WO2016052447A1 - Rubber composition for tire - Google Patents

Rubber composition for tire Download PDF

Info

Publication number
WO2016052447A1
WO2016052447A1 PCT/JP2015/077400 JP2015077400W WO2016052447A1 WO 2016052447 A1 WO2016052447 A1 WO 2016052447A1 JP 2015077400 W JP2015077400 W JP 2015077400W WO 2016052447 A1 WO2016052447 A1 WO 2016052447A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
rubber
less
rubber composition
Prior art date
Application number
PCT/JP2015/077400
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 山岸
信一 武者
芳彦 金冨
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2016052447A1 publication Critical patent/WO2016052447A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols

Definitions

  • the present invention relates to a tire rubber composition using a cocondensate obtained from alkylphenol, resorcin, and the like.
  • Rubber products such as tires, belts and hoses are reinforced with reinforcing materials such as steel cords and organic fibers. These rubber products are required to firmly bond rubber and a reinforcing material.
  • an adhesive for bonding the rubber and the reinforcing material, there is a method using an adhesive.
  • an adhesive is blended with various other compounding agents and kneaded, by reacting alkylphenols such as p-tert-octylphenol and p-nonylphenol with formalins.
  • a cocondensate obtained by reacting resorcin with the obtained cocondensate is used as an adhesive in a rubber processing step (see Patent Document 1).
  • p-tert-octylphenol and p-nonylphenol are considered to be SVHC candidate substances stipulated in REACH (Registration, Evaluation, Authorization and Restriction of CHemicals) regulations, which are regulations in the EU, and their use will be restricted in the EU. There is a high possibility of being.
  • the present invention relates to a rubber composition after vulcanization without using p-tert-octylphenol and p-nonylphenol, which may be restricted by legal regulations, in rubber products reinforced with a reinforcing material such as steel cord. It is an object of the present invention to provide a rubber composition for tires having excellent crack resistance.
  • the present inventors have added a cocondensate containing a structural unit derived from o-phenylphenol in addition to a structural unit derived from p-tert-butylphenol and resorcin. It has been found that it can be used as an adhesive. Moreover, it discovered that the crack progress property of the rubber composition after vulcanization improved by mix
  • the tire rubber composition according to the present invention comprises a rubber component (A), insoluble sulfur (B), a structural unit derived from p-tert-butylphenol represented by the following formula (1), the following formula (2) And a co-condensate (C) containing a structural unit derived from resorcin represented by the following formula (3) and having a softening point of 150 ° C. or lower.
  • the amount of the insoluble sulfur (B) is 1.0 to 6.5 parts by mass with respect to 100 parts by mass of the rubber component (A), and the amount of the cocondensate (C) However, they are 0.1 mass part or more and 10 mass parts or less with respect to 100 mass parts of rubber components (A).
  • a rubber product reinforced with a reinforcing material such as a steel cord does not use p-tert-octylphenol and p-nonylphenol, which may be restricted by law and regulation, and rubber after vulcanization. It is possible to provide a rubber composition for a tire excellent in crack resistance of the composition.
  • the tire rubber composition according to this embodiment includes a rubber component (A), insoluble sulfur (B), a structural unit derived from p-tert-butylphenol represented by the following formula (1), the following formula (2): And a co-condensate (C) containing a structural unit derived from resorcin represented by the following formula (3) and having a softening point of 150 ° C. or lower.
  • the amount of the insoluble sulfur (B) is 1.0 to 6.5 parts by mass with respect to 100 parts by mass of the rubber component (A), and the amount of the cocondensate (C) is The amount of the rubber component (A) is 0.1 parts by mass or more and 10 parts by mass or less based on 100 parts by mass.
  • the rubber component (A) to be blended in the tire rubber composition according to the embodiment of the present invention includes natural rubber, epoxidized natural rubber, deproteinized natural rubber and other modified natural rubber, as well as polyisoprene rubber (IR).
  • IR polyisoprene rubber
  • SBR Styrene / butadiene copolymer rubber
  • BR polybutadiene rubber
  • NBR acrylonitrile / butadiene copolymer rubber
  • IIR isoprene / isobutylene copolymer rubber
  • EPDM halogen
  • Various synthetic rubbers such as hydrogenated butyl rubber (HR) are exemplified.
  • highly unsaturated rubbers such as natural rubber, polyisoprene rubber, styrene / butadiene copolymer rubber, polybutadiene rubber, and particularly preferably natural rubber and / or polyisoprene rubber.
  • It is also effective to combine several rubber components such as a combination of natural rubber and styrene / butadiene copolymer rubber, a combination of natural rubber and polybutadiene rubber.
  • natural rubber examples include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, and SIR20.
  • epoxidized natural rubber those having a degree of epoxidation of 10 to 60 mol% are preferable, and examples thereof include ENR25 and ENR50 manufactured by Kumpoulangrie.
  • the deproteinized natural rubber a deproteinized natural rubber having a total nitrogen content of 0.3% by mass or less is preferable.
  • the modified natural rubber a modified material containing a polar group obtained by reacting natural rubber with N, N-dialkylaminoethyl acrylate such as 4-vinylpyridine, N, N-diethylaminoethyl acrylate, 2-hydroxy acrylate or the like in advance. Natural rubber is preferably used.
  • SBR styrene-butadiene copolymer rubber
  • examples of the styrene-butadiene copolymer rubber include emulsion polymerization SBR and solution polymerization SBR described on pages 210 to 211 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. . Among these, it is particularly preferable to use solution polymerization SBR.
  • a solution polymerized SBR having a molecular terminal modified with 4,4′-bis- (dialkylamino) benzophenone such as “Nipol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd., manufactured by JSR
  • a solution-polymerized SBR having a molecular end modified with a tin halide compound such as “SL574” or a silane-modified solution-polymerized SBR such as “E10” or “E15” manufactured by Asahi Kasei Corporation is preferably used.
  • any one of a silane compound such as a lactam compound, an amide compound, a urea compound, an N, N-dialkylacrylamide compound, an isocyanate compound, an imide compound, a trialkoxysilane compound having an alkoxy group, or an aminosilane compound is used alone.
  • two or more different compounds such as a silane compound having a tin compound and an alkoxy group, and an alkylacrylamide compound and an silane compound having an alkoxy group are used, and the molecular ends are modified by nitrogen and tin at the molecular ends.
  • solution polymerization SBR having any one of silicon, silicon, or a plurality of these elements is preferably used.
  • polybutadiene rubber examples include solution polymerization BR such as high cis BR with 90% or more of cis 1,4 bond and low cis BR with cis bond of around 35%, and low cis with high vinyl content. BR is preferably used.
  • solution polymerization BR such as high cis BR with 90% or more of cis 1,4 bond and low cis BR with cis bond of around 35%, and low cis with high vinyl content.
  • BR is preferably used.
  • tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon Co., Ltd. is preferably used.
  • a silane compound such as a silane compound, an aminosilane compound alone, a silane compound having a tin compound and an alkoxy group, or a silane compound having an alkylacrylamide compound and an alkoxy group.
  • solution polymerization BR having nitrogen, tin, silicon, or a plurality of these elements at the molecular ends obtained by modifying the molecular ends is particularly preferably used.
  • the rubber component preferably contains natural rubber, and the above-mentioned BR is usually used by mixing with natural rubber.
  • the proportion of natural rubber in the rubber component (A) is preferably 70% by mass or more.
  • the rubber composition for tires according to the present embodiment needs to contain insoluble sulfur as a vulcanizing agent.
  • the compounding quantity of insoluble sulfur (B) needs to be 1.0 mass part or more and 6.5 mass parts or less as a sulfur content with respect to 100 mass parts of rubber components. If the amount of insoluble sulfur (B) is 1.0 part by mass or more, the wet heat adhesiveness required for the vulcanized rubber is obtained, and if it is 6.5 parts by mass or less, it is melted in the vulcanized rubber. Crack growth resistance is obtained.
  • the amount of insoluble sulfur (B) is preferably 1.5 parts by mass or more and 6.5 parts by mass or less, and more preferably 2 parts by mass or more and 6.5 parts by mass or less.
  • the vulcanizing agent powdered sulfur, precipitated sulfur, colloidal sulfur, highly dispersible sulfur and the like may be blended in addition to insoluble sulfur (B).
  • the cocondensate (C) includes a structural unit derived from p-tert-butylphenol represented by the following formula (1), a structural unit derived from o-phenylphenol represented by the following formula (2), and the following formula (3 The structural unit derived from resorcin represented by this.
  • These structural units are usually contained in the main chain of the cocondensate, but may also be contained in the side chain.
  • the structural unit derived from o-phenylphenol (2) when the structural unit derived from o-phenylphenol (2) is not included, the softening point becomes high, and a problem of poor dispersibility occurs when blended with rubber during kneading. It becomes unsuitable as an adhesive between rubber and reinforcing material used in rubber.
  • the structural unit (3) derived from resorcin is not contained, the ability as an adhesive between the rubber and the reinforcing material used by blending with rubber during kneading is not sufficiently exhibited.
  • the structural unit (1) derived from p-tert-butylphenol when the structural unit (1) derived from p-tert-butylphenol is not included, the cost as a cocondensate becomes very high, and the cocondensate cannot be obtained industrially advantageously.
  • the content ratio of these structural units is preferably 0.5 to 6 moles of the structural unit (2) derived from o-phenylphenol with respect to 1 mole of the structural unit (1) derived from p-tert-butylphenol. More preferably, the molar amount is 1.5 to 6 times. When the amount is less than 0.5 times mol, the softening point may be too high and the above-mentioned problem may occur. When the amount is more than 6 times mol, the raw material cost of the cocondensate is increased, and the present invention is advantageous industrially. It may become impossible to produce the cocondensate according to.
  • the structural unit (3) derived from resorcin is usually 0.5 to 2 parts per 1 mol of the total amount of the structural unit (1) derived from p-tert-butylphenol and the structural unit (2) derived from o-phenylphenol. 0 times mole is contained. When the amount is less than 0.5 times mol, the ability as an adhesive between the rubber and the reinforcing material to be used by mixing with rubber during kneading may not be sufficiently exhibited. It may be difficult to manufacture.
  • linking groups such as an alkyl group and / or an alkyl ether group derived from an aldehyde used in the reaction.
  • the linking group is preferably a methylene group and / or a dimethylene ether group derived from formaldehyde.
  • the linking group is usually contained in an amount of 1 to 2 moles per 1 mole of the total amount of the structural unit (1) derived from p-tert-butylphenol and the structural unit (2) derived from o-phenylphenol.
  • the ratio of these structural units and bonding groups can be determined, for example, by analyzing the cocondensate using 1 H-NMR.
  • the cocondensate (C) that can be used in the rubber composition for tires according to the embodiment of the present invention is a structural unit other than structural units derived from p-tert-butylphenol, o-phenylphenol, and resorcin, if necessary. Can be included. Examples of such structural units include structural units derived from various alkylphenols used as raw materials for cocondensates generally used as adhesives used in rubber processing steps.
  • the softening point of the cocondensate (C) needs to be 150 ° C. or less.
  • the softening point is preferably in the range of 80 ° C to 150 ° C, more preferably in the range of 80 ° C to 140 ° C, and particularly preferably in the range of 90 ° C to 120 ° C.
  • the softening point of the co-condensate (C) is higher than 150 ° C., a problem of poor dispersibility occurs when blended with the tire rubber composition during kneading in the tire rubber composition. In some cases, it is not suitable as an adhesive between rubber and a reinforcing material. If it is lower than 80 ° C., blocking may occur during storage.
  • the cocondensate (C) is required to be contained in an amount of 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component (A).
  • the blending amount of the cocondensate (C) is less than 0.1 parts by mass with respect to 100 parts by mass of the rubber component (A)
  • sufficient adhesion (wet heat adhesion) cannot be obtained.
  • the amount of the co-condensate (C) exceeds 10 parts by mass with respect to 100 parts by mass of the rubber component (A)
  • the adhesive reaction during vulcanization proceeds excessively, resulting in adhesiveness (wet heat adhesion). descend.
  • the cocondensate (C) is preferably 0.2 parts by mass or more and 8 parts by mass or less, and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A). 6 parts by mass or less.
  • the total amount of unreacted monomers (free p-tert-butylphenol, o-phenylphenol and resorcin) and residual solvent contained in the cocondensate (C) is preferably 15% by mass or less.
  • the content of free resorcin is preferably 12% by mass or less.
  • the total amount of unreacted monomers p-tert-butylphenol and o-phenylphenol other than free resorcin and residual solvent that may be used in the reaction contained in the cocondensate (C) is 5% by mass or less. Preferably there is.
  • the content is 5% by mass or less, the odor is reduced and the volatile organic compound is reduced, which is preferable for the environment, and more preferably 3% by mass or less.
  • the total amount of the unreacted monomer other than free resorcin and the residual solvent contained in the tire rubber composition according to the present invention is preferably 0.20% by mass or less, and 0.17% by mass with respect to the rubber component. % Or less is more preferable.
  • the tire rubber composition according to the present embodiment may contain a filler as necessary.
  • the filler is preferably at least one selected from carbon black and inorganic filler.
  • carbon black is not included in the inorganic filler.
  • the total amount of carbon black and the inorganic filler is preferably 5 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber component (A). If it is 5 parts by mass or more, it is preferable from the viewpoint of securing the elastic modulus, and if it is 100 parts by mass or less, it is preferable from the viewpoint of improving low heat generation.
  • the total amount of the inorganic filler and the carbon black is more preferably 20 parts by mass or more and 80 parts by mass or less, and still more preferably the rubber component (A) with respect to 100 parts by mass of the rubber component (A). ) 20 parts by mass or more and 70 parts by mass or less, and particularly preferably 30 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass.
  • the rubber composition for a tire according to the present embodiment can enjoy the effect of suppressing charging by lowering the electrical resistance by containing carbon black.
  • carbon black include high, medium or low structure SAF, ISAF, IISAF, N339, HAF, FEF, GPF, SRF grade carbon black, especially SAF, ISAF, IISAF, N339, HAF, FEF grade carbon black. Is preferably used.
  • the nitrogen adsorption specific surface area (measured in accordance with N 2 SA, JIS K 6217-2: 2001) of carbon black is preferably 30 to 250 m 2 / g. Carbon black may be used individually by 1 type from what was mentioned above, and may be used in combination of 2 or more type.
  • An inorganic filler can be mix
  • the inorganic filler used in the present embodiment is at least one selected from silica and an inorganic compound represented by the following general formula (I).
  • M 1 is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium, and zirconium, an oxide or hydroxide of these metals, and a hydrate thereof.
  • the inorganic compound is at least one metal, metal oxide or metal hydroxide selected from aluminum, magnesium, titanium, calcium and zirconium. It becomes.
  • the above-mentioned inorganic filler is preferably silica from the viewpoint of low rolling property.
  • the amount of silica is 1 part by mass or more and 65 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the amount is 10 parts by mass or more and 40 parts by mass or less.
  • the BET specific surface area (measured in accordance with ISO 5794/1) of silica is preferably 40 to 350 m 2 / g.
  • Silica having a BET surface area within this range has an advantage that both rubber reinforcement and dispersibility in the rubber component (A) can be achieved. From this viewpoint, silica having a BET surface area in the range of 80 to 350 m 2 / g is more preferable, and silica having a BET surface area in the range of 120 to 350 m 2 / g is particularly preferable. Commercially available products can be used as silica, and wet silica, dry silica, and colloidal silica are particularly preferable, and wet silica is particularly preferable.
  • alumina monohydrate such as alumina (Al 2 O 3 ) such as ⁇ -alumina and ⁇ -alumina, boehmite and diaspore ( Al 2 O 3 .H 2 O), gibbsite, bayerite and other aluminum hydroxide [Al (OH) 3 ], aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3), talc (3MgO ⁇ 4SiO 2 ⁇ H 2 O), attapulgite (5MgO ⁇ 8SiO 2 ⁇ 9H 2 O), titanium white (TiO 2), titanium black (TiO 2n- 1 ), calcium oxide (CaO), calcium hydroxide [Ca (OH) 2 ], aluminum magnesium oxide (MgO.Al 2 O 3 ), clay (Al 2 O 3 ⁇ 2SiO 2
  • M 1 in the general formula (I) is at least one selected from aluminum metal, aluminum oxide or hydroxide, and hydrates thereof, or aluminum carbonate. More preferred is aluminum oxide.
  • the aluminum hydroxide that can be blended in the tire rubber composition according to the present invention include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
  • These inorganic compounds represented by general formula (I) may be used alone or in combination of two or more.
  • the inorganic filler in the present invention may be used alone or in combination with silica and one or more inorganic compounds represented by the general formula (I).
  • silane coupling agent When the rubber composition for tires according to the present invention is blended with an inorganic filler containing silica, a silane coupling agent is blended for the purpose of further improving the reinforcing property and fuel efficiency of the tire rubber composition. can do.
  • silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxysilyl).
  • Ethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltri Methoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarba Yl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide,
  • bis (3-triethoxysilylpropyl) polysulfide, 3-octanoylthiopropyltriethoxysilane and 3-trimethoxysilylpropylbenzothiazyl tetrasulfide are preferable from the viewpoint of improving the reinforcing property.
  • One of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
  • the preferable blending amount of this silane coupling agent is such that the mass ratio (silane coupling agent / silica) is (1/100) to (20/100). It is preferable. If it is (1/100) or more, the effect of improving the low heat buildup of the rubber composition for tires will be exhibited more suitably, and if it is (20/100) or less, the cost of the rubber composition for tires will be reduced. This is because the economy is improved. Further, a mass ratio (3/100) to (20/100) is more preferable, and a mass ratio (4/100) to (10/100) is particularly preferable.
  • a bismaleimide compound is blended in the tire rubber composition according to the present embodiment.
  • the bismaleimide compound functions as a part of the vulcanization system together with insoluble sulfur (B) as a vulcanizing agent preferably contained in the tire rubber composition of the present embodiment.
  • B insoluble sulfur
  • the bismaleimide compound that can be blended in the tire rubber composition according to this embodiment it is preferable to use one or more selected from compounds represented by the following formula (4).
  • X represents an alkylene group having 2 to 4 carbon atoms, a phenylene group, or a divalent hydrocarbon group having 6 to 29 carbon atoms having 1 to 4 aromatic rings
  • R 4 to R 7 are each independently Represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a —NH 2 group or a —NO 2 group.
  • examples of the alkylene group having 2 to 4 carbon atoms as X include an ethylene group, a propylene group, a propane-2,2-diyl group, and the like.
  • examples of the C6-C29 divalent hydrocarbon group having 1 to 4 aromatic rings include a methylene bis (phenylene) group, a phenylene bis (methylene) group, and a phenoxyphenyl group. Further, this aromatic ring may be bonded by —O—, —S—, —SS—, —SO 2 — or the like.
  • a hydrocarbon group having 8 to 17 carbon atoms having 1 or 2 phenylene group or aromatic ring is preferable, and a hydrocarbon having 8 to 13 carbon atoms having 1 or 2 phenylene group or aromatic ring. Groups are more preferred.
  • X may have a substituent.
  • substituents include an alkyl group having 1 to 3 carbon atoms, —NH 2 , —NO 2 , —F, —Cl, —Br and the like.
  • examples of the alkyl group having 1 to 5 carbon atoms represented by R 4 to R 7 include a methyl group, an ethyl group, and a propyl group.
  • the bismaleimide compound include, for example, N, N′-1,2-ethylene bismaleimide, N, N′-1,2-propylene bismaleimide, 4,4′-bismaleimide diphenylmethane, N, N ′.
  • N, N '-(4,4-diphenyl-methane) bismaleimide bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2'-bis [4- (4-maleimidophenoxy) phenyl] propane, m-phenylenebis (methylene) bismaleimide, m-phenylenebis (methylene) biscitraconimide, 1,1 ′-(methylenedi-4,1-phenylene) bismaleimide It is done.
  • These bismaleimide compounds may be used alone or in combination of two or more. Of these, N, N′-m-phenylenebismaleimide and N, N ′-(4,4-diphenyl-methane) bismaleimide are more preferable.
  • the blending ratio of the bismaleimide compound is preferably 0.1 parts by mass or more and 5.5 parts by mass or less with respect to 100 parts by mass of the rubber component (A).
  • the blending amount of the bismaleimide compound is 0.1 parts by mass or more and 5.5 parts by mass or less, the elastic modulus can be increased and wet heat adhesiveness can be improved.
  • the blending amount of the bismaleimide compound is more preferably 0.1 parts by mass or more and 5 parts by mass or less.
  • the tire rubber composition according to the present embodiment preferably contains an organic cobalt compound.
  • the organic cobalt compound that can be blended include acid cobalt salts such as cobalt versatate, cobalt neodecanoate, cobalt rosinate, cobalt naphthenate, and cobalt stearate, and fatty acid cobalt / boron complex compounds (for example, trade name “Manobond”). C (registered trademark) "(manufactured by Rhodia).
  • the compounding amount of the organic cobalt compound can be 0.01 parts by mass or more and 0.08 parts by mass or less, preferably 0.02 parts by mass with respect to 100 parts by mass of the rubber component (A). The amount can be made 0.07 parts by mass or less.
  • crack progress resistance can be improved by making the compounding quantity of an organic cobalt compound into the said range using a cocondensate (C).
  • the tire rubber composition according to the present embodiment preferably contains a vulcanization accelerator. More specific examples of the vulcanization accelerator that can be blended include N-cyclohexyl-2-benzothiazolylsulfenamide, N-ter-butyl-2-benzothiazylsulfenamide, N-tert-butyl- And at least one selected from 2-benzothiazolylsulfenimide and N, N-di (2-ethylhexyl) -2-benzothiazolylsulfenamide. Among these, it is preferable to use N-cyclohexyl-2-benzothiazolylsulfenamide.
  • the compounding quantity of a vulcanization accelerator is not specifically limited, The range of 0.5 to 3 mass parts is preferable per 100 mass parts of rubber components. Among these, a range of 0.5 parts by mass or more and 1.2 parts by mass or less is particularly preferable.
  • the range of 3 to 15 mass parts is preferable per 100 mass parts of rubber components. Among these, a range of 5 parts by mass or more and 10 parts by mass or less is particularly preferable.
  • the tire rubber composition according to the present embodiment preferably contains a rust preventive agent.
  • blended the nitrogen-containing cyclic compound which has a structure where at least 1 carbon atom of the cyclic compound of carbon number 5 or less was substituted by the nitrogen atom is included.
  • the nitrogen-containing cyclic compound does not include a benzene ring and a cyclic compound containing sulfur.
  • the rust preventive agent that can be blended in the present embodiment include imidazole compounds and triazole compounds, among which 1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4.
  • the compounding amount of the rust inhibitor is 0.02 parts by mass or more and 12 parts by mass or less with respect to 100 parts by mass of the rubber component (A). it can. From the above viewpoint, the blending amount of the rust inhibitor is more preferably 0.1 parts by mass or more and 3 parts by mass or less.
  • the tire rubber composition according to this embodiment may contain a methylene donor compound.
  • methylene donor compounds that can be blended, they are usually used in the rubber industry such as hexakis (methoxymethyl) melamine (HMMM), hexamethylenetetramine (HMT), pentakis (methoxymethyl) methylolmelamine, tetrakis (methoxymethyl) dimethylolmelamine and the like. Can be mentioned. Among them, hexakis (methoxymethyl) melamine alone or a mixture containing it as a main component is preferable.
  • methylene donor compounds can be used alone or in combination of two or more, and the blending amount thereof is 0.5 parts by mass or more and 4 parts by mass or less with respect to 100 parts by mass of the rubber component (A).
  • the range is preferable, and the range of 1 part by mass to 3 parts by mass is more preferable.
  • the rubber composition for tires according to the present embodiment includes, as necessary, an alicyclic hydrocarbon resin, an aliphatic hydrocarbon resin, and an aromatic hydrocarbon resin in addition to the cocondensate (C). You may mix
  • the alicyclic hydrocarbon resin refers to a petroleum resin produced mainly from cyclopentadiene and / or dicyclopentadiene obtained by dimerizing cyclopentadiene extracted from a C5 fraction of petroleum.
  • An aliphatic hydrocarbon resin refers to a petroleum resin produced using a C5 fraction of petroleum as a main raw material
  • an aliphatic hydrocarbon resin refers to a petroleum produced using a C9 fraction of petroleum as a main raw material.
  • resin a dicyclopentadiene resin (DCPD resin) produced from a high-purity dicyclopentadiene obtained by dimerizing cyclopentadiene as a main raw material is preferable from the viewpoint of enhancing rubber reinforcement.
  • Preferred examples of the dicyclopentadiene resin include quinton 1000 series (Quinton 1105, quinton 1325, quinton 1340) manufactured by Nippon Zeon.
  • the amount of the hydrocarbon resin used is preferably 0.1 parts by mass or more and 10 parts by mass or less, and more preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • various chemicals commonly used in the rubber industry for example, a vulcanization retarder, process oil, aging, as long as the effects of the present invention are not impaired.
  • An inhibitor, an organic acid, etc. can be mix
  • Vulcanization retarder examples of the vulcanization retarder that can be blended in the tire rubber composition according to this embodiment include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) -phthalimide (CTP), and sulfonamide derivatives.
  • Diphenylurea, bis (tridecyl) pentaerythritol-diphosphite and the like, and N- (cyclohexylthio) -phthalimide (CTP) is preferably used.
  • Process oil As the process oil used as a softening agent that can be blended in the tire rubber composition according to this embodiment, an aromatic oil is used from the viewpoint of compatibility with SBR. In addition, naphthenic oil or paraffinic oil is used from the viewpoint of emphasizing low temperature characteristics.
  • the amount used is preferably 0 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber component, and if it is 100 parts by mass or less, the tensile strength and low fuel consumption (low heat generation) of the vulcanized rubber are deteriorated. Can be suppressed.
  • Antiaging agents that can be blended in the rubber composition for tires according to this embodiment include those described on pages 436 to 443 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. Among these, for example, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, N-isopropyl-N′-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N ′ -Phenyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, high-temperature condensate of diphenylamine and acetone.
  • the amount of the antioxidant used is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, and more preferably 0.3 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • Organic acids examples include stearic acid, palmitic acid, myristic acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, capric acid, pelargonic acid, caprylic acid, and enanthate.
  • saturated fatty acids such as acid, caproic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, and nervonic acid, and resin acids such as rosin acid and modified rosin acid.
  • the organic acids 50 mol% or more of the organic acid must be stearin since it is necessary to sufficiently function as a vulcanization acceleration aid.
  • An acid is preferred.
  • 50 mol% or less in the organic acid may be rosin acid (including modified rosin acid) and / or fatty acid contained when the styrene-butadiene copolymer is prepared by emulsion polymerization.
  • the method for producing a cocondensate according to the present invention includes the following steps in the following order.
  • the ratio of o-phenylphenol in the mixture of p-tert-butylphenol and o-phenylphenol used in step (a) (hereinafter, these two types of phenols may be collectively referred to as “phenol derivatives”) is particularly Although not limited, it is preferably 35 mol% to 85 mol%, more preferably 40 mol% to 85 mol%, and further preferably 60 mol% to 85 mol%, based on the total amount of the phenol derivative. preferable. When the amount is less than 35 mol%, the softening point of the resulting cocondensate becomes high, and dispersion may be poor when kneaded with the rubber component.
  • the mixture of p-tert-butylphenol and o-phenylphenol in the present invention is a mixture mixed in advance before being charged into the reactor, and separately charged into the reactor, resulting in the mixture in the reactor. Also included are.
  • formaldehyde used in the step (a) in addition to formaldehyde itself, a formalin that is an aqueous solution, or a compound that easily generates formaldehyde such as paraformaldehyde or trioxane can be used.
  • the molar ratio of formaldehyde charged is not particularly limited, but it is preferably 1 to 3 times by mole, more preferably 1.5 to 2.5 times by mole, based on the total amount of phenol derivatives. When the amount is less than 1 mole, unreacted monomers may increase and odor and volatile organic compounds may increase. Further, when the amount is more than 3 times mole, a large amount of formaldehyde remains unreacted, so that the resin may have a three-dimensional structure and the softening point may be increased.
  • alkali in addition to hydroxides or carbonates of alkali metals or alkaline earth metals, those used for producing ordinary resol-type condensates such as ammonia and amines can be used.
  • specific examples of the alkali metal or alkaline earth metal hydroxide or carbonate include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, and potassium carbonate. Among these, sodium hydroxide and potassium hydroxide are preferable.
  • These alkalis can be used in the form of a solid or an aqueous solution, but it is preferable to use an aqueous solution in terms of reactivity and handling. When an aqueous solution is used, the concentration is usually 10% by mass to 50% by mass.
  • the alkali charge molar ratio is not particularly limited, but is preferably in the range of 0.03 to 0.6 times mol, more preferably in the range of 0.03 to 0.3 times mol with respect to the total amount of the phenol derivative.
  • step (a) that is, the reaction of a mixture of p-tert-butylphenol and o-phenylphenol with formaldehyde in the presence of an alkali can also be carried out in a solvent.
  • the solvent to be used is not particularly limited, and water, alcohol, aromatic hydrocarbon and the like can be used. More specifically, water, methanol, ethanol, propanol, butanol, toluene, xylene, ethylbenzene, cumene, monochlorobenzene and the like are exemplified. Of these, water, toluene, and xylene are preferable. These solvents can be used alone or in combination of two or more.
  • reaction in the step (a) is usually carried out at a reaction temperature of 40 to 100 ° C. and a reaction time of 1 to 48 hours (eg 1 to 8 hours).
  • the resol-type condensate obtained by such a reaction may be used as it is in the reaction of step (b) without neutralizing the used alkali, that is, the reaction with resorcin, or by adding an acid to neutralize the alkali. It may be used after being summed.
  • the type of acid used for neutralization is not particularly limited, and examples include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, p-toluenesulfonic acid, and the like. These acids may be used alone or in combination of two or more.
  • the total amount of the acid used is not particularly limited, but it is preferable to use an equivalent amount (based on the amount of substance) of the acid that is normally used.
  • a resol-type condensate may be extracted and washed using an organic solvent that is not miscible with water as necessary. Good.
  • the charged molar ratio of resorcin when reacting the obtained resole-type condensate with resorcin must be 0.5 times mol or more, preferably 0.
  • the amount is 8 to 4.0 times mol, more preferably 0.8 to 2.0 times mol, and still more preferably 1.0 to 2.0 times mol. If it is more than 4.0 moles, volatility may be a problem because a large amount of unreacted resorcin remains. If it is lower than 0.5 mol, the reaction will not be completed and the original performance will not be achieved, or the reaction between resol-type condensates will proceed preferentially, and the resulting cocondensate will be polymerized, resulting in a softening point. May not be 150 ° C. or lower.
  • reaction between the resole-type condensate and resorcin can be carried out without using a solvent, the presence of a solvent more than 0.2 mass times the total amount of p-tert-butylphenol and o-phenylphenol When carried out below, free resorcin can be reduced to 12% by mass or less, which is preferable. More preferably, the reaction is carried out in the presence of 0.4 to 4.0 times by mass, particularly preferably 0.4 to 2.0 times by mass of solvent with respect to the total amount of p-tert-butylphenol and o-phenylphenol.
  • the reaction between resole-type condensates may proceed preferentially over the reaction between resorcin and resole-type condensates, and the resulting cocondensate may be polymerized, Free resorcin cannot be reduced to 12% by mass or less.
  • the reaction proceeds even when used in an amount of 4.0 mass times or more, but the volumetric efficiency is lowered and the cocondensate cannot be produced economically advantageously.
  • the usable solvent is not particularly limited, and examples thereof include alcohols, ketones, and aromatic hydrocarbons. More specifically, methanol, ethanol, propanol, butanol, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, toluene, xylene, ethylbenzene, cumene, monochlorobenzene and the like are exemplified. Among these, ketones and aromatic hydrocarbons are preferable, and methyl isobutyl ketone, toluene, and xylene are more preferable. These solvents can be used alone or in combination of two or more as required. Moreover, the solvent used when manufacturing a resol type condensate may be used for this solvent as it is, and a new solvent may be added suitably.
  • the reaction between the resole-type condensate and resorcin is not particularly limited, but is usually carried out at a reaction temperature of 40 to 150 ° C. and a reaction time of 1 to 48 hours (eg, 1 to 8 hours).
  • a reaction temperature 40 to 150 ° C.
  • a reaction time 1 to 48 hours (eg, 1 to 8 hours).
  • the content of free resorcin is 120 ° C. or higher until the content of free resorcin in the reaction mixture becomes 12% by mass or less It is preferable to carry out the reaction.
  • the reaction is started at less than 120 ° C in the initial stage of reaction, and then gradually heated to 120 ° C or higher.
  • the method etc. which are made are illustrated. If the reaction temperature never exceeds 120 ° C., free resorcin in the reaction mixture does not become 12% by mass or less.
  • this reaction is carried out in the absence of a solvent of 0.2 mass times or more, the resulting cocondensate is polymerized, or the free resorcin content is not 12 mass% or less.
  • the reaction mixture refers to everything contained in the reaction vessel, such as resole-type condensate, resorcin, solvent, etc., which are the raw materials for this reaction, and the resorcin content in the reaction mixture can be quantified by analysis using, for example, a gas chromatograph. is there.
  • a method of simply reducing the amount of raw material resorcin used is also conceivable.
  • the raw material resorcin is insufficient during the reaction, and instead, the resorcin site in the cocondensate is further increased. Since it reacts and polymerizes, the softening point becomes very high.
  • the reaction rate tends to be slow if water is present in the system, and the reaction rate is reduced by the water generated by the reaction between the resole-type condensate and resorcin. Therefore, it is preferable to carry out the reaction while dehydrating for the purpose of promoting the reaction.
  • water generated in the reaction is sufficiently dehydrated, so that it is dehydrated under reduced pressure at the beginning of the reaction, and then the internal temperature is set to 120 ° C. or higher. Is preferred.
  • the solvent used in the reaction is usually removed after the reaction.
  • the conditions for removing the solvent are not particularly limited.
  • the solvent removal is performed at 120 to 160 ° C. under a reduced pressure of 45 to 10 kPa.
  • the free resorcin content in the reaction mixture before solvent removal is more than 12% by mass, the free resorcin content of the cocondensate after solvent removal is reduced.
  • high temperature and high pressure reduction conditions that are difficult to implement industrially are necessary, and the cocondensate obtained at this time is colored by heat, thereby reducing the product value. is there.
  • the rubber composition for tires according to this embodiment is obtained by kneading the various components and additives described above using a kneader such as an open kneader such as a roll or a closed kneader such as a Banbury mixer. can get. That is, the rubber composition for tires according to the present embodiment is a first step of kneading, and the addition of components other than the rubber component (A) and the cocondensate (C), and further insoluble sulfur (B) and a vulcanization accelerator.
  • a kneader such as an open kneader such as a roll or a closed kneader such as a Banbury mixer.
  • the rubber composition for tires according to the present embodiment is a first step of kneading, and the addition of components other than the rubber component (A) and the cocondensate (C), and further insoluble sulfur (B) and a vulcanization accelerator.
  • the agent After kneading the agent, it can be produced by mixing insoluble sulfur (B) and a vulcanization accelerator at the final stage of kneading. Further, by adding a part or all of the vulcanization accelerator in the stage before the final stage of kneading and kneading, the vulcanizing agent and the remaining vulcanization accelerator are mixed in the final stage of kneading. Can be produced. In this case, at least one compound selected from guanidines, sulfenamides and thiazoles can be used as the vulcanization accelerator to be added in the stage before the final stage of kneading.
  • the rubber composition for tires according to this embodiment can contain at least one compound selected from thiourea and diethylthiourea.
  • the vulcanizing agent, the vulcanization accelerator and the rest are added in the final stage of kneading.
  • a tire is manufactured by a normal tire manufacturing method using the tire rubber composition according to the present embodiment. That is, the rubber composition for tires containing the various chemicals described above is processed into each member at an unvulcanized stage, and is pasted and molded by a normal method on a tire molding machine to form a raw tire. The green tire is heated and pressed in a vulcanizer to obtain a tire. In this way, a tire having good durability, particularly a pneumatic tire can be obtained.
  • HLC-8220GPC manufactured by Tosoh Corporation
  • Column: TSK guard column SUPER HZ-L manufactured by Tosoh Corporation
  • TSK-GEL SUPER HZ1000 4.6mm ⁇ ⁇ 150mm
  • TSK-GEL SUPER HZ2500 4.6mm ⁇ ⁇ 150mm
  • TSK-GEL SUPER HZ4000 4.6 mm ⁇ ⁇ 150 mm
  • Carrier and flow rate tetrahydrofuran 0.35 mL / min
  • P-tert-Butylphenol-derived p-tert-butyl group proton 1.0 to 1.2 ppm
  • formaldehyde-derived methylene group proton 3.4 to 3.9 ppm
  • o-phenylphenol-derived o-phenyl Group proton 7.1-7.5 ppm.
  • o-Phenylphenol Ratio when p-tert-butylphenol is 1 (mole times)
  • methylene group derived from formaldehyde Ratio to the total amount of o-phenylphenol and p-tert-butylphenol (mole times).
  • the temperature was raised to an internal temperature of 65 ° C. and kept at that temperature for 2 hours. Thereafter, the temperature was raised again until the internal temperature reached 80 ° C., and the temperature was further kept for 4 hours. After completion of the reaction, the reaction mixture was cooled to an internal temperature of 65 ° C. or less, neutralized by adding 49 g of water and 7.55 g (1.13 mol) of oxalic acid dihydrate, and 22.6 g of toluene was added, and then allowed to stand. And the aqueous layer was removed.
  • a mixture is prepared by mixing insoluble sulfur, components other than the vulcanization accelerator and methylene donor compound, and the resin adhesive shown in Table 1 with a pressure kneader made by Toshin, When it reached 160 ° C., it was discharged. Subsequently, insoluble sulfur, a vulcanization accelerator, and a methylene donor were added to the obtained mixture with a 6-inch open roll made of Kansai Roll, which was kept at 60 ° C., and mixed to prepare a rubber composition for steel cord coating.
  • Vulcanization accelerator N, N-dicyclohexyl-2-benzothiazolylsulfenamide (reagent) * 10
  • Cobalt fatty acid salt Cobalt stearate (reagent) * 11
  • Methylene donor compound Modified etherified methylol melamine resin "Sumikanol 507AP" manufactured by Taoka Chemical Co., Ltd.
  • * 1 to * 12 are the same as Tables 2 and 3.
  • * 13 Bismaleimide compound “BMI-1000” manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • Vulcanization accelerator 1 CZ N-cyclohexyl-2-benzothiazolylsulfenamide
  • Ouchi Shinsei Chemical Co., Ltd. “Noxeller CZ” * 15 Vulcanization accelerator 2 NS (N-ter-butyl-2-benzothiazylsulfenamide), manufactured by Ouchi Shinsei Chemical Co., Ltd., “Noxeller NS” * 16 Vulcanization accelerator 3 TBSI (N-tert-butyl-2-benzothiazolylsulfenimide), manufactured by Flexis Co., Ltd., “Sant Cure TBSI” * 17 Vulcanization accelerator 4 BEHZ (N, N-di (2-ethylhexyl) -2-benzothiazolylsulfenamide), manufactured by Kawaguchi Chemical Industry Co., Ltd., “BEHZ” * 18 Vulcanization accelerator 5 DZ (N, N'-dicyclohexyl-2-benzothia), manufactured by Ou
  • the vulcanization accelerator 5 that is, the vulcanization accelerator DZ (N, N′-dicyclohexyl-2-benzo It has been found that wet heat adhesion can be improved by using vulcanization accelerators 1 to 4 as compared to the case of using thiazylsulfenamide (including Example 1).
  • the rubber composition for tires according to the present invention is suitable for use in a composite of a metal article and rubber, such as a rubber article, in particular, a tire carcass or a reinforcing material for a belt.
  • a rubber article such as a rubber article, in particular, a tire carcass or a reinforcing material for a belt.
  • Adhesion can be improved.

Abstract

This rubber composition for a tire is obtained by blending a rubber component (A), insoluble sulfur (B), and a co-condensate (C) that has a softening point of 150 °C or less and that contains a p-tert-butylphenol-derived constituent unit represented by formula (1), an o-phenylphenol-derived constituent unit represented by formula (2), and a resorcinol-derived constituent unit represented by formula (3). The blending amount of the insoluble sulfur (B) is 1.0-6.5 parts by mass with respect to 100 parts by mass of the rubber component (A). The blending amount of the co-condensate (C) is 0.1-10 parts by mass with respect to 100 parts by mass of the rubber component (A). The co-condensate (C) can be used as a replacement for p-tert-octylphenol and p-nonylphenol, has a softening point that is lower than the maximum temperature in a rubber processing step, and has excellent dispersibility in rubber.

Description

タイヤ用ゴム組成物Rubber composition for tire
 本発明は、アルキルフェノール及びレゾルシン等から得られる共縮合物を用いたタイヤ用ゴム組成物に関する。 The present invention relates to a tire rubber composition using a cocondensate obtained from alkylphenol, resorcin, and the like.
 タイヤ、ベルト、ホース等のようなゴム製品は、スチールコード類や有機繊維類等の補強材で補強されている。これらのゴム製品は、ゴムと補強材とを強固に接着することが求められている。
 ゴムと補強材との接着には、接着剤を使用する方法がある。一例として、ゴムの加工工程のうち混練工程において、接着剤を他の各種配合剤とともに配合して混練する方法では、p-tert-オクチルフェノール、p-ノニルフェノール等のアルキルフェノールとホルマリン類とを反応させて得た共縮合物に、レゾルシンを反応させて得られた共縮合物を、ゴムの加工工程において接着剤として使用することが知られている(特許文献1参照)。
 しかしながら、p-tert-オクチルフェノール及びp-ノニルフェノールは、EU域内の規制であるREACH(Registration, Evaluation, Authorization and Restriction of CHemicals)規則に定められるSVHCの候補物質とされ、EU域内においてその使用が今後制限される可能性が高くなっている。
Rubber products such as tires, belts and hoses are reinforced with reinforcing materials such as steel cords and organic fibers. These rubber products are required to firmly bond rubber and a reinforcing material.
For bonding the rubber and the reinforcing material, there is a method using an adhesive. As an example, in the kneading process of rubber, in the kneading process, an adhesive is blended with various other compounding agents and kneaded, by reacting alkylphenols such as p-tert-octylphenol and p-nonylphenol with formalins. It is known that a cocondensate obtained by reacting resorcin with the obtained cocondensate is used as an adhesive in a rubber processing step (see Patent Document 1).
However, p-tert-octylphenol and p-nonylphenol are considered to be SVHC candidate substances stipulated in REACH (Registration, Evaluation, Authorization and Restriction of CHemicals) regulations, which are regulations in the EU, and their use will be restricted in the EU. There is a high possibility of being.
 そこで、REACH規則に定められるSVHCの候補物質にリストされていない代替化合物を使用して、補強材との接着剤を製造することが提案されている。一例として、p-tert-オクチルフェノールの代わりにp-tert-ブチルフェノールを用いてレゾルシンとの共縮合物を製造することが提案されている。
 また、さらに作業環境を配慮した共縮合物中の遊離成分の低減も求められていた。
Therefore, it has been proposed to produce an adhesive with a reinforcing material using an alternative compound not listed in the SVHC candidate substances defined in the REACH regulations. As an example, it has been proposed to produce a cocondensate with resorcin using p-tert-butylphenol instead of p-tert-octylphenol.
In addition, reduction of free components in the cocondensate in consideration of the working environment has also been demanded.
特開平06-234824号公報Japanese Patent Application Laid-Open No. 06-234824
 本発明は、スチールコード等の補強材で補強されたゴム製品において、法規制により使用が制限される可能性のあるp-tert-オクチルフェノール及びp-ノニルフェノールを使用せず、加硫後ゴム組成物の耐亀裂進展性に優れたタイヤ用ゴム組成物を提供することを課題とする。 The present invention relates to a rubber composition after vulcanization without using p-tert-octylphenol and p-nonylphenol, which may be restricted by legal regulations, in rubber products reinforced with a reinforcing material such as steel cord. It is an object of the present invention to provide a rubber composition for tires having excellent crack resistance.
 本発明者らは、スチールコード等の補強材で補強されたゴム製品において、p-tert-ブチルフェノール及びレゾルシン由来の構成単位に加えて、さらにo-フェニルフェノール由来の構成単位を含む共縮合物を接着剤として使用できることを見出した。また、この接着剤とともに特定の硫黄を特定量配合することにより、加硫後ゴム組成物の耐亀裂進展性が向上することを見出した。本発明は、これらの知見に基づいてなされたものである。
 すなわち、本発明に係るタイヤ用ゴム組成物は、ゴム成分(A)と、不溶性硫黄(B)と、下記式(1)で表されるp-tert-ブチルフェノール由来の構成単位、下記式(2)で表されるo-フェニルフェノール由来の構成単位、及び下記式(3)で表されるレゾルシン由来の構成単位を含み軟化点が150℃以下である共縮合物(C)とを配合してなり、該不溶性硫黄(B)の配合量が、ゴム成分(A)100質量部に対して、1.0質量部以上6.5質量部以下であり、該共縮合物(C)の配合量が、ゴム成分(A)100質量部に対して、0.1質量部以上10質量部以下である。
In the rubber product reinforced with a reinforcing material such as a steel cord, the present inventors have added a cocondensate containing a structural unit derived from o-phenylphenol in addition to a structural unit derived from p-tert-butylphenol and resorcin. It has been found that it can be used as an adhesive. Moreover, it discovered that the crack progress property of the rubber composition after vulcanization improved by mix | blending specific amount of specific sulfur with this adhesive agent. The present invention has been made based on these findings.
That is, the tire rubber composition according to the present invention comprises a rubber component (A), insoluble sulfur (B), a structural unit derived from p-tert-butylphenol represented by the following formula (1), the following formula (2) And a co-condensate (C) containing a structural unit derived from resorcin represented by the following formula (3) and having a softening point of 150 ° C. or lower. The amount of the insoluble sulfur (B) is 1.0 to 6.5 parts by mass with respect to 100 parts by mass of the rubber component (A), and the amount of the cocondensate (C) However, they are 0.1 mass part or more and 10 mass parts or less with respect to 100 mass parts of rubber components (A).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明によれば、スチールコード等の補強材で補強されたゴム製品において、法規制により使用が制限される可能性のあるp-tert-オクチルフェノール及びp-ノニルフェノールを使用せず、加硫後ゴム組成物の耐亀裂進展性に優れたタイヤ用ゴム組成物を提供することができる。 According to the present invention, a rubber product reinforced with a reinforcing material such as a steel cord does not use p-tert-octylphenol and p-nonylphenol, which may be restricted by law and regulation, and rubber after vulcanization. It is possible to provide a rubber composition for a tire excellent in crack resistance of the composition.
[タイヤ用ゴム組成物]
 以下、本発明の実施形態に係るタイヤ用ゴム組成物について、詳細に説明する。
 本実施形態に係るタイヤ用ゴム組成物は、ゴム成分(A)と、不溶性硫黄(B)と、下記式(1)で表されるp-tert-ブチルフェノール由来の構成単位、下記式(2)で表されるo-フェニルフェノール由来の構成単位、及び下記式(3)で表されるレゾルシン由来の構成単位を含み軟化点が150℃以下である共縮合物(C)とを配合してなり、該不溶性硫黄(B)の配合量が、ゴム成分(A)100質量部に対して、1.0質量部以上6.5質量部以下であり、該共縮合物(C)の配合量が、ゴム成分(A)100質量部に対して、0.1質量部以上10質量部以下である。
Figure JPOXMLDOC01-appb-C000003
[Rubber composition for tire]
Hereinafter, the rubber composition for tires according to the embodiment of the present invention will be described in detail.
The tire rubber composition according to this embodiment includes a rubber component (A), insoluble sulfur (B), a structural unit derived from p-tert-butylphenol represented by the following formula (1), the following formula (2): And a co-condensate (C) containing a structural unit derived from resorcin represented by the following formula (3) and having a softening point of 150 ° C. or lower. The amount of the insoluble sulfur (B) is 1.0 to 6.5 parts by mass with respect to 100 parts by mass of the rubber component (A), and the amount of the cocondensate (C) is The amount of the rubber component (A) is 0.1 parts by mass or more and 10 parts by mass or less based on 100 parts by mass.
Figure JPOXMLDOC01-appb-C000003
<ゴム成分(A)>
 本発明の実施形態に係るタイヤ用ゴム組成物に配合するゴム成分(A)としては、天然ゴム、エポキシ化天然ゴム、脱蛋白天然ゴム及びその他の変性天然ゴムの他、ポリイソプレンゴム(IR)、スチレン・ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、イソプレン・イソブチレン共重合ゴム(IIR)、エチレン・プロピレン-ジエン共重合ゴム(EPDM)、ハロゲン化ブチルゴム(HR)等の各種の合成ゴムが例示される。これらのなかでも、好ましくは、天然ゴム、ポリイソプレンゴム、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム等の高不飽和性ゴムが用いられ、特に好ましくは、天然ゴム及び/又はポリイソプレンゴムが用いられる。また、天然ゴムとスチレン・ブタジエン共重合ゴムの併用、天然ゴムとポリブタジエンゴムの併用等、数種のゴム成分を組み合わせることも有効である。
<Rubber component (A)>
The rubber component (A) to be blended in the tire rubber composition according to the embodiment of the present invention includes natural rubber, epoxidized natural rubber, deproteinized natural rubber and other modified natural rubber, as well as polyisoprene rubber (IR). Styrene / butadiene copolymer rubber (SBR), polybutadiene rubber (BR), acrylonitrile / butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber (IIR), ethylene / propylene-diene copolymer rubber (EPDM), halogen Various synthetic rubbers such as hydrogenated butyl rubber (HR) are exemplified. Of these, preferably used are highly unsaturated rubbers such as natural rubber, polyisoprene rubber, styrene / butadiene copolymer rubber, polybutadiene rubber, and particularly preferably natural rubber and / or polyisoprene rubber. . It is also effective to combine several rubber components such as a combination of natural rubber and styrene / butadiene copolymer rubber, a combination of natural rubber and polybutadiene rubber.
 天然ゴムの例としては、RSS#1、RSS#3、TSR20、SIR20等のグレードの天然ゴムを挙げることができる。エポキシ化天然ゴムとしては、エポキシ化度10~60モル%のものが好ましく、クンプーランガスリー社製ENR25やENR50が例示できる。脱蛋白天然ゴムとしては、総窒素含有率が0.3質量%以下である脱蛋白天然ゴムが好ましい。変性天然ゴムとしては、天然ゴムに、予め、4-ビニルピリジン、N,N-ジエチルアミノエチルアクリレート等のN,N-ジアルキルアミノエチルアクリレート、2-ヒドロキシアクリレート等を反応させた極性基を含有する変性天然ゴムが好ましく用いられる。 Examples of natural rubber include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, and SIR20. As the epoxidized natural rubber, those having a degree of epoxidation of 10 to 60 mol% are preferable, and examples thereof include ENR25 and ENR50 manufactured by Kumpoulangrie. As the deproteinized natural rubber, a deproteinized natural rubber having a total nitrogen content of 0.3% by mass or less is preferable. As the modified natural rubber, a modified material containing a polar group obtained by reacting natural rubber with N, N-dialkylaminoethyl acrylate such as 4-vinylpyridine, N, N-diethylaminoethyl acrylate, 2-hydroxy acrylate or the like in advance. Natural rubber is preferably used.
 スチレン・ブタジエン共重合ゴム(SBR)の例としては、日本ゴム協会編「ゴム工業便覧<第四版>」の210~211頁に記載されている乳化重合SBR及び溶液重合SBRを挙げることができる。これらのなかでは、とりわけ、溶液重合SBRを用いることが好ましい。
 溶液重合SBRの市販品としては、日本ゼオン社製「Nipol(登録商標)NS116」等の4,4’-ビス-(ジアルキルアミノ)ベンゾフェノンを用いて分子末端を変性した溶液重合SBR、JSR社製「SL574」等のハロゲン化スズ化合物を用いて分子末端を変性した溶液重合SBR、旭化成社製「E10」、「E15」等のシラン変性溶液重合SBRが好ましく用いられる。
 また、ラクタム化合物、アミド化合物、尿素系化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するトリアルコキシシラン化合物等のシラン化合物、アミノシラン化合物のいずれかを単独で用いて、または、スズ化合物とアルコキシ基を有するシラン化合物、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物等、異なる複数の化合物を2種以上用いて、それぞれ分子末端を変性して得られる分子末端に窒素、スズ、ケイ素のいずれか、又はそれら複数の元素を有する溶液重合SBRが特に好ましく用いられる。
Examples of the styrene-butadiene copolymer rubber (SBR) include emulsion polymerization SBR and solution polymerization SBR described on pages 210 to 211 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. . Among these, it is particularly preferable to use solution polymerization SBR.
As a commercially available solution polymerized SBR, a solution polymerized SBR having a molecular terminal modified with 4,4′-bis- (dialkylamino) benzophenone such as “Nipol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd., manufactured by JSR A solution-polymerized SBR having a molecular end modified with a tin halide compound such as “SL574” or a silane-modified solution-polymerized SBR such as “E10” or “E15” manufactured by Asahi Kasei Corporation is preferably used.
Further, any one of a silane compound such as a lactam compound, an amide compound, a urea compound, an N, N-dialkylacrylamide compound, an isocyanate compound, an imide compound, a trialkoxysilane compound having an alkoxy group, or an aminosilane compound is used alone. Alternatively, two or more different compounds such as a silane compound having a tin compound and an alkoxy group, and an alkylacrylamide compound and an silane compound having an alkoxy group are used, and the molecular ends are modified by nitrogen and tin at the molecular ends. In particular, solution polymerization SBR having any one of silicon, silicon, or a plurality of these elements is preferably used.
 ポリブタジエンゴム(BR)の例としては、シス1,4結合が90%以上の高シスBRや、シス結合が35%前後の低シスBR等の溶液重合BRが例示され、高ビニル含量の低シスBRが好ましく用いられる。BRの市販品としては、日本ゼオン社製「Nipol(登録商標)BR 1250H」等スズ変性BRが好ましく用いられる。
 また、4,4’-ビス-(ジアルキルアミノ)ベンゾフェノン、ハロゲン化スズ化合物、ラクタム化合物、アミド化合物、尿素系化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するトリアルコキシシラン化合物等のシラン化合物、アミノシラン化合物のいずれかを単独で用いて、又は、スズ化合物とアルコキシ基を有するシラン化合物や、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物等、異なる複数の化合物を2種以上用いて、それぞれ分子末端を変性して得られる分子末端に窒素、スズ、ケイ素のいずれか、又はそれら複数の元素を有する溶液重合BRが特に好ましく用いられる。
 また、ゴム成分は天然ゴムを含むことが好ましく、上述のBRは、通常、天然ゴムと混合して使用される。ゴム成分(A)に占める天然ゴムの割合は、70質量%以上であることが好ましい。
Examples of polybutadiene rubber (BR) include solution polymerization BR such as high cis BR with 90% or more of cis 1,4 bond and low cis BR with cis bond of around 35%, and low cis with high vinyl content. BR is preferably used. As a commercial product of BR, tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon Co., Ltd. is preferably used.
Also, 4,4′-bis- (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, N-dialkylacrylamide compound, isocyanate compound, imide compound, trialkoxy having an alkoxy group Two types of different compounds such as a silane compound such as a silane compound, an aminosilane compound alone, a silane compound having a tin compound and an alkoxy group, or a silane compound having an alkylacrylamide compound and an alkoxy group. In particular, solution polymerization BR having nitrogen, tin, silicon, or a plurality of these elements at the molecular ends obtained by modifying the molecular ends is particularly preferably used.
The rubber component preferably contains natural rubber, and the above-mentioned BR is usually used by mixing with natural rubber. The proportion of natural rubber in the rubber component (A) is preferably 70% by mass or more.
<不溶性硫黄(B)>
 本実施形態に係るタイヤ用ゴム組成物は、加硫剤として不溶性硫黄が配合されることを要する。不溶性硫黄(B)の配合量は、ゴム成分100質量部に対し、硫黄分として1.0質量部以上6.5質量部以下であることを要する。不溶性硫黄(B)の配合量が1.0質量部以上であれば、加硫ゴムに要求される湿熱接着性が得られ、6.5質量部以下であれば、加硫ゴムに溶融される耐亀裂進展性が得られる。この観点から、不溶性硫黄(B)の配合量は、好ましくは、1.5質量部以上6.5質量部以下であり、より好ましくは、2質量部以上6.5質量部以下である。
 加硫剤としては、不溶性硫黄(B)のほかに、粉末硫黄、沈降硫黄、コロイド硫黄、及び高分散性硫黄等が配合されていてもよい。
<Insoluble sulfur (B)>
The rubber composition for tires according to the present embodiment needs to contain insoluble sulfur as a vulcanizing agent. The compounding quantity of insoluble sulfur (B) needs to be 1.0 mass part or more and 6.5 mass parts or less as a sulfur content with respect to 100 mass parts of rubber components. If the amount of insoluble sulfur (B) is 1.0 part by mass or more, the wet heat adhesiveness required for the vulcanized rubber is obtained, and if it is 6.5 parts by mass or less, it is melted in the vulcanized rubber. Crack growth resistance is obtained. In this respect, the amount of insoluble sulfur (B) is preferably 1.5 parts by mass or more and 6.5 parts by mass or less, and more preferably 2 parts by mass or more and 6.5 parts by mass or less.
As the vulcanizing agent, powdered sulfur, precipitated sulfur, colloidal sulfur, highly dispersible sulfur and the like may be blended in addition to insoluble sulfur (B).
<共縮合物(C)>
 共縮合物(C)は、下記式(1)で表されるp-tert-ブチルフェノール由来の構成単位、下記式(2)で表されるo-フェニルフェノール由来の構成単位、及び下記式(3)で表されるレゾルシン由来の構成単位を含む。
<Cocondensate (C)>
The cocondensate (C) includes a structural unit derived from p-tert-butylphenol represented by the following formula (1), a structural unit derived from o-phenylphenol represented by the following formula (2), and the following formula (3 The structural unit derived from resorcin represented by this.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 これら構成単位は通常、共縮合物の主鎖中に含まれるが、側鎖中に含まれる場合もある。これら構成単位のうち、o-フェニルフェノール由来の構成単位(2)が含まれていない場合、軟化点が高くなり、混練時にゴムに配合した際に分散性不良の問題が発生する結果、混練時にゴムに配合して使用するゴムと補強材との接着剤として不適となる。また、レゾルシン由来の構成単位(3)が含まれていない場合、混練時にゴムに配合して使用するゴムと補強材との接着剤としての能力を十分に発揮しない。さらには、p-tert-ブチルフェノール由来の構成単位(1)を含まない場合、共縮合物としての価格が非常に高くなり、工業的に有利に共縮合物を得ることができなくなる。 These structural units are usually contained in the main chain of the cocondensate, but may also be contained in the side chain. Among these structural units, when the structural unit derived from o-phenylphenol (2) is not included, the softening point becomes high, and a problem of poor dispersibility occurs when blended with rubber during kneading. It becomes unsuitable as an adhesive between rubber and reinforcing material used in rubber. Moreover, when the structural unit (3) derived from resorcin is not contained, the ability as an adhesive between the rubber and the reinforcing material used by blending with rubber during kneading is not sufficiently exhibited. Furthermore, when the structural unit (1) derived from p-tert-butylphenol is not included, the cost as a cocondensate becomes very high, and the cocondensate cannot be obtained industrially advantageously.
 これら構成単位の含有比率は、p-tert-ブチルフェノール由来の構成単位(1)の1モルに対し、o-フェニルフェノール由来の構成単位(2)を0.5~6倍モルとすることが好ましく、1.5~6倍モルとすることがより好ましい。0.5倍モルより少ない場合、軟化点が高くなりすぎて前述のような問題が発生する場合があり、6倍モルより多い場合、共縮合物の原料コストが高くなり工業上有利に本発明に係る共縮合物を製造することができなくなる場合がある。
 レゾルシン由来の構成単位(3)は、p-tert-ブチルフェノール由来の構成単位(1)及びo-フェニルフェノール由来の構成単位(2)の合計量1モルに対して、通常0.5~2.0倍モル含まれる。0.5倍モルより少ない場合、混練時にゴムに配合して使用するゴムと補強材との接着剤としての能力を十分に発揮しない場合があり、2.0倍モルより多く含まれるものは工業上製造が困難である場合がある。
The content ratio of these structural units is preferably 0.5 to 6 moles of the structural unit (2) derived from o-phenylphenol with respect to 1 mole of the structural unit (1) derived from p-tert-butylphenol. More preferably, the molar amount is 1.5 to 6 times. When the amount is less than 0.5 times mol, the softening point may be too high and the above-mentioned problem may occur. When the amount is more than 6 times mol, the raw material cost of the cocondensate is increased, and the present invention is advantageous industrially. It may become impossible to produce the cocondensate according to.
The structural unit (3) derived from resorcin is usually 0.5 to 2 parts per 1 mol of the total amount of the structural unit (1) derived from p-tert-butylphenol and the structural unit (2) derived from o-phenylphenol. 0 times mole is contained. When the amount is less than 0.5 times mol, the ability as an adhesive between the rubber and the reinforcing material to be used by mixing with rubber during kneading may not be sufficiently exhibited. It may be difficult to manufacture.
 これら構成単位は通常、反応で使用するアルデヒド由来のアルキル基及び/又はアルキルエーテル基のような結合基によって結合される。中でも結合基は、ホルムアルデヒド由来のメチレン基及び/又はジメチレンエーテル基であることが好ましい。結合基は、p-tert-ブチルフェノール由来の構成単位(1)及びo-フェニルフェノール由来の構成単位(2)の合計量1モルに対して、通常1~2倍モル含まれる。
 これら構成単位や結合基の比率は、例えば、共縮合物をH-NMRを用い分析することにより決定可能である。具体的には、共縮合物をH-NMRにて分析し、得られた分析結果のうち、各構成単位や結合基に由来するプロトン積分値からその比率を決定する方法が例示される。
 本発明の実施形態に係るタイヤ用ゴム組成物に用いることのできる共縮合物(C)は、必要に応じて、p-tert-ブチルフェノール、o-フェニルフェノール及びレゾルシン由来の構成単位以外の構成単位を含むことができる。このような構成単位の例として、一般的にゴムの加工工程において使用される接着剤として用いられる共縮合物の原料として用いられる各種アルキルフェノール由来の構成単位が例示される。
These structural units are usually connected by a linking group such as an alkyl group and / or an alkyl ether group derived from an aldehyde used in the reaction. Among them, the linking group is preferably a methylene group and / or a dimethylene ether group derived from formaldehyde. The linking group is usually contained in an amount of 1 to 2 moles per 1 mole of the total amount of the structural unit (1) derived from p-tert-butylphenol and the structural unit (2) derived from o-phenylphenol.
The ratio of these structural units and bonding groups can be determined, for example, by analyzing the cocondensate using 1 H-NMR. Specifically, a method is exemplified in which the cocondensate is analyzed by 1 H-NMR, and among the obtained analysis results, the ratio is determined from the proton integral value derived from each structural unit or bonding group.
The cocondensate (C) that can be used in the rubber composition for tires according to the embodiment of the present invention is a structural unit other than structural units derived from p-tert-butylphenol, o-phenylphenol, and resorcin, if necessary. Can be included. Examples of such structural units include structural units derived from various alkylphenols used as raw materials for cocondensates generally used as adhesives used in rubber processing steps.
 共縮合物(C)の軟化点は、150℃以下である必要がある。軟化点は、80℃以上150℃以下の範囲であることが好ましく、80℃以上140℃以下の範囲であることがより好ましく、90℃以上120℃以下であることが、特に好ましい。
 共縮合物(C)の軟化点が150℃より高いと、タイヤ用ゴム組成物中において、混練時にタイヤ用ゴム組成物に配合した際に、分散性不良の問題が発生する結果、混練時にゴムに配合して使用する、ゴムと補強材との接着剤として不適となる場合がある。80℃より低いと保存中にブロッキングしてしまう場合がある。
The softening point of the cocondensate (C) needs to be 150 ° C. or less. The softening point is preferably in the range of 80 ° C to 150 ° C, more preferably in the range of 80 ° C to 140 ° C, and particularly preferably in the range of 90 ° C to 120 ° C.
When the softening point of the co-condensate (C) is higher than 150 ° C., a problem of poor dispersibility occurs when blended with the tire rubber composition during kneading in the tire rubber composition. In some cases, it is not suitable as an adhesive between rubber and a reinforcing material. If it is lower than 80 ° C., blocking may occur during storage.
 本実施形態に係るタイヤ用ゴム組成物において、共縮合物(C)は、ゴム成分(A)100質量部に対して、0.1質量部以上10質量部以下含まれることを要する。
 共縮合物(C)の配合量が、ゴム成分(A)100質量部に対して0.1質量部未満であると、十分な接着性(湿熱接着性)が得られない。
 共縮合物(C)の配合量が、ゴム成分(A)100質量部に対して、10質量部を超えると、加硫中の接着反応が過剰に進むことで接着性(湿熱接着性)が低下する。
 上記観点から、共縮合物(C)は、ゴム成分(A)100質量部に対して、好ましくは、0.2質量部以上8質量部以下であり、より好ましくは、0.5質量部以上6質量部以下である。
In the tire rubber composition according to this embodiment, the cocondensate (C) is required to be contained in an amount of 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component (A).
When the blending amount of the cocondensate (C) is less than 0.1 parts by mass with respect to 100 parts by mass of the rubber component (A), sufficient adhesion (wet heat adhesion) cannot be obtained.
When the amount of the co-condensate (C) exceeds 10 parts by mass with respect to 100 parts by mass of the rubber component (A), the adhesive reaction during vulcanization proceeds excessively, resulting in adhesiveness (wet heat adhesion). descend.
From the above viewpoint, the cocondensate (C) is preferably 0.2 parts by mass or more and 8 parts by mass or less, and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component (A). 6 parts by mass or less.
 共縮合物(C)に含まれる、未反応モノマー(遊離p-tert-ブチルフェノール、o-フェニルフェノール及びレゾルシン)及び残存溶媒の総量は、15質量%以下であることが好ましい。15質量%以下とすることで混練り作業中における臭気を低減することができ、環境上好ましい。
 特に、遊離レゾルシンの含量が12質量%以下であることが好ましい。遊離レゾルシンの含量が12質量%以下であると、共縮合物(C)をゴムへ添加する際、ゴムへの混練中に生じるレゾルシンの蒸散が改善されるため、作業環境が大きく改善され特に好ましい。
 共縮合物(C)に含まれる、遊離レゾルシン以外の未反応モノマーであるp-tert-ブチルフェノール及びo-フェニルフェノール、並びに反応で使用することがある残存溶媒量の総量は、5質量%以下であることが好ましい。5質量%以下であると、臭気が低減されるとともに、揮発性有機化合物が低減され、環境上好ましく、3質量%以下であると、さらに好ましい。
 上記観点から、本発明に係るタイヤ用ゴム組成物に含まれる、遊離レゾルシン以外の未反応モノマー及び残存溶媒の総量は、ゴム成分に対して、0.20質量%以下が好ましく、0.17質量%以下がさらに好ましい。
The total amount of unreacted monomers (free p-tert-butylphenol, o-phenylphenol and resorcin) and residual solvent contained in the cocondensate (C) is preferably 15% by mass or less. By setting the content to 15% by mass or less, the odor during the kneading operation can be reduced, which is environmentally preferable.
In particular, the content of free resorcin is preferably 12% by mass or less. When the content of free resorcin is 12% by mass or less, when the cocondensate (C) is added to the rubber, the transpiration of resorcin that occurs during kneading into the rubber is improved, so that the working environment is greatly improved, which is particularly preferable. .
The total amount of unreacted monomers p-tert-butylphenol and o-phenylphenol other than free resorcin and residual solvent that may be used in the reaction contained in the cocondensate (C) is 5% by mass or less. Preferably there is. When the content is 5% by mass or less, the odor is reduced and the volatile organic compound is reduced, which is preferable for the environment, and more preferably 3% by mass or less.
From the above viewpoint, the total amount of the unreacted monomer other than free resorcin and the residual solvent contained in the tire rubber composition according to the present invention is preferably 0.20% by mass or less, and 0.17% by mass with respect to the rubber component. % Or less is more preferable.
<充填材>
 本実施形態に係るタイヤ用ゴム組成物には、必要に応じて、充填材を配合することができる。充填材としては、カーボンブラック及び無機充填剤から選ばれる少なくとも1種であることが好ましい。本実施形態では、カーボンブラックは、無機充填剤に含まれない。
 本実施形態に係るゴム組成物において、カーボンブラックと無機充填剤の総配合量は、ゴム成分(A)100質量部に対して、5質量部以上100質量部以下にすることが好ましい。5質量部以上であれば、弾性率確保の観点から好ましく、100質量部以下であれば、低発熱性向上の観点から好ましい。上記観点から、無機充填剤とカーボンブラックとの総量は、より好ましくは、ゴム成分(A)100質量部に対して、20質量部以上80質量部以下であり、更に好ましくは、ゴム成分(A)100質量部に対して、20質量部以上70質量部以下であり、特に好ましくは、30質量部以上70質量部以下である。
<Filler>
The tire rubber composition according to the present embodiment may contain a filler as necessary. The filler is preferably at least one selected from carbon black and inorganic filler. In this embodiment, carbon black is not included in the inorganic filler.
In the rubber composition according to this embodiment, the total amount of carbon black and the inorganic filler is preferably 5 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber component (A). If it is 5 parts by mass or more, it is preferable from the viewpoint of securing the elastic modulus, and if it is 100 parts by mass or less, it is preferable from the viewpoint of improving low heat generation. From the above viewpoint, the total amount of the inorganic filler and the carbon black is more preferably 20 parts by mass or more and 80 parts by mass or less, and still more preferably the rubber component (A) with respect to 100 parts by mass of the rubber component (A). ) 20 parts by mass or more and 70 parts by mass or less, and particularly preferably 30 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass.
<カーボンブラック>
 本実施形態に係るタイヤ用ゴム組成物は、カーボンブラックを含有することにより、電気抵抗を下げて帯電を抑止する効果を享受できる。
 カーボンブラックとしては、例えば、高、中又は低ストラクチャーのSAF、ISAF、IISAF、N339、HAF、FEF、GPF、SRFグレードのカーボンブラック、特にSAF、ISAF、IISAF、N339、HAF、FEFグレードのカーボンブラックを用いることが好ましい。カーボンブラックの窒素吸着比表面積(NSA、JIS K 6217-2:2001に準拠して測定する)は、30~250m/gであることが好ましい。カーボンブラックは、上述したものから1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Carbon black>
The rubber composition for a tire according to the present embodiment can enjoy the effect of suppressing charging by lowering the electrical resistance by containing carbon black.
Examples of carbon black include high, medium or low structure SAF, ISAF, IISAF, N339, HAF, FEF, GPF, SRF grade carbon black, especially SAF, ISAF, IISAF, N339, HAF, FEF grade carbon black. Is preferably used. The nitrogen adsorption specific surface area (measured in accordance with N 2 SA, JIS K 6217-2: 2001) of carbon black is preferably 30 to 250 m 2 / g. Carbon black may be used individually by 1 type from what was mentioned above, and may be used in combination of 2 or more type.
<無機充填剤>
 本発明に係るタイヤ用ゴム組成物に、必要に応じて、無機充填剤を配合することができる。本実施形態において用いられる無機充填剤は、シリカ及び下記一般式(I)で表される無機化合物から選ばれる少なくとも1種である。
  dM・xSiO・zHO        ・・・(I)
 ここで、一般式(I)中、Mは、アルミニウム、マグネシウム、チタン、カルシウム、及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、又はこれらの金属の炭酸塩から選ばれる少なくとも一種であり、d、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。
 なお、一般式(I)において、x、zがともに0である場合には、該無機化合物はアルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムから選ばれる少なくとも1つの金属、金属酸化物又は金属水酸化物となる。
<Inorganic filler>
An inorganic filler can be mix | blended with the rubber composition for tires which concerns on this invention as needed. The inorganic filler used in the present embodiment is at least one selected from silica and an inorganic compound represented by the following general formula (I).
dM 1 · xSiO y · zH 2 O (I)
Here, in the general formula (I), M 1 is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium, and zirconium, an oxide or hydroxide of these metals, and a hydrate thereof. Or at least one selected from carbonates of these metals, and d, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10 is there.
In the general formula (I), when both x and z are 0, the inorganic compound is at least one metal, metal oxide or metal hydroxide selected from aluminum, magnesium, titanium, calcium and zirconium. It becomes.
 本発明の実施形態においては、上述の無機充填剤は、低転がり性の観点からシリカであることが好ましい。また、本実施形態においては、タイヤ用ゴム組成物の補強性及び低燃費性を向上させる観点から、シリカの配合量は、ゴム成分(A)100質量部に対して、1質量部以上65質量部以下とすることが好ましく、10質量部以上40質量部以下とすることがより好ましい。
 無機充填剤としてシリカを用いる場合には、シリカのBET比表面積(ISO5794/1に準拠して測定する)は40~350m/gであるのが好ましい。BET表面積がこの範囲であるシリカは、ゴム補強性とゴム成分(A)中への分散性とを両立できるという利点がある。この観点から、BET表面積が80~350m/gの範囲にあるシリカが更に好ましく、BET表面積が120~350m/gの範囲にあるシリカが特に好ましい。
 シリカとしては市販品を使用でき、なかでも湿式シリカ、乾式シリカ、コロイダルシリカを用いるのが好ましく、湿式シリカを用いるのが特に好ましい。
 このようなシリカとしては、デグッサ社製「ウルトラジル(登録商標)VN3」(BET比表面積=175m/g)等、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」、東ソー・シリカ社製「ニップシール(登録商標)AQ」等の市販品が好ましく用いられる。
In the embodiment of the present invention, the above-mentioned inorganic filler is preferably silica from the viewpoint of low rolling property. In the present embodiment, from the viewpoint of improving the reinforcing property and low fuel consumption of the tire rubber composition, the amount of silica is 1 part by mass or more and 65 parts by mass with respect to 100 parts by mass of the rubber component (A). Preferably, the amount is 10 parts by mass or more and 40 parts by mass or less.
When silica is used as the inorganic filler, the BET specific surface area (measured in accordance with ISO 5794/1) of silica is preferably 40 to 350 m 2 / g. Silica having a BET surface area within this range has an advantage that both rubber reinforcement and dispersibility in the rubber component (A) can be achieved. From this viewpoint, silica having a BET surface area in the range of 80 to 350 m 2 / g is more preferable, and silica having a BET surface area in the range of 120 to 350 m 2 / g is particularly preferable.
Commercially available products can be used as silica, and wet silica, dry silica, and colloidal silica are particularly preferable, and wet silica is particularly preferable.
Examples of such silica include “Ultra Gil (registered trademark) VN3” (BET specific surface area = 175 m 2 / g) manufactured by Degussa, “Ultra Gil (registered trademark) 360”, “Ultra Gil (registered trademark) 7000”. "Zeosil (registered trademark) 115GR", "Zeosil (registered trademark) 1115MP", "Zeosil (registered trademark) 1205MP", "Zeosil (registered trademark) Z85MP", manufactured by Rhodia, "Nipseal (registered trademark)" manufactured by Tosoh Silica ) AQ "and the like are preferably used.
 無機充填剤として一般式(I)で表される無機化合物を配合する場合には、γ-アルミナ、α-アルミナ等のアルミナ(Al)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al・HO)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)]、炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(CaSiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、炭酸カルシウム(CaCO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、各種ゼオライトのように電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩などが使用できる。
 また、前記一般式(I)中のMがアルミニウム金属、アルミニウムの酸化物又は水酸化物、及びそれらの水和物、又はアルミニウムの炭酸塩から選ばれる少なくとも一つである場合が好ましく、水酸化アルミニウムが更に好ましい。
 本発明に係るタイヤ用ゴム組成物に配合可能な水酸化アルミニウムとしては、窒素吸着比表面積5~250m/g、DOP給油量50~100ml/100gの水酸化アルミニウムが挙げられる。
 一般式(I)で表されるこれらの無機化合物は、単独で使用してもよいし、2種以上を混合して使用してもよい。
 本発明における無機充填剤は、シリカ単独で使用してもよいし、シリカと一般式(I)で表される無機化合物の1種以上とを併用してもよい。
When an inorganic compound represented by the general formula (I) is blended as an inorganic filler, alumina monohydrate such as alumina (Al 2 O 3 ) such as γ-alumina and α-alumina, boehmite and diaspore ( Al 2 O 3 .H 2 O), gibbsite, bayerite and other aluminum hydroxide [Al (OH) 3 ], aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3), talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), titanium white (TiO 2), titanium black (TiO 2n- 1 ), calcium oxide (CaO), calcium hydroxide [Ca (OH) 2 ], aluminum magnesium oxide (MgO.Al 2 O 3 ), clay (Al 2 O 3 · 2SiO 2 ), kaolin (Al 2 O 3 · 2SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O), aluminum silicate (Al 2 SiO 5 , Al 4 · 3SiO 4 · 5H 2 O, etc.), magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.), calcium silicate ( Ca 2 SiO 4 etc.), aluminum calcium silicate (Al 2 O 3 · CaO · 2SiO 2 etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2 ), zirconium hydroxide [ZrO (OH) 2 · nH 2 O], zirconium carbonate [Zr (CO 3) 2] , various zeolites Hydrogen for correcting the charge, such as crystalline aluminosilicates including alkali metal or alkaline earth metal can be used as.
Further, it is preferable that M 1 in the general formula (I) is at least one selected from aluminum metal, aluminum oxide or hydroxide, and hydrates thereof, or aluminum carbonate. More preferred is aluminum oxide.
Examples of the aluminum hydroxide that can be blended in the tire rubber composition according to the present invention include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
These inorganic compounds represented by general formula (I) may be used alone or in combination of two or more.
The inorganic filler in the present invention may be used alone or in combination with silica and one or more inorganic compounds represented by the general formula (I).
<シランカップリング剤>
 本発明に係るタイヤ用ゴム組成物は、シリカを含む無機充填剤が配合される場合には、タイヤ用ゴム組成物の補強性及び低燃費性を更に向上させる目的で、シランカップリッグ剤を配合することができる。
 シランカップリング剤としては、例えばビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシーリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオプロピルトリエトキシシランなどが挙げられるが、これらの中で補強性改善効果などの点から、ビス(3-トリエトキシシリルプロピル)ポリスルフィド、3-オクタノイルチオプロピルトリエトキシシラン及び3-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが好適である。
 これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
<Silane coupling agent>
When the rubber composition for tires according to the present invention is blended with an inorganic filler containing silica, a silane coupling agent is blended for the purpose of further improving the reinforcing property and fuel efficiency of the tire rubber composition. can do.
Examples of silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxysilyl). Ethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltri Methoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarba Yl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide, 3-triethoxysilylpropylbenzoyltetrasulfide, 3-triethoxy Silylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyltetra Sulfide, dimethoxymethylsilylpropylbenzothiazolyl tetrasulfide, 3-octanoylthiopropyltriethoxysilane, etc. Among them, bis (3-triethoxysilylpropyl) polysulfide, 3-octanoylthiopropyltriethoxysilane and 3-trimethoxysilylpropylbenzothiazyl tetrasulfide are preferable from the viewpoint of improving the reinforcing property. .
One of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
 カップリング剤としての効果及びゲル化防止などの点から、このシランカップリング剤の好ましい配合量は、質量比(シランカップリング剤/シリカ)が(1/100)~(20/100)であることが好ましい。(1/100)以上であれば、タイヤ用ゴム組成物の低発熱性向上の効果をより好適に発揮することとなり、(20/100)以下であれば、タイヤ用ゴム組成物のコストが低減し、経済性が向上するからである。更には質量比(3/100)~(20/100)であることがより好ましく、質量比(4/100)~(10/100)であることが特に好ましい。 From the viewpoint of the effect as a coupling agent and prevention of gelation, the preferable blending amount of this silane coupling agent is such that the mass ratio (silane coupling agent / silica) is (1/100) to (20/100). It is preferable. If it is (1/100) or more, the effect of improving the low heat buildup of the rubber composition for tires will be exhibited more suitably, and if it is (20/100) or less, the cost of the rubber composition for tires will be reduced. This is because the economy is improved. Further, a mass ratio (3/100) to (20/100) is more preferable, and a mass ratio (4/100) to (10/100) is particularly preferable.
<ビスマレイミド化合物>
 本実施形態に係るタイヤ用ゴム組成物には、ビスマレイミド化合物が配合されていることが好ましい。ビスマレイミド化合物は、本実施形態のタイヤ用ゴム組成物に好ましく含有される加硫剤としての不溶性硫黄(B)とともに、加硫系の一部として機能する。
 本実施形態に係るタイヤ用ゴム組成物に配合可能なビスマレイミド化合物としては、下記式(4)で表される化合物から選択される1種以上を用いることが好ましい。
<Bismaleimide compound>
It is preferable that a bismaleimide compound is blended in the tire rubber composition according to the present embodiment. The bismaleimide compound functions as a part of the vulcanization system together with insoluble sulfur (B) as a vulcanizing agent preferably contained in the tire rubber composition of the present embodiment.
As the bismaleimide compound that can be blended in the tire rubber composition according to this embodiment, it is preferable to use one or more selected from compounds represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000005

 式中、Xは、炭素数2~4のアルキレン基、フェニレン基又は芳香族環を1~4有する炭素数6~29の2価の炭化水素基を示し、R~Rは、それぞれ独立に、水素原子、炭素数1~5のアルキル基、-NH2基又は-NO2基を示す。
Figure JPOXMLDOC01-appb-C000005

In the formula, X represents an alkylene group having 2 to 4 carbon atoms, a phenylene group, or a divalent hydrocarbon group having 6 to 29 carbon atoms having 1 to 4 aromatic rings, and R 4 to R 7 are each independently Represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a —NH 2 group or a —NO 2 group.
 式(4)において、Xである炭素数2~4のアルキレン基としては、エチレン基、プロピレン基、プロパン-2,2-ジイル基等が挙げられる。
 芳香族環を1~4有する炭素数6~29の2価の炭化水素基としては、メチレンビス(フェニレン)基、フェニレンビス(メチレン)基、フェノキシフェニル基等が挙げられる。また、この芳香族環は-O-、-S-、-SS-、-SO2-等により結合されていてもよい。上記Xの中では、フェニレン基又は芳香族環を1又は2有する炭素数8~17の炭化水素基が好適であり、フェニレン基又は芳香族環を1又は2有する炭素数8~13の炭化水素基がより好ましい。
In the formula (4), examples of the alkylene group having 2 to 4 carbon atoms as X include an ethylene group, a propylene group, a propane-2,2-diyl group, and the like.
Examples of the C6-C29 divalent hydrocarbon group having 1 to 4 aromatic rings include a methylene bis (phenylene) group, a phenylene bis (methylene) group, and a phenoxyphenyl group. Further, this aromatic ring may be bonded by —O—, —S—, —SS—, —SO 2 — or the like. Among the above X, a hydrocarbon group having 8 to 17 carbon atoms having 1 or 2 phenylene group or aromatic ring is preferable, and a hydrocarbon having 8 to 13 carbon atoms having 1 or 2 phenylene group or aromatic ring. Groups are more preferred.
 式(4)において、Xは置換基を有していてもよい。この置換基としては、例えば、炭素数1~3のアルキル基、-NH2、-NO2、-F、-Cl、-Br等が挙げられる。 In the formula (4), X may have a substituent. Examples of the substituent include an alkyl group having 1 to 3 carbon atoms, —NH 2 , —NO 2 , —F, —Cl, —Br and the like.
 式(4)において、R4~R7で示される炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられる。 In the formula (4), examples of the alkyl group having 1 to 5 carbon atoms represented by R 4 to R 7 include a methyl group, an ethyl group, and a propyl group.
 ビスマレイミド化合物の好適例としては、例えば、N,N’-1,2-エチレンビスマレイミド、N,N’-1,2-プロピレンビスマレイミド、4,4’-ビスマレイミドジフェニルメタン、N,N′-m-フェニレンビスマレイミド、N,N′-(4,4-ジフェニル-メタン)ビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2′-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、m-フェニレンビス(メチレン)ビスマレイミド、m-フェニレンビス(メチレン)ビスシトラコンイミド、1,1’-(メチレンジ-4,1-フェニレン)ビスマレイミド等が挙げられる。これらビスマレイミド化合物は単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中では、N,N′-m-フェニレンビスマレイミド、N,N′-(4,4-ジフェニル-メタン)ビスマレイミド、がより好ましい。 Preferable examples of the bismaleimide compound include, for example, N, N′-1,2-ethylene bismaleimide, N, N′-1,2-propylene bismaleimide, 4,4′-bismaleimide diphenylmethane, N, N ′. -M-phenylenebismaleimide, N, N '-(4,4-diphenyl-methane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2'-bis [4- (4-maleimidophenoxy) phenyl] propane, m-phenylenebis (methylene) bismaleimide, m-phenylenebis (methylene) biscitraconimide, 1,1 ′-(methylenedi-4,1-phenylene) bismaleimide It is done. These bismaleimide compounds may be used alone or in combination of two or more. Of these, N, N′-m-phenylenebismaleimide and N, N ′-(4,4-diphenyl-methane) bismaleimide are more preferable.
 本実施形態に係るタイヤ用ゴム組成物において、ビスマレイミド化合物の配合割合は、ゴム成分(A)100質量部に対して、0.1質量部以上5.5質量部以下とすることが好ましい。ビスマレイミド化合物の配合量が0.1質量部以上5.5質量部以下であると、弾性率を高くすることができ、湿熱接着性を向上することができる。この観点から、ビスマレイミド化合物の配合量は、0.1質量部以上5質量部以下とすることがより好ましい。 In the tire rubber composition according to the present embodiment, the blending ratio of the bismaleimide compound is preferably 0.1 parts by mass or more and 5.5 parts by mass or less with respect to 100 parts by mass of the rubber component (A). When the blending amount of the bismaleimide compound is 0.1 parts by mass or more and 5.5 parts by mass or less, the elastic modulus can be increased and wet heat adhesiveness can be improved. From this viewpoint, the blending amount of the bismaleimide compound is more preferably 0.1 parts by mass or more and 5 parts by mass or less.
<有機コバルト化合物>
 本実施形態に係るタイヤ用ゴム組成物には、有機コバルト化合物が配合されていることが好ましい。配合可能な有機コバルト化合物としては、例えば、バーサチック酸コバルト、ネオデカン酸コバルト、ロジン酸コバルト、ナフテン酸コバルト、ステアリン酸コバルト等の酸コバルト塩や、脂肪酸コバルト・ホウ素錯体化合物(例えば、商品名「マノボンドC(登録商標)」:ローディア社製)等が挙げられる。
 有機コバルト化合物の配合量は、ゴム成分(A)100質量部に対して、コバルト含量にして0.01質量部以上0.08質量部以下にすることができ、好ましくは、0.02質量部以上0.07質量部以下にできる。本実施形態では、共縮合物(C)を用いて、有機コバルト化合物の配合量を上記範囲にすることで、耐亀裂進展性を向上することができる。
<Organic cobalt compounds>
The tire rubber composition according to the present embodiment preferably contains an organic cobalt compound. Examples of the organic cobalt compound that can be blended include acid cobalt salts such as cobalt versatate, cobalt neodecanoate, cobalt rosinate, cobalt naphthenate, and cobalt stearate, and fatty acid cobalt / boron complex compounds (for example, trade name “Manobond”). C (registered trademark) "(manufactured by Rhodia).
The compounding amount of the organic cobalt compound can be 0.01 parts by mass or more and 0.08 parts by mass or less, preferably 0.02 parts by mass with respect to 100 parts by mass of the rubber component (A). The amount can be made 0.07 parts by mass or less. In this embodiment, crack progress resistance can be improved by making the compounding quantity of an organic cobalt compound into the said range using a cocondensate (C).
<加硫促進剤>
 本実施形態に係るタイヤ用ゴム組成物には、加硫促進剤が配合されていることが好ましい。配合可能な加硫促進剤としては、より具体的には、N-シクロヘキシル‐2-ベンゾチアゾリルスルフェンアミド、N-ter-ブチル-2-ベンゾチアジルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンイミド、及びN,N-ジ(2-エチルヘキシル)-2-ベンゾチアゾリルスルフェンアミドから選択される少なくとも1つである。これらの中でも、N-シクロヘキシル‐2-ベンゾチアゾリルスルフェンアミドを用いることが好ましい。
 加硫促進剤の配合量は、特に限定されるものではないが、ゴム成分100質量部あたり0.5質量部以上3質量部以下の範囲が好ましい。中でも0.5質量部以上1.2質量部以下の範囲が特に好ましい。
<Vulcanization accelerator>
The tire rubber composition according to the present embodiment preferably contains a vulcanization accelerator. More specific examples of the vulcanization accelerator that can be blended include N-cyclohexyl-2-benzothiazolylsulfenamide, N-ter-butyl-2-benzothiazylsulfenamide, N-tert-butyl- And at least one selected from 2-benzothiazolylsulfenimide and N, N-di (2-ethylhexyl) -2-benzothiazolylsulfenamide. Among these, it is preferable to use N-cyclohexyl-2-benzothiazolylsulfenamide.
Although the compounding quantity of a vulcanization accelerator is not specifically limited, The range of 0.5 to 3 mass parts is preferable per 100 mass parts of rubber components. Among these, a range of 0.5 parts by mass or more and 1.2 parts by mass or less is particularly preferable.
<酸化亜鉛>
 酸化亜鉛の使用量は特に限定されるものではないが、ゴム成分100質量部あたり3質量部以上15質量部以下の範囲が好ましい。中でも5質量部以上10質量部以下の範囲が特に好ましい。
<Zinc oxide>
Although the usage-amount of zinc oxide is not specifically limited, The range of 3 to 15 mass parts is preferable per 100 mass parts of rubber components. Among these, a range of 5 parts by mass or more and 10 parts by mass or less is particularly preferable.
<防錆剤>
 本実施形態に係るタイヤ用ゴム組成物には、防錆剤が配合されていることが好ましい。配合可能な防錆剤としては、炭素数5以下の環式化合物の炭素原子の少なくとも1つが窒素原子で置換された構造を有する含窒素環式化合物を含むものである。なお、本実施形態においては、前記含窒素環式化合物は、ベンゼン環及び硫黄を含む環式化合物は含まない。
 本実施形態において配合可能な防錆剤としては、イミダゾール化合物、トリアゾール化合物が挙げられ、なかでも、1,2,3-トリアゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、4-アミノ-1,2,4-トリアゾール、及びイミダゾールから選ばれる少なくとも1つであることが好ましい。
 本実施形態では、共縮合物(C)を用いることにより、防錆剤の配合量を、ゴム成分(A)100質量部に対して、0.02質量部以上12質量部以下とすることができる。上記観点から、防錆剤の配合量は、0.1質量部以上3質量部以下であることがより好ましい。
<Rust preventive>
The tire rubber composition according to the present embodiment preferably contains a rust preventive agent. As a rust preventive agent which can be mix | blended, the nitrogen-containing cyclic compound which has a structure where at least 1 carbon atom of the cyclic compound of carbon number 5 or less was substituted by the nitrogen atom is included. In the present embodiment, the nitrogen-containing cyclic compound does not include a benzene ring and a cyclic compound containing sulfur.
Examples of the rust preventive agent that can be blended in the present embodiment include imidazole compounds and triazole compounds, among which 1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4. It is preferably at least one selected from -triazole, 4-amino-1,2,4-triazole, and imidazole.
In the present embodiment, by using the co-condensate (C), the compounding amount of the rust inhibitor is 0.02 parts by mass or more and 12 parts by mass or less with respect to 100 parts by mass of the rubber component (A). it can. From the above viewpoint, the blending amount of the rust inhibitor is more preferably 0.1 parts by mass or more and 3 parts by mass or less.
<メチレンドナー化合物>
 本実施形態に係るタイヤ用ゴム組成物には、メチレンドナー化合物が配合されていてもよい。配合可能なメチレンドナー化合物としては、ヘキサキス(メトキシメチル)メラミン(HMMM)、ヘキサメチレンテトラミン(HMT)、ペンタキス(メトキシメチル)メチロールメラミン、テトラキス(メトキシメチル)ジメチロールメラミン等のゴム工業において通常使用されているものを挙げることができる。中でもヘキサキス(メトキシメチル)メラミン単独又はそれを主成分とする混合物が好ましい。これらのメチレンドナー化合物は、それぞれ単独で、又は2種以上を組み合わせて用いることができ、その配合量は、ゴム成分(A)100質量部に対し、0.5質量部以上4質量部以下の範囲が好ましく、1質量部以上3質量部以下の範囲がより好ましい。
<Methylene donor compound>
The tire rubber composition according to this embodiment may contain a methylene donor compound. As methylene donor compounds that can be blended, they are usually used in the rubber industry such as hexakis (methoxymethyl) melamine (HMMM), hexamethylenetetramine (HMT), pentakis (methoxymethyl) methylolmelamine, tetrakis (methoxymethyl) dimethylolmelamine and the like. Can be mentioned. Among them, hexakis (methoxymethyl) melamine alone or a mixture containing it as a main component is preferable. These methylene donor compounds can be used alone or in combination of two or more, and the blending amount thereof is 0.5 parts by mass or more and 4 parts by mass or less with respect to 100 parts by mass of the rubber component (A). The range is preferable, and the range of 1 part by mass to 3 parts by mass is more preferable.
<炭化水素樹脂>
 本実施態様に係るタイヤ用ゴム組成物には、必要に応じて、共縮合物(C)に加えて、脂環族系炭化水素樹脂、脂肪族系炭化水素樹脂及び芳香族系炭化水素樹脂から1種以上選ばれる炭化水素樹脂を配合してもよい。ここで、脂環族系炭化水素樹脂とは、石油のC5留分から抽出されたシクロペンタジエン及び/又はシクロペンタジエンを二量体化したジシクロペンタジエンを主原料に製造された石油樹脂をいう。また、脂肪族系炭化水素樹脂とは、石油のC5留分を主原料に製造された石油樹脂をいい、脂肪族系炭化水素樹脂とは、石油のC9留分を主原料に製造された石油樹脂をいう。
 これらの炭化水素樹脂の内、シクロペンタジエンを二量体化した高純度のジシクロペンタジエンを主原料に製造された、ジシクロペンタジエン樹脂(DCPD樹脂)が、ゴム補強性を高める観点から好ましい。
 ジシクロペンタジエン樹脂としては、日本ゼオン社製、クイントン1000シリーズ(クイントン1105、クイントン1325、クイントン1340)等が好適に挙げられる。
 炭化水素樹脂の使用量は、ゴム成分100質量部に対して、0.1質量部以上10質量部以下が好ましく、更に好ましくは0.1質量部以上5質量部以下である。
<Hydrocarbon resin>
The rubber composition for tires according to the present embodiment includes, as necessary, an alicyclic hydrocarbon resin, an aliphatic hydrocarbon resin, and an aromatic hydrocarbon resin in addition to the cocondensate (C). You may mix | blend the hydrocarbon resin chosen 1 or more types. Here, the alicyclic hydrocarbon resin refers to a petroleum resin produced mainly from cyclopentadiene and / or dicyclopentadiene obtained by dimerizing cyclopentadiene extracted from a C5 fraction of petroleum. An aliphatic hydrocarbon resin refers to a petroleum resin produced using a C5 fraction of petroleum as a main raw material, and an aliphatic hydrocarbon resin refers to a petroleum produced using a C9 fraction of petroleum as a main raw material. Refers to resin.
Of these hydrocarbon resins, a dicyclopentadiene resin (DCPD resin) produced from a high-purity dicyclopentadiene obtained by dimerizing cyclopentadiene as a main raw material is preferable from the viewpoint of enhancing rubber reinforcement.
Preferred examples of the dicyclopentadiene resin include quinton 1000 series (Quinton 1105, quinton 1325, quinton 1340) manufactured by Nippon Zeon.
The amount of the hydrocarbon resin used is preferably 0.1 parts by mass or more and 10 parts by mass or less, and more preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the rubber component.
<その他の添加剤>
 本発明の実施形態に係るタイヤ用ゴム組成物には、本発明の効果が損なわれない範囲で、所望により、通常ゴム工業界で用いられる各種薬品、例えば、加硫遅延剤、プロセスオイル、老化防止剤、有機酸等を配合できる。
(加硫遅延剤)
 本実施形態に係るタイヤ用ゴム組成物に配合可能な加硫遅延剤としては、無水フタル酸、安息香酸、サリチル酸、N-ニトロソジフェニルアミン、N-(シクロヘキシルチオ)-フタルイミド(CTP)、スルホンアミド誘導体、ジフェニルウレア、ビス(トリデシル)ペンタエリスリトール-ジホスファイト等が例示され、N-(シクロヘキシルチオ)-フタルイミド(CTP)が好ましく用いられる。
<Other additives>
In the tire rubber composition according to the embodiment of the present invention, various chemicals commonly used in the rubber industry, for example, a vulcanization retarder, process oil, aging, as long as the effects of the present invention are not impaired. An inhibitor, an organic acid, etc. can be mix | blended.
(Vulcanization retarder)
Examples of the vulcanization retarder that can be blended in the tire rubber composition according to this embodiment include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) -phthalimide (CTP), and sulfonamide derivatives. , Diphenylurea, bis (tridecyl) pentaerythritol-diphosphite and the like, and N- (cyclohexylthio) -phthalimide (CTP) is preferably used.
(プロセスオイル)
 本実施形態に係るタイヤ用ゴム組成物に配合可能な軟化剤として用いられるプロセスオイルとしては、SBRとの相溶性の観点から、芳香族系オイルが用いられる。また、低温特性を重視する観点から、ナフテン系オイル又はパラフィン系オイルが用いられる。その使用量は、ゴム成分100質量部に対して、0質量部以上100質量部以下が好ましく、100質量部以下であれば加硫ゴムの引張強度、低燃費性(低発熱性)が悪化するのを抑制することができる。
(Process oil)
As the process oil used as a softening agent that can be blended in the tire rubber composition according to this embodiment, an aromatic oil is used from the viewpoint of compatibility with SBR. In addition, naphthenic oil or paraffinic oil is used from the viewpoint of emphasizing low temperature characteristics. The amount used is preferably 0 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber component, and if it is 100 parts by mass or less, the tensile strength and low fuel consumption (low heat generation) of the vulcanized rubber are deteriorated. Can be suppressed.
(老化防止剤)
 本実施形態に係るタイヤ用ゴム組成物に配合可能な老化防止剤としては、日本ゴム協会編「ゴム工業便覧<第四版>」の436~443頁に記載されるものが挙げられる。これらの中でも、例えば、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン、ジフェニルアミンとアセトンの高温縮合物等を挙げることができる。
 老化防止剤の使用量は、ゴム成分100質量部に対して、0.1質量部以上5.0質量部以下が好ましく、更に好ましくは0.3質量部以上3.0質量部以下である。
(Anti-aging agent)
Antiaging agents that can be blended in the rubber composition for tires according to this embodiment include those described on pages 436 to 443 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Among these, for example, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, N-isopropyl-N′-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N ′ -Phenyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, high-temperature condensate of diphenylamine and acetone.
The amount of the antioxidant used is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, and more preferably 0.3 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the rubber component.
(有機酸)
 本実施形態に係るタイヤ用ゴム組成物に配合可能な有機酸としては、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸、アラキジン酸、ベヘン酸、リグノセリン酸、カプリン酸、ペラルゴン酸、カプリル酸、エナント酸、カプロン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、ネルボン酸等の飽和脂肪酸及び不飽和脂肪酸並びにロジン酸や変性ロジン酸等の樹脂酸などが挙げられる。
 本実施形態に係るタイヤ用ゴム組成物の製造方法においては、上記有機酸の内、加硫促進助剤としての機能を十分に発揮する必要があることから有機酸中の50モル%以上がステアリン酸であることが好ましい。有機酸中の50モル%以下は、スチレン-ブタジエン共重合体を乳化重合で作製した場合に含まれるロジン酸(変性ロジン酸も包含される。)及び/又は脂肪酸であってもよい。
(Organic acid)
Examples of organic acids that can be blended in the tire rubber composition according to this embodiment include stearic acid, palmitic acid, myristic acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, capric acid, pelargonic acid, caprylic acid, and enanthate. Examples thereof include saturated fatty acids such as acid, caproic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, and nervonic acid, and resin acids such as rosin acid and modified rosin acid.
In the method for producing a tire rubber composition according to this embodiment, among the organic acids, 50 mol% or more of the organic acid must be stearin since it is necessary to sufficiently function as a vulcanization acceleration aid. An acid is preferred. 50 mol% or less in the organic acid may be rosin acid (including modified rosin acid) and / or fatty acid contained when the styrene-butadiene copolymer is prepared by emulsion polymerization.
[共縮合物(C)の製造方法]
 本発明に係る共縮合物の製造方法は、下記の工程を下記の順番で含む。
 (a)アルカリ存在下、p-tert-ブチルフェノールとo-フェニルフェノールの混合物をホルムアルデヒドと反応させて、レゾール型縮合物を得る工程
 (b)p-tert-ブチルフェノールとo-フェニルフェノールの総量に対して0.8倍モル以上のレゾルシンをさらに反応させる工程
[Method for Producing Cocondensate (C)]
The method for producing a cocondensate according to the present invention includes the following steps in the following order.
(A) A step of reacting a mixture of p-tert-butylphenol and o-phenylphenol with formaldehyde in the presence of alkali to obtain a resol-type condensate (b) with respect to the total amount of p-tert-butylphenol and o-phenylphenol A step of further reacting 0.8 times mole or more of resorcin
 工程(a)で用いるp-tert-ブチルフェノールとo-フェニルフェノールの混合物(以下、これら2種のフェノール類を総称して「フェノール誘導体」と称することがある)におけるo-フェニルフェノールの比率は特に限定されないが、フェノール誘導体の総量に対して35モル%~85モル%であることが好ましく、40モル%~85モル%であることがより好ましく、60モル%~85モル%であることがさらに好ましい。35モル%より少ないと、得られる共縮合物の軟化点が高くなり、ゴム成分と混練するときに分散不良となる場合がある。85モル%より多いと、高価なo-フェニルフェノールが多量に必要となり、工業上有利に共縮合物を製造できなくなる場合がある。なお、本発明におけるp-tert-ブチルフェノールとo-フェニルフェノールの混合物とは、反応器に投入する前に事前に混合したものの他、それぞれ別個に反応器に投入し、結果として反応器内で混合物となったものも含まれる。 The ratio of o-phenylphenol in the mixture of p-tert-butylphenol and o-phenylphenol used in step (a) (hereinafter, these two types of phenols may be collectively referred to as “phenol derivatives”) is particularly Although not limited, it is preferably 35 mol% to 85 mol%, more preferably 40 mol% to 85 mol%, and further preferably 60 mol% to 85 mol%, based on the total amount of the phenol derivative. preferable. When the amount is less than 35 mol%, the softening point of the resulting cocondensate becomes high, and dispersion may be poor when kneaded with the rubber component. If it exceeds 85 mol%, a large amount of expensive o-phenylphenol is required, and it may be impossible to produce a cocondensate in an industrially advantageous manner. In addition, the mixture of p-tert-butylphenol and o-phenylphenol in the present invention is a mixture mixed in advance before being charged into the reactor, and separately charged into the reactor, resulting in the mixture in the reactor. Also included are.
 工程(a)で用いるホルムアルデヒドとしては、ホルムアルデヒド自体のほか、水溶液であるホルマリン、又はパラホルムアルデヒドやトリオキサンのような、容易にホルムアルデヒドを発生する化合物を使用することができる。ホルムアルデヒドの仕込みモル比は特に限定されないが、フェノール誘導体の総量に対して1~3倍モルであることが好ましく、その中でも1.5~2.5倍モルの範囲が特に好ましい。1倍モルより少ない場合、未反応モノマーが多くなり臭気や揮発性有機化合物が増加する場合がある。また、3倍モルよりも多い場合、ホルムアルデヒドが未反応のまま多く残存するため、樹脂が三次元構造化して軟化点が高くなる場合がある。 As the formaldehyde used in the step (a), in addition to formaldehyde itself, a formalin that is an aqueous solution, or a compound that easily generates formaldehyde such as paraformaldehyde or trioxane can be used. The molar ratio of formaldehyde charged is not particularly limited, but it is preferably 1 to 3 times by mole, more preferably 1.5 to 2.5 times by mole, based on the total amount of phenol derivatives. When the amount is less than 1 mole, unreacted monomers may increase and odor and volatile organic compounds may increase. Further, when the amount is more than 3 times mole, a large amount of formaldehyde remains unreacted, so that the resin may have a three-dimensional structure and the softening point may be increased.
 アルカリとしては、アルカリ金属やアルカリ土類金属の水酸化物又は炭酸塩の他、アンモニア、アミンのような、通常のレゾール型縮合物を製造する際に用いられるものを使用することができる。アルカリ金属やアルカリ土類金属の水酸化物又は炭酸塩の具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。この中でも、水酸化ナトリウム、水酸化カリウムが好ましい。これらのアルカリは固体状のものでも、水溶液状のものでも利用可能であるが、反応性、取扱いの面から水溶液のものを使用することが好ましい。水溶液状のものを使用する場合、その濃度は通常、10質量%~50質量%のものを使用する。アルカリの仕込みモル比とは特に限定されないが、フェノール誘導体の総量に対して0.03~0.6倍モルの範囲が好ましく、0.03~0.3倍モルの範囲がより好ましい。 As the alkali, in addition to hydroxides or carbonates of alkali metals or alkaline earth metals, those used for producing ordinary resol-type condensates such as ammonia and amines can be used. Specific examples of the alkali metal or alkaline earth metal hydroxide or carbonate include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, and potassium carbonate. Among these, sodium hydroxide and potassium hydroxide are preferable. These alkalis can be used in the form of a solid or an aqueous solution, but it is preferable to use an aqueous solution in terms of reactivity and handling. When an aqueous solution is used, the concentration is usually 10% by mass to 50% by mass. The alkali charge molar ratio is not particularly limited, but is preferably in the range of 0.03 to 0.6 times mol, more preferably in the range of 0.03 to 0.3 times mol with respect to the total amount of the phenol derivative.
 工程(a)の反応、すなわちアルカリ存在下、p-tert-ブチルフェノールとo-フェニルフェノールの混合物と、ホルムアルデヒドとの反応は、溶媒中で行うことも可能である。使用する溶媒は特に限定されることはなく、水、アルコール、芳香族炭化水素等を用いることができる。より具体的には、水、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、エチルベンゼン、クメン、モノクロロベンゼンなどが例示される。中でも水、トルエン、キシレンが好ましい。これらの溶媒は単独あるいは2種類以上を併用して用いることも可能である。溶媒を使用する場合、通常フェノール誘導体の総量に対して0.4~4質量倍(例えば0.4~2質量倍)使用する。また、工程(a)の反応は通常、反応温度40~100℃、反応時間1~48時間(例えば1~8時間)で実施される。 The reaction of step (a), that is, the reaction of a mixture of p-tert-butylphenol and o-phenylphenol with formaldehyde in the presence of an alkali can also be carried out in a solvent. The solvent to be used is not particularly limited, and water, alcohol, aromatic hydrocarbon and the like can be used. More specifically, water, methanol, ethanol, propanol, butanol, toluene, xylene, ethylbenzene, cumene, monochlorobenzene and the like are exemplified. Of these, water, toluene, and xylene are preferable. These solvents can be used alone or in combination of two or more. When a solvent is used, it is usually used in an amount of 0.4 to 4 times (for example, 0.4 to 2 times) the total amount of phenol derivatives. The reaction in the step (a) is usually carried out at a reaction temperature of 40 to 100 ° C. and a reaction time of 1 to 48 hours (eg 1 to 8 hours).
 かかる反応により得られたレゾール型縮合物は、使用したアルカリを中和せずにそのまま工程(b)の反応、すなわちレゾルシンとの反応に使用してもよいし、酸を加えることでアルカリを中和した後に使用してもよい。中和を行う際に使用する酸の種類は特に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸、シュウ酸、p-トルエンスルホン酸などが例として挙げられる。これらの酸は1種類のみを単独で使用してもよいし、2種類以上を混合して使用してもよい。この際、使用される酸の総量は特に限定されないが、通常使用したアルカリに対し等量(物質量基準)の酸を使用することが好ましい。また、未反応のホルムアルデヒドや中和で生成した無機塩類等を除去するために、必要に応じて水と混和しない有機溶媒を用いてレゾール型縮合物を抽出し、洗浄する処理を追加してもよい。 The resol-type condensate obtained by such a reaction may be used as it is in the reaction of step (b) without neutralizing the used alkali, that is, the reaction with resorcin, or by adding an acid to neutralize the alkali. It may be used after being summed. The type of acid used for neutralization is not particularly limited, and examples include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, p-toluenesulfonic acid, and the like. These acids may be used alone or in combination of two or more. At this time, the total amount of the acid used is not particularly limited, but it is preferable to use an equivalent amount (based on the amount of substance) of the acid that is normally used. In addition, in order to remove unreacted formaldehyde and inorganic salts generated by neutralization, a resol-type condensate may be extracted and washed using an organic solvent that is not miscible with water as necessary. Good.
 工程(b)において、得られたレゾール型縮合物とレゾルシンを反応させる際のレゾルシンの仕込みモル比は、フェノール誘導体の総量に対して0.5倍モル以上である必要があり、好ましくは0.8~4.0倍モル、より好ましくは0.8~2.0倍モル、さらに好ましくは1.0~2.0倍モルである。4.0倍モルよりも多い場合、未反応のレゾルシンが多く残存するため揮発性が問題となる場合がある。0.5倍モルより低い場合、反応が完結しないため本来の性能が出ない場合やレゾール型縮合物同士の反応が優先的に進行し、得られる共縮合物が高分子化する結果、軟化点が150℃以下とならない場合がある。 In the step (b), the charged molar ratio of resorcin when reacting the obtained resole-type condensate with resorcin must be 0.5 times mol or more, preferably 0. The amount is 8 to 4.0 times mol, more preferably 0.8 to 2.0 times mol, and still more preferably 1.0 to 2.0 times mol. If it is more than 4.0 moles, volatility may be a problem because a large amount of unreacted resorcin remains. If it is lower than 0.5 mol, the reaction will not be completed and the original performance will not be achieved, or the reaction between resol-type condensates will proceed preferentially, and the resulting cocondensate will be polymerized, resulting in a softening point. May not be 150 ° C. or lower.
 レゾール型縮合物とレゾルシンとの反応は、溶媒を使用せず反応を行うことも可能であるが、p-tert-ブチルフェノールとo-フェニルフェノールの総量に対して0.2質量倍以上の溶媒存在下で実施した場合、遊離レゾルシンを12質量%以下とすることが可能となり好ましい。さらに好ましくはp-tert-ブチルフェノールとo-フェニルフェノールの総量に対して0.4~4.0質量倍、特に好ましくは0.4~2.0質量倍の溶媒存在下で実施する。0.2質量倍より少ない場合、レゾルシンとレゾール型縮合物との反応より、レゾール型縮合物同士の反応が優先的に進行する場合があり、得られる共縮合物が高分子化するためか、遊離レゾルシンを12質量%以下とすることができない。また、4.0質量倍以上使用しても反応は進行するが、容積効率が低下し経済的有利に共縮合物を製造することができない。 Although the reaction between the resole-type condensate and resorcin can be carried out without using a solvent, the presence of a solvent more than 0.2 mass times the total amount of p-tert-butylphenol and o-phenylphenol When carried out below, free resorcin can be reduced to 12% by mass or less, which is preferable. More preferably, the reaction is carried out in the presence of 0.4 to 4.0 times by mass, particularly preferably 0.4 to 2.0 times by mass of solvent with respect to the total amount of p-tert-butylphenol and o-phenylphenol. If less than 0.2 mass times, the reaction between resole-type condensates may proceed preferentially over the reaction between resorcin and resole-type condensates, and the resulting cocondensate may be polymerized, Free resorcin cannot be reduced to 12% by mass or less. In addition, the reaction proceeds even when used in an amount of 4.0 mass times or more, but the volumetric efficiency is lowered and the cocondensate cannot be produced economically advantageously.
 使用可能な溶媒は特に限定されないが、例えばアルコール類、ケトン類、芳香族炭化水素類等である。より具体的には、メタノール、エタノール、プロパノール、ブタノール、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、トルエン、キシレン、エチルベンゼン、クメン、モノクロロベンゼンなどが例示される。この中でも、ケトン類、芳香族炭化水素類が好ましく、さらにはメチルイソブチルケトン、トルエン、キシレンが好ましい。これらの溶媒は必要に応じ単独あるいは2種類以上を併用して用いることも可能である。また、本溶媒はレゾール型縮合物を製造する際に使用した溶媒をそのまま使用してもよいし、適宜新たな溶媒を加えてもよい。 The usable solvent is not particularly limited, and examples thereof include alcohols, ketones, and aromatic hydrocarbons. More specifically, methanol, ethanol, propanol, butanol, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, toluene, xylene, ethylbenzene, cumene, monochlorobenzene and the like are exemplified. Among these, ketones and aromatic hydrocarbons are preferable, and methyl isobutyl ketone, toluene, and xylene are more preferable. These solvents can be used alone or in combination of two or more as required. Moreover, the solvent used when manufacturing a resol type condensate may be used for this solvent as it is, and a new solvent may be added suitably.
 レゾール型縮合物とレゾルシンとの反応は、特に限定されないが、通常、反応温度40~150℃、反応時間1~48時間(例えば1~8時間)で実施される。
 共縮合物中に含まれる遊離レゾルシン含量を12質量%以下とするためには、後述する溶媒除去工程を実施する前に反応混合物中の遊離レゾルシン含量が12質量%以下になるまで120℃以上で反応を行うことが好ましい。本反応段階で遊離レゾルシンが12質量%より多く残存している場合、後述する溶媒除去工程で遊離レゾルシンを同時に12質量%未満になるまで除去しようとしても工業的に実施困難な高温、高減圧度条件が必要であり、かつ、この際に得られる共縮合物が熱により着色したり、高分子化が進行したりする結果、軟化点が150℃を超え、混練時にゴムに配合して使用するゴムと金属コードとの接着剤として不適となる。
 120℃以上で反応を行うとは、反応中いずれかの時点で120℃以上になっていればよく、例えば反応初期は120℃未満で反応を開始させ、その後徐々に昇温させて120℃以上とする方法などが例示される。反応温度が一度も120℃以上とならない場合、反応混合物中の遊離レゾルシンが12質量%以下にならない。また、前述の通り、0.2質量倍以上の溶媒非存在下で本反応を実施した場合、得られる共縮合物が高分子化するためか、遊離レゾルシン含量が12質量%以下とならない。反応混合物とは、本反応の原料であるレゾール型縮合物やレゾルシン、溶媒等、反応容器内に含まれる全てものを示し、反応混合物中のレゾルシン含量は例えばガスクロマトグラフを用いた分析により定量可能である。なお、遊離レゾルシン含量を減らすため、単に原料レゾルシンの使用量を減らす方法も考えられるが、この方法で製造した場合、反応中に原料レゾルシンが不足し、代わりに共縮合物中のレゾルシン部位がさらに反応して高分子化するため、軟化点が非常に高くなってしまう。
The reaction between the resole-type condensate and resorcin is not particularly limited, but is usually carried out at a reaction temperature of 40 to 150 ° C. and a reaction time of 1 to 48 hours (eg, 1 to 8 hours).
In order to reduce the content of free resorcin contained in the cocondensate to 12% by mass or less, before carrying out the solvent removal step described later, the content of free resorcin is 120 ° C. or higher until the content of free resorcin in the reaction mixture becomes 12% by mass or less It is preferable to carry out the reaction. If more than 12% by mass of free resorcin remains in this reaction stage, it is difficult to implement industrially at a high temperature and a high degree of vacuum even if it is attempted to remove free resorcin at the same time until it becomes less than 12% by mass in the solvent removal step described later. Conditions are necessary, and the cocondensate obtained at this time is colored by heat or polymerization proceeds. As a result, the softening point exceeds 150 ° C., and is used by blending with rubber during kneading. Unsuitable as an adhesive between rubber and metal cord.
The reaction is performed at 120 ° C or higher as long as it is 120 ° C or higher at any time during the reaction. For example, the reaction is started at less than 120 ° C in the initial stage of reaction, and then gradually heated to 120 ° C or higher. The method etc. which are made are illustrated. If the reaction temperature never exceeds 120 ° C., free resorcin in the reaction mixture does not become 12% by mass or less. In addition, as described above, when this reaction is carried out in the absence of a solvent of 0.2 mass times or more, the resulting cocondensate is polymerized, or the free resorcin content is not 12 mass% or less. The reaction mixture refers to everything contained in the reaction vessel, such as resole-type condensate, resorcin, solvent, etc., which are the raw materials for this reaction, and the resorcin content in the reaction mixture can be quantified by analysis using, for example, a gas chromatograph. is there. In order to reduce the free resorcin content, a method of simply reducing the amount of raw material resorcin used is also conceivable. However, when produced by this method, the raw material resorcin is insufficient during the reaction, and instead, the resorcin site in the cocondensate is further increased. Since it reacts and polymerizes, the softening point becomes very high.
 工程(b)におけるレゾール型縮合物とレゾルシンとの反応では、系内に水が存在すると反応速度が遅くなる傾向があり、レゾール型縮合物とレゾルシンとの反応で生成した水により反応速度が低下する場合があるため、反応を促進する目的で脱水しながら反応を行うことが好ましい。また、この脱水反応においては、反応で生成する水を十分に脱水するため、反応当初は減圧下で脱水し、その後内温を120℃以上とするため、常圧で更に脱水する方法とすることが好ましい。
 レゾール型縮合物とレゾルシンとの反応に溶媒を使用する場合、通常、反応後、反応で使用した溶媒を除去する。溶媒の除去条件は特に限定されないが、例えば内圧45~10kPaの減圧下、120~160℃で実施される。なお、本除去操作により遊離レゾルシン含量をある程度減らすことも可能であるが、溶媒除去前の反応混合物中の遊離レゾルシン含量が12質量%より多い場合、溶媒除去後の共縮合物の遊離レゾルシン含量を12質量%以下としようとするためには工業的に実施困難な高温、高減圧度条件が必要であり、かつ、この際に得られる共縮合物が熱により着色し、製品価値を下げることがある。
In the reaction between the resole-type condensate and resorcin in step (b), the reaction rate tends to be slow if water is present in the system, and the reaction rate is reduced by the water generated by the reaction between the resole-type condensate and resorcin. Therefore, it is preferable to carry out the reaction while dehydrating for the purpose of promoting the reaction. In addition, in this dehydration reaction, water generated in the reaction is sufficiently dehydrated, so that it is dehydrated under reduced pressure at the beginning of the reaction, and then the internal temperature is set to 120 ° C. or higher. Is preferred.
When a solvent is used for the reaction between the resole-type condensate and resorcin, the solvent used in the reaction is usually removed after the reaction. The conditions for removing the solvent are not particularly limited. For example, the solvent removal is performed at 120 to 160 ° C. under a reduced pressure of 45 to 10 kPa. Although it is possible to reduce the free resorcin content to some extent by this removal operation, when the free resorcin content in the reaction mixture before solvent removal is more than 12% by mass, the free resorcin content of the cocondensate after solvent removal is reduced. In order to make it 12% by mass or less, high temperature and high pressure reduction conditions that are difficult to implement industrially are necessary, and the cocondensate obtained at this time is colored by heat, thereby reducing the product value. is there.
[タイヤ用ゴム組成物の調製]
 本実施形態に係るタイヤ用ゴム組成物は、上述した各種成分及び添加剤を、ロールなどの開放式混練機、バンバリーミキサーなどの密閉式混練機などの混練り機を用いて混練りすることによって得られる。
 すなわち、本実施形態に係るタイヤ用ゴム組成物は、混練の第一段階で、ゴム成分(A)及び共縮合物(C)、さらには、不溶性硫黄(B)及び加硫促進剤以外の添加剤を混練した後、混練の最終段階で、不溶性硫黄(B)、及び加硫促進剤を混合することによって作製できる。
 また、混練の最終段階より前の段階で、加硫促進剤の一部または全部を添加して混練した後、混練の最終段階で、加硫剤及び残りの加硫促進剤を混合することによって作製することができる。この場合、混練の最終段階より前の段階で添加する加硫促進剤としては、グアニジン類、スルフェンアミド類及びチアゾール類から選択される少なくとも1種の化合物を使用することができる。
 また、本実施形態に係るタイヤ用ゴム組成物は、チオウレア及びジエチルチオウレアから選択される少なくとも1種の化合物を含むことができる。この場合、混練の最終段階より前の段階で、チオウレア及びジエチルチオウレアから選択される少なくとも1種の化合物を添加して混練した後、混練の最終段階で、加硫剤、加硫促進剤及び残りのチオウレア及び/又はジエチルチオウレアを混合することによって作製することができる。
[Preparation of Tire Rubber Composition]
The rubber composition for tires according to this embodiment is obtained by kneading the various components and additives described above using a kneader such as an open kneader such as a roll or a closed kneader such as a Banbury mixer. can get.
That is, the rubber composition for tires according to the present embodiment is a first step of kneading, and the addition of components other than the rubber component (A) and the cocondensate (C), and further insoluble sulfur (B) and a vulcanization accelerator. After kneading the agent, it can be produced by mixing insoluble sulfur (B) and a vulcanization accelerator at the final stage of kneading.
Further, by adding a part or all of the vulcanization accelerator in the stage before the final stage of kneading and kneading, the vulcanizing agent and the remaining vulcanization accelerator are mixed in the final stage of kneading. Can be produced. In this case, at least one compound selected from guanidines, sulfenamides and thiazoles can be used as the vulcanization accelerator to be added in the stage before the final stage of kneading.
Moreover, the rubber composition for tires according to this embodiment can contain at least one compound selected from thiourea and diethylthiourea. In this case, after adding and kneading at least one compound selected from thiourea and diethylthiourea in the stage before the final stage of kneading, the vulcanizing agent, the vulcanization accelerator and the rest are added in the final stage of kneading. Can be prepared by mixing thiourea and / or diethylthiourea.
[空気入りタイヤの作製]
 本実施形態に係るタイヤ用ゴム組成物を用いて通常のタイヤの製造方法によって、タイヤが製造される。すなわち、上述の各種薬品を含有させたタイヤ用ゴム組成物が未加硫の段階で各部材に加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。このようにして、耐久性の良好なタイヤ、特に空気入りタイヤを得ることができる
[Production of pneumatic tires]
A tire is manufactured by a normal tire manufacturing method using the tire rubber composition according to the present embodiment. That is, the rubber composition for tires containing the various chemicals described above is processed into each member at an unvulcanized stage, and is pasted and molded by a normal method on a tire molding machine to form a raw tire. The green tire is heated and pressed in a vulcanizer to obtain a tire. In this way, a tire having good durability, particularly a pneumatic tire can be obtained.
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
[共縮合物の評価方法]
 以下のように共縮合物の分析及び物性評価を行った。
(a)共縮合物の平均分子量の測定
 共縮合物の平均分子量は、以下装置及び条件で分析したゲル透過クロマトグラフィー(GPC)により、ポリスチレン換算重量平均分子量として算出した。
・使用機器:HLC-8220GPC(東ソー株式会社製)、
・カラム:TSK ガードカラム SUPER HZ-L(東ソー株式会社製)
    +TSK-GEL SUPER HZ1000(4.6mmφ×150mm)
    +TSK-GEL SUPER HZ2500(4.6mmφ×150mm)
    +TSK-GEL SUPER HZ4000(4.6mmφ×150mm)、
・カラム温度:40℃、
・注入量:10μL、
・キャリアー及び流速:テトラヒドロフラン 0.35mL/min、
・サンプル調製:共縮合物約0.02gをテトラヒドロフラン20mLに溶解させた。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these.
[Method for evaluating cocondensate]
Analysis and physical property evaluation of the cocondensate were performed as follows.
(A) Measurement of average molecular weight of cocondensate The average molecular weight of the cocondensate was calculated as a polystyrene-converted weight average molecular weight by gel permeation chromatography (GPC) analyzed under the following apparatus and conditions.
-Equipment used: HLC-8220GPC (manufactured by Tosoh Corporation),
Column: TSK guard column SUPER HZ-L (manufactured by Tosoh Corporation)
+ TSK-GEL SUPER HZ1000 (4.6mmφ × 150mm)
+ TSK-GEL SUPER HZ2500 (4.6mmφ × 150mm)
+ TSK-GEL SUPER HZ4000 (4.6 mmφ × 150 mm),
Column temperature: 40 ° C
-Injection volume: 10 μL,
Carrier and flow rate: tetrahydrofuran 0.35 mL / min,
Sample preparation: About 0.02 g of the cocondensate was dissolved in 20 mL of tetrahydrofuran.
(b)残留モノマー及び残留溶媒の測定
 残留モノマー及び残留溶媒については、以下の条件に基づくガスクロマトグラフィーにより定量を行った。
・使用機器 :島津製作所社製 ガスクロマトグラフ GC-14B
・カラム  :ガラスカラム外径5mm×内径3.2mm×長さ3.1m
・充填剤  :充填剤 Silicone OV-17 10% Chromosorb WHP 80/100mesh, max.temp.340℃
・カラム温度:80℃→280℃
・気化室温度:250℃
・検出器温度:280℃
・検出器  :FID
・キャリアー:窒素ガス(40ml/min)
・燃焼ガス :水素(60kPa),空気(60kPa)
・注入量  :2μL
 共縮合物を約0.5g、内標としてアニソール0.05gをアセトン10mLに溶解させ上記条件にて分析した。内部標準法(GC-IS法)により、共縮合物中の残留溶媒、残留モノマーの含有量(%)を測定した。なお、実施例および比較例の本文中に記載した含有量(%)は、特に断りのない限り質量パーセントとして表す。
(B) Measurement of residual monomer and residual solvent The residual monomer and residual solvent were quantified by gas chromatography based on the following conditions.
-Equipment used: Gas chromatograph GC-14B manufactured by Shimadzu Corporation
Column: Glass column outer diameter 5 mm x inner diameter 3.2 mm x length 3.1 m
Filler: Filler Silicone OV-17 10% Chromosorb WHP 80/100 mesh, max. temp. 340 ° C
Column temperature: 80 ° C → 280 ° C
・ Vaporization chamber temperature: 250 ℃
-Detector temperature: 280 ° C
・ Detector: FID
・ Carrier: Nitrogen gas (40ml / min)
・ Combustion gas: Hydrogen (60 kPa), Air (60 kPa)
・ Injection volume: 2μL
About 0.5 g of the cocondensate and 0.05 g of anisole as an internal standard were dissolved in 10 mL of acetone and analyzed under the above conditions. Residual solvent and residual monomer contents (%) in the cocondensate were measured by an internal standard method (GC-IS method). In addition, content (%) described in the text of Examples and Comparative Examples is expressed as mass percent unless otherwise specified.
(c)軟化点の測定
 JIS-K2207-1996(環球法)に準拠した方法により測定した。
(d)共縮合樹脂中の各構成単位の含有比
 以下条件に基づく方法によりH―NMR分析を行った。
・装置:日本電子社製「JMN-ECS」(400MHz)、
・溶媒:重水素置換ジメチルスルホキシド。
・各成分の化学シフト:テトラメチルシランを基準(0ppm)とし、以下の値に示されるピークをそれぞれの成分のピークとした。
・p-tert-ブチルフェノール由来のp-tert-ブチル基のプロトン:1.0~1.2ppm、ホルムアルデヒド由来のメチレン基のプロトン:3.4~3.9ppm、o-フェニルフェノール由来のo-フェニル基のプロトン:7.1~7.5ppm。
 なお、以下の実施例・比較例中の構成比率については以下の基準に基づく比率である。
o-フェニルフェノール:p-tert-ブチルフェノールを1としたときの割合(モル倍)、ホルムアルデヒド由来のメチレン基:o-フェニルフェノールとp-tert-ブチルフェノールの合計量に対する割合(モル倍)。
(C) Measurement of softening point It was measured by a method based on JIS-K2207-1996 (ring and ball method).
(D) Content ratio of each structural unit in co-condensation resin 1 H-NMR analysis was performed by a method based on the following conditions.
・ Equipment: “JMN-ECS” (400 MHz) manufactured by JEOL Ltd.
Solvent: deuterium substituted dimethyl sulfoxide.
-Chemical shift of each component: Tetramethylsilane was used as a reference (0 ppm), and the peak indicated by the following values was defined as the peak of each component.
P-tert-Butylphenol-derived p-tert-butyl group proton: 1.0 to 1.2 ppm, formaldehyde-derived methylene group proton: 3.4 to 3.9 ppm, o-phenylphenol-derived o-phenyl Group proton: 7.1-7.5 ppm.
In addition, about the component ratio in a following example and a comparative example, it is a ratio based on the following references | standards.
o-Phenylphenol: Ratio when p-tert-butylphenol is 1 (mole times), methylene group derived from formaldehyde: Ratio to the total amount of o-phenylphenol and p-tert-butylphenol (mole times).
 [共縮合物の製造]
 <製造例1>
 還流冷却器及び温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン97.3g(1.2mol)、p-tert-ブチルフェノール15.0g(0.10mol)、o-フェニルフェノール85.0g(0.50mol)、トルエン75.4gを順に加えた。その後、内温45℃まで昇温し、24%水酸化ナトリウム水溶液20g(0.12mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて2時間保温した。その後、内温80℃になるまで再度昇温し、さらに4時間保温した。
 反応終了後、内温65℃以下になるまで冷却し、水49g及びシュウ酸二水和物7.55g(1.13mol)を加えて中和し、トルエン22.6gを加えた後、静置し、水層を除去した。
 レゾルシン62.7g(0.57mol)を加え、内温70℃まで昇温し、減圧下で4時間かけて共沸脱水を行った。この間内温は90℃まで上昇した。続いて、常圧で内温115℃まで昇温し、1時間共沸脱水を行った。その後、内温145~150℃まで昇温し、2時間保温することで溶媒トルエンを留去した。その後、内温140~150℃に保ったまま16kPaまで減圧し、2時間保温することで溶媒トルエンをさらに留去した。以上の操作により、橙色の共縮合物177gを得た。
 共縮合物の平均分子量:2160、共縮合物の軟化点:123℃、共縮合物中の残留トルエン分:1.1%、残留p-tert-ブチルフェノール分:0.0%、残留o-フェニルフェノール分:0.4%、残留レゾルシン分:9.5%。共縮合物の各構成単位の比率;o-フェニルフェノール:5.40、メチレン基:1.33。
[Production of co-condensate]
<Production Example 1>
In a four-necked separable flask equipped with a reflux condenser and a thermometer, 97.3 g (1.2 mol) of formalin with a purity of 37%, 15.0 g (0.10 mol) of p-tert-butylphenol, 85 of o-phenylphenol 85 0.0 g (0.50 mol) and 75.4 g of toluene were sequentially added. Thereafter, the temperature was raised to an internal temperature of 45 ° C., 20 g (0.12 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the heat generation stopped. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C. and kept at that temperature for 2 hours. Thereafter, the temperature was raised again until the internal temperature reached 80 ° C., and the temperature was further kept for 4 hours.
After completion of the reaction, the reaction mixture was cooled to an internal temperature of 65 ° C. or less, neutralized by adding 49 g of water and 7.55 g (1.13 mol) of oxalic acid dihydrate, and 22.6 g of toluene was added, and then allowed to stand. And the aqueous layer was removed.
62.7 g (0.57 mol) of resorcin was added, the temperature was raised to an internal temperature of 70 ° C., and azeotropic dehydration was performed for 4 hours under reduced pressure. During this time, the internal temperature rose to 90 ° C. Subsequently, the temperature was raised to 115 ° C. at normal pressure, and azeotropic dehydration was performed for 1 hour. Thereafter, the temperature was raised to an internal temperature of 145 to 150 ° C., and the solvent toluene was distilled off by keeping the temperature for 2 hours. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and the solvent toluene was further distilled off by maintaining the temperature for 2 hours. By the above operation, 177 g of orange cocondensate was obtained.
Average molecular weight of the cocondensate: 2160, softening point of the cocondensate: 123 ° C., residual toluene content in the cocondensate: 1.1%, residual p-tert-butylphenol content: 0.0%, residual o-phenyl Phenol content: 0.4%, Residual resorcin content: 9.5%. Ratio of each structural unit of the cocondensate: o-phenylphenol: 5.40, methylene group: 1.33.
 [共縮合物を含むタイヤ用ゴム組成物]
<製造例1で得られた共縮合物>
 樹脂接着剤として、下記第1表に示すレゾルシン樹脂1,2を使用して未加硫ゴム組成物を製造した。レゾルシン樹脂1は、製造例1により製造した共縮合物であり、レゾルシン樹脂2は、市販された従来品の樹脂接着剤であるSUMIKANOL620(田岡化学工業株式会社製)である。
[Rubber composition for tire containing co-condensate]
<Cocondensate obtained in Production Example 1>
An unvulcanized rubber composition was produced using resorcin resins 1 and 2 shown in Table 1 below as the resin adhesive. Resorcin resin 1 is a cocondensate produced in Production Example 1, and resorcin resin 2 is SUMIKANOL620 (manufactured by Taoka Chemical Industry Co., Ltd.), which is a commercially available conventional resin adhesive.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 第1表において、遊離フェノール類とは、製造例1の場合、p-tert-ブチルフェノール及びo-フェニルフェノールの合計量を表す。SUMIKANOL620の場合、p-tert-オクチルフェノール及びp-クレゾールの合計量を表す。また、第1表中の残存量は溶媒の残存量(質量%)を示している。 In Table 1, in the case of Production Example 1, free phenols represent the total amount of p-tert-butylphenol and o-phenylphenol. In the case of SUMIKANOL620, it represents the total amount of p-tert-octylphenol and p-cresol. The remaining amount in Table 1 represents the remaining amount (% by mass) of the solvent.
<未加硫ゴム組成物の製造>
 第2表に示す配合処方にしたがって、トーシン製加圧式ニーダーで不溶性硫黄、加硫促進剤及びメチレンドナー化合物を除く成分、及び第1表に示した樹脂接着剤を混合して混合物を作製し、160℃に達した時点で排出した。
 次いで、得られた混合物に、60℃に保温した関西ロール製6インチオープンロールで不溶性硫黄、加硫促進剤及びメチレンドナーを添加し、混合して、スチールコード被覆用ゴム組成物を調製した。
<Manufacture of unvulcanized rubber composition>
According to the formulation shown in Table 2, a mixture is prepared by mixing insoluble sulfur, components other than the vulcanization accelerator and methylene donor compound, and the resin adhesive shown in Table 1 with a pressure kneader made by Toshin, When it reached 160 ° C., it was discharged.
Subsequently, insoluble sulfur, a vulcanization accelerator, and a methylene donor were added to the obtained mixture with a 6-inch open roll made of Kansai Roll, which was kept at 60 ° C., and mixed to prepare a rubber composition for steel cord coating.
[タイヤ用ゴム組成物の評価1]
[共縮合物を含むタイヤ用ゴム組成物の評価方法]
 上記の通り得られた各未加硫ゴム組成物を用いて、加硫ゴム及びゴム-スチールコード複合体のサンプルを下記の通り作製し評価した。スチールコードは、1×3×0.3mm構造、銅/亜鉛=63/37(重量比)の真鍮めっきを施してあるものを使用した。
湿熱接着性、劣化後耐亀裂進展性を下記方法により評価した。
[Evaluation 1 of rubber composition for tire]
[Evaluation Method for Tire Rubber Composition Containing Cocondensate]
Using each of the unvulcanized rubber compositions obtained as described above, samples of vulcanized rubber and rubber-steel cord composites were prepared and evaluated as follows. A steel cord having a 1 × 3 × 0.3 mm structure and copper plating of copper / zinc = 63/37 (weight ratio) was used.
Wet heat adhesion and post-degradation crack resistance were evaluated by the following methods.
(a)劣化後耐亀裂進展性
 上記未加硫試料を160℃で20分間加硫して、厚さ2mmの加硫ゴムサンプルを作製し、このサンプルを100℃で24時間劣化させた。その後、上島製疲労試験機を用いて前期サンプルの定応力疲労試験を行い、破断するまでの回数を測定した。結果は、比較例1を100とする指数で表示した。指数値が大きい程、劣化後の耐亀裂進展性に優れることを示す。
 耐亀裂進展性指数={(供試試料が切断するまでの回数)/(比較例1の試料が切断するまでの回数)}×100
(A) Crack resistance after deterioration The unvulcanized sample was vulcanized at 160 ° C. for 20 minutes to prepare a vulcanized rubber sample having a thickness of 2 mm, and the sample was deteriorated at 100 ° C. for 24 hours. Then, the constant stress fatigue test of the first term sample was performed using the Ueshima made fatigue test machine, and the frequency | count until it fractured was measured. The results were expressed as an index with Comparative Example 1 as 100. It shows that it is excellent in the crack progress property after deterioration, so that an index value is large.
Crack resistance index = {(number of times until the test sample is cut) / (number of times until the sample of Comparative Example 1 is cut)} × 100
(b)湿熱接着性(湿熱老化後の接着性)
 金属コードを、12.5mm間隔で平行に並べ、該金属コードを上下からゴム組成物で被覆し、160℃で20分間加硫して、ゴム組成物と金属コードとを接着させた。このようにして、厚さ1mmのゴムシートの間に金属コードが埋設された金属コード-ゴム複合体を得た(金属コードは、ゴムシートの厚さ中央方向に、シート表面に平行に、12.5mm間隔で並んでいる)。この金属コード-ゴム複合体を75℃、相対湿度95%雰囲気下で10日間劣化させた後、ASTM D 2229に準拠して、各サンプルから金属コードを引き抜き、金属コードに付着しているゴムの被覆率を目視観察にて0~100%で決定し、温熱劣化性の指標とした。結果は、比較例1を100とする指数で表示した。指数値が大きい程、湿熱接着性に優れていることを示す。すなわち、耐温熱劣化性に優れていることを示す。
湿熱接着性指数={(供試試料の金属コードに付着しているゴムの被覆率)/(比較例1の試料の金属コードに付着しているゴムの被覆率)}×100
 本評価では、耐亀裂進展性及び湿熱接着性の評価の両方の指数値が上昇したものを合格とした。
(B) Wet heat adhesion (adhesion after wet heat aging)
The metal cords were arranged in parallel at intervals of 12.5 mm, the metal cords were covered with the rubber composition from above and below, and vulcanized at 160 ° C. for 20 minutes to bond the rubber composition and the metal cord. In this way, a metal cord-rubber composite in which a metal cord was embedded between rubber sheets having a thickness of 1 mm was obtained (the metal cord was in the direction of the thickness center of the rubber sheet, parallel to the sheet surface, 12 .. arranged at intervals of 5 mm). After this metal cord-rubber composite was deteriorated for 10 days at 75 ° C. and 95% relative humidity, the metal cord was pulled out from each sample in accordance with ASTM D 2229, and the rubber adhered to the metal cord The coverage was determined by visual observation from 0 to 100%, and was used as an indicator of thermal degradation. The results were expressed as an index with Comparative Example 1 as 100. It shows that it is excellent in wet heat adhesiveness, so that an index value is large. That is, it shows that it is excellent in resistance to thermal degradation.
Wet heat adhesion index = {(Rubber coverage attached to metal cord of test sample) / (Rubber coverage attached to metal cord of sample of Comparative Example 1)} × 100
In this evaluation, the one with an increased index value for both crack growth resistance and wet heat adhesion evaluation was considered acceptable.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 *1 天然ゴム:SMR-CV60
 *2 不溶性硫黄:フレキシス社製「クリステックスHS OT-20」
 *3 レゾルシン樹脂1:製造例1により製造されたレゾルシン樹脂
 *4 レゾルシン樹脂2:田岡化学工業株式会社製「スミカノール620」
 *5 DCPD樹脂:ジシクロペンタジエン樹脂 日本ゼオン株式会社製「クイントン1105」
 *6 カーボンブラック:東海カーボン株式会社製「シースト300」(HAF-LSグレード)
 *7 酸化亜鉛:正同化学工業株式会社製 酸化亜鉛2種
 *8 老化防止剤:大内新興化学工業株式会社製「ノクラック6C」
 *9 加硫促進剤:N,N-ジシクロヘキシル-2-べンゾチアゾリルスルフェンアミド(試薬)
 *10 コバルト脂肪酸塩:ステアリン酸コバルト(試薬)
 *11 メチレンドナー化合物:変性エーテル化メチロールメラミン樹脂 田岡化学工業株式会社製「スミカノール507AP」
* 1 Natural rubber: SMR-CV60
* 2 Insoluble sulfur: “Cristex HS OT-20” manufactured by Flexis
* 3 Resorcin resin 1: Resorcin resin produced by Production Example 1 * 4 Resorcin resin 2: "Sumikanol 620" manufactured by Taoka Chemical Co., Ltd.
* 5 DCPD resin: dicyclopentadiene resin “Quinton 1105” manufactured by Nippon Zeon Co., Ltd.
* 6 Carbon Black: “Seast 300” (HAF-LS grade) manufactured by Tokai Carbon Co., Ltd.
* 7 Zinc oxide: 2 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd. * 8 Anti-aging agent: "NOCRACK 6C" manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 9 Vulcanization accelerator: N, N-dicyclohexyl-2-benzothiazolylsulfenamide (reagent)
* 10 Cobalt fatty acid salt: Cobalt stearate (reagent)
* 11 Methylene donor compound: Modified etherified methylol melamine resin "Sumikanol 507AP" manufactured by Taoka Chemical Co., Ltd.
[評価結果]
 比較例2と比較例4から、硫黄の配合量を減らすと、劣化後耐亀裂進展性が向上するが、湿熱接着性が低下することがわかる。これに対して、実施例1-3によれば、レゾルシン樹脂1を配合すれば、硫黄の配合量を減らしても、湿熱接着性を低下させることなく劣化後耐亀裂進展性を向上させることができることがわかる。さらに、DCPD樹脂を配合することにより、劣化後耐亀裂進展性及び湿熱接着性をともに高めることができる。
 ただし、参考例1のレゾルシン樹脂2では、湿熱接着性を向上できるが、劣化後耐亀裂進展性が低下する。また、比較例6によれば、レゾルシン樹脂1であっても、過剰に配合することにより湿熱接着性を低下させることから、レゾルシン樹脂1を特定の配合量範囲で用いることにより、湿熱接着性を高める効果が得られることがわかる。
 以上のことから、本願発明によれば、特定のレゾルシン樹脂を用いることによって、不溶性硫黄の配合量をゴム成分(A)100質量部に対して1.0質量部以上6.5質量部以下にしても湿熱接着性を低下させることなく、劣化後耐亀裂進展性を高めることができる。
[Evaluation results]
From Comparative Example 2 and Comparative Example 4, it can be seen that, when the amount of sulfur is reduced, the crack resistance after deterioration is improved, but the wet heat adhesiveness is lowered. On the other hand, according to Example 1-3, if resorcin resin 1 is blended, it is possible to improve post-degradation crack resistance without decreasing wet heat adhesion even if the amount of sulfur is reduced. I understand that I can do it. Furthermore, by blending the DCPD resin, it is possible to improve both the crack resistance after degradation and the wet heat adhesion.
However, although the resorcin resin 2 of Reference Example 1 can improve wet heat adhesion, crack resistance after degradation deteriorates. In addition, according to Comparative Example 6, even if it is resorcin resin 1, wet heat adhesiveness is reduced by excessively blending it. Therefore, by using resorcin resin 1 in a specific blending amount range, wet heat adhesiveness is reduced. It turns out that the effect to raise is acquired.
From the above, according to the present invention, by using a specific resorcin resin, the blending amount of insoluble sulfur is 1.0 parts by mass or more and 6.5 parts by mass or less with respect to 100 parts by mass of the rubber component (A). However, the post-degradation crack resistance can be improved without reducing wet heat adhesion.
[タイヤ用ゴム組成物の評価2]
 第3表に示す配合処方にしたがって、評価1の場合と同様にして混合物を作製し、さらにスチールコード被覆用ゴム組成物及び剥離接着試験用の未加硫試料を作製した。得られた試料を下記方法により評価した。
(a)湿熱接着性(湿熱老化後の接着性)
 第2表に示した評価方法と同一の方法を適用した。
 本評価では、接着性評価の指数値が、シリカを配合していない比較例12と比べて湿熱接着性評価の指数値が向上しているものを合格とした。
[Evaluation 2 of tire rubber composition]
According to the formulation shown in Table 3, a mixture was prepared in the same manner as in Evaluation 1, and a rubber composition for coating a steel cord and an unvulcanized sample for a peel adhesion test were prepared. The obtained sample was evaluated by the following method.
(A) Wet heat adhesion (adhesion after wet heat aging)
The same method as the evaluation method shown in Table 2 was applied.
In this evaluation, the index value of the adhesive evaluation was determined to pass if the index value of the wet heat adhesive evaluation was improved as compared with Comparative Example 12 in which silica was not blended.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 *1~*11は、第2表と同じ。
 *12 シリカ:東ソー・シリカ株式会社製、「Nipsil-AQ」
* 1 to * 11 are the same as Table 2.
* 12 Silica: “Nippil-AQ” manufactured by Tosoh Silica Corporation
[評価結果]
 レゾルシン樹脂1の配合量及び硫黄の配合量が第2表の結果に基づく適量範囲内であれば、シリカを配合することにより、湿熱接着性を大幅に向上させることができることがわかった。さらに、シリカの配合量をゴム成分(A)100質量部に対して、1質量部以上65質量部以下の範囲にすることにより、湿熱接着性を向上できることがわかった。
[Evaluation results]
It was found that if the blending amount of the resorcin resin 1 and the blending amount of sulfur are within an appropriate amount range based on the results shown in Table 2, wet heat adhesion can be greatly improved by blending silica. Furthermore, it turned out that wet heat adhesiveness can be improved by making the compounding quantity of a silica into the range of 1 to 65 mass parts with respect to 100 mass parts of rubber components (A).
[タイヤ用ゴム組成物の評価3]
 第4表に示す配合処方にしたがって、評価1の場合と同様にして混合物を作製し、さらにスチールコード被覆用ゴム組成物及び剥離接着試験用の未加硫試料を作製した。得られた試料を下記方法により評価した。
(a)100%伸び引張応力(M100)
 上記未加硫試料を160℃で20分間加硫し、このサンプルを、JIS K6251:2010により100%伸び引張応力を測定した。結果は、比較例11を100とする指数で表示した。指数値が大きい程、進展100%伸び引っ張り応力に優れることを示す。
(b)湿熱接着性(湿熱老化後の接着性)
 第2表に示した評価方法と同一の方法を適用した。
 本評価においては、100%伸び引張応力及び湿熱接着性のいずれにおいても指数値が上昇したものを合格とした。
[Evaluation 3 of Tire Rubber Composition]
According to the formulation shown in Table 4, a mixture was prepared in the same manner as in Evaluation 1, and a rubber composition for coating a steel cord and an unvulcanized sample for a peel adhesion test were prepared. The obtained sample was evaluated by the following method.
(A) 100% elongation tensile stress (M100)
The unvulcanized sample was vulcanized at 160 ° C. for 20 minutes, and this sample was measured for 100% elongation tensile stress according to JIS K6251: 2010. The results were expressed as an index with Comparative Example 11 as 100. It shows that it is excellent in a growth 100% elongation tensile stress, so that an index value is large.
(B) Wet heat adhesion (adhesion after wet heat aging)
The same method as the evaluation method shown in Table 2 was applied.
In this evaluation, an index value increased in both 100% elongation tensile stress and wet heat adhesiveness was regarded as acceptable.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 *1~*12は、第2表及び第3表と同じ。
 *13 ビスマレイミド化合物:大和化成工業株式会社製、「BMI-1000」
* 1 to * 12 are the same as Tables 2 and 3.
* 13 Bismaleimide compound: “BMI-1000” manufactured by Daiwa Kasei Kogyo Co., Ltd.
[評価結果]
 レゾルシン樹脂1の配合量及び硫黄の配合量が第2表の結果に基づく適量範囲内であれば、ビスマレイミド化合物を配合することにより、100%伸び引っ張り応力を向上することができる。また、シリカを配合することにより、湿熱接着性の低下を抑えることができる。さらに、DCPD樹脂を配合することによって、進展ゴムの補強性を一層向上させることができる。
[Evaluation results]
If the blending amount of the resorcin resin 1 and the blending amount of sulfur are within an appropriate range based on the results of Table 2, 100% elongation tensile stress can be improved by blending the bismaleimide compound. Moreover, the fall of wet heat adhesiveness can be suppressed by mix | blending a silica. Furthermore, the reinforcement property of progress rubber | gum can be improved further by mix | blending DCPD resin.
[タイヤ用ゴム組成物の評価4]
 第5表に示す配合処方にしたがって、評価1の場合と同様にして混合物を作製し、さらにスチールコード被覆用ゴム組成物及び剥離接着試験用の未加硫試料を作製した。得られた試料を下記方法により評価した。
(a)劣化後耐亀裂進展性
 第2表に示した評価方法と同一の方法を適用した。
(b)湿熱接着性(湿熱老化後の接着性)
 第2表に示した評価方法と同一の方法を適用した。
 本評価においては、劣化後耐亀裂進展性及び湿熱接着性のいずれも指数値が上昇したものを合格とした。
[Evaluation 4 of rubber composition for tire]
According to the formulation shown in Table 5, a mixture was prepared in the same manner as in Evaluation 1, and a rubber composition for steel cord coating and an unvulcanized sample for a peel adhesion test were prepared. The obtained sample was evaluated by the following method.
(A) Crack growth resistance after deterioration The same method as the evaluation method shown in Table 2 was applied.
(B) Wet heat adhesion (adhesion after wet heat aging)
The same method as the evaluation method shown in Table 2 was applied.
In this evaluation, both the crack progress resistance after degradation and the wet heat adhesion were evaluated as having passed the index value.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 *1~*12は、第1表及び第2表と同じ。 * 1 to * 12 are the same as Table 1 and Table 2.
[評価結果]
 レゾルシン樹脂1の配合量及び硫黄の配合量が第2表の結果に基づく適量範囲内であれば、コバルト脂肪酸塩の配合量を、コバルト含量で0.01質量部~0.08質量部に減少させた場合でも、湿熱接着性を低下させることなく、耐亀裂進展性を向上させることができる。また、シリカを配合することにより、湿熱接着性及び耐亀裂進展性を一層向上させることができる。
[Evaluation results]
If the amount of resorcin resin 1 and the amount of sulfur are within the appropriate ranges based on the results in Table 2, the amount of cobalt fatty acid salt is reduced to 0.01 to 0.08 parts by mass in terms of cobalt content. Even when it is made, crack progress resistance can be improved, without reducing wet heat adhesiveness. Moreover, wet heat adhesiveness and crack progress resistance can be further improved by mix | blending a silica.
[タイヤ用ゴム組成物の評価5]
 第6表に示す配合処方にしたがって、評価1の場合と同様にして混合物を作製し、さらにスチールコード被覆用ゴム組成物及び剥離接着試験用の未加硫試料を作製した。得られた試料を下記方法により評価した。
(a)湿熱接着性(湿熱老化後の接着性)
 第2表に示した評価方法と同一の方法を適用した。
 本評価においては、加硫促進剤DZとレゾルシン樹脂とを用いた実施例1を基準とし、湿熱接着性の指数値が上昇したものを合格とした。
[Evaluation 5 of Tire Rubber Composition]
In accordance with the formulation shown in Table 6, a mixture was prepared in the same manner as in Evaluation 1, and a rubber composition for coating a steel cord and an unvulcanized sample for a peel adhesion test were prepared. The obtained sample was evaluated by the following method.
(A) Wet heat adhesion (adhesion after wet heat aging)
The same method as the evaluation method shown in Table 2 was applied.
In this evaluation, Example 1 using the vulcanization accelerator DZ and resorcin resin was used as a reference, and the index value of wet heat adhesion increased was determined to be acceptable.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 *14 加硫促進剤1 CZ(N-シクロヘキシル‐2-ベンゾチアゾリルスルフェンアミド)、大内新興化学工業株式会社製、「ノクセラーCZ」
 *15 加硫促進剤2 NS(N-ter-ブチル-2-ベンゾチアジルスルフェンアミド)、大内新興化学工業株式会社製、「ノクセラーNS」
 *16 加硫促進剤3 TBSI(N-tert-ブチル-2-ベンゾチアゾリルスルフェンイミド)、フレキシス株式会社製、「サントキュアーTBSI」
 *17 加硫促進剤4 BEHZ(N,N-ジ(2-エチルヘキシル)-2-ベンゾチアゾリルスルフェンアミド)、川口化学工業株式会社製、「BEHZ」
 *18 加硫促進剤5 DZ(N,N’-ジシクロヘキシル-2-ベンゾチアジルスルフェンアミド)、大内新興化学工業株式会社製、「ノクセラーDZ」
* 14 Vulcanization accelerator 1 CZ (N-cyclohexyl-2-benzothiazolylsulfenamide), manufactured by Ouchi Shinsei Chemical Co., Ltd., “Noxeller CZ”
* 15 Vulcanization accelerator 2 NS (N-ter-butyl-2-benzothiazylsulfenamide), manufactured by Ouchi Shinsei Chemical Co., Ltd., “Noxeller NS”
* 16 Vulcanization accelerator 3 TBSI (N-tert-butyl-2-benzothiazolylsulfenimide), manufactured by Flexis Co., Ltd., “Sant Cure TBSI”
* 17 Vulcanization accelerator 4 BEHZ (N, N-di (2-ethylhexyl) -2-benzothiazolylsulfenamide), manufactured by Kawaguchi Chemical Industry Co., Ltd., “BEHZ”
* 18 Vulcanization accelerator 5 DZ (N, N'-dicyclohexyl-2-benzothiazylsulfenamide), manufactured by Ouchi Shinsei Chemical Co., Ltd., "Noxeller DZ"
[評価結果]
 レゾルシン樹脂1の配合量及び硫黄の配合量が第2表の結果に基づく適量範囲内であれば、加硫促進剤5、すなわち、加硫促進剤DZ(N,N’-ジシクロヘキシル-2-ベンゾチアジルスルフェンアミド)を用いた場合(これには実施例1も含む)に比べて、加硫促進剤1~4を用いた方が、湿熱接着性を向上することできることがわかった。
[Evaluation results]
If the blending amount of the resorcin resin 1 and the blending amount of sulfur are within appropriate ranges based on the results shown in Table 2, the vulcanization accelerator 5, that is, the vulcanization accelerator DZ (N, N′-dicyclohexyl-2-benzo It has been found that wet heat adhesion can be improved by using vulcanization accelerators 1 to 4 as compared to the case of using thiazylsulfenamide (including Example 1).
[タイヤ用ゴム組成物の評価6]
 第6表に示す配合処方にしたがって、評価1の場合と同様にして混合物を作製し、さらにスチールコード被覆用ゴム組成物及び剥離接着試験用の未加硫試料を作製した。得られた試料を下記方法により評価した。
(a)初期接着性
 スチールコードを、12.5mm間隔で平行に並べ、該スチールコードを上下からゴム組成物で被覆し、160℃で7分間加硫して、ゴム組成物とスチールコードとを接着させた。このようにして、厚さ1mmのゴムシートにスチールコードが埋設された、ゴム-金属複合体を得た(スチールコードは、ゴムシートの厚さ方向中央に、シート表面に、12.5mm間隔で並んでいる)。その後、ASTM D 2229に準拠して、加硫直後の各サンプルからスチールコードを引き抜き、スチールコードに付着しているゴムの被覆率を目視観察にて0~100%で決定し、初期接着性の指標とした。結果は、比較例1を100とする指数で表示した。指数値が大きい程、初期接着性に優れていることを示す。
 初期接着性指数={(供試試料の金属コードに付着しているゴムの被覆率)/(比較例1の金属コードに付着しているゴムの被覆率)}×100
(b)湿熱接着性(湿熱老化後の接着性)
 第2表に示した評価方法と同一の方法を適用した。
 本評価においては、レゾルシン樹脂を含まない比較例72を基準とし、初期接着性及び湿熱接着性の指数値がいずれも上昇したものを合格とした。
[Evaluation 6 of rubber composition for tire]
In accordance with the formulation shown in Table 6, a mixture was prepared in the same manner as in Evaluation 1, and a rubber composition for coating a steel cord and an unvulcanized sample for a peel adhesion test were prepared. The obtained sample was evaluated by the following method.
(A) Initial adhesiveness Steel cords are arranged in parallel at an interval of 12.5 mm, the steel cords are covered with a rubber composition from above and below, and vulcanized at 160 ° C. for 7 minutes, whereby the rubber composition and the steel cord are Glued. In this way, a rubber-metal composite in which a steel cord was embedded in a rubber sheet having a thickness of 1 mm was obtained (the steel cord was placed at the center of the rubber sheet in the thickness direction and at an interval of 12.5 mm on the sheet surface. Are lined up). Thereafter, in accordance with ASTM D 2229, the steel cord was pulled out from each sample immediately after vulcanization, and the coverage of the rubber adhering to the steel cord was determined by visual observation from 0 to 100%. It was used as an index. The results were expressed as an index with Comparative Example 1 as 100. It shows that it is excellent in initial stage adhesiveness, so that an index value is large.
Initial adhesiveness index = {(Rubber coverage adhered to metal cord of test sample) / (Rubber coverage adhered to metal cord of Comparative Example 1)} × 100
(B) Wet heat adhesion (adhesion after wet heat aging)
The same method as the evaluation method shown in Table 2 was applied.
In this evaluation, the comparative example 72 containing no resorcin resin was used as a reference, and the index values of the initial adhesiveness and wet heat adhesiveness both increased.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 *19 防錆剤1 1,2,3-トリアゾール(試薬)
 *20 防錆剤2 1,2,4-トリアゾール(試薬)
 *21 防錆剤3 3-アミノ-1,2,4-トリアゾール(試薬)
 *22 防錆剤4 4-アミノ-1,2,4-トリアゾール(試薬)
 *23 防錆剤5 イミダゾール(試薬)
* 19 Rust inhibitor 1 1,2,3-triazole (reagent)
* 20 Antirust agent 2 1,2,4-triazole (reagent)
* 21 Rust inhibitor 3 3-amino-1,2,4-triazole (reagent)
* 22 Rust inhibitor 4 4-amino-1,2,4-triazole (reagent)
* 23 Rust inhibitor 5 Imidazole (reagent)
[評価結果]
 レゾルシン樹脂1の配合量及び硫黄の配合量が第2表の結果に基づく適量範囲内であれば、防錆剤として、特定のトリアゾール化合物又はイミダゾール化合物を配合することにより、湿熱接着性をさらに向上させることができる。また、シリカを配合することにより、湿熱接着性をより一層向上させることができる。
[Evaluation results]
If the blending amount of resorcin resin 1 and the blending amount of sulfur are within the appropriate ranges based on the results shown in Table 2, the wet heat adhesion is further improved by blending a specific triazole compound or imidazole compound as a rust inhibitor. Can be made. Moreover, wet heat adhesiveness can be improved further by mix | blending a silica.
 また、上述した第2表~第7表に示したタイヤ用ゴム組成物の評価1~6の結果に総じて、本発明に係るタイヤ用ゴム組成物に含まれる、遊離レゾルシン以外の未反応モノマー及び残存溶媒の総量は、ゴム成分に対して、0.03質量%となり、0.17質量%より大幅に少なく、参考例1にかかる従来品(SUMIKANOL620)を配合したゴム組成物に含まれる、遊離レゾルシン以外の未反応モノマー及び残存溶媒の総量0.246質量%と比較して、未加硫ゴム組成物の混練り時の臭気の発生が大幅に削減され、作業環境保全のための設備投資が大幅に軽減されることとなった。 In addition, as a result of the evaluations 1 to 6 of the tire rubber compositions shown in Tables 2 to 7 described above, unreacted monomers other than free resorcin contained in the tire rubber composition according to the present invention and The total amount of the residual solvent is 0.03% by mass with respect to the rubber component, which is significantly less than 0.17% by mass, and is contained in the rubber composition containing the conventional product (SUMIKANOL620) according to Reference Example 1. Compared with 0.246% by mass of the total amount of unreacted monomers and residual solvent other than resorcin, the generation of odors during kneading of the unvulcanized rubber composition is greatly reduced, and capital investment for work environment conservation is reduced. It was greatly reduced.
 本発明に係るタイヤ用ゴム組成物は、ゴム物品、中でもタイヤのカーカスやベルトの補強材のように、金属コードとゴムとの複合体に用いて好適である。特に、本発明に係るタイヤ用ゴム組成物を、トラック及びバス用タイヤ、乗用車用タイヤ、中でも乗用車用ラジアルタイヤのベルト等に用いられる金属コード-ゴム複合体に適用する場合には、ゴムとの接着性を高められる。 The rubber composition for tires according to the present invention is suitable for use in a composite of a metal article and rubber, such as a rubber article, in particular, a tire carcass or a reinforcing material for a belt. In particular, when the rubber composition for tires according to the present invention is applied to a metal cord-rubber composite used for a belt or the like of a tire for trucks and buses, a tire for passenger cars, especially a radial tire for passenger cars, Adhesion can be improved.

Claims (14)

  1.  ゴム成分(A)と、不溶性硫黄(B)と、下記式(1)で表されるp-tert-ブチルフェノール由来の構成単位、下記式(2)で表されるo-フェニルフェノール由来の構成単位、及び下記式(3)で表されるレゾルシン由来の構成単位を含み軟化点が150℃以下である共縮合物(C)とを配合してなり、
     該不溶性硫黄(B)の配合量が、ゴム成分(A)100質量部に対して、1.0質量部以上6.5質量部以下であり、該共縮合物(C)の配合量が、ゴム成分(A)100質量部に対して、0.1質量部以上10質量部以下であるタイヤ用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    Rubber component (A), insoluble sulfur (B), structural unit derived from p-tert-butylphenol represented by the following formula (1), structural unit derived from o-phenylphenol represented by the following formula (2) And a co-condensate (C) containing a structural unit derived from resorcin represented by the following formula (3) and having a softening point of 150 ° C. or lower,
    The amount of the insoluble sulfur (B) is 1.0 part by mass or more and 6.5 parts by mass or less with respect to 100 parts by mass of the rubber component (A), and the amount of the cocondensate (C) is The rubber composition for tires which is 0.1 mass part or more and 10 mass parts or less with respect to 100 mass parts of rubber components (A).
    Figure JPOXMLDOC01-appb-C000001
  2.  前記不溶性硫黄(B)の配合量が2質量部以上6.5質量部以下である請求項1に記載のタイヤ用ゴム組成物。 The tire rubber composition according to claim 1, wherein the amount of the insoluble sulfur (B) is 2 parts by mass or more and 6.5 parts by mass or less.
  3.  充填材を配合してなり、該充填材の総配合量が、ゴム成分(A)100質量部に対して、5質量部以上100質量部以下である請求項1又は2に記載のタイヤ用ゴム組成物。 The rubber for tire according to claim 1 or 2, comprising a filler, wherein a total amount of the filler is 5 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber component (A). Composition.
  4.  充填材を配合してなり、該充填材の総配合量が、ゴム成分(A)100質量部に対して、20質量部以上80質量部以下である請求項1又は2に記載のタイヤ用ゴム組成物。 The rubber for tire according to claim 1 or 2, comprising a filler, wherein a total amount of the filler is 20 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the rubber component (A). Composition.
  5.  前記充填材にはシリカが含まれ、該シリカの配合量が、ゴム成分(A)100質量部に対して、1質量部以上65質量部以下である請求項3又は4に記載のタイヤ用ゴム組成物。 The tire rubber according to claim 3 or 4, wherein the filler contains silica, and the amount of the silica is 1 part by mass or more and 65 parts by mass or less with respect to 100 parts by mass of the rubber component (A). Composition.
  6.  前記充填材にはシリカが含まれ、該シリカの配合量が、ゴム成分(A)100質量部に対して、10質量部以上40質量部以下である請求項3又は4に記載のタイヤ用ゴム組成物。 The rubber for tire according to claim 3 or 4, wherein the filler contains silica, and the amount of the silica is 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the rubber component (A). Composition.
  7.  有機コバルト化合物が配合されてなり、該有機コバルト化合物の配合量がゴム成分(A)100質量部に対して、コバルト含量にして0.01質量部以上0.08質量部以下である請求項1~6のいずれか1項に記載のタイヤ用ゴム組成物。 2. An organic cobalt compound is blended, and the blending amount of the organic cobalt compound is 0.01 parts by mass or more and 0.08 parts by mass or less in terms of cobalt content with respect to 100 parts by mass of the rubber component (A). 7. The tire rubber composition according to any one of 1 to 6.
  8.  有機コバルト化合物が配合されてなり、該有機コバルト化合物の配合量がゴム成分(A)100質量部に対して、コバルト含量にして0.02質量部以上0.07質量部以下である請求項1~6のいずれか1項に記載のタイヤ用ゴム組成物。 2. An organic cobalt compound is blended, and the blending amount of the organic cobalt compound is 0.02 parts by mass or more and 0.07 parts by mass or less in terms of cobalt content with respect to 100 parts by mass of the rubber component (A). 7. The tire rubber composition according to any one of 1 to 6.
  9.  ビスマレイミド化合物が配合されてなり、該ビスマレイミド化合物の配合量がゴム成分(A)100質量部に対して、0.1質量部以上5.5質量部以下である請求項1~8のいずれか1項に記載のタイヤ用ゴム組成物。 The bismaleimide compound is blended, and the blending amount of the bismaleimide compound is 0.1 parts by mass or more and 5.5 parts by mass or less with respect to 100 parts by mass of the rubber component (A). The rubber composition for tires according to claim 1.
  10.  ビスマレイミド化合物が配合されてなり、該ビスマレイミド化合物の配合量がゴム成分(A)100質量部に対して、0.1質量部以上5質量部以下である請求項1~8のいずれか1項に記載のタイヤ用ゴム組成物。 The bismaleimide compound is blended, and the blending amount of the bismaleimide compound is 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the rubber component (A). The rubber composition for tires according to item.
  11.  加硫促進剤が配合されてなり、該加硫促進剤がN-シクロヘキシル‐2-ベンゾチアゾリルスルフェンアミド、N-tert-ブチル-2-ベンゾチアジルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンイミド、及びN,N-ジ(2-エチルヘキシル)-2-ベンゾチアゾリルスルフェンアミドから選択される少なくとも1つであり、該加硫促進剤の配合量がゴム成分(A)100質量部に対して、0.5質量部以上3質量部以下である請求項1~10のいずれか1項に記載のタイヤ用ゴム組成物。 A vulcanization accelerator is blended, and the vulcanization accelerator is N-cyclohexyl-2-benzothiazolylsulfenamide, N-tert-butyl-2-benzothiazylsulfenamide, N-tert-butyl- And at least one selected from 2-benzothiazolylsulfenimide and N, N-di (2-ethylhexyl) -2-benzothiazolylsulfenamide, and the compounding amount of the vulcanization accelerator is a rubber component (A) The rubber composition for tire according to any one of claims 1 to 10, wherein the rubber composition is 0.5 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass.
  12.  防錆剤が配合されてなり、該防錆剤が炭素数5以下の環式化合物の炭素原子の少なくとも1つが窒素原子で置換された構造を有する含窒素環式化合物を含み、該防錆剤の配合量がゴム成分(A)100質量部に対して、0.02質量部以上12質量部以下である請求項1~11のいずれか1項記載のタイヤ用ゴム組成物。 A rust preventive agent is blended, and the rust preventive agent includes a nitrogen-containing cyclic compound having a structure in which at least one carbon atom of the cyclic compound having 5 or less carbon atoms is substituted with a nitrogen atom, and the rust preventive agent The rubber composition for a tire according to any one of claims 1 to 11, wherein a blending amount of the rubber component is 0.02 parts by mass or more and 12 parts by mass or less with respect to 100 parts by mass of the rubber component (A).
  13.  前記共縮合物(C)の軟化点が80℃以上150℃以下である請求項1~12のいずれか1項に記載のタイヤ用ゴム組成物。 The rubber composition for tire according to any one of claims 1 to 12, wherein the softening point of the co-condensate (C) is 80 ° C or higher and 150 ° C or lower.
  14.  前記共縮合物(C)の軟化点が80℃以上140℃以下である請求項1~12のいずれか1項に記載のタイヤ用ゴム組成物。 The rubber composition for tires according to any one of claims 1 to 12, wherein the softening point of the cocondensate (C) is 80 ° C or higher and 140 ° C or lower.
PCT/JP2015/077400 2014-10-01 2015-09-28 Rubber composition for tire WO2016052447A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-203527 2014-10-01
JP2014-203526 2014-10-01
JP2014203527 2014-10-01
JP2014203526 2014-10-01

Publications (1)

Publication Number Publication Date
WO2016052447A1 true WO2016052447A1 (en) 2016-04-07

Family

ID=55630477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077400 WO2016052447A1 (en) 2014-10-01 2015-09-28 Rubber composition for tire

Country Status (1)

Country Link
WO (1) WO2016052447A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087499A1 (en) * 2017-10-31 2019-05-09 株式会社ブリヂストン Rubber composition, metal/rubber composite, and tire
JP2020012802A (en) * 2018-07-20 2020-01-23 横浜ゴム株式会社 Method of evaluating additive, rubber composition, metal-rubber composition, pneumatic tire, and method of manufacturing pneumatic tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154385A (en) * 1971-04-24 1975-12-12
JPH03255186A (en) * 1990-03-05 1991-11-14 Hitachi Chem Co Ltd Adhesive composition for flexible printed wiring board, base material for flexible printed wiring board made by using it, and flexible printed wiring board
JPH06184284A (en) * 1990-07-10 1994-07-05 Mitsui Toatsu Chem Inc Phenolic aralkyl resin having low softening point and epoxy resin composition containing the resin
WO2014156870A1 (en) * 2013-03-26 2014-10-02 田岡化学工業株式会社 Cocondensate and method for producing same, and rubber composition containing cocondensate
JP2015163668A (en) * 2014-01-29 2015-09-10 田岡化学工業株式会社 Resin composition and production method thereof, and rubber composition including co-condensed object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154385A (en) * 1971-04-24 1975-12-12
JPH03255186A (en) * 1990-03-05 1991-11-14 Hitachi Chem Co Ltd Adhesive composition for flexible printed wiring board, base material for flexible printed wiring board made by using it, and flexible printed wiring board
JPH06184284A (en) * 1990-07-10 1994-07-05 Mitsui Toatsu Chem Inc Phenolic aralkyl resin having low softening point and epoxy resin composition containing the resin
WO2014156870A1 (en) * 2013-03-26 2014-10-02 田岡化学工業株式会社 Cocondensate and method for producing same, and rubber composition containing cocondensate
JP2015052097A (en) * 2013-03-26 2015-03-19 田岡化学工業株式会社 Co-condensate and method for producing the same, and rubber composition comprising the same
JP2015163668A (en) * 2014-01-29 2015-09-10 田岡化学工業株式会社 Resin composition and production method thereof, and rubber composition including co-condensed object

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087499A1 (en) * 2017-10-31 2019-05-09 株式会社ブリヂストン Rubber composition, metal/rubber composite, and tire
CN111295418A (en) * 2017-10-31 2020-06-16 株式会社普利司通 Rubber composition, metal-rubber composite, and tire
JPWO2019087499A1 (en) * 2017-10-31 2020-12-17 株式会社ブリヂストン Rubber compositions, metal-rubber composites and tires
JP2020012802A (en) * 2018-07-20 2020-01-23 横浜ゴム株式会社 Method of evaluating additive, rubber composition, metal-rubber composition, pneumatic tire, and method of manufacturing pneumatic tire
JP7196446B2 (en) 2018-07-20 2022-12-27 横浜ゴム株式会社 Method for evaluating additive, rubber composition, metal-rubber composite, pneumatic tire, and method for producing pneumatic tire

Similar Documents

Publication Publication Date Title
JP5865544B1 (en) Rubber composition for tire
JP6245752B2 (en) Cocondensate, method for producing the same, and rubber composition containing cocondensate
US8981006B2 (en) Method for manufacturing rubber composition, rubber composition, and tire using same
JP6933068B2 (en) Rubber composition for steel cord coating and tires
JP5727989B2 (en) Steel cord coating, steel cord adjacent strip or rubber composition for tie gum and pneumatic tire
JP5808305B2 (en) Rubber composition and pneumatic tire
JP2015163668A (en) Resin composition and production method thereof, and rubber composition including co-condensed object
JP6288148B2 (en) Rubber composition
JP6682949B2 (en) Tires for passenger cars
JP6016297B2 (en) Cocondensate and rubber composition containing the same
JP6297900B2 (en) Rubber composition for covering tire metal cord and pneumatic tire using the same
JP6675137B2 (en) Resin composition, method for producing the same, and rubber composition containing resin composition
JP2014152220A (en) Co-condensation product and rubber composition containing the same
WO2016052449A1 (en) Metal cord-rubber composite body
WO2016052447A1 (en) Rubber composition for tire
JP2018172488A (en) Novolak type co-condensate for rubber blend, and manufacturing method of co-condensate
WO2016052451A1 (en) Metal cord-rubber composite body
JP6292715B2 (en) Cocondensate, method for producing the same, and rubber composition containing cocondensate
JP2010163593A (en) Rubber composition for bead filler and tire using the same
JP2014105225A (en) Co-condensed material and rubber composition containing the same
WO2016052450A1 (en) Metal cord-rubber composite body
JP6880565B2 (en) Pneumatic tires
JP2017179101A (en) Tackifier and rubber composition containing the same
JP2019183060A (en) Novolak type co-condensate for rubber blending, and manufacturing method of rubber composition containing the co-condensate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP