JP2014101483A - Rubber-metal complex, tire obtained by using the same, and method of determining vulcanizing time - Google Patents

Rubber-metal complex, tire obtained by using the same, and method of determining vulcanizing time Download PDF

Info

Publication number
JP2014101483A
JP2014101483A JP2012256367A JP2012256367A JP2014101483A JP 2014101483 A JP2014101483 A JP 2014101483A JP 2012256367 A JP2012256367 A JP 2012256367A JP 2012256367 A JP2012256367 A JP 2012256367A JP 2014101483 A JP2014101483 A JP 2014101483A
Authority
JP
Japan
Prior art keywords
rubber
metal
peak area
rubber composition
binding energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012256367A
Other languages
Japanese (ja)
Other versions
JP6142513B2 (en
Inventor
Takashi Shikakubo
隆志 鹿久保
Katsunori Shimizu
克典 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2012256367A priority Critical patent/JP6142513B2/en
Publication of JP2014101483A publication Critical patent/JP2014101483A/en
Application granted granted Critical
Publication of JP6142513B2 publication Critical patent/JP6142513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ropes Or Cables (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rubber-metal complex, in which rubber is stuck firmly to a metal, a tire obtained by using the rubber-metal complex, and a method of determining a vulcanizing time in order to obtain such a state that the rubber is stuck firmly to the metal.SOLUTION: A rubber-metal complex comprises a rubber composition containing diene rubber, and the metal. The surface of the metal at the interface between the rubber composition and the metal is measured by an X-ray photoelectron spectroscopy method. When a relationship between the total peak area of S2p at 160-166 eV bond energy and the peak area A of S2p at 163-164 eV bond energy which is at the center peak of the chain sulfur satisfies the inequality (1): (the peak area (A)/the total peak area)≥0.35, the vulcanizing time is the optimum vulcanizing time. When the optimum vulcanizing time is adopted, the rubber-metal complex can be obtained.

Description

本発明は、ゴム−金属複合体、これを用いたタイヤおよび加硫時間決定方法に関するものであり、詳しくは、ゴムおよび金属間が強固に接着されているゴム−金属複合体、これを用いたタイヤ並びにゴムおよび金属間の強固な接着状態を得るための加硫時間を決定する方法に関するものである。   The present invention relates to a rubber-metal composite, a tire using the same, and a vulcanization time determination method, and more specifically, a rubber-metal composite in which a rubber and a metal are firmly bonded to each other. The present invention relates to a method for determining a vulcanization time for obtaining a strong adhesion state between a tire and rubber and metal.

自動車用タイヤには強い衝撃や大きな荷重がかかるため、補強材として金属コードが用いられている。このような金属コードを被覆するゴムは、タイヤの信頼性および耐久性の観点から、金属コードと強固に接着させる必要がある。
従来、スチールコードとゴムとの接着性を改良するためには、ゴム中に有機酸コバルト塩を配合することが一般的である(例えば特許文献1等参照)。
しかしながら従来技術を単に適用しただけでは、現在高いレベルで求められているタイヤの信頼性および耐久性を満たす程度まで、ゴムおよび金属間を強固に接着させることが困難である。
一方、金属コードを被覆するゴムの加硫時間により、両者間の接着強度が変化することは知られているが、その加硫時間をコントロールして、ゴムおよび金属間の強固な接着状態を得ようとする試みは現在のところ成功していない。
A metal cord is used as a reinforcing material because a strong impact or a large load is applied to an automobile tire. The rubber covering the metal cord needs to be firmly bonded to the metal cord from the viewpoint of tire reliability and durability.
Conventionally, in order to improve the adhesion between the steel cord and the rubber, it is common to blend an organic acid cobalt salt in the rubber (see, for example, Patent Document 1).
However, simply applying the prior art makes it difficult to firmly bond rubber and metal to the extent that the tire reliability and durability currently required at a high level are satisfied.
On the other hand, it is known that the adhesive strength between the two changes depending on the vulcanization time of the rubber covering the metal cord, but the vulcanization time is controlled to obtain a strong adhesion state between the rubber and the metal. Attempts to do so have not been successful so far.

特開平5−65370号公報Japanese Patent Laid-Open No. 5-65370

したがって本発明の目的は、ゴムおよび金属間が強固に接着されているゴム−金属複合体、これを用いたタイヤ並びにゴムおよび金属間の強固な接着状態を得るための加硫時間を決定する方法を提供することにある。   Accordingly, an object of the present invention is to provide a rubber-metal composite in which rubber and metal are firmly bonded, a tire using the same, and a method for determining a vulcanization time for obtaining a strong bonded state between rubber and metal. Is to provide.

本発明者らは鋭意研究を重ねた結果、ゴム−金属複合体のゴム−金属界面における金属表面をX線光電子分光法(XPS)により測定したとき、結合エネルギー160〜166eVのS2pのピーク面積全体Tに対して、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aが特定の比率である場合に、ゴムおよび金属間の強固な接着状態が得られることを見出し、本発明を完成することができた。
すなわち本発明は以下のとおりである。
1. ジエン系ゴムを含むゴム組成物と金属とからなり、前記ゴム組成物と前記金属とが前記ゴム組成物の加硫により接着してなるゴム−金属複合体であって、
前記ゴム組成物と前記金属との界面における前記金属表面をX線光電子分光法により測定したとき、結合エネルギー160〜166eVのS2pのピーク面積全体Tと、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aとの関係が、下記式(1)を満たすことを特徴とするゴム−金属複合体。
前記面積A/前記ピーク面積全体T ≧ 0.35 (1)
2.前記結合エネルギー160〜166eVのS2pのピーク面積全体Tと、前記連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aとの関係が、下記式(2)を満たすことを特徴とする前記1に記載のゴム−金属複合体。
前記面積A/前記ピーク面積全体T ≧ 0.42 (2)
3.前記金属が、真鍮、亜鉛または銅であることを特徴とする前記1または2に記載のゴム−金属複合体。
4.前記金属が、真鍮をめっきしたスチールワイヤであることを特徴とする前記3に記載のゴム−金属複合体。
5.前記ゴム組成物が、前記ジエン系ゴム100質量部に対し、カーボンブラックを30〜80質量部の割合で含むことを特徴とする前記1〜3のいずれかに記載のゴム−金属複合体。
6.前記1〜5のいずれかに記載のゴム−金属複合体を使用してなるタイヤ。
7.ジエン系ゴムを含むゴム組成物と金属とからなるとともに前記ゴム組成物と前記金属とが前記ゴム組成物の加硫により接着してなるゴム−金属複合体における、前記ゴム組成物の加硫時間を決定する方法であって、
前記ゴム組成物と前記金属との界面における前記金属表面をX線光電子分光法により測定したとき、結合エネルギー160〜166eVのS2pのピーク面積全体と、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aとの関係が、下記式(1)を満たす加硫時間を、前記ゴム組成物の加硫時間と定めることを特徴とする加硫時間決定方法。
前記面積A/前記ピーク面積全体T ≧ 0.35 (1)
8.前記結合エネルギー160〜166eVのS2pのピーク面積全体Tと、前記連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aとの関係が、下記式(2)を満たすことを特徴とする前記7に記載の加硫時間決定方法。
前記面積A/前記ピーク面積全体T ≧ 0.42 (2)
As a result of intensive studies, the present inventors have determined that the entire S2p peak area having a binding energy of 160 to 166 eV when the metal surface at the rubber-metal interface of the rubber-metal composite is measured by X-ray photoelectron spectroscopy (XPS). The present invention was completed by finding that a strong adhesion state between rubber and metal can be obtained when the peak area A of the binding energy 163 to 164 eV, which is the central peak of chain sulfur, is a specific ratio with respect to T. We were able to.
That is, the present invention is as follows.
1. A rubber-metal composite comprising a rubber composition containing a diene rubber and a metal, wherein the rubber composition and the metal are bonded by vulcanization of the rubber composition,
When the metal surface at the interface between the rubber composition and the metal is measured by X-ray photoelectron spectroscopy, the entire peak area T of S2p having a binding energy of 160 to 166 eV and a binding energy of 163 to 163 are the central peak of chain sulfur. A rubber-metal composite, wherein the relationship with the peak area A of 164 eV satisfies the following formula (1).
The area A / the whole peak area T ≧ 0.35 (1)
2. The relationship between the total peak area T of S2p having the binding energy of 160 to 166 eV and the peak area A of the binding energy of 163 to 164 eV, which is the central peak of the chain sulfur, satisfies the following formula (2): 2. The rubber-metal composite according to 1.
The area A / the entire peak area T ≧ 0.42 (2)
3. 3. The rubber-metal composite as described in 1 or 2 above, wherein the metal is brass, zinc or copper.
4). 4. The rubber-metal composite as described in 3 above, wherein the metal is a steel wire plated with brass.
5. 4. The rubber-metal composite as described in any one of 1 to 3 above, wherein the rubber composition contains 30 to 80 parts by mass of carbon black with respect to 100 parts by mass of the diene rubber.
6). A tire comprising the rubber-metal composite according to any one of 1 to 5 above.
7). Vulcanization time of the rubber composition in a rubber-metal composite comprising a rubber composition containing a diene rubber and a metal, and the rubber composition and the metal bonded together by vulcanization of the rubber composition A method of determining
When the metal surface at the interface between the rubber composition and the metal is measured by X-ray photoelectron spectroscopy, the entire peak area of S2p with a binding energy of 160 to 166 eV and a binding energy of 163 to 164 eV, which is the central peak of chain sulfur. A vulcanization time determination method characterized in that a vulcanization time satisfying the following formula (1) with respect to the peak area A of the rubber composition is determined as a vulcanization time of the rubber composition.
The area A / the whole peak area T ≧ 0.35 (1)
8). The relationship between the total peak area T of S2p having the binding energy of 160 to 166 eV and the peak area A of the binding energy of 163 to 164 eV, which is the central peak of the chain sulfur, satisfies the following formula (2): 8. The vulcanization time determination method according to 7.
The area A / the entire peak area T ≧ 0.42 (2)

本発明のゴム−金属複合体は、ゴム−金属界面における金属表面をX線光電子分光法(XPS)により測定したとき、結合エネルギー160〜166eVのS2pのピーク面積全体Tに対して、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aが特定の比率であるので、ゴムおよび金属間の強固な接着状態が得られる。
該ゴム−金属複合体を使用したタイヤは、ゴム−金属複合体におけるゴムおよび金属間の強固な接着状態が得られているので、信頼性および耐久性を高いレベルで満足することができる。
また本発明の加硫時間決定方法によれば、ゴムおよび金属間の強固な接着状態が得られる最適な加硫時間を決定することができるので、加硫時間をコントロールするという簡単な手段によって、ゴムおよび金属間が強固に接着したゴム−金属複合体を得ることができる。
The rubber-metal composite of the present invention has a chain sulfur content with respect to the entire peak area T of S2p having a binding energy of 160 to 166 eV when the metal surface at the rubber-metal interface is measured by X-ray photoelectron spectroscopy (XPS). Since the peak area A of the binding energy 163 to 164 eV which is the central peak is a specific ratio, a strong adhesion state between the rubber and the metal can be obtained.
In the tire using the rubber-metal composite, a strong adhesion state between the rubber and the metal in the rubber-metal composite is obtained, so that reliability and durability can be satisfied at a high level.
Further, according to the vulcanization time determination method of the present invention, it is possible to determine the optimal vulcanization time for obtaining a strong adhesion state between the rubber and the metal, and therefore, by a simple means of controlling the vulcanization time, A rubber-metal composite in which rubber and metal are firmly bonded can be obtained.

ゴム組成物と金属との界面における金属表面をX線光電子分光法(XPS)により測定する具体的な方法について説明するための図である。It is a figure for demonstrating the specific method of measuring the metal surface in the interface of a rubber composition and a metal by a X ray photoelectron spectroscopy (XPS).

以下、本発明をさらに詳細に説明する。
まず、本発明で使用されるゴム組成物について説明する。
Hereinafter, the present invention will be described in more detail.
First, the rubber composition used in the present invention will be described.

(ジエン系ゴム)
本発明で使用されるジエン系ゴムは、ゴム組成物に配合することができる任意のゴムを用いることができ、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、アクリロニトリル−ブタジエン共重合体ゴム(NBR)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。また、その分子量やミクロ構造はとくに制限されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基等で末端変性されていても、エポキシ化されていてもよい。
(Diene rubber)
As the diene rubber used in the present invention, any rubber that can be blended in the rubber composition can be used. For example, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene -Butadiene copolymer rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), etc. are mentioned. These may be used alone or in combination of two or more. The molecular weight and microstructure are not particularly limited, and may be terminally modified with an amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl group or the like, or may be epoxidized.

本発明におけるゴム組成物は、ジエン系ゴム100質量部に対し、カーボンブラックを30〜80質量部配合するのが好ましく、50〜70質量部配合するのがさらに好ましい。カーボンブラックをこの範囲で使用することにより、ゴムおよび接着の補強という点で効果がある。また、カーボンブラックの窒素吸着比表面積(NSA)は例えば70〜110m/gの範囲が好ましい。なお、窒素吸着比表面積(NSA)はJIS K6217−2に準拠して求めた値である。 The rubber composition in the present invention preferably contains 30 to 80 parts by mass, more preferably 50 to 70 parts by mass of carbon black with respect to 100 parts by mass of the diene rubber. Use of carbon black in this range is effective in terms of reinforcing rubber and adhesion. The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably in the range of 70 to 110 m 2 / g, for example. The nitrogen adsorption specific surface area (N 2 SA) is a value determined in accordance with JIS K6217-2.

また本発明では、ゴムおよび金属間の強固な接着状態を得るため、有機酸コバルト塩を配合するのが好ましい。有機酸コバルト塩としては、例えばナフテン酸コバルト、ネオデカン酸コバルト、ステアリン酸コバルト、ロジン酸コバルト、バーサチック酸コバルト、トール油酸コバルト、ホウ酸ネオデカン酸コバルト、アセチルアセトナートコバルト等を例示することができる。また、ホウ素を含む有機酸コバルト塩、例えばオルトホウ酸コバルト等も使用できる。有機酸コバルト塩は、ジエン系ゴム100質量部に対し、例えば0.1〜10質量部の範囲で使用できる。   Moreover, in this invention, in order to obtain the strong adhesion state between rubber | gum and a metal, it is preferable to mix | blend organic acid cobalt salt. Examples of the organic acid cobalt salt include cobalt naphthenate, cobalt neodecanoate, cobalt stearate, cobalt rosinate, cobalt versatate, cobalt tall oil, cobalt borate neodecanoate, cobalt acetylacetonate and the like. . Also, organic acid cobalt salts containing boron, such as cobalt orthoborate, can be used. The organic acid cobalt salt can be used in the range of, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the diene rubber.

また本発明では、ゴムの硬度を上げるために、ノボラック型フェノール系樹脂および硬化剤を配合することもできる。本発明で使用するノボラック型フェノール系樹脂は、本発明の効果およびゴム中への分散性という観点から、ノボラック型フェノール系樹脂が、ノボラック型フェノール樹脂、ノボラック型クレゾール樹脂、ノボラック型レゾルシン樹脂のいずれかあるいはそれらの混合物であることが好ましい。また、オイル変性フェノール樹脂としてカシュー変性フェノール樹脂も好ましく使用できる。硬化剤としては、ノボラック型フェノール系樹脂を硬化可能なものであればよく、とくに制限されないが、例えばヘキサメチレンテトラミン、HMMM(ヘキサメトキシメチロールメラミンの部分縮合物)、PMMM(ヘキサメチロールメラミンペンタメチルエーテルの部分縮合物)、ヘキサエトキシメチルメラミン、パラ−ホルムアルデヒドのポリマー、メラミンのN−メチロール誘導体等が挙げられる。
ジエン系ゴム100質量部に対し、ノボラック型フェノール系樹脂は例えば0.1〜20質量部、硬化剤は例えば0.1〜20質量部の範囲で使用できる。
Moreover, in this invention, in order to raise the hardness of rubber | gum, a novolak type phenol resin and a hardening | curing agent can also be mix | blended. From the viewpoint of the effects of the present invention and the dispersibility in rubber, the novolak type phenolic resin used in the present invention is any of novolak type phenolic resin, novolac type cresol resin, novolac type resorcin resin. Or a mixture thereof. A cashew-modified phenol resin can also be preferably used as the oil-modified phenol resin. The curing agent is not particularly limited as long as it can cure the novolac type phenolic resin. For example, hexamethylenetetramine, HMMM (partial condensate of hexamethoxymethylolmelamine), PMMM (hexamethylolmelamine pentamethyl ether). A partial condensate), hexaethoxymethylmelamine, a polymer of para-formaldehyde, an N-methylol derivative of melamine, and the like.
The novolak type phenol resin can be used in the range of 0.1 to 20 parts by mass, and the curing agent can be used in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the diene rubber.

また本発明におけるゴム組成物は、各種充填剤、例えばシリカ、クレー、タルク、炭酸カルシウム等の無機充填剤を配合することができる。また、加硫又は架橋剤、加硫又は架橋促進剤、各種充填剤、各種オイル、老化防止剤、可塑剤等のゴム組成物に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。なお、加硫剤としては硫黄を使用し、その使用量はジエン系ゴム100質量部に対し、3〜10質量部が好ましい。   The rubber composition in the present invention may contain various fillers such as silica, clay, talc, calcium carbonate and the like. In addition, various additives generally blended in rubber compositions such as vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, various fillers, various oils, anti-aging agents, and plasticizers can be blended. Such an additive can be kneaded by a general method to form a composition, which can be used for vulcanization or crosslinking. The blending amounts of these additives can be set to conventional general blending amounts as long as the object of the present invention is not violated. In addition, sulfur is used as the vulcanizing agent, and the amount used is preferably 3 to 10 parts by mass with respect to 100 parts by mass of the diene rubber.

本発明に使用される金属としては、例えば真鍮、亜鉛、銅等が挙げられる。本発明のゴム−金属複合体をタイヤ用途に使用する場合、該金属が真鍮をめっきしたスチールワイヤであるときに、ゴムおよび金属間の強固な接着状態を得ることができ、とくに好ましい。また本発明のゴム−金属複合体をタイヤ用途に使用する場合、本発明のゴム−金属複合体は、例えばアンダートレッドに埋設されるベルト、カーカス、ビード等に有利に使用できる。
本発明のゴム−金属複合体を調製する方法は、例えば前記の各種成分をバンバリーミキサーやロールミキサーなどの汎用の混合機を用いて混合しゴム組成物を調製し、これに金属コードを埋設させ、常法にしたがって加硫すればよい。なお加硫時間の決定方法は下記で説明する。
Examples of the metal used in the present invention include brass, zinc, copper and the like. When the rubber-metal composite of the present invention is used for a tire application, when the metal is a steel wire plated with brass, a strong adhesion state between the rubber and the metal can be obtained, which is particularly preferable. When the rubber-metal composite of the present invention is used for tires, the rubber-metal composite of the present invention can be advantageously used for, for example, a belt, a carcass, a bead or the like embedded in an under tread.
The method for preparing the rubber-metal composite of the present invention includes, for example, mixing the above-mentioned various components using a general-purpose mixer such as a Banbury mixer or a roll mixer to prepare a rubber composition, and embedding a metal cord in the rubber composition. Vulcanization may be performed according to a conventional method. The method for determining the vulcanization time will be described below.

本発明のゴム−金属複合体は、前記ゴム組成物と前記金属との界面における前記金属表面をX線光電子分光法により測定したとき、結合エネルギー160〜166eVのS2pのピーク面積全体Tと、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aとの関係が、下記式(1)を満たすことを特徴とする。
前記面積A/前記ピーク面積全体T ≧ 0.35 (1)
When the metal surface at the interface between the rubber composition and the metal is measured by X-ray photoelectron spectroscopy, the rubber-metal composite of the present invention has an entire peak area T of S2p having a binding energy of 160 to 166 eV, The relationship with the peak area A of the binding energy 163 to 164 eV which is the central peak of sulfur satisfies the following formula (1).
The area A / the whole peak area T ≧ 0.35 (1)

本発明者は検討を重ねた結果、金属表面に存在する連鎖硫黄が、ある一定値以上となる場合、ゴムおよび金属間の強固な接着状態が得られるという新たな知見を見出した。ここで連鎖硫黄とは、−Sn−(nは2〜8である)で表されるポリスルフィドである。原料硫黄は一般的に8個の硫黄原子が連なって環状構造を形成している。ゴム組成物の加硫により原料硫黄のS−S結合が切断され、前記のような金属表面に存在する連鎖硫黄が出現する。この連鎖硫黄が金属表面にどの程度存在するのか、をX線光電子分光法(XPS)により測定する。
本発明において、X線光電子分光法(XPS)は、周知のX線光電子分光装置を用い、例えば励起X線165〜1500eV、好ましくは200〜1250eVとし、結合エネルギー160〜166eVのS2pのピーク面積全体Tと、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aを求める。ピーク面積全体Tとピーク面積Aとの関係が上記式(1)を満たす場合、ゴムおよび金属間の強固な接着状態が得られる。なお、ピーク面積全体Tおよびピーク面積Aは、公知の演算装置により容易に算出可能である。
As a result of repeated studies, the present inventor has found a new finding that when the chain sulfur existing on the metal surface exceeds a certain value, a strong adhesion state between the rubber and the metal can be obtained. Here, the chain sulfur is a polysulfide represented by -Sn- (n is 2 to 8). The raw material sulfur generally forms a cyclic structure in which eight sulfur atoms are linked. By vulcanization of the rubber composition, the S—S bond of the raw material sulfur is cut, and chain sulfur existing on the metal surface as described above appears. The extent to which this chain sulfur is present on the metal surface is measured by X-ray photoelectron spectroscopy (XPS).
In the present invention, X-ray photoelectron spectroscopy (XPS) is performed using a well-known X-ray photoelectron spectrometer, for example, excitation X-rays of 165 to 1500 eV, preferably 200 to 1250 eV, and the entire peak area of S2p having a binding energy of 160 to 166 eV. T and the peak area A of the binding energy 163 to 164 eV, which is the central peak of chain sulfur, are determined. When the relationship between the entire peak area T and the peak area A satisfies the above formula (1), a strong adhesion state between the rubber and the metal is obtained. The total peak area T and the peak area A can be easily calculated by a known arithmetic device.

次に、図1を参照しながら、ゴム組成物と金属との界面における金属表面をX線光電子分光法(XPS)により測定する具体的な方法について説明する。
図1に示すように、まず、ゴム組成物から調製した試験シート12、14、金属板22を用意する。試験シート12、14の金属板22側にろ紙32、34を設置し、金属板22を、ろ紙32、34介して試験シート12、14でサンドイッチする。得られた積層体を所定の加硫温度で加硫し、X線光電子分光分析の直前に、金属板22から試験シート12、14とろ紙32、34とを分離する。ろ紙32、34の存在により、金属板22から試験シート12、14は容易に分離可能となる。
続いて、金属板22の表面に対し、上記のような条件でX線光電子分光分析を行い、上記のピーク面積全体Tとピーク面積Aとの関係を求める。
また、加硫時間を種々変更すること以外は、同一条件でX線光電子分光分析を行い、上記のピーク面積全体Tとピーク面積Aとの関係を求める。
このような方法により得られるX線光電子分光法(XPS)では、結合エネルギー160〜166eVのS2pのX線光電子分光スペクトルを明確に得ることができ、加硫時間の変化により、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピークの増減が把握できる。
続いて、ピーク面積全体Tとピーク面積Aとの関係が上記式(1)を満たす加硫時間を、ゴムおよび金属間の強固な接着状態が得られる最適加硫時間と判断する。面積A/前記ピーク面積全体Tが0.42以上である場合、とくに強固な接着状態を得ることができる。
Next, a specific method for measuring the metal surface at the interface between the rubber composition and the metal by X-ray photoelectron spectroscopy (XPS) will be described with reference to FIG.
As shown in FIG. 1, first, test sheets 12 and 14 and a metal plate 22 prepared from a rubber composition are prepared. Filter papers 32 and 34 are installed on the metal plate 22 side of the test sheets 12 and 14, and the metal plate 22 is sandwiched between the test sheets 12 and 14 through the filter papers 32 and 34. The obtained laminate is vulcanized at a predetermined vulcanization temperature, and the test sheets 12 and 14 and the filter papers 32 and 34 are separated from the metal plate 22 immediately before the X-ray photoelectron spectroscopic analysis. Due to the presence of the filter papers 32 and 34, the test sheets 12 and 14 can be easily separated from the metal plate 22.
Subsequently, the surface of the metal plate 22 is subjected to X-ray photoelectron spectroscopic analysis under the above conditions, and the relationship between the entire peak area T and the peak area A is obtained.
Further, except that various vulcanization times are changed, X-ray photoelectron spectroscopic analysis is performed under the same conditions, and the relationship between the entire peak area T and the peak area A is obtained.
In the X-ray photoelectron spectroscopy (XPS) obtained by such a method, an X-ray photoelectron spectrum of S2p having a binding energy of 160 to 166 eV can be clearly obtained. The increase or decrease of the peak of the binding energy 163 to 164 eV can be grasped.
Subsequently, the vulcanization time in which the relationship between the entire peak area T and the peak area A satisfies the above formula (1) is determined as the optimum vulcanization time for obtaining a strong adhesion state between the rubber and the metal. When the area A / the whole peak area T is 0.42 or more, a particularly strong adhesion state can be obtained.

上記で得られた最適加硫時間は、次のように適用する。
上記のX線光電子分光分析に用いたものと同じゴム組成物を、ゴム−金属複合体におけるゴム組成物として用いる。逆に言えば、ゴム−金属複合体に使用すべきゴム組成物を、上記のX線光電子分光分析に使用する。
上記のX線光電子分光分析により得られた最適加硫時間を、ゴム−金属複合体の調製時の加硫時間として採用する。
これにより、金属表面に連鎖硫黄が多く存在することになり、ゴムおよび金属間の強固な接着状態を得ることができる。
なお上記ではゴム組成物から調製した試験シート、金属板およびろ紙を用いた試験方法を例示したが、これとは別に、加硫時間を種々変更して実際のゴム−金属複合体を調製し、そこから金属のみを分離して、その表面をX線光電子分光分析し、上記のピーク面積全体Tとピーク面積Aとの関係を求め、最適加硫時間を決定してもよい。
The optimum vulcanization time obtained above is applied as follows.
The same rubber composition as that used for the X-ray photoelectron spectroscopy is used as the rubber composition in the rubber-metal composite. In other words, the rubber composition to be used for the rubber-metal composite is used for the X-ray photoelectron spectroscopic analysis.
The optimum vulcanization time obtained by the above X-ray photoelectron spectroscopic analysis is adopted as the vulcanization time when preparing the rubber-metal composite.
Thereby, a lot of chain sulfur exists on the metal surface, and a strong adhesion state between the rubber and the metal can be obtained.
In addition, although the test method using the test sheet, the metal plate, and the filter paper prepared from the rubber composition was exemplified above, separately, an actual rubber-metal composite was prepared by variously changing the vulcanization time, Only the metal may be separated therefrom, the surface thereof may be subjected to X-ray photoelectron spectroscopy analysis, the relationship between the above peak area T and the peak area A may be obtained, and the optimum vulcanization time may be determined.

以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, this invention is not restrict | limited to the following example.

実施例1〜5および比較例1〜7
(ゴム組成物の調製)
表1に示す配合(質量部)において、加硫系(加硫促進剤、硫黄)を除く成分を1.7リットルの密閉式バンバリーミキサーで5分間混練した後、ミキサー外に放出させて室温冷却した。続いて、該組成物を同バンバリーミキサーに再度入れ、加硫系を加えて混練し、ゴム組成物を得た。
Examples 1-5 and Comparative Examples 1-7
(Preparation of rubber composition)
In the composition (parts by mass) shown in Table 1, the components excluding the vulcanization system (vulcanization accelerator, sulfur) were kneaded for 5 minutes with a 1.7 liter closed Banbury mixer, then discharged outside the mixer and cooled to room temperature. did. Subsequently, the composition was put into the Banbury mixer again, and a vulcanization system was added and kneaded to obtain a rubber composition.

(X線光電子分光分析)
図1に示すように、まず、ゴム組成物を用いて厚さ2mmのシートを調製し、試験シート12、14とした。これとは別に金属板22を用意した。金属板22は、厚さ1.5mmのCu/Zn比=65/35の真鍮板((株)ニラコ製)である。試験シート12、14の金属板22側にろ紙(No.1)32、34を設置し、金属板22を、ろ紙32、34介して試験シート12、14でサンドイッチした。得られた積層体を170℃で種々の加硫時間で加硫し、X線光電子分光分析の直前に、金属板22から試験シート12、14とろ紙32、34とを分離した。続いて、金属板22の表面に対し、1060eVの励起X線を照射し、結合エネルギー160〜166eVのS2pのピーク面積全体Tと、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aを求め、両者の比を算出した。なお、X線光電子分光分析装置は、高エネルギー加速器研究機構のBL−13を使用し、積層体の作成方法は穂高武,石川泰弘,森邦夫:日本ゴム協会誌,77,79(2004)を参考にした。
(X-ray photoelectron spectroscopy)
As shown in FIG. 1, first, a sheet having a thickness of 2 mm was prepared using the rubber composition, and used as test sheets 12 and 14. Separately, a metal plate 22 was prepared. The metal plate 22 is a brass plate (manufactured by Niraco Co., Ltd.) having a thickness of 1.5 mm and a Cu / Zn ratio = 65/35. Filter papers (No. 1) 32 and 34 were placed on the metal plate 22 side of the test sheets 12 and 14, and the metal plate 22 was sandwiched between the test sheets 12 and 14 through the filter papers 32 and 34. The obtained laminate was vulcanized at 170 ° C. for various vulcanization times, and the test sheets 12 and 14 and the filter papers 32 and 34 were separated from the metal plate 22 immediately before the X-ray photoelectron spectroscopic analysis. Subsequently, the surface of the metal plate 22 is irradiated with excitation X-rays of 1060 eV, the entire peak area T of S2p having a binding energy of 160 to 166 eV, and the peak area A having a binding energy of 163 to 164 eV, which is the central peak of chain sulfur. And the ratio between the two was calculated. The X-ray photoelectron spectrometer uses BL-13 of the High Energy Accelerator Research Organization, and the method of making the laminate is Takeshi Hotaka, Yasuhiro Ishikawa, Kunio Mori: Journal of the Japan Rubber Association, 77, 79 (2004). It was helpful.

(ゴム−金属複合体におけるゴムおよび金属間の接着状態の評価)
ASTM D1871に準拠し、上記のゴム組成物およびブラスメッキワイヤーを用いて接着引抜力を測定した。加硫時間は、上記のX線光電子分光分析で採用した種々の加硫時間と同じにした。
結果を表1に併せて示す。
(Evaluation of adhesion between rubber and metal in rubber-metal composite)
In accordance with ASTM D1871, the adhesion pulling force was measured using the above rubber composition and brass plating wire. The vulcanization time was the same as the various vulcanization times employed in the above X-ray photoelectron spectroscopy analysis.
The results are also shown in Table 1.

Figure 2014101483
Figure 2014101483

*1:NR(RSS#3)
*2:カーボンブラック(東海カーボン(株)製シーストKH、NSA=93m/g)
*3:酸化亜鉛(正同化学工業(株)製酸化亜鉛3種)
*4:老化防止剤(フレキシス社製サントフレックス6PPD)
*5:ステアリン酸コバルト(DIC社製)
*6:硫黄(アクゾノーベル(株)製クリステックスHS OT 20)
*7:加硫促進剤(大内新興化学工業(株)製ノクセラーDZ)
* 1: NR (RSS # 3)
* 2: Carbon black (Toast Carbon Co., Ltd. Seast KH, N 2 SA = 93 m 2 / g)
* 3: Zinc oxide (3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd.)
* 4: Anti-aging agent (Santflex 6PPD manufactured by Flexis)
* 5: Cobalt stearate (manufactured by DIC)
* 6: Sulfur (Akzo Nobel Kristex HS OT 20)
* 7: Vulcanizing accelerator (Ouchi Shinsei Chemical Co., Ltd. Noxeller DZ)

上記の表1から明らかなように、実施例1〜5で調製されたゴム−金属複合体は、ゴム−金属界面における金属表面をX線光電子分光法(XPS)により測定したとき、結合エネルギー160〜166eVのS2pのピーク面積全体Tに対して、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aが特定の比率を満たす最適加硫時間を採用しているので、これを満たさない各比較例に対し、接着引抜力が高く、ゴムおよび金属間の強固な接着状態が得られていることが分かる。   As is clear from Table 1 above, the rubber-metal composites prepared in Examples 1 to 5 have a binding energy of 160 when the metal surface at the rubber-metal interface was measured by X-ray photoelectron spectroscopy (XPS). Since the peak area A of the binding energy 163 to 164 eV, which is the central peak of the chain sulfur, is employed for the entire peak area T of S2p of ˜166 eV, the optimum vulcanization time satisfying a specific ratio is adopted, so this is not satisfied It can be seen that, for each comparative example, the adhesion pulling force is high, and a strong adhesion state between the rubber and the metal is obtained.

Claims (8)

ジエン系ゴムを含むゴム組成物と金属とからなり、前記ゴム組成物と前記金属とが前記ゴム組成物の加硫により接着してなるゴム−金属複合体であって、
前記ゴム組成物と前記金属との界面における前記金属表面をX線光電子分光法により測定したとき、結合エネルギー160〜166eVのS2pのピーク面積全体Tと、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aとの関係が、下記式(1)を満たすことを特徴とするゴム−金属複合体。
前記面積A/前記ピーク面積全体T ≧ 0.35 (1)
A rubber-metal composite comprising a rubber composition containing a diene rubber and a metal, wherein the rubber composition and the metal are bonded by vulcanization of the rubber composition,
When the metal surface at the interface between the rubber composition and the metal is measured by X-ray photoelectron spectroscopy, the entire peak area T of S2p having a binding energy of 160 to 166 eV and a binding energy of 163 to 163 are the central peak of chain sulfur. A rubber-metal composite, wherein the relationship with the peak area A of 164 eV satisfies the following formula (1).
The area A / the whole peak area T ≧ 0.35 (1)
前記結合エネルギー160〜166eVのS2pのピーク面積全体Tと、前記連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aとの関係が、下記式(2)を満たすことを特徴とする請求項1に記載のゴム−金属複合体。
前記面積A/前記ピーク面積全体T ≧ 0.42 (2)
The relationship between the entire peak area T of S2p having the binding energy of 160 to 166 eV and the peak area A of the binding energy of 163 to 164 eV, which is the central peak of the chain sulfur, satisfies the following formula (2): Item 2. A rubber-metal composite according to Item 1.
The area A / the entire peak area T ≧ 0.42 (2)
前記金属が、真鍮、亜鉛または銅であることを特徴とする請求項1または2に記載のゴム−金属複合体。   The rubber-metal composite according to claim 1 or 2, wherein the metal is brass, zinc or copper. 前記金属が、真鍮をめっきしたスチールワイヤであることを特徴とする請求項3に記載のゴム−金属複合体。   The rubber-metal composite according to claim 3, wherein the metal is a steel wire plated with brass. 前記ゴム組成物が、前記ジエン系ゴム100質量部に対し、カーボンブラックを30〜80質量部の割合で含むことを特徴とする請求項1〜3のいずれかに記載のゴム−金属複合体。   The rubber-metal composite according to any one of claims 1 to 3, wherein the rubber composition contains 30 to 80 parts by mass of carbon black with respect to 100 parts by mass of the diene rubber. 請求項1〜5のいずれかに記載のゴム−金属複合体を使用してなるタイヤ。   A tire using the rubber-metal composite according to any one of claims 1 to 5. ジエン系ゴムを含むゴム組成物と金属とからなるとともに前記ゴム組成物と前記金属とが前記ゴム組成物の加硫により接着してなるゴム−金属複合体における、前記ゴム組成物の加硫時間を決定する方法であって、
前記ゴム組成物と前記金属との界面における前記金属表面をX線光電子分光法により測定したとき、結合エネルギー160〜166eVのS2pのピーク面積全体と、連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aとの関係が、下記式(1)を満たす加硫時間を、前記ゴム組成物の加硫時間と定めることを特徴とする加硫時間決定方法。
前記面積A/前記ピーク面積全体T ≧ 0.35 (1)
Vulcanization time of the rubber composition in a rubber-metal composite comprising a rubber composition containing a diene rubber and a metal, and the rubber composition and the metal bonded together by vulcanization of the rubber composition A method of determining
When the metal surface at the interface between the rubber composition and the metal is measured by X-ray photoelectron spectroscopy, the entire peak area of S2p with a binding energy of 160 to 166 eV and a binding energy of 163 to 164 eV, which is the central peak of chain sulfur. A vulcanization time determination method characterized in that a vulcanization time satisfying the following formula (1) with respect to the peak area A of the rubber composition is determined as a vulcanization time of the rubber composition.
The area A / the whole peak area T ≧ 0.35 (1)
前記結合エネルギー160〜166eVのS2pのピーク面積全体Tと、前記連鎖硫黄の中心ピークである結合エネルギー163〜164eVのピーク面積Aとの関係が、下記式(2)を満たすことを特徴とする請求項7に記載の加硫時間決定方法。
前記面積A/前記ピーク面積全体T ≧ 0.42 (2)
The relationship between the entire peak area T of S2p having the binding energy of 160 to 166 eV and the peak area A of the binding energy of 163 to 164 eV, which is the central peak of the chain sulfur, satisfies the following formula (2): Item 8. The vulcanization time determination method according to Item 7.
The area A / the entire peak area T ≧ 0.42 (2)
JP2012256367A 2012-11-22 2012-11-22 Vulcanization time determination method Active JP6142513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256367A JP6142513B2 (en) 2012-11-22 2012-11-22 Vulcanization time determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256367A JP6142513B2 (en) 2012-11-22 2012-11-22 Vulcanization time determination method

Publications (2)

Publication Number Publication Date
JP2014101483A true JP2014101483A (en) 2014-06-05
JP6142513B2 JP6142513B2 (en) 2017-06-07

Family

ID=51024282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256367A Active JP6142513B2 (en) 2012-11-22 2012-11-22 Vulcanization time determination method

Country Status (1)

Country Link
JP (1) JP6142513B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293940A (en) * 1991-03-25 1992-10-19 Yokohama Rubber Co Ltd:The Rubber composition for covering steel cord and rubber article prepared by using the same
JPH0565370A (en) * 1991-09-10 1993-03-19 Bridgestone Corp Tire
JPH05185136A (en) * 1990-12-27 1993-07-27 Kunio Mori Surface treatment of steel wire
JP2011241391A (en) * 2010-04-23 2011-12-01 Yokohama Rubber Co Ltd:The Rubber-metal composite and pneumatic tire using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185136A (en) * 1990-12-27 1993-07-27 Kunio Mori Surface treatment of steel wire
JPH04293940A (en) * 1991-03-25 1992-10-19 Yokohama Rubber Co Ltd:The Rubber composition for covering steel cord and rubber article prepared by using the same
JPH0565370A (en) * 1991-09-10 1993-03-19 Bridgestone Corp Tire
JP2011241391A (en) * 2010-04-23 2011-12-01 Yokohama Rubber Co Ltd:The Rubber-metal composite and pneumatic tire using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
清水 克典, 鹿久保 隆志, 網野 直也, 小澤 健一: "X線高分解能光電子分光を用いた黄銅/ゴム接着界面観察", 日本ゴム協会誌, vol. 第88巻第8号, JPN6016033835, August 2015 (2015-08-01), JP, pages 291 - 296, ISSN: 0003533379 *

Also Published As

Publication number Publication date
JP6142513B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6933068B2 (en) Rubber composition for steel cord coating and tires
JP5079243B2 (en) Rubber composition and pneumatic tire
JP6297901B2 (en) Rubber composition for tire cap tread and pneumatic tire using the same
JP6682949B2 (en) Tires for passenger cars
JP6297900B2 (en) Rubber composition for covering tire metal cord and pneumatic tire using the same
JP2017190415A (en) Rubber composition
JP4394978B2 (en) Rubber composition for belt layer steel cord and steel cord coated thereby
JP5253915B2 (en) Rubber composition for covering steel cord and pneumatic tire
JP5356047B2 (en) Rubber composition for covering steel cord and pneumatic tire
JP2015205950A (en) Rubber composition for tire run-flat reinforced liner and pneumatic run flat tire using the same
JP5895357B2 (en) Rubber composition for tire and pneumatic tire using the same
JP5772225B2 (en) Rubber composition for covering steel cord and pneumatic tire using the same
JP6065575B2 (en) Rubber composition for tire and pneumatic tire using the same
JP6248004B2 (en) Cushion rubber for retreaded tires and retreaded tires
JP2015205968A (en) Rubber composition for tire bead filler and pneumatic tire using the same
JP6675137B2 (en) Resin composition, method for producing the same, and rubber composition containing resin composition
WO2021029378A1 (en) Steel cord/rubber composite, tire, conveyor belt, hose, and rubber crawler
JP2015205969A (en) Rubber composition for tire rim cushion and pneumatic tire using the same
JP6142513B2 (en) Vulcanization time determination method
JP2016089046A (en) Rubber composition for conveyor belt and conveyor belt using the same
JP7385442B2 (en) Rubber composition for covering steel cords and pneumatic tires
JP6476605B2 (en) Rubber composition for tire and pneumatic tire using the same
JP2004018687A (en) Rubber composition
WO2016052447A1 (en) Rubber composition for tire
JP6554022B2 (en) Rubber composition for covering steel cord and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170302

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6142513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250