接合する最初の点であり、ここで、混合器10に流入した混合液が分岐される。   The C-C ′ cross section illustrates a portion where the groove 11 </ b> A carved in the member 10 </ b> A and one end of the groove 11 </ b> B carved in the member 10 </ b> B are joined. This is the first point where the groove 10A and the groove 10B are joined when viewed from the inlet of the mixed liquid. Here, the mixed liquid flowing into the mixer 10 is branched.

D−D’断面は、溝11Aと部材10Bとに囲まれた空間、溝11Bと部材10Aとに囲まれた空間が各々流路(説明の便宜上、それぞれ「流路A」,「流路B」と呼称する)を形成する状態を図示している。混合液は、分岐した後、それぞれの流路に沿って流れる。   The DD ′ cross section shows that the space surrounded by the groove 11A and the member 10B and the space surrounded by the groove 11B and the member 10A are flow paths (for convenience of explanation, “flow path A” and “flow path B, respectively”, respectively. ) Is shown. The mixed liquid flows along the respective flow paths after branching.

E−E’断面は、流路Aと流路Bとが交差する流路の交差点を図示しており、F−F’断面は、流路Aに沿って見た流路Bとの交差点を図示している。流路Aの流れの方向に対して、流路Bの流れの方向が交差しており、この交差点で各々の流路内を流れる液体は、双方共に渦を形成することとなる。混合器10内では、この交差点が多数存在し、混合が促進される。   The EE ′ cross section shows the intersection of the flow path where the flow path A and the flow path B intersect, and the FF ′ cross section shows the intersection with the flow path B viewed along the flow path A. It is shown. The flow direction of the flow path B intersects the flow direction of the flow path A, and both liquids flowing in the flow paths at the intersections form vortices. Within the mixer 10, there are many such intersections to facilitate mixing.

グラジエント分析法では、目的に応じて許容される混合器の容量で最適な混合効果を得る必要がある。本発明に係る混合器においては、容量は刻設される溝の幅、深さ、長さで定まるので、交差点の数を増すことで混合効率を向上させることができる。適当な大きさに納めるためには、部材の面にジグザグ形状の溝を折り返して刻設すればよい。図3(a)は、ジグザグ形状の角度を60度、ピッチを0.8mmとして、混合部を成す第1の部材を描いたものである。図3(b)は、同様にジグザグ形状の溝が刻設された混合部を成す第1の部材を描いたものである。第1の部材と第2の部材の各々溝が刻設された面を接合すると、図3(c)のように一辺が約5mmの正方形大きさで、流路の交差点を40箇所設定することができる。例えば、容量100μLの混合器について、溝幅0.1mm、溝深さ0.1mmとすると、溝の総延長が10m(5mの溝長さ×2つの部材)となるが、上述と同じ条件では作成すると、約10cm四方のサイズとすることが可能となる。ジグザグ形状の条件は一例であり、角度をさらに鋭角にすれば、より高密度に交差点を形成することができ、同等の性能を持つ小さな混合器を得ることができる。   In the gradient analysis method, it is necessary to obtain an optimum mixing effect with an allowable mixer capacity depending on the purpose. In the mixer according to the present invention, the capacity is determined by the width, depth, and length of the groove to be engraved, so that the mixing efficiency can be improved by increasing the number of intersections. In order to fit in an appropriate size, a zigzag groove may be folded and engraved on the surface of the member. FIG. 3 (a) depicts the first member forming the mixing portion with a zigzag angle of 60 degrees and a pitch of 0.8 mm. FIG. 3 (b) depicts the first member that forms the mixing portion in which zigzag grooves are similarly formed. When the surfaces of the first member and the second member on which the grooves are engraved are joined, as shown in FIG. 3 (c), one side has a square size of about 5 mm, and 40 passage intersections are set. Can do. For example, for a mixer with a capacity of 100 μL, if the groove width is 0.1 mm and the groove depth is 0.1 mm, the total length of the groove is 10 m (5 m groove length × 2 members). When created, the size can be about 10 cm square. The condition of the zigzag shape is an example, and if the angle is made more acute, intersections can be formed with higher density, and a small mixer having equivalent performance can be obtained.

混合器の混合効率の比較は、定量的に行なうことが可能である。液体クロマトグラフの場合では、例えば紫外可視分光光度検出器を用いて混合効率を評価することができる。移動相の混合が不十分であると、移動相の組成が送液プログラムに沿って変化するベースラインにうねりが現われる。このうねりは、ノイズ成分よりも長周期的な変動を示すので、判別は容易である。このうねりの大きさで、混合効率の評価が可能である。   Comparison of mixing efficiency of the mixers can be performed quantitatively. In the case of a liquid chromatograph, the mixing efficiency can be evaluated using, for example, an ultraviolet-visible spectrophotometric detector. Insufficient mobile phase mixing will cause undulations in the baseline where the composition of the mobile phase changes along with the delivery program. Since this swell shows a longer period fluctuation than the noise component, it is easy to discriminate. The size of this swell can be used to evaluate the mixing efficiency.

以上、本発明に係る混合器について、部材Aと部材Bが同一形状である場合を例に説明をしてきたが、異なる形状のものでも良い。溝が刻設される面は平面でなくとも良く、円柱状の部材の側面と円筒状の部材の内面のように立体的なものでも可能である。本発明の混合器は、構造上、分岐流路を形成することとなるので、分岐後の各々の流路の流路抵抗を等しく設計し、各々の流路の流量を等しくなるようにするとよい。流路抵抗は、溝の断面積、長さ、流路の形状、流路を形成する部材表面の材質等で定まる。   As described above, the mixer according to the present invention has been described by way of example in which the member A and the member B have the same shape, but may have different shapes. The surface on which the groove is engraved does not have to be a flat surface, and may be three-dimensional, such as the side surface of a columnar member and the inner surface of a cylindrical member. Since the mixer of the present invention forms a branch flow channel in structure, it is preferable that the flow resistance of each flow channel after branching is designed to be equal so that the flow rate of each flow channel is equal. . The channel resistance is determined by the cross-sectional area of the groove, the length, the shape of the channel, the material of the surface of the member forming the channel, and the like.

上記実施例は本発明の単に一例にすぎず、本発明の趣旨の範囲で適宜変更や修正することも可能である。これら変更や修正したものも本発明に包含されることは明らかである   The above embodiment is merely an example of the present invention, and can be appropriately changed or modified within the scope of the gist of the present invention. It is clear that these changes and modifications are also included in the present invention.

液体クロマトグラフでは、時間と共に移動相組成を変化させカラムに送液するグラジエント分析法の移動相混合部、カラムで分離後に試薬を反応させ誘導体化するポストカラム法の反応部として、また、微小液体を反応させるためのマイクロリアクタなど、液体を混合するものに利用することができる。   In liquid chromatographs, the mobile phase mixing part of the gradient analysis method that changes the mobile phase composition over time and sends it to the column, the reaction part of the post column method that reacts and derivatizes the reagent after separation on the column, and the micro liquid It can be used for a mixture of liquids, such as a microreactor for reacting.

本発明に係る混合器の一例を構成を示す図である。It is a figure which shows an example of a mixer which concerns on this invention. 本発明に係る混合器の一例をについて、各部の断面図と流路を流れる液の流れの方向を示す図である。It is a figure which shows the direction of the flow of the liquid which flows through sectional drawing of each part, and a flow path about an example of the mixer which concerns on this invention. 本発明に係る混合器の一例を構成を示す図である。It is a figure which shows an example of a mixer which concerns on this invention. グラジエント分析法を説明するための一般的なクロマトグラフの構成を示す図である。It is a figure which shows the structure of the general chromatograph for demonstrating a gradient analysis method. 従来の混合器を示す図である。It is a figure which shows the conventional mixer.

符号の説明Explanation of symbols

1A,B・・移動相
2A,B・・送液ポンプ
3・・・・・混合器
4・・・・・インジェクタ
5・・・・・カラム
6・・・・・カラムオーブン
7・・・・・検出器
8・・・・・制御・処理装置
10・・・・・混合器
10A,B・・部材
11A,B・・溝
12A,B・・接続部
30・・・・・混合器
31・・・・・流入口
32・・・・・流出口
33・・・・・円盤
34a,b・・溝
35・・・・・貫通孔
1A, B ... Mobile phase 2A, B ... Liquid feed pump 3 ... Mixer 4 ... Injector 5 ... Column 6 ... Column oven 7 ...・ Detector 8 ... Control / Processing device 10 ... Mixer 10A, B ... Material 11A, B ... Groove 12A, B ... Connector 30 ... Mixer 31 ·········· Inlet 32 ········································ 34

Claims (2)

液体流入口から流入する液体を混合する混合部を有する混合器であって、
前記混合部は、第1の部材と第2の部材が接合されてなり、
前記第1の部材及び前記第2の部材には溝が刻設され、
前記第1の部材と前記第2の部材の接合面で各々の溝が第1の流路及び第2の流路を形成し、
前記第1の流路と第2の流路が交差することを特徴とする混合器。
A mixer having a mixing section for mixing the liquid flowing in from the liquid inlet;
The mixing part is formed by joining a first member and a second member,
Grooves are formed in the first member and the second member,
Each groove forms a first flow path and a second flow path at the joint surface of the first member and the second member,
A mixer characterized in that the first flow path and the second flow path intersect.
前記溝は、ジグザグ形状であることを特徴とする請求項1に記載の混合器。   The mixer according to claim 1, wherein the groove has a zigzag shape.
JP2007108819A 2007-04-18 2007-04-18 Mixing apparatus Pending JP2008264640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108819A JP2008264640A (en) 2007-04-18 2007-04-18 Mixing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108819A JP2008264640A (en) 2007-04-18 2007-04-18 Mixing apparatus

Publications (1)

Publication Number Publication Date
JP2008264640A true JP2008264640A (en) 2008-11-06

Family

ID=40044909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108819A Pending JP2008264640A (en) 2007-04-18 2007-04-18 Mixing apparatus

Country Status (1)

Country Link
JP (1) JP2008264640A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158430A1 (en) * 2010-06-16 2011-12-22 株式会社 日立ハイテクノロジーズ Liquid mixing device and liquid chromatograph
DE112011102529T5 (en) 2010-07-29 2013-07-11 Hitachi High-Technologies Corporation Pump for liquid chromatograph and liquid chromatograph
JP2016538115A (en) * 2013-11-25 2016-12-08 エルジー・ケム・リミテッド Fine channel reactor
JP2017116350A (en) * 2015-12-22 2017-06-29 株式会社島津製作所 Passage mechanism and liquid chromatograph with the same
WO2019229819A1 (en) * 2018-05-28 2019-12-05 株式会社島津製作所 Automatic sample introduction device, chromatograph, automatic sample introduction method, and analysis method
JP2021056174A (en) * 2019-10-02 2021-04-08 アークレイ株式会社 Liquid chromatography analysis system
US11377737B2 (en) 2016-06-01 2022-07-05 Asm Ip Holding B.V. Manifolds for uniform vapor deposition
US11492701B2 (en) 2019-03-19 2022-11-08 Asm Ip Holding B.V. Reactor manifolds
US11830731B2 (en) 2019-10-22 2023-11-28 Asm Ip Holding B.V. Semiconductor deposition reactor manifolds

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158430A1 (en) * 2010-06-16 2011-12-22 株式会社 日立ハイテクノロジーズ Liquid mixing device and liquid chromatograph
JP5753846B2 (en) * 2010-06-16 2015-07-22 株式会社日立ハイテクノロジーズ Liquid mixing device and liquid chromatograph
US9128071B2 (en) 2010-06-16 2015-09-08 Hitachi High-Technologies Corporation Liquid mixing device and liquid chromatograph
DE112011102529T5 (en) 2010-07-29 2013-07-11 Hitachi High-Technologies Corporation Pump for liquid chromatograph and liquid chromatograph
DE112011102529B4 (en) * 2010-07-29 2016-06-09 Hitachi High-Technologies Corporation Pump for liquid chromatograph and liquid chromatograph
US9410543B2 (en) 2010-07-29 2016-08-09 Hitachi High-Technologies Corporation Pump for liquid chromatograph, and liquid chromatograph
US10232338B2 (en) 2013-11-25 2019-03-19 Lg Chem, Ltd. Micro-channel reactor
JP2016538115A (en) * 2013-11-25 2016-12-08 エルジー・ケム・リミテッド Fine channel reactor
JP2017116350A (en) * 2015-12-22 2017-06-29 株式会社島津製作所 Passage mechanism and liquid chromatograph with the same
US11377737B2 (en) 2016-06-01 2022-07-05 Asm Ip Holding B.V. Manifolds for uniform vapor deposition
WO2019229819A1 (en) * 2018-05-28 2019-12-05 株式会社島津製作所 Automatic sample introduction device, chromatograph, automatic sample introduction method, and analysis method
JPWO2019229819A1 (en) * 2018-05-28 2021-05-13 株式会社島津製作所 Automatic sample introduction device, chromatograph, automatic sample introduction method and analysis method
JP7151763B2 (en) 2018-05-28 2022-10-12 株式会社島津製作所 Automatic sample introduction device, chromatograph, automatic sample introduction method and analysis method
US11492701B2 (en) 2019-03-19 2022-11-08 Asm Ip Holding B.V. Reactor manifolds
JP2021056174A (en) * 2019-10-02 2021-04-08 アークレイ株式会社 Liquid chromatography analysis system
JP7262360B2 (en) 2019-10-02 2023-04-21 アークレイ株式会社 Liquid chromatography analysis system
US11830731B2 (en) 2019-10-22 2023-11-28 Asm Ip Holding B.V. Semiconductor deposition reactor manifolds

Similar Documents

Publication Publication Date Title
JP2008264640A (en) Mixing apparatus
Sarkar et al. Numerical simulation of mixing at 1–1 and 1–2 microfluidic junctions
JP3794687B2 (en) Micro emulsifier
JP4677969B2 (en) Microreactor
Ianovska et al. Development of small-volume, microfluidic chaotic mixers for future application in two-dimensional liquid chromatography
Jani et al. Geometrical influence on mixing in helical porous membrane microcontactors
US20100067323A1 (en) Micromixing Chamber, Micromixer Comprising a Plurality of Such Micromixing Chambers, Methods for Manufacturing Thereof, and Methods for Mixing
JP4958216B2 (en) Extraction method using static micromixer
JPH0446174B2 (en)
US20060034735A1 (en) Microreactor
JP2008086889A (en) Fluid mixing method, micro-device and its fabricating method
Viktorov et al. Design and characterization of a new HC passive micromixer up to Reynolds number 100
Li et al. A 3-D overbridge-shaped micromixer for fast mixing over a wide range of reynolds numbers
Tan et al. Microfluidic mixing in a Y-junction open channel
US20070177458A1 (en) Method for mixing fluid streams, microfluidic mixer and microfluidic chip utilizing same
Zheng et al. Bubble generation rules in microfluidic devices with microsieve array as dispersion medium
JP2012076034A (en) Flow path structure
KR20210138905A (en) Static mixer with easy to manufacture and install elements
JP2008246283A (en) Collision type micromixer
US20110194995A1 (en) Microfluid device
KR102114778B1 (en) Micromixer
JP2007069137A (en) Micro chemical reaction device
Tokihiro et al. Enhanced capillary pumping using open-channel capillary trees with integrated paper pads
JP6115930B2 (en) Multi-stage split channel mixer
JP4298671B2 (en) Micro device