WO2016052451A1 - Metal cord-rubber composite body - Google Patents

Metal cord-rubber composite body Download PDF

Info

Publication number
WO2016052451A1
WO2016052451A1 PCT/JP2015/077404 JP2015077404W WO2016052451A1 WO 2016052451 A1 WO2016052451 A1 WO 2016052451A1 JP 2015077404 W JP2015077404 W JP 2015077404W WO 2016052451 A1 WO2016052451 A1 WO 2016052451A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
metal cord
resorcin
parts
Prior art date
Application number
PCT/JP2015/077404
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 山岸
信一 武者
芳彦 金冨
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2016052451A1 publication Critical patent/WO2016052451A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics

Definitions

  • the present invention relates to a metal cord-rubber composite formed by coating a specific rubber composition on a metal cord made of steel wire or a single wire with brass plating applied to the peripheral surface, or a metal cord formed by twisting the steel wire. .
  • Rubber products such as tires, belts and hoses are reinforced with reinforcing materials such as metal cords such as steel cords and organic fibers. These rubber products are required to firmly bond rubber and a reinforcing material, particularly a metal cord.
  • an adhesive for bonding the rubber and the reinforcing material, there is a method using an adhesive.
  • an adhesive is blended with various other compounding agents and kneaded, by reacting alkylphenols such as p-tert-octylphenol and p-nonylphenol with formalins. It is known that a cocondensate obtained by reacting resorcin with the obtained cocondensate is used as an adhesive used in a rubber processing step (see Patent Document 1).
  • metal cords such as steel cords have been used as reinforcing materials for rubber products such as tires, belts, hoses, etc., for example, steel wires with a brass plating layer on the peripheral surface of the wire.
  • a brass plating ternary plating or quaternary plating is known (for example, see Patent Documents 2 to 5).
  • the adhesion of these ternary plating or quaternary plating may be reduced by a combination with a rubber composition covering a metal cord.
  • the present inventors paid attention to the importance of further improving the adhesion between the above-described metal cord and rubber.
  • the present invention relates to a metal cord having improved adhesion by coating a specific rubber composition on a metal cord having ternary or quaternary plating, which is a specific brass plating, in a rubber product reinforced with a metal cord.
  • a metal cord having improved adhesion by coating a specific rubber composition on a metal cord having ternary or quaternary plating, which is a specific brass plating, in a rubber product reinforced with a metal cord.
  • the present invention [1] A metal cord-rubber composite formed by coating a rubber composition on a metal cord composed of a single wire of steel wire having brass plating applied to its peripheral surface, or a metal cord formed by twisting the steel wire,
  • the rubber composition comprises a rubber component (A) and 100 parts by mass of the rubber component (A), and 0.1 to 10 parts by mass of a resorcin resin, and the brass plating comprises 58 to 70% by mass of Cu, Co
  • a metal cord-rubber composite characterized in that it is a ternary or quaternary plating composed of 0.5 to 10% by mass of at least one metal selected from Ni and the balance of Zn, and [2] the resorcin resin Are represented by the structural unit derived from p-
  • a metal cord-rubber composite having improved adhesion by coating a specific rubber composition on a metal cord having a ternary or quaternary plating, which is a specific brass plating Can be provided.
  • the metal cord-rubber composite of the present invention is a metal cord formed by coating a rubber composition on a metal cord made of a single wire of steel wire with brass plating applied to the peripheral surface or a metal cord formed by twisting the steel wire.
  • a rubber composite comprising the rubber component (A) and 0.1 to 10 parts by mass of resorcin resin per 100 parts by mass of the rubber component (A), and the brass plating Is ternary or quaternary plating consisting of 58 to 70% by mass of Cu, 0.5 to 10% by mass of at least one metal selected from Co and Ni, and the balance being Zn.
  • Metal cord-rubber composite comprising a metal cord having ternary or quaternary plating and a rubber composition in which 0.1 to 10 parts by mass of a resorcin resin is blended with 100 parts by mass of the rubber component (A)
  • the body can greatly improve initial adhesion and wet heat adhesion.
  • the rubber composition according to the present invention comprises 0.1 to 10 parts by mass of a resorcin resin per 100 parts by mass of the rubber component (A) and the rubber component (A).
  • a resorcin resin per 100 parts by mass of the rubber component (A) and the rubber component (A).
  • the blending amount of the resorcin resin is less than 0.1 parts by mass with respect to 100 parts by mass of the rubber component (A)
  • sufficient adhesion cannot be obtained.
  • the compounding amount of the resorcin resin exceeds 10 parts by mass with respect to 100 parts by mass of the rubber component (A)
  • the adhesion reaction during vulcanization proceeds excessively, resulting in a decrease in adhesiveness.
  • the resorcin resin is preferably 0.2 parts by mass or more and 8 parts by mass or less, and more preferably 0.5 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the rubber component (A). It is.
  • the rubber component (A) that can be used in the rubber composition according to the present invention include natural rubber, epoxidized natural rubber, deproteinized natural rubber and other modified natural rubber, polyisoprene rubber (IR), styrene- Butadiene copolymer rubber (SBR), polybutadiene rubber (BR), ethylene-butadiene copolymer rubber (EBR), propylene-butadiene copolymer rubber (PBR), acrylonitrile-butadiene copolymer rubber (NBR), isoprene
  • examples include various synthetic rubbers such as isobutylene copolymer rubber (IIR), ethylene / propylene-diene copolymer rubber (EPDM), and halogenated butyl rubber (HR).
  • highly unsaturated rubbers such as natural rubber, styrene-butadiene copolymer rubber and polybutadiene rubber are preferably used, and natural rubber is particularly preferably used. It is also effective to combine several rubber components such as a combination of natural rubber and styrene-butadiene copolymer rubber, a combination of natural rubber and polybutadiene rubber.
  • natural rubber examples include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, and SIR20.
  • epoxidized natural rubber those having a degree of epoxidation of 10 to 60 mol% are preferable, and examples thereof include ENR25 and ENR50 manufactured by Kumpoulangrie.
  • the deproteinized natural rubber a deproteinized natural rubber having a total nitrogen content of 0.3% by mass or less is preferable.
  • the modified natural rubber a modified material containing a polar group obtained by reacting natural rubber with N, N-dialkylaminoethyl acrylate such as 4-vinylpyridine, N, N-diethylaminoethyl acrylate, 2-hydroxy acrylate or the like in advance. Natural rubber is preferably used.
  • SBR styrene-butadiene copolymer rubber
  • examples of the styrene-butadiene copolymer rubber include emulsion polymerization SBR and solution polymerization SBR described on pages 210 to 211 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. it can. Among these, it is particularly preferable to use solution polymerization SBR.
  • a solution polymerized SBR having a molecular terminal modified with 4,4′-bis- (dialkylamino) benzophenone such as “Nippol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd., manufactured by JSR
  • a solution-polymerized SBR having a molecular end modified with a tin halide compound such as “SL574” or a silane-modified solution-polymerized SBR such as “E10” or “E15” manufactured by Asahi Kasei Corporation is preferably used.
  • any one of a silane compound such as a lactam compound, an amide compound, a urea compound, an N, N-dialkylacrylamide compound, an isocyanate compound, an imide compound, a trialkoxysilane compound having an alkoxy group, or an aminosilane compound is used alone.
  • two or more different compounds such as a silane compound having a tin compound and an alkoxy group, and an alkylacrylamide compound and an silane compound having an alkoxy group are used, and the molecular ends are modified by nitrogen and tin at the molecular ends.
  • solution polymerization SBR having any one of silicon, silicon, or a plurality of these elements is preferably used.
  • polybutadiene rubber examples include solution polymerization BR such as high cis BR with 90% or more of cis 1,4 bond and low cis BR with cis bond of around 35%, and low cis with high vinyl content.
  • BR is preferably used.
  • tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon is preferably used.
  • a silane compound such as a silane compound, an aminosilane compound alone, a silane compound having a tin compound and an alkoxy group, or a silane compound having an alkylacrylamide compound and an alkoxy group.
  • solution polymerization BR having nitrogen, tin, silicon, or a plurality of these elements at the molecular ends obtained by modifying the molecular ends is particularly preferably used.
  • the rubber component (A) preferably contains natural rubber, and the above-mentioned BR is usually used by mixing with natural rubber.
  • the proportion of natural rubber in the rubber component (A) is preferably 70% by mass or more.
  • the resorcin resin according to the present invention is not particularly limited as long as it is a resin containing resorcin as a constituent unit, but it is 20 to 80 mol% of resorcin as a constituent unit in all constituent units of the resorcin resin.
  • the resin is preferably contained from the viewpoint of improving adhesiveness, and more preferably a resin containing resorcin as a constituent unit in an amount of 30 to 70 mol%.
  • the resorcin resin according to the present invention includes a structural unit derived from p-tert-butylphenol represented by the following formula (1), a structural unit derived from o-phenylphenol represented by the following formula (2), and the following formula (3 It is preferable that it is a cocondensate (B) containing the structural unit derived from resorcin represented by this. These structural units are usually contained in the main chain of the cocondensate, but may be contained in the side chain.
  • the softening point is high, and when blended with rubber during kneading, the kneading temperature is lower than the softening point May cause a problem of poor dispersibility, and may be unsuitable as an adhesive between rubber and a metal cord that is used by mixing with rubber during kneading.
  • the structural unit (3) derived from resorcin is not contained, the ability as an adhesive between the rubber and the metal cord used by mixing with rubber during kneading is not sufficiently exhibited.
  • the structural unit (1) derived from p-tert-butylphenol is not included, the cost as a cocondensate becomes very high, and the cocondensate cannot be obtained industrially advantageously.
  • p-tert-octylphenol and p-nonylphenol are regarded as SVHC candidate substances stipulated in the REACH regulation, which is a regulation within the EU region, and their use in the EU region is likely to be restricted in the future. Therefore, it is preferable to use an alternative compound not listed in the SVHC candidate substances defined in the REACH regulations. Since the cocondensate (B) suitably used for the rubber composition according to the present invention does not contain p-tert-octylphenol and p-nonylphenol, there is no concern that it will be subject to REACH regulations in the future.
  • the content ratio of these structural units is o-phenylphenol with respect to 1 mole of the structural unit (1) derived from p-tert-butylphenol.
  • the derived structural unit (2) is preferably 0.5 to 6 moles, more preferably 1.5 to 6 moles.
  • the structural unit (3) derived from resorcin is usually 0.5 to 2 parts per 1 mol of the total amount of the structural unit (1) derived from p-tert-butylphenol and the structural unit (2) derived from o-phenylphenol. 0 times mole is contained. If the amount is less than 0.5 times mol, the ability to be used as an adhesive between the rubber and the metal cord used by blending with rubber during kneading may not be sufficiently exhibited. It may be difficult to manufacture.
  • these structural units are usually bonded by a linking group such as an alkyl group and / or an alkyl ether group derived from an aldehyde used in the reaction.
  • the linking group is preferably a methylene group and / or a dimethylene ether group derived from formaldehyde.
  • the linking group is usually contained in an amount of 1 to 2 moles per 1 mole of the total amount of the structural unit (1) derived from p-tert-butylphenol and the structural unit (2) derived from o-phenylphenol.
  • the ratio of these structural units and bonding groups can be determined, for example, by analyzing the cocondensate using 1 H-NMR. Specifically, a method is exemplified in which the cocondensate is analyzed by 1 H-NMR, and among the obtained analysis results, the ratio is determined from the proton integral value derived from each structural unit or bonding group.
  • the cocondensate (B) that can be suitably used in the rubber composition according to the present invention contains a structural unit other than the structural units derived from p-tert-butylphenol, o-phenylphenol, and resorcin, if necessary. Can do. Examples of such structural units include structural units derived from various alkylphenols used as raw materials for cocondensates generally used as adhesives used in rubber processing steps.
  • the softening point of the cocondensate (B) according to the present invention is preferably 150 ° C. or lower.
  • the softening point is more preferably in the range of 80 ° C. or higher and 150 ° C. or lower, further preferably in the range of 80 ° C. or higher and 140 ° C. or lower, and particularly preferably 90 ° C. or higher and 140 ° C. or lower. If the softening point of the co-condensate (B) is higher than 150 ° C., a problem of poor dispersibility occurs when blended with the rubber composition during kneading in the rubber composition. It may become unsuitable as an adhesive between rubber and metal cord to be used. If it is lower than 80 ° C., blocking may occur during storage.
  • the cocondensate (B) is preferably contained in an amount of 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component (A). If the compounding amount of the cocondensate (B) is 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component (A), sufficient adhesiveness (particularly wet heat adhesiveness) can be obtained. If the blending amount of the co-condensate (B) is 10 parts by mass or less with respect to 100 parts by mass of the rubber component (A), the adhesive reaction during vulcanization will not proceed excessively. It is possible to prevent a decrease in wet heat adhesion).
  • the cocondensate (B) is more preferably 0.2 parts by mass or more and 8 parts by mass or less, and still more preferably 0.5 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the amount is 6 parts by mass or less.
  • the total amount of unreacted monomers (free p-tert-butylphenol, o-phenylphenol and resorcin) and residual solvent contained in the cocondensate (B) is preferably 15% by mass or less. Odor can be reduced by setting it as 15 mass% or less, and it is preferable on working environment.
  • the content of free resorcin is preferably 12% by mass or less. When the content of free resorcin is 12% by mass or less, when the cocondensate (B) is added to the rubber, the transpiration of resorcin that occurs during kneading into the rubber is improved, so that the working environment is greatly improved, which is particularly preferable. .
  • the total amount of unreacted monomers p-tert-butylphenol and o-phenylphenol other than free resorcin and residual solvent that may be used in the reaction contained in the cocondensate (B) is 5% by mass or less. Preferably there is. When the content is 5% by mass or less, odor is reduced and volatile organic compounds are reduced, which is preferable in the working environment, and further preferably 3% by mass or less. If the work environment is greatly improved, capital investment for work environment conservation is greatly reduced, which is very advantageous.
  • the total amount of unreacted monomers other than free resorcin and the residual solvent contained in the rubber composition according to the present invention is preferably 0.20% by mass or less, and 0.17% by mass or less based on the rubber component. Further preferred.
  • a filler can be mix
  • the filler is preferably at least one selected from carbon black and inorganic filler.
  • carbon black is not included in the inorganic filler.
  • the total amount of carbon black and inorganic filler is preferably 5 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber component (A). If it is 5 parts by mass or more, it is preferable from the viewpoint of securing the elastic modulus, and if it is 100 parts by mass or less, it is preferable from the viewpoint of improving low heat generation.
  • the total amount of carbon black and inorganic filler is more preferably 20 parts by mass or more and 80 parts by mass or less, and still more preferably rubber component (A) with respect to 100 parts by mass of rubber component (A). ) 20 parts by mass or more and 70 parts by mass or less, and particularly preferably 30 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass.
  • Carbon black By containing carbon black, the rubber composition according to the present invention can enjoy the effect of reducing electrical resistance and suppressing charging.
  • Examples of carbon black include high, medium or low structure SAF, ISAF, IISAF, N339, HAF, FEF, GPF, SRF grade carbon black, especially SAF, ISAF, IISAF, N339, HAF, FEF grade carbon black. Is preferably used.
  • the nitrogen adsorption specific surface area (measured in accordance with N 2 SA, JIS K 6217-2: 2001) of carbon black is preferably 30 to 250 m 2 / g. Carbon black may be used individually by 1 type from what was mentioned above, and may be used in combination of 2 or more type.
  • the inorganic filler used in the rubber composition according to the present invention is preferably at least one selected from silica and an inorganic compound represented by the following general formula (I).
  • M 1 is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium, and zirconium, an oxide or hydroxide of these metals, and a hydrate thereof. Or at least one selected from carbonates of these metals, and d, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10 is there.
  • the inorganic compound when both x and z are 0, the inorganic compound is at least one metal, metal oxide or metal hydroxide selected from aluminum, magnesium, titanium, calcium and zirconium. It becomes.
  • the above-mentioned inorganic filler is preferably silica from the viewpoint of achieving both low rolling properties and wear resistance.
  • the BET specific surface area (measured according to ISO 5794/1) of silica is preferably 40 to 350 m 2 / g.
  • Silica having a BET surface area within this range has an advantage that both rubber reinforcement and dispersibility in the rubber component (A) can be achieved. From this viewpoint, silica having a BET surface area in the range of 80 to 350 m 2 / g is more preferable, and silica having a BET surface area in the range of 120 to 350 m 2 / g is particularly preferable.
  • silica Commercially available products can be used as silica, and wet silica, dry silica, and colloidal silica are particularly preferable, and wet silica is particularly preferable.
  • Zerosil (registered trademark) 115GR Zerosil (registered trademark) 1115MP
  • Zeosil (registered trademark) 1205MP Zerosil (registered trademark) Z85MP” manufactured by Rhodia
  • Rhodia Zeroseal
  • Zeosil (registered trademark) AQ Commercially available products such as “(registered trademark) AQ” are preferably used.
  • inorganic compound represented by the general formula (I) As the inorganic compound represented by the general formula (I), .gamma.-alumina, alpha-alumina, such as alumina (Al 2 O 3), boehmite, alumina monohydrate such as diaspore (Al 2 O 3 ⁇ H 2 O ),
  • Aluminum hydroxide such as gibbsite, bayerite [Al (OH) 3 ], aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3 ), talc (3MgO ⁇ 4SiO 2 ⁇ H 2 O), attapulgite (5MgO ⁇ 8SiO 2 ⁇ 9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide (CaO) , calcium hydroxide [Ca (OH) 2], magnesium aluminum oxide (MgO ⁇ Al 2 O 3) , clay
  • M 1 in the general formula (I) is at least one selected from aluminum metal, aluminum oxide or hydroxide, and hydrates thereof, or aluminum carbonate. More preferred is aluminum oxide.
  • Examples of the aluminum hydroxide that can be blended in the rubber composition according to the present invention include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
  • These inorganic compounds represented by general formula (I) may be used alone or in combination of two or more.
  • the average particle size of these inorganic compounds is preferably in the range of 0.01 to 10 ⁇ m, and more preferably in the range of 0.05 to 5 ⁇ m, from the viewpoint of kneading workability, wear resistance and wet grip performance balance.
  • the inorganic filler in the present invention may be used alone or in combination with silica and one or more inorganic compounds represented by the general formula (I).
  • silane coupling agent In the rubber composition according to the present invention, when an inorganic filler containing silica is blended, a silane coupling agent can be blended for the purpose of further improving the reinforcing property and low fuel consumption of the rubber composition.
  • silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxysilyl).
  • Ethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltri Methoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarba Yl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide,
  • bis (3-triethoxysilylpropyl) polysulfide, 3-octanoylthiopropyltriethoxysilane and 3-trimethoxysilylpropylbenzothiazyl tetrasulfide are preferable from the viewpoint of improving the reinforcing property.
  • One of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
  • the preferable blending amount of this silane coupling agent is such that the mass ratio (silane coupling agent / silica) is (1/100) to (20/100). It is preferable. If it is (1/100) or more, the effect of improving the low heat build-up of the rubber composition will be more suitably exhibited. If it is (20/100) or less, the cost of the rubber composition will be reduced, and the economic efficiency will be reduced. This is because it improves. Further, a mass ratio (3/100) to (20/100) is more preferable, and a mass ratio (4/100) to (10/100) is particularly preferable.
  • methylene donor compound examples include hexakis (methoxymethyl) melamine (HMMM), modified etherified methylolmelamine resin, hexamethylenetetramine (HMT), pentakis (methoxymethyl) methylolmelamine, and tetrakis.
  • HMMM hexakis (methoxymethyl) melamine
  • HMT hexamethylenetetramine
  • pentakis methoxymethylmethylolmelamine
  • tetrakis examples include (methoxymethyl) dimethylolmelamine, which are usually used in the rubber industry. Among them, hexakis (methoxymethyl) melamine alone, modified etherified methylolmelamine resin alone or a mixture containing them as a main component is preferable.
  • methylene donor compounds can be used alone or in combination of two or more, and the blending amount thereof is in the range of about 0.5 to 4 parts by mass with respect to 100 parts by mass of the rubber component (A). A range of about 1 to 3 parts by mass is more preferable.
  • acid cobalt salts such as cobalt versatate, cobalt neodecanoate, cobalt rosinate, cobalt naphthenate, and cobalt stearate, and fatty acid cobalt / boron complexes.
  • examples thereof include compounds (for example, trade name “Manobond C (registered trademark)” manufactured by Rhodia).
  • the amount of the organic cobalt compound used is preferably in the range of 0.05 to 0.4 parts by mass in terms of cobalt content with respect to 100 parts by mass of the rubber component (A).
  • the rubber composition according to this embodiment includes one type from an alicyclic hydrocarbon resin, an aliphatic hydrocarbon resin, and an aromatic hydrocarbon resin in addition to the cocondensate (B). You may mix
  • the alicyclic hydrocarbon resin refers to a petroleum resin produced mainly from cyclopentadiene and / or dicyclopentadiene obtained by dimerizing cyclopentadiene extracted from a C5 fraction of petroleum.
  • An aliphatic hydrocarbon resin refers to a petroleum resin produced using a C5 fraction of petroleum as a main raw material
  • an aliphatic hydrocarbon resin refers to a petroleum produced using a C9 fraction of petroleum as a main raw material.
  • resin a dicyclopentadiene resin (DCPD resin) produced from a high-purity dicyclopentadiene obtained by dimerizing cyclopentadiene as a main raw material is preferable from the viewpoint of enhancing rubber reinforcement.
  • DCPD resin dicyclopentadiene resin
  • Preferred examples of the dicyclopentadiene resin include quinton 1000 series (Quinton 1105, quinton 1325, quinton 1340) manufactured by Nippon Zeon Co., Ltd.
  • various chemicals commonly used in the rubber industry for example, a vulcanizing agent, a vulcanization accelerator, a vulcanization retarder, as desired, as long as the effects of the present invention are not impaired.
  • Process oil, anti-aging agent, zinc white, stearic acid, etc. can be blended.
  • Vulcanizing agent examples of the vulcanizing agent that can be blended in the rubber composition according to the present invention include sulfur.
  • the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Usually powdered sulfur is preferred.
  • the amount of the vulcanizing agent used is preferably 0.1 parts by mass or more and 10 parts by mass or less, more preferably 1.0 part by mass or more and 8.0 parts by mass or less as a sulfur content with respect to 100 parts by mass of the rubber component (A). It is. If the amount is less than 0.1 parts by mass, the rupture strength, wear resistance, and fuel efficiency of the vulcanized rubber may be reduced. If the amount exceeds 10 parts by mass, the rubber elasticity is lost.
  • Vulcanization accelerators that can be blended in the rubber composition according to the present invention are described in pages 412 to 413 of the Rubber Industry Handbook ⁇ Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994). Examples thereof include thiazole vulcanization accelerators, sulfenamide vulcanization accelerators, and guanidine vulcanization accelerators.
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfenamide BSS
  • N N-dicyclohexyl-2 -Benzothiazolylsulfenamide
  • DCBS 2-mercaptobenzothiazole
  • MTT 2-mercaptobenzothiazole
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • CBS N-tert-butyl-2-benzothiazolylsulfenamide
  • BSS N-tert-butyl-2-benzothiazolylsulfenamide
  • DPG diphenylguanidine
  • the amount of the vulcanization accelerator used is not particularly limited, but is preferably in the range of 0.5 to 3 parts by mass per 100 parts by mass of the rubber component (A). In particular, the range of 0.5 to 1.5 parts by mass is particularly preferable.
  • the amount of zinc oxide used is not particularly limited, but is preferably in the range of 3 to 15 parts by mass per 100 parts by mass of the rubber component (A). In particular, the range of 5 to 10 parts by mass is particularly preferable.
  • vulcanization retarder examples include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) -phthalimide (CTP), sulfonamide derivatives, diphenylurea And bis (tridecyl) pentaerythritol-diphosphite and the like, and N- (cyclohexylthio) -phthalimide (CTP) is preferably used.
  • Process oil As the process oil used as a softening agent that can be blended in the rubber composition according to the present invention, an aromatic oil is used from the viewpoint of compatibility with SBR. In addition, naphthenic oil or paraffinic oil is used from the viewpoint of emphasizing low temperature characteristics.
  • the amount used is preferably 0 to 100 parts by mass with respect to 100 parts by mass of the rubber component (A). If the amount is 100 parts by mass or less, the tensile strength and low fuel consumption (low heat generation) of the vulcanized rubber are deteriorated. Can be suppressed.
  • Antiaging agents that can be blended in the rubber composition according to the present invention include those described on pages 436 to 443 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. Among these, for example, 3C (N-isopropyl-N′-phenyl-p-phenylenediamine), 6C [N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine], RD or 224 (2,2,4-trimethyl-1,2-dihydroquinoline polymer), AW (6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline), high-temperature condensate of diphenylamine and acetone, etc.
  • the amount used is preferably 0.1 to 5.0 parts by weight, more preferably 0.3 to 3.0 parts by weight, per 100 parts by weight of the rubber component (A).
  • organic acids that can be used in the rubber composition according to the present invention include stearic acid, palmitic acid, myristic acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, capric acid, pelargonic acid, caprylic acid, and enanthic acid.
  • saturated fatty acids such as caproic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, and nervonic acid, and resin acids such as rosin acid and modified rosin acid.
  • 50 mol% or more in the organic acid is stearic acid because it is necessary to sufficiently function as a vulcanization acceleration aid. It is preferable. 50 mol% or less in the organic acid may be rosin acid (including modified rosin acid) and / or fatty acid contained when the styrene-butadiene copolymer is prepared by emulsion polymerization.
  • the method for producing a cocondensate according to the present invention includes the following steps in the following order.
  • B a step of further reacting 0.8 times mol or more of resorcin with respect to the total amount of p-tert-butylphenol and o-phenylphenol.
  • the ratio of o-phenylphenol in the mixture of p-tert-butylphenol and o-phenylphenol used in step (a) (hereinafter, these two types of phenols may be collectively referred to as “phenol derivatives”) is particularly Although not limited, it is preferably 35 mol% to 85 mol%, more preferably 40 mol% to 85 mol%, and further preferably 60 mol% to 85 mol%, based on the total amount of the phenol derivative. preferable. If it is less than 35 mol%, the softening point of the resulting cocondensate will be high, and dispersion may be poor when kneaded with the rubber component (A).
  • the mixture of p-tert-butylphenol and o-phenylphenol in the present invention is a mixture mixed in advance before being charged into the reactor, and separately charged into the reactor, resulting in the mixture in the reactor. Also included are.
  • formaldehyde used in the step (a) in addition to formaldehyde itself, a formalin that is an aqueous solution, or a compound that easily generates formaldehyde such as paraformaldehyde or trioxane can be used.
  • the molar ratio of formaldehyde charged is not particularly limited, but it is preferably 1 to 3 times by mole, more preferably 1.5 to 2.5 times by mole, based on the total amount of phenol derivatives. When the amount is less than 1 mole, unreacted monomers may increase and odor and volatile organic compounds may increase. Further, when the amount is more than 3 times mole, a large amount of formaldehyde remains unreacted, so that the resin may have a three-dimensional structure and the softening point may be increased.
  • alkali in addition to hydroxides or carbonates of alkali metals or alkaline earth metals, those used for producing ordinary resol-type condensates such as ammonia and amines can be used.
  • specific examples of the alkali metal or alkaline earth metal hydroxide or carbonate include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, and potassium carbonate. Among these, sodium hydroxide and potassium hydroxide are preferable.
  • These alkalis can be used in the form of a solid or an aqueous solution, but it is preferable to use an aqueous solution in terms of reactivity and handling. When an aqueous solution is used, the concentration is usually 10% by mass to 50% by mass.
  • the alkali charge molar ratio is not particularly limited, but is preferably in the range of 0.03 to 0.6 times mol, more preferably in the range of 0.03 to 0.3 times mol with respect to the total amount of the phenol derivative.
  • step (a) that is, the reaction of a mixture of p-tert-butylphenol and o-phenylphenol with formaldehyde in the presence of an alkali can also be carried out in a solvent.
  • the solvent to be used is not particularly limited, and water, alcohol, aromatic hydrocarbon and the like can be used. More specifically, water, methanol, ethanol, propanol, butanol, toluene, xylene, ethylbenzene, cumene, monochlorobenzene and the like are exemplified. Of these, water, toluene, and xylene are preferable. These solvents can be used alone or in combination of two or more.
  • reaction in the step (a) is usually carried out at a reaction temperature of 40 to 100 ° C. and a reaction time of 1 to 48 hours (eg 1 to 8 hours).
  • the resol-type condensate obtained by such a reaction may be used as it is in the reaction of step (b) without neutralizing the used alkali, that is, the reaction with resorcin, or by adding an acid to neutralize the alkali. It may be used after being summed.
  • the type of acid used for neutralization is not particularly limited, and examples include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, p-toluenesulfonic acid, and the like. These acids may be used alone or in combination of two or more.
  • the total amount of the acid used is not particularly limited, but it is preferable to use an equivalent amount (based on the amount of substance) of the acid that is normally used.
  • a resol-type condensate may be extracted and washed using an organic solvent that is not miscible with water as necessary. Good.
  • the charged molar ratio of resorcin when reacting the obtained resole-type condensate with resorcin is preferably 0.5 times mol or more, more preferably 0 with respect to the total amount of phenol derivatives.
  • the amount is from 0.8 to 4.0 times mol, more preferably from 0.8 to 2.0 times mol, particularly preferably from 1.0 to 2.0 times mol. If it is more than 4.0 moles, volatility may be a problem because a large amount of unreacted resorcin remains.
  • the reaction will not be completed and the original performance will not be achieved, or the reaction between resol-type condensates will proceed preferentially, and the resulting cocondensate will be polymerized, resulting in a softening point. May not be 150 ° C. or lower.
  • reaction between the resole-type condensate and resorcin can be carried out without using a solvent, the presence of a solvent more than 0.2 mass times the total amount of p-tert-butylphenol and o-phenylphenol When carried out below, free resorcin can be reduced to 12% by mass or less, which is preferable. More preferably, the reaction is carried out in the presence of 0.4 to 4.0 times by mass, particularly preferably 0.4 to 2.0 times by mass of solvent with respect to the total amount of p-tert-butylphenol and o-phenylphenol.
  • the reaction between resole-type condensates may proceed preferentially over the reaction between resorcin and resole-type condensates, and the resulting cocondensate may be polymerized, Free resorcin cannot be reduced to 12% by mass or less.
  • the reaction proceeds even when used in an amount of 4.0 mass times or more, but the volumetric efficiency is lowered and the cocondensate cannot be produced economically advantageously.
  • the usable solvent is not particularly limited, and examples thereof include alcohols, ketones, and aromatic hydrocarbons. More specifically, methanol, ethanol, propanol, butanol, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, toluene, xylene, ethylbenzene, cumene, monochlorobenzene and the like are exemplified. Among these, ketones and aromatic hydrocarbons are preferable, and methyl isobutyl ketone, toluene, and xylene are more preferable. These solvents can be used alone or in combination of two or more as required. Moreover, the solvent used when manufacturing a resol type condensate may be used for this solvent as it is, and a new solvent may be added suitably.
  • the reaction between the resole-type condensate and resorcin is not particularly limited, but is usually carried out at a reaction temperature of 40 to 150 ° C. and a reaction time of 1 to 48 hours (eg, 1 to 8 hours).
  • a reaction temperature 40 to 150 ° C.
  • a reaction time 1 to 48 hours (eg, 1 to 8 hours).
  • the content of free resorcin is 120 ° C. or higher until the content of free resorcin in the reaction mixture becomes 12% by mass or less It is preferable to carry out the reaction.
  • the reaction is started at less than 120 ° C in the initial stage of reaction, and then gradually heated to 120 ° C or higher.
  • the method etc. which are made are illustrated. If the reaction temperature never exceeds 120 ° C., free resorcin in the reaction mixture does not become 12% by mass or less.
  • this reaction is carried out in the absence of a solvent of 0.2 mass times or more, the resulting cocondensate is polymerized, or the free resorcin content is not 12 mass% or less.
  • the reaction mixture refers to everything contained in the reaction vessel, such as resole-type condensate, resorcin, solvent, etc., which are the raw materials for this reaction, and the resorcin content in the reaction mixture can be quantified by analysis using, for example, a gas chromatograph. is there.
  • a method of simply reducing the amount of raw material resorcin used is also conceivable.
  • the raw material resorcin is insufficient during the reaction, and instead, the resorcin site in the cocondensate is further increased. Since it reacts and polymerizes, the softening point becomes very high.
  • the reaction rate tends to be slow if water is present in the system, and the reaction rate is reduced by the water generated by the reaction between the resole-type condensate and resorcin. Therefore, it is preferable to carry out the reaction while dehydrating for the purpose of promoting the reaction.
  • water generated in the reaction is sufficiently dehydrated, so that it is dehydrated under reduced pressure at the beginning of the reaction, and then the internal temperature is set to 120 ° C. or higher. Is preferred.
  • the solvent used in the reaction is usually removed after the reaction.
  • the conditions for removing the solvent are not particularly limited.
  • the solvent removal is performed at 120 to 160 ° C. under a reduced pressure of 45 to 10 kPa.
  • the free resorcin content in the reaction mixture before solvent removal is more than 12% by mass, the free resorcin content of the cocondensate after solvent removal is reduced.
  • high temperature and high pressure reduction conditions that are difficult to implement industrially are necessary, and the cocondensate obtained at this time is colored by heat, thereby reducing the product value. is there.
  • the rubber composition according to the present invention can be obtained by kneading the various components and additives described above using a kneader such as an open kneader such as a roll or a closed kneader such as a Banbury mixer. That is, the rubber composition according to the present invention is the first stage of kneading, and after kneading the rubber component (A), the cocondensate (B), and a filler as necessary, in the final stage of kneading, It can be prepared by mixing a vulcanizing agent, a vulcanization accelerator, a methylene donor compound, and other compounding agents as required.
  • a vulcanizing agent such as an open kneader such as a roll or a closed kneader such as a Banbury mixer. That is, the rubber composition according to the present invention is the first stage of kneading, and after kneading the rubber component
  • the metal cord according to the present invention is a metal cord made of a single wire of steel wire with brass plating applied to the peripheral surface or a metal cord made by twisting the steel wire.
  • the metal cord according to the present invention is a ternary or quaternary plating in which brass plating is 58 to 70% by mass of Cu, 0.5 to 10% by mass of at least one metal selected from Co and Ni, and the balance is Zn. .
  • the average thickness of the brass plating layer is preferably 0.13 to 0.35 ⁇ m, and more preferably 0.13 to 0.30 ⁇ m. If the average thickness of the brass plating layer is 0.13 ⁇ m or more, the portion where the iron base is exposed is reduced and the initial adhesiveness is improved. On the other hand, if it is 0.35 ⁇ m or less, it is excessive due to heat during use of the rubber article. It is possible to obtain a stronger bond by suppressing the progress of the adhesion reaction.
  • the diameter of the steel wire is preferably 0.60 mm or less, and more preferably 0.40 mm or less.
  • the diameter is 0.60 mm or less, the surface strain is reduced when the used rubber article is repeatedly strained under bending deformation, so that it is difficult to cause buckling.
  • HLC-8220GPC manufactured by Tosoh Corporation
  • Column: TSK guard column SUPER HZ-L manufactured by Tosoh Corporation
  • TSK-GEL SUPER HZ1000 4.6mm ⁇ ⁇ 150mm
  • TSK-GEL SUPER HZ2500 4.6mm ⁇ ⁇ 150mm
  • TSK-GEL SUPER HZ4000 4.6 mm ⁇ ⁇ 150 mm
  • Carrier and flow rate tetrahydrofuran 0.35 mL / min
  • ⁇ Vaporization chamber temperature 250 °C -Detector temperature: 280 ° C ⁇ Detector: FID, ⁇ Carrier: N 2 (40 ml / min), Combustion gas: hydrogen (60 kPa), air (60 kPa), -Injection volume: 2 ⁇ L.
  • About 0.5 g of the cocondensate and 0.05 g of anisole as an internal standard were dissolved in 10 mL of acetone and analyzed under the above conditions. Residual solvent and residual monomer contents (%) in the cocondensate were measured by an internal standard method (GC-IS method). In addition, content (%) described in the text of Examples and Comparative Examples is expressed as mass percent unless otherwise specified.
  • P-tert-Butylphenol-derived p-tert-butyl group proton 1.0 to 1.2 ppm
  • formaldehyde-derived methylene group proton 3.4 to 3.9 ppm
  • o-phenylphenol-derived o-phenyl Group proton 7.1-7.5 ppm.
  • o-Phenylphenol Ratio when p-tert-butylphenol is 1 (mole times)
  • methylene group derived from formaldehyde Ratio to the total amount of o-phenylphenol and p-tert-butylphenol (mole times).
  • the temperature was raised to an internal temperature of 65 ° C. and kept at that temperature for 2 hours. Thereafter, the temperature was raised again until the internal temperature reached 80 ° C., and the temperature was further kept for 4 hours. After completion of the reaction, the reaction mixture was cooled to an internal temperature of 65 ° C. or less, neutralized by adding 49 g of water and 7.55 g (1.13 mol) of oxalic acid dihydrate, and 22.6 g of toluene was added, and then allowed to stand. And the aqueous layer was removed.
  • the cocondensate (B) obtained in Production Example 1 was used as resorcin resin 1, and SUMIKANOL620 (manufactured by Taoka Chemical Co., Ltd.), which is a commercially available resin adhesive, was used as resorcin resin 2 as a conventional product.
  • Table 1 shows the evaluation results of resorcin resins 1 and 2.
  • the free phenols represent the total amount of p-tert-butylphenol and o-phenylphenol in the case of Production Example 1 of the present application.
  • SUMIKANOL620 it represents the total amount of p-tert-octylphenol and p-cresol.
  • Examples 1 to 11 and Comparative Examples 1 to 8 According to the formulation shown in Table 2 below, first, natural rubber, carbon black, resorcin resin 1 or 2 and cobalt fatty acid salt were kneaded with a Banbury mixer and discharged when the temperature reached 160 ° C. Next, an anti-aging agent, zinc oxide, insoluble sulfur, a vulcanization accelerator, and a methylene donor were added to and mixed with the obtained mixture by a 6-inch open roll made of Kansai Roll that was kept at 60 ° C., and a rubber composition for coating a metal cord A product was prepared. Details of each component in Table 2 are as follows. The unit of the numerical values in the formulation of Table 2 represents parts by mass.
  • the metal cord-rubber composites of the present invention all had better initial adhesion and wet heat adhesion than the metal cord-rubber composites of Comparative Examples 1-8.
  • the metal cord-rubber composites using the rubber composition containing the cocondensate (B) according to the present invention are all wet-heat bonded as compared with the metal cord-rubber composites of Comparative Examples 1-8.
  • the metal cord containing Co in the brass plating can remove the cobalt fatty acid salt of the coated rubber composition, the crack resistance after deterioration of the rubber composition of Example 4 that does not contain the cobalt fatty acid salt. Progressability has improved significantly.
  • the rubber composition containing the cocondensate (B) suitably used as the resorcin resin according to the present invention has SVHC candidate substances stipulated in the REACH regulations as compared with the rubber composition of Example 5. Without fear of being subject to REACH regulations. Further, the total amount of unreacted monomers other than free resorcin and the residual solvent contained in the rubber compositions according to Examples 1 to 4 and 8 to 10 was 0.03% by mass, 0.17% by mass with respect to the rubber component. % Of the unreacted monomer other than free resorcin and the residual solvent contained in the rubber composition containing the conventional product (SUMIKANOL 620) according to Example 5, compared with 0.246% by mass. Odor generation during kneading of the vulcanized rubber composition has been greatly reduced, and capital investment for work environment conservation has been greatly reduced.
  • the metal cord-rubber composite of the present invention is suitable as a reinforcing material for rubber articles, particularly tire carcasses and belts.
  • the metal cord-rubber composite of the present invention when applied to a belt of a tire for trucks and buses, a tire for a passenger car, particularly a radial tire for a passenger car, the adhesion speed with the rubber is increased, so that An effect that the vulcanization time can be greatly shortened can also be obtained.
  • the speed of adhesion to rubber increases at the bead part, so that the bead part durability is shortened along with shortening of the vulcanization time. It is also possible to improve.

Abstract

The present invention is a metal cord-rubber composite body obtained by coating one of the following with a rubber composition: a metal cord that comprises a single steel wire having brass plating on the circumferential surface thereof; or a metal cord obtained by twisting together a plurality of the steel wires. The metal cord-rubber composite body is characterized in that: the rubber composition is obtained by blending a rubber component (A) and 0.1-10 parts by mass of a resorcinol resin with respect to 100 parts by mass of the resin component (A); and the brass plating is three-element or four-element plating comprising 58-70 mass% of Cu, 0.5-10 mass% of at least one metal selected from Co and Ni, and a remainder of Zn. By coating a metal cord having three-element or four-element plating that is specific brass plating with a specific rubber composition in a rubber product reinforced by a metal cord, the present invention provides a metal cord-rubber composite body having improved adhesiveness.

Description

金属コード-ゴム複合体Metal cord-rubber composite
 本発明は、ブラスめっきが周面に施されたスチールワイヤか単線からなる金属コード又は該スチールワイヤを撚り合わせてなる金属コードに特定のゴム組成物を被覆してなる金属コード-ゴム複合体に関する。 The present invention relates to a metal cord-rubber composite formed by coating a specific rubber composition on a metal cord made of steel wire or a single wire with brass plating applied to the peripheral surface, or a metal cord formed by twisting the steel wire. .
 タイヤ、ベルト、ホース等のようなゴム製品は、スチールコード等の金属コード類や有機繊維類等の補強材で補強されている。これらのゴム製品は、ゴムと補強材、特に金属コードとを強固に接着することが求められている。
 ゴムと補強材との接着には、接着剤を使用する方法がある。一例として、ゴムの加工工程のうち混練工程において、接着剤を他の各種配合剤とともに配合して混練する方法では、p-tert-オクチルフェノール、p-ノニルフェノール等のアルキルフェノールとホルマリン類とを反応させて得た共縮合物に、レゾルシンを反応させて得られた共縮合物を、ゴムの加工工程において使用される接着剤として使用することが知られている(特許文献1参照)。
Rubber products such as tires, belts and hoses are reinforced with reinforcing materials such as metal cords such as steel cords and organic fibers. These rubber products are required to firmly bond rubber and a reinforcing material, particularly a metal cord.
For bonding the rubber and the reinforcing material, there is a method using an adhesive. As an example, in the kneading process of rubber, in the kneading process, an adhesive is blended with various other compounding agents and kneaded, by reacting alkylphenols such as p-tert-octylphenol and p-nonylphenol with formalins. It is known that a cocondensate obtained by reacting resorcin with the obtained cocondensate is used as an adhesive used in a rubber processing step (see Patent Document 1).
 ところで、タイヤ、ベルト、ホース等のようなゴム製品の補強材として、スチールコード等の金属コード類が賞用されており、例えば、ワイヤの周面にブラスめっき層を施したスチールワイヤであって、該ブラスめっきとして3元めっき又は4元めっきが知られている(例えば、特許文献2~5参照)。しかしながら、これらの3元めっき又は4元めっきは、金属コードを被覆するゴム組成物との組み合わせにより接着性が低下することがあった。 By the way, metal cords such as steel cords have been used as reinforcing materials for rubber products such as tires, belts, hoses, etc., for example, steel wires with a brass plating layer on the peripheral surface of the wire. As the brass plating, ternary plating or quaternary plating is known (for example, see Patent Documents 2 to 5). However, the adhesion of these ternary plating or quaternary plating may be reduced by a combination with a rubber composition covering a metal cord.
特開平06-234824号公報Japanese Patent Application Laid-Open No. 06-234824 特開昭54-89940号公報JP-A-54-89940 特開昭55-71887号公報JP-A-55-71887 特開昭57-56110号公報JP-A-57-56110 特開昭61-72545号公報JP-A-61-72545
 本発明者らは、上述の金属コードとゴムとの接着性をさらに改良することの重要性に着目した。本発明は、金属コードで補強されたゴム製品において、特定のブラスめっきである3元又は4元めっきを有する金属コードに、特定のゴム組成物を被覆することにより、接着性が向上した金属コード-ゴム複合体を提供することを課題とする。 The present inventors paid attention to the importance of further improving the adhesion between the above-described metal cord and rubber. The present invention relates to a metal cord having improved adhesion by coating a specific rubber composition on a metal cord having ternary or quaternary plating, which is a specific brass plating, in a rubber product reinforced with a metal cord. -An object is to provide a rubber composite.
 本発明者らは、レゾルシン樹脂を配合したゴム組成物とブラスめっきとして3元又は4元めっきを有する金属コードとを組み合わせると、初期接着性及び湿熱接着性が大幅に向上することを見出した。
 すなわち、本発明は、
[1]ブラスめっきが周面に施されたスチールワイヤの単線からなる金属コード又は該スチールワイヤを撚り合わせてなる金属コードにゴム組成物を被覆してなる金属コード-ゴム複合体であって、該ゴム組成物がゴム成分(A)とゴム成分(A)100質量部に対し、レゾルシン樹脂0.1~10質量部とを配合してなり、かつ該ブラスめっきがCu58~70質量%、Co及びNiから選ばれる少なくとも1種の金属0.5~10質量%及び残部をZnからなる3元又は4元めっきであることを特徴とする金属コード-ゴム複合体、及び
[2]前記レゾルシン樹脂が、下記式(1)で表されるp-tert-ブチルフェノール由来の構成単位、下記式(2)で表されるo-フェニルフェノール由来の構成単位、及び下記式(3)で表されるレゾルシン由来の構成単位を含み軟化点が150℃以下の共縮合物(B)であることを特徴とする上記[1]記載の金属コード-ゴム複合体である。
The inventors of the present invention have found that when a rubber composition containing a resorcin resin is combined with a metal cord having ternary or quaternary plating as brass plating, the initial adhesiveness and wet heat adhesiveness are greatly improved.
That is, the present invention
[1] A metal cord-rubber composite formed by coating a rubber composition on a metal cord composed of a single wire of steel wire having brass plating applied to its peripheral surface, or a metal cord formed by twisting the steel wire, The rubber composition comprises a rubber component (A) and 100 parts by mass of the rubber component (A), and 0.1 to 10 parts by mass of a resorcin resin, and the brass plating comprises 58 to 70% by mass of Cu, Co And a metal cord-rubber composite characterized in that it is a ternary or quaternary plating composed of 0.5 to 10% by mass of at least one metal selected from Ni and the balance of Zn, and [2] the resorcin resin Are represented by the structural unit derived from p-tert-butylphenol represented by the following formula (1), the structural unit derived from o-phenylphenol represented by the following formula (2), and the following formula (3). Softening point comprises a constitutional unit derived from resorcinol is characterized in that it is a 0.99 ° C. or less of the co-condensate (B) above [1] metal cord according - a rubber composite.
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
 金属コードで補強されたゴム製品において、特定のブラスめっきである3元又は4元めっきを有する金属コードに、特定のゴム組成物を被覆することにより、接着性が向上した金属コード-ゴム複合体を提供することができる。 In a rubber product reinforced with a metal cord, a metal cord-rubber composite having improved adhesion by coating a specific rubber composition on a metal cord having a ternary or quaternary plating, which is a specific brass plating Can be provided.
[金属コード-ゴム複合体]
 本発明の金属コード-ゴム複合体は、ブラスめっきが周面に施されたスチールワイヤの単線からなる金属コード又は該スチールワイヤを撚り合わせてなる金属コードにゴム組成物を被覆してなる金属コード-ゴム複合体であって、該ゴム組成物がゴム成分(A)とゴム成分(A)100質量部に対し、レゾルシン樹脂0.1~10質量部とを配合してなり、かつ該ブラスめっきがCu58~70質量%、Co及びNiから選ばれる少なくとも1種の金属0.5~10質量%及び残部をZnからなる3元又は4元めっきであることを特徴とする。
 3元又は4元めっきを有する金属コードと、ゴム成分(A)100質量部に対し、レゾルシン樹脂0.1~10質量部を配合してなるゴム組成物とを組み合わせてなる金属コード-ゴム複合体は、初期接着性及び湿熱接着性を大幅に向上することができる。
[Metal cord-Rubber composite]
The metal cord-rubber composite of the present invention is a metal cord formed by coating a rubber composition on a metal cord made of a single wire of steel wire with brass plating applied to the peripheral surface or a metal cord formed by twisting the steel wire. A rubber composite comprising the rubber component (A) and 0.1 to 10 parts by mass of resorcin resin per 100 parts by mass of the rubber component (A), and the brass plating Is ternary or quaternary plating consisting of 58 to 70% by mass of Cu, 0.5 to 10% by mass of at least one metal selected from Co and Ni, and the balance being Zn.
Metal cord-rubber composite comprising a metal cord having ternary or quaternary plating and a rubber composition in which 0.1 to 10 parts by mass of a resorcin resin is blended with 100 parts by mass of the rubber component (A) The body can greatly improve initial adhesion and wet heat adhesion.
[ゴム組成物]
 以下、本発明に係るゴム組成物について、詳細に説明する。本発明に係るゴム組成物は、ゴム成分(A)とゴム成分(A)100質量部に対し、レゾルシン樹脂0.1~10質量部とを配合してなる。レゾルシン樹脂の配合量がゴム成分(A)100質量部に対して0.1質量部未満であると、十分な接着性が得られない。一方、 レゾルシン樹脂の配合量が、ゴム成分(A)100質量部に対して、10質量部を超えると、加硫中の接着反応が過剰に進むことで接着性が低下する。
 上記観点から、レゾルシン樹脂は、ゴム成分(A)100質量部に対して、好ましくは、0.2質量部以上8質量部以下であり、より好ましくは、0.5質量部以上6質量部以下である。
[Rubber composition]
Hereinafter, the rubber composition according to the present invention will be described in detail. The rubber composition according to the present invention comprises 0.1 to 10 parts by mass of a resorcin resin per 100 parts by mass of the rubber component (A) and the rubber component (A). When the blending amount of the resorcin resin is less than 0.1 parts by mass with respect to 100 parts by mass of the rubber component (A), sufficient adhesion cannot be obtained. On the other hand, when the compounding amount of the resorcin resin exceeds 10 parts by mass with respect to 100 parts by mass of the rubber component (A), the adhesion reaction during vulcanization proceeds excessively, resulting in a decrease in adhesiveness.
From the above viewpoint, the resorcin resin is preferably 0.2 parts by mass or more and 8 parts by mass or less, and more preferably 0.5 parts by mass or more and 6 parts by mass or less with respect to 100 parts by mass of the rubber component (A). It is.
<ゴム成分(A)>
 本発明に係るゴム組成物に用いることのできるゴム成分(A)としては、天然ゴム、エポキシ化天然ゴム、脱蛋白天然ゴム及びその他の変性天然ゴムの他、ポリイソプレンゴム(IR)、スチレン-ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、エチレン-ブタジエン共重合体ゴム(EBR)、プロピレン-ブタジエン共重合体ゴム(PBR)、アクリロニトリル・ブタジエン共重合体ゴム(NBR)、イソプレン・イソブチレン共重合体ゴム(IIR)、エチレン・プロピレン-ジエン共重合体ゴム(EPDM)、ハロゲン化ブチルゴム(HR)等の各種の合成ゴムが例示される。これらのなかでも、好ましくは、天然ゴム、スチレン-ブタジエン共重合体ゴム、ポリブタジエンゴム等の高不飽和性ゴムが用いられ、特に好ましくは、天然ゴムが用いられる。また、天然ゴムとスチレン-ブタジエン共重合体ゴムの併用、天然ゴムとポリブタジエンゴムの併用等、数種のゴム成分を組み合わせることも有効である。
<Rubber component (A)>
Examples of the rubber component (A) that can be used in the rubber composition according to the present invention include natural rubber, epoxidized natural rubber, deproteinized natural rubber and other modified natural rubber, polyisoprene rubber (IR), styrene- Butadiene copolymer rubber (SBR), polybutadiene rubber (BR), ethylene-butadiene copolymer rubber (EBR), propylene-butadiene copolymer rubber (PBR), acrylonitrile-butadiene copolymer rubber (NBR), isoprene Examples include various synthetic rubbers such as isobutylene copolymer rubber (IIR), ethylene / propylene-diene copolymer rubber (EPDM), and halogenated butyl rubber (HR). Of these, highly unsaturated rubbers such as natural rubber, styrene-butadiene copolymer rubber and polybutadiene rubber are preferably used, and natural rubber is particularly preferably used. It is also effective to combine several rubber components such as a combination of natural rubber and styrene-butadiene copolymer rubber, a combination of natural rubber and polybutadiene rubber.
 天然ゴムの例としては、RSS#1、RSS#3、TSR20、SIR20等のグレードの天然ゴムを挙げることができる。エポキシ化天然ゴムとしては、エポキシ化度10~60モル%のものが好ましく、クンプーランガスリー社製ENR25やENR50が例示できる。脱蛋白天然ゴムとしては、総窒素含有率が0.3質量%以下である脱蛋白天然ゴムが好ましい。変性天然ゴムとしては、天然ゴムに、予め、4-ビニルピリジン、N,N-ジエチルアミノエチルアクリレート等のN,N-ジアルキルアミノエチルアクリレート、2-ヒドロキシアクリレート等を反応させた極性基を含有する変性天然ゴムが好ましく用いられる。 Examples of natural rubber include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, and SIR20. As the epoxidized natural rubber, those having a degree of epoxidation of 10 to 60 mol% are preferable, and examples thereof include ENR25 and ENR50 manufactured by Kumpoulangrie. As the deproteinized natural rubber, a deproteinized natural rubber having a total nitrogen content of 0.3% by mass or less is preferable. As the modified natural rubber, a modified material containing a polar group obtained by reacting natural rubber with N, N-dialkylaminoethyl acrylate such as 4-vinylpyridine, N, N-diethylaminoethyl acrylate, 2-hydroxy acrylate or the like in advance. Natural rubber is preferably used.
 スチレン-ブタジエン共重合体ゴム(SBR)の例としては、日本ゴム協会編「ゴム工業便覧<第四版>」の210~211頁に記載されている乳化重合SBR及び溶液重合SBRを挙げることができる。これらのなかでは、とりわけ、溶液重合SBRを用いることが好ましい。
 溶液重合SBRの市販品としては、日本ゼオン社製「ニッポール(登録商標)NS116」等の4,4’-ビス-(ジアルキルアミノ)ベンゾフェノンを用いて分子末端を変性した溶液重合SBR、JSR社製「SL574」等のハロゲン化スズ化合物を用いて分子末端を変性した溶液重合SBR、旭化成社製「E10」、「E15」等のシラン変性溶液重合SBRが好ましく用いられる。
 また、ラクタム化合物、アミド化合物、尿素系化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するトリアルコキシシラン化合物等のシラン化合物、アミノシラン化合物のいずれかを単独で用いて、または、スズ化合物とアルコキシ基を有するシラン化合物、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物等、異なる複数の化合物を2種以上用いて、それぞれ分子末端を変性して得られる分子末端に窒素、スズ、ケイ素のいずれか、又はそれら複数の元素を有する溶液重合SBRが特に好ましく用いられる。
Examples of the styrene-butadiene copolymer rubber (SBR) include emulsion polymerization SBR and solution polymerization SBR described on pages 210 to 211 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. it can. Among these, it is particularly preferable to use solution polymerization SBR.
As a commercially available solution polymerized SBR, a solution polymerized SBR having a molecular terminal modified with 4,4′-bis- (dialkylamino) benzophenone such as “Nippol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd., manufactured by JSR A solution-polymerized SBR having a molecular end modified with a tin halide compound such as “SL574” or a silane-modified solution-polymerized SBR such as “E10” or “E15” manufactured by Asahi Kasei Corporation is preferably used.
Further, any one of a silane compound such as a lactam compound, an amide compound, a urea compound, an N, N-dialkylacrylamide compound, an isocyanate compound, an imide compound, a trialkoxysilane compound having an alkoxy group, or an aminosilane compound is used alone. Alternatively, two or more different compounds such as a silane compound having a tin compound and an alkoxy group, and an alkylacrylamide compound and an silane compound having an alkoxy group are used, and the molecular ends are modified by nitrogen and tin at the molecular ends. In particular, solution polymerization SBR having any one of silicon, silicon, or a plurality of these elements is preferably used.
 ポリブタジエンゴム(BR)の例としては、シス1,4結合が90%以上の高シスBRや、シス結合が35%前後の低シスBR等の溶液重合BRが例示され、高ビニル含量の低シスBRが好ましく用いられる。BRの市販品としては、日本ゼオン製「Nipol(登録商標)BR 1250H」等スズ変性BRが好ましく用いられる。
 また、4,4’-ビス-(ジアルキルアミノ)ベンゾフェノン、ハロゲン化スズ化合物、ラクタム化合物、アミド化合物、尿素系化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するトリアルコキシシラン化合物等のシラン化合物、アミノシラン化合物のいずれかを単独で用いて、又は、スズ化合物とアルコキシ基を有するシラン化合物や、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物等、異なる複数の化合物を2種以上用いて、それぞれ分子末端を変性して得られる分子末端に窒素、スズ、ケイ素のいずれか、又はそれら複数の元素を有する溶液重合BRが特に好ましく用いられる。
 また、ゴム成分(A)は天然ゴムを含むことが好ましく、上述のBRは、通常、天然ゴムと混合して使用される。ゴム成分(A)に占める天然ゴムの割合は、70質量%以上であることが好ましい。
Examples of polybutadiene rubber (BR) include solution polymerization BR such as high cis BR with 90% or more of cis 1,4 bond and low cis BR with cis bond of around 35%, and low cis with high vinyl content. BR is preferably used. As a commercial product of BR, tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon is preferably used.
Also, 4,4′-bis- (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, N-dialkylacrylamide compound, isocyanate compound, imide compound, trialkoxy having an alkoxy group Two types of different compounds such as a silane compound such as a silane compound, an aminosilane compound alone, a silane compound having a tin compound and an alkoxy group, or a silane compound having an alkylacrylamide compound and an alkoxy group. In particular, solution polymerization BR having nitrogen, tin, silicon, or a plurality of these elements at the molecular ends obtained by modifying the molecular ends is particularly preferably used.
The rubber component (A) preferably contains natural rubber, and the above-mentioned BR is usually used by mixing with natural rubber. The proportion of natural rubber in the rubber component (A) is preferably 70% by mass or more.
<レゾルシン樹脂>
 本発明に係るレゾルシン樹脂は、レゾルシンを構成単位として含有している樹脂であればよく、特に制限されるものではないが、レゾルシン樹脂の全構成単位中、レゾルシンを構成単位として20~80モル%含有している樹脂であることが接着性向上の観点から好ましく、レゾルシンを構成単位として30~70モル%含有している樹脂であることがさらに好ましい。
<Resorcin resin>
The resorcin resin according to the present invention is not particularly limited as long as it is a resin containing resorcin as a constituent unit, but it is 20 to 80 mol% of resorcin as a constituent unit in all constituent units of the resorcin resin. The resin is preferably contained from the viewpoint of improving adhesiveness, and more preferably a resin containing resorcin as a constituent unit in an amount of 30 to 70 mol%.
(共縮合物(B))
 本発明に係るレゾルシン樹脂は、下記式(1)で表されるp-tert-ブチルフェノール由来の構成単位、下記式(2)で表されるo-フェニルフェノール由来の構成単位、及び下記式(3)で表されるレゾルシン由来の構成単位を含む共縮合物(B)であることが好ましい。
 これら構成単位は通常、共縮合物の主鎖中に含まれるが、側鎖中に含まれる場合もある。これら構成単位のうち、o-フェニルフェノール由来の構成単位(2)が含まれていない場合、軟化点が高くなり、混練時にゴムに配合した際に、軟化点と比較して混練温度が低い場合は分散性不良の問題が発生することがあり、混練時にゴムに配合して使用する、ゴムと金属コードとの接着剤として不適となる場合がある。また、レゾルシン由来の構成単位(3)が含まれていない場合、混練時にゴムに配合して使用するゴムと金属コードとの接着剤としての能力を十分に発揮しない。さらには、p-tert-ブチルフェノール由来の構成単位(1)を含まない場合、共縮合物としての価格が非常に高くなり、工業的有利に共縮合物を得ることができなくなる。
(Cocondensate (B))
The resorcin resin according to the present invention includes a structural unit derived from p-tert-butylphenol represented by the following formula (1), a structural unit derived from o-phenylphenol represented by the following formula (2), and the following formula (3 It is preferable that it is a cocondensate (B) containing the structural unit derived from resorcin represented by this.
These structural units are usually contained in the main chain of the cocondensate, but may be contained in the side chain. Among these structural units, when the structural unit derived from o-phenylphenol (2) is not included, the softening point is high, and when blended with rubber during kneading, the kneading temperature is lower than the softening point May cause a problem of poor dispersibility, and may be unsuitable as an adhesive between rubber and a metal cord that is used by mixing with rubber during kneading. Moreover, when the structural unit (3) derived from resorcin is not contained, the ability as an adhesive between the rubber and the metal cord used by mixing with rubber during kneading is not sufficiently exhibited. Furthermore, when the structural unit (1) derived from p-tert-butylphenol is not included, the cost as a cocondensate becomes very high, and the cocondensate cannot be obtained industrially advantageously.
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 p-tert-オクチルフェノール及びp-ノニルフェノールは、EU域内の規制であるREACH規則に定められるSVHCの候補物質とされ、EU域内においてその使用が今後制限される可能性が高くなっている。
 そこで、REACH規則に定められるSVHCの候補物質にリストされていない代替化合物を使用することが好ましい。
 本発明に係るゴム組成物に好適に用いられる共縮合物(B)は、p-tert-オクチルフェノール及びp-ノニルフェノールを含まないので、今後REACHの規制を受ける懸念はない。
p-tert-octylphenol and p-nonylphenol are regarded as SVHC candidate substances stipulated in the REACH regulation, which is a regulation within the EU region, and their use in the EU region is likely to be restricted in the future.
Therefore, it is preferable to use an alternative compound not listed in the SVHC candidate substances defined in the REACH regulations.
Since the cocondensate (B) suitably used for the rubber composition according to the present invention does not contain p-tert-octylphenol and p-nonylphenol, there is no concern that it will be subject to REACH regulations in the future.
 本発明に係るゴム組成物に用いることのできる共縮合物(B)において、これら構成単位の含有比率は、p-tert-ブチルフェノール由来の構成単位(1)の1モルに対し、o-フェニルフェノール由来の構成単位(2)を0.5~6倍モルとすることが好ましく、1.5~6倍モルとすることがより好ましい。0.5倍モルより少ない場合、軟化点が高くなりすぎて前述のような問題が発生する場合があり、6倍モルより多い場合、共縮合物の原料コストが高くなり工業上有利に本発明に係る共縮合物を製造することができなくなる場合がある。
 レゾルシン由来の構成単位(3)は、p-tert-ブチルフェノール由来の構成単位(1)及びo-フェニルフェノール由来の構成単位(2)の合計量1モルに対して、通常0.5~2.0倍モル含まれる。0.5倍モルより少ない場合、混練時にゴムに配合して使用するゴムと金属コードとの接着剤としての能力を十分に発揮しない場合があり、2.0倍モルより多く含まれるものは工業上製造が困難である場合がある。
In the cocondensate (B) that can be used in the rubber composition according to the present invention, the content ratio of these structural units is o-phenylphenol with respect to 1 mole of the structural unit (1) derived from p-tert-butylphenol. The derived structural unit (2) is preferably 0.5 to 6 moles, more preferably 1.5 to 6 moles. When the amount is less than 0.5 times mol, the softening point may be too high and the above-mentioned problem may occur. When the amount is more than 6 times mol, the raw material cost of the cocondensate is increased, and the present invention is advantageous industrially. It may become impossible to produce the cocondensate according to.
The structural unit (3) derived from resorcin is usually 0.5 to 2 parts per 1 mol of the total amount of the structural unit (1) derived from p-tert-butylphenol and the structural unit (2) derived from o-phenylphenol. 0 times mole is contained. If the amount is less than 0.5 times mol, the ability to be used as an adhesive between the rubber and the metal cord used by blending with rubber during kneading may not be sufficiently exhibited. It may be difficult to manufacture.
 本発明に係るゴム組成物に好適に用いることのできる共縮合物(B)において、これら構成単位は通常、反応で使用するアルデヒド由来のアルキル基及び/又はアルキルエーテル基のような結合基によって結合される。中でも結合基は、ホルムアルデヒド由来のメチレン基及び/又はジメチレンエーテル基であることが好ましい。結合基は、p-tert-ブチルフェノール由来の構成単位(1)及びo-フェニルフェノール由来の構成単位(2)の合計量1モルに対して、通常1~2倍モル含まれる。
 これら構成単位や結合基の比率は、例えば、共縮合物をH-NMRを用い分析することにより決定可能である。具体的には、共縮合物をH-NMRにて分析し、得られた分析結果のうち、各構成単位や結合基に由来するプロトン積分値からその比率を決定する方法が例示される。
 本発明に係るゴム組成物に好適に用いることのできる共縮合物(B)は、必要に応じて、p-tert-ブチルフェノール、o-フェニルフェノール及びレゾルシン由来の構成単位以外の構成単位を含むことができる。このような構成単位の例として、一般的にゴムの加工工程において使用される接着剤として用いられる共縮合物の原料として用いられる各種アルキルフェノール由来の構成単位が例示される。
In the cocondensate (B) that can be suitably used in the rubber composition according to the present invention, these structural units are usually bonded by a linking group such as an alkyl group and / or an alkyl ether group derived from an aldehyde used in the reaction. Is done. Among them, the linking group is preferably a methylene group and / or a dimethylene ether group derived from formaldehyde. The linking group is usually contained in an amount of 1 to 2 moles per 1 mole of the total amount of the structural unit (1) derived from p-tert-butylphenol and the structural unit (2) derived from o-phenylphenol.
The ratio of these structural units and bonding groups can be determined, for example, by analyzing the cocondensate using 1 H-NMR. Specifically, a method is exemplified in which the cocondensate is analyzed by 1 H-NMR, and among the obtained analysis results, the ratio is determined from the proton integral value derived from each structural unit or bonding group.
The cocondensate (B) that can be suitably used in the rubber composition according to the present invention contains a structural unit other than the structural units derived from p-tert-butylphenol, o-phenylphenol, and resorcin, if necessary. Can do. Examples of such structural units include structural units derived from various alkylphenols used as raw materials for cocondensates generally used as adhesives used in rubber processing steps.
 本発明に係る共縮合物(B)の軟化点は、150℃以下であることが好ましい。軟化点は、80℃以上150℃以下の範囲であることがより好ましく、80℃以上140℃以下の範囲であることがさらに好ましく、90℃以上140℃以下であることが、特に好ましい。
 共縮合物(B)の軟化点が150℃より高いと、ゴム組成物中において、混練時にゴム組成物に配合した際に、分散性不良の問題が発生する結果、混練時にゴムに配合して使用する、ゴムと金属コードとの接着剤として不適となる場合がある。80℃より低いと保存中にブロッキングしてしまう場合がある。
The softening point of the cocondensate (B) according to the present invention is preferably 150 ° C. or lower. The softening point is more preferably in the range of 80 ° C. or higher and 150 ° C. or lower, further preferably in the range of 80 ° C. or higher and 140 ° C. or lower, and particularly preferably 90 ° C. or higher and 140 ° C. or lower.
If the softening point of the co-condensate (B) is higher than 150 ° C., a problem of poor dispersibility occurs when blended with the rubber composition during kneading in the rubber composition. It may become unsuitable as an adhesive between rubber and metal cord to be used. If it is lower than 80 ° C., blocking may occur during storage.
 本発明に係るゴム組成物において、共縮合物(B)は、ゴム成分(A)100質量部に対して、0.1質量部以上10質量部以下含まれることが好ましい。
 共縮合物(B)の配合量が、ゴム成分(A)100質量部に対して0.1質量部以上であれば、十分な接着性(特に、湿熱接着性)が得られる。
 共縮合物(B)の配合量が、ゴム成分(A)100質量部に対して、10質量部以下であれば、加硫中の接着反応が過剰に進むことがないので接着性(特に、湿熱接着性)が低下することを防止できる。
 上記観点から、共縮合物(B)は、ゴム成分(A)100質量部に対して、より好ましくは、0.2質量部以上8質量部以下であり、更に好ましくは、0.5質量部以上6質量部以下である。
In the rubber composition according to the present invention, the cocondensate (B) is preferably contained in an amount of 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component (A).
If the compounding amount of the cocondensate (B) is 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component (A), sufficient adhesiveness (particularly wet heat adhesiveness) can be obtained.
If the blending amount of the co-condensate (B) is 10 parts by mass or less with respect to 100 parts by mass of the rubber component (A), the adhesive reaction during vulcanization will not proceed excessively. It is possible to prevent a decrease in wet heat adhesion).
From the above viewpoint, the cocondensate (B) is more preferably 0.2 parts by mass or more and 8 parts by mass or less, and still more preferably 0.5 parts by mass with respect to 100 parts by mass of the rubber component (A). The amount is 6 parts by mass or less.
 共縮合物(B)に含まれる、未反応モノマー(遊離p-tert-ブチルフェノール、o-フェニルフェノール及びレゾルシン)及び残存溶媒の総量は、15質量%以下であることが好ましい。15質量%以下とすることで臭気を低減することができ、作業環境上好ましい。特に、遊離レゾルシンの含量が12質量%以下であることが好ましい。遊離レゾルシンの含量が12質量%以下であると、共縮合物(B)をゴムへ添加する際、ゴムへの混練中に生じるレゾルシンの蒸散が改善されるため、作業環境が大きく改善され特に好ましい。
 共縮合物(B)に含まれる、遊離レゾルシン以外の未反応モノマーであるp-tert-ブチルフェノール及びo-フェニルフェノール、並びに反応で使用することがある残存溶媒量の総量は、5質量%以下であることが好ましい。5質量%以下であると、臭気が低減されるとともに、揮発性有機化合物が低減され、作業環境上好ましく、3質量%以下であると、更に好ましい。作業環境が大きく改善されると、作業環境保全のための設備投資が大幅に軽減されるので非常に有利である。
 上記の観点から本発明に係るゴム組成物に含まれる、遊離レゾルシン以外の未反応モノマー及び残存溶媒の総量は、ゴム成分に対して0.20質量%以下が好ましく、0.17質量%以下がさらに好ましい。
The total amount of unreacted monomers (free p-tert-butylphenol, o-phenylphenol and resorcin) and residual solvent contained in the cocondensate (B) is preferably 15% by mass or less. Odor can be reduced by setting it as 15 mass% or less, and it is preferable on working environment. In particular, the content of free resorcin is preferably 12% by mass or less. When the content of free resorcin is 12% by mass or less, when the cocondensate (B) is added to the rubber, the transpiration of resorcin that occurs during kneading into the rubber is improved, so that the working environment is greatly improved, which is particularly preferable. .
The total amount of unreacted monomers p-tert-butylphenol and o-phenylphenol other than free resorcin and residual solvent that may be used in the reaction contained in the cocondensate (B) is 5% by mass or less. Preferably there is. When the content is 5% by mass or less, odor is reduced and volatile organic compounds are reduced, which is preferable in the working environment, and further preferably 3% by mass or less. If the work environment is greatly improved, capital investment for work environment conservation is greatly reduced, which is very advantageous.
From the above viewpoint, the total amount of unreacted monomers other than free resorcin and the residual solvent contained in the rubber composition according to the present invention is preferably 0.20% by mass or less, and 0.17% by mass or less based on the rubber component. Further preferred.
<充填材>
 本発明に係るゴム組成物には、必要に応じて、充填材を配合することができる。充填材としては、カーボンブラック及び無機充填剤から選ばれる少なくとも1種であることが好ましい。本発明では、カーボンブラックは、無機充填剤に含まれない。
 本発明に係るゴム組成物において、カーボンブラックと無機充填剤との総量は、ゴム成分(A)100質量部に対して、5質量部以上100質量部以下使用することが好ましい。5質量部以上であれば、弾性率確保の観点から好ましく、100質量部以下であれば、低発熱性向上の観点から好ましい。上記観点から、カーボンブラックと無機充填剤との総量は、より好ましくは、ゴム成分(A)100質量部に対して、20質量部以上80質量部以下であり、更に好ましくは、ゴム成分(A)100質量部に対して、20質量部以上70質量部以下であり、特に好ましくは、30質量部以上70質量部以下である。
<Filler>
A filler can be mix | blended with the rubber composition which concerns on this invention as needed. The filler is preferably at least one selected from carbon black and inorganic filler. In the present invention, carbon black is not included in the inorganic filler.
In the rubber composition according to the present invention, the total amount of carbon black and inorganic filler is preferably 5 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber component (A). If it is 5 parts by mass or more, it is preferable from the viewpoint of securing the elastic modulus, and if it is 100 parts by mass or less, it is preferable from the viewpoint of improving low heat generation. From the above viewpoint, the total amount of carbon black and inorganic filler is more preferably 20 parts by mass or more and 80 parts by mass or less, and still more preferably rubber component (A) with respect to 100 parts by mass of rubber component (A). ) 20 parts by mass or more and 70 parts by mass or less, and particularly preferably 30 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass.
<カーボンブラック>
 本発明に係るゴム組成物は、カーボンブラックを含有することにより、電気抵抗を下げて帯電を抑止する効果を享受できる。カーボンブラックとしては、例えば、高、中又は低ストラクチャーのSAF、ISAF、IISAF、N339、HAF、FEF、GPF、SRFグレードのカーボンブラック、特にSAF、ISAF、IISAF、N339、HAF、FEFグレードのカーボンブラックを用いることが好ましい。カーボンブラックの窒素吸着比表面積(NSA、JIS K 6217-2:2001に準拠して測定する)は、30~250m/gであることが好ましい。カーボンブラックは、上述したものから1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Carbon black>
By containing carbon black, the rubber composition according to the present invention can enjoy the effect of reducing electrical resistance and suppressing charging. Examples of carbon black include high, medium or low structure SAF, ISAF, IISAF, N339, HAF, FEF, GPF, SRF grade carbon black, especially SAF, ISAF, IISAF, N339, HAF, FEF grade carbon black. Is preferably used. The nitrogen adsorption specific surface area (measured in accordance with N 2 SA, JIS K 6217-2: 2001) of carbon black is preferably 30 to 250 m 2 / g. Carbon black may be used individually by 1 type from what was mentioned above, and may be used in combination of 2 or more type.
<無機充填剤>
 本発明に係るゴム組成物に、必要に応じて、用いられる無機充填剤は、シリカ及び下記一般式(I)で表される無機化合物から選ばれる少なくとも1種であることが好ましい。
  dM・xSiO・zHO        ・・・(I)
 ここで、一般式(I)中、Mは、アルミニウム、マグネシウム、チタン、カルシウム、及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、又はこれらの金属の炭酸塩から選ばれる少なくとも一種であり、d、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。
 なお、一般式(I)において、x、zがともに0である場合には、該無機化合物はアルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムから選ばれる少なくとも1つの金属、金属酸化物又は金属水酸化物となる。
<Inorganic filler>
If necessary, the inorganic filler used in the rubber composition according to the present invention is preferably at least one selected from silica and an inorganic compound represented by the following general formula (I).
dM 1 · xSiO y · zH 2 O (I)
Here, in the general formula (I), M 1 is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium, and zirconium, an oxide or hydroxide of these metals, and a hydrate thereof. Or at least one selected from carbonates of these metals, and d, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10 is there.
In the general formula (I), when both x and z are 0, the inorganic compound is at least one metal, metal oxide or metal hydroxide selected from aluminum, magnesium, titanium, calcium and zirconium. It becomes.
 本発明においては、上述の無機充填剤は、低転がり性と耐摩耗性の両立の観点からシリカであることが好ましい。
 シリカのBET比表面積(ISO5794/1に準拠して測定する)は40~350m/gであるのが好ましい。BET表面積がこの範囲であるシリカは、ゴム補強性とゴム成分(A)中への分散性とを両立できるという利点がある。この観点から、BET表面積が80~350m/gの範囲にあるシリカが更に好ましく、BET表面積が120~350m/gの範囲にあるシリカが特に好ましい。
 シリカとしては市販品を使用でき、なかでも湿式シリカ、乾式シリカ、コロイダルシリカを用いるのが好ましく、湿式シリカを用いるのが特に好ましい。
 このようなシリカとしては、デグッサ社製「ウルトラジル(登録商標)VN3」(BET比表面積=175m/g)等、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」、東ソー・シリカ(株)社製「ニップシール(登録商標)AQ」等の市販品が好ましく用いられる。
In the present invention, the above-mentioned inorganic filler is preferably silica from the viewpoint of achieving both low rolling properties and wear resistance.
The BET specific surface area (measured according to ISO 5794/1) of silica is preferably 40 to 350 m 2 / g. Silica having a BET surface area within this range has an advantage that both rubber reinforcement and dispersibility in the rubber component (A) can be achieved. From this viewpoint, silica having a BET surface area in the range of 80 to 350 m 2 / g is more preferable, and silica having a BET surface area in the range of 120 to 350 m 2 / g is particularly preferable.
Commercially available products can be used as silica, and wet silica, dry silica, and colloidal silica are particularly preferable, and wet silica is particularly preferable.
Examples of such silica include “Ultra Gil (registered trademark) VN3” (BET specific surface area = 175 m 2 / g) manufactured by Degussa, “Ultra Gil (registered trademark) 360”, “Ultra Gil (registered trademark) 7000”. "Zeosil (registered trademark) 115GR", "Zeosil (registered trademark) 1115MP", "Zeosil (registered trademark) 1205MP", "Zeosil (registered trademark) Z85MP" manufactured by Rhodia, "Nipseal" manufactured by Tosoh Silica Corporation Commercially available products such as “(registered trademark) AQ” are preferably used.
 一般式(I)で表される無機化合物としては、γ-アルミナ、α-アルミナ等のアルミナ(Al)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al・HO)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)]、炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(CaSiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、炭酸カルシウム(CaCO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、各種ゼオライトのように電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩などが使用できる。
 また、前記一般式(I)中のMがアルミニウム金属、アルミニウムの酸化物又は水酸化物、及びそれらの水和物、又はアルミニウムの炭酸塩から選ばれる少なくとも一つである場合が好ましく、水酸化アルミニウムが更に好ましい。
 本発明に係るゴム組成物に配合可能な水酸化アルミニウムとしては、窒素吸着比表面積5~250m/g、DOP給油量50~100ml/100gの水酸化アルミニウムが挙げられる。
 一般式(I)で表されるこれらの無機化合物は、単独で使用してもよいし、2種以上を混合して使用してもよい。これらの無機化合物の平均粒径は、混練作業性、耐摩耗性及びウエットグリップ性能のバランスなどの観点から、0.01~10μmの範囲が好ましく、0.05~5μmの範囲がより好ましい。
 本発明における無機充填剤は、シリカ単独で使用してもよいし、シリカと一般式(I)で表される無機化合物の1種以上とを併用してもよい。
As the inorganic compound represented by the general formula (I), .gamma.-alumina, alpha-alumina, such as alumina (Al 2 O 3), boehmite, alumina monohydrate such as diaspore (Al 2 O 3 · H 2 O ), Aluminum hydroxide such as gibbsite, bayerite [Al (OH) 3 ], aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3 ), talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide (CaO) , calcium hydroxide [Ca (OH) 2], magnesium aluminum oxide (MgO · Al 2 O 3) , clay (Al 2 O · 2SiO 2), kaolin (Al 2 O 3 · 2SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O ), Aluminum silicate (Al 2 SiO 5 , Al 4 .3SiO 4 .5H 2 O, etc.), magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.), calcium silicate (Ca 2 SiO 4 etc.), silicic acid Aluminum calcium (Al 2 O 3 · CaO · 2SiO 2 etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2 ), zirconium hydroxide [ZrO (OH) 2 · nH 2 O], zirconium carbonate [Zr (CO 3) 2] , hydrogen to correct electric charge as various zeolites Such as an alkali metal or crystalline aluminosilicates containing alkali earth metals can be used.
Further, it is preferable that M 1 in the general formula (I) is at least one selected from aluminum metal, aluminum oxide or hydroxide, and hydrates thereof, or aluminum carbonate. More preferred is aluminum oxide.
Examples of the aluminum hydroxide that can be blended in the rubber composition according to the present invention include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
These inorganic compounds represented by general formula (I) may be used alone or in combination of two or more. The average particle size of these inorganic compounds is preferably in the range of 0.01 to 10 μm, and more preferably in the range of 0.05 to 5 μm, from the viewpoint of kneading workability, wear resistance and wet grip performance balance.
The inorganic filler in the present invention may be used alone or in combination with silica and one or more inorganic compounds represented by the general formula (I).
<シランカップリング剤>
 本発明に係るゴム組成物は、シリカを含む無機充填剤が配合される場合には、ゴム組成物の補強性及び低燃費性を更に向上させる目的で、シランカップリッグ剤を配合することができる。
 シランカップリング剤としては、例えばビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシーリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオプロピルトリエトキシシランなどが挙げられるが、これらの中で補強性改善効果などの点から、ビス(3-トリエトキシシリルプロピル)ポリスルフィド、3-オクタノイルチオプロピルトリエトキシシラン及び3-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが好適である。
 これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
<Silane coupling agent>
In the rubber composition according to the present invention, when an inorganic filler containing silica is blended, a silane coupling agent can be blended for the purpose of further improving the reinforcing property and low fuel consumption of the rubber composition. .
Examples of silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxysilyl). Ethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltri Methoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarba Yl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide, 3-triethoxysilylpropylbenzoyltetrasulfide, 3-triethoxy Silylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyltetra Sulfide, dimethoxymethylsilylpropylbenzothiazolyl tetrasulfide, 3-octanoylthiopropyltriethoxysilane, etc. Among them, bis (3-triethoxysilylpropyl) polysulfide, 3-octanoylthiopropyltriethoxysilane and 3-trimethoxysilylpropylbenzothiazyl tetrasulfide are preferable from the viewpoint of improving the reinforcing property. .
One of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
 カップリング剤としての効果及びゲル化防止などの点から、このシランカップリング剤の好ましい配合量は、質量比(シランカップリング剤/シリカ)が(1/100)~(20/100)であることが好ましい。(1/100)以上であれば、ゴム組成物の低発熱性向上の効果をより好適に発揮することとなり、(20/100)以下であれば、ゴム組成物のコストが低減し、経済性が向上するからである。更には質量比(3/100)~(20/100)であることがより好ましく、質量比(4/100)~(10/100)であることが特に好ましい。 From the viewpoint of the effect as a coupling agent and prevention of gelation, the preferable blending amount of this silane coupling agent is such that the mass ratio (silane coupling agent / silica) is (1/100) to (20/100). It is preferable. If it is (1/100) or more, the effect of improving the low heat build-up of the rubber composition will be more suitably exhibited. If it is (20/100) or less, the cost of the rubber composition will be reduced, and the economic efficiency will be reduced. This is because it improves. Further, a mass ratio (3/100) to (20/100) is more preferable, and a mass ratio (4/100) to (10/100) is particularly preferable.
<メチレンドナー化合物>
 本発明に係るゴム組成物に配合可能なメチレンドナー化合物としては、ヘキサキス(メトキシメチル)メラミン(HMMM)、変性エーテル化メチロールメラミン樹脂、ヘキサメチレンテトラミン(HMT)、ペンタキス(メトキシメチル)メチロールメラミン、テトラキス(メトキシメチル)ジメチロールメラミン等のゴム工業において通常使用されているものを挙げることができる。中でもヘキサキス(メトキシメチル)メラミン単独、変性エーテル化メチロールメラミン樹脂単独又はそれらを主成分とする混合物が好ましい。これらのメチレンドナー化合物は、それぞれ単独で、又は2種以上を組み合わせて用いることができ、その配合量は前記ゴム成分(A)100質量部に対し、0.5~4質量部程度の範囲が好ましく、1~3質量部程度の範囲がより好ましい。
<Methylene donor compound>
Examples of methylene donor compounds that can be blended in the rubber composition according to the present invention include hexakis (methoxymethyl) melamine (HMMM), modified etherified methylolmelamine resin, hexamethylenetetramine (HMT), pentakis (methoxymethyl) methylolmelamine, and tetrakis. Examples include (methoxymethyl) dimethylolmelamine, which are usually used in the rubber industry. Among them, hexakis (methoxymethyl) melamine alone, modified etherified methylolmelamine resin alone or a mixture containing them as a main component is preferable. These methylene donor compounds can be used alone or in combination of two or more, and the blending amount thereof is in the range of about 0.5 to 4 parts by mass with respect to 100 parts by mass of the rubber component (A). A range of about 1 to 3 parts by mass is more preferable.
<有機コバルト化合物>
 本発明に係るゴム組成物に配合可能な有機コバルト化合物としては、例えば、バーサチック酸コバルト、ネオデカン酸コバルト、ロジン酸コバルト、ナフテン酸コバルト、ステアリン酸コバルト等の酸コバルト塩や、脂肪酸コバルト・ホウ素錯体化合物(例えば、商品名「マノボンドC(登録商標)」:ローディア社製)等が挙げられる。有機コバルト化合物の使用量は、前記ゴム成分(A)100質量部に対し、コバルト含量にして0.05~0.4質量部の範囲が好ましい。
<Organic cobalt compounds>
Examples of the organic cobalt compound that can be blended in the rubber composition according to the present invention include acid cobalt salts such as cobalt versatate, cobalt neodecanoate, cobalt rosinate, cobalt naphthenate, and cobalt stearate, and fatty acid cobalt / boron complexes. Examples thereof include compounds (for example, trade name “Manobond C (registered trademark)” manufactured by Rhodia). The amount of the organic cobalt compound used is preferably in the range of 0.05 to 0.4 parts by mass in terms of cobalt content with respect to 100 parts by mass of the rubber component (A).
<炭化水素樹脂>
 本実施態様に係るゴム組成物には、必要に応じて、共縮合物(B)に加えて、脂環族系炭化水素樹脂、脂肪族系炭化水素樹脂及び芳香族系炭化水素樹脂から1種以上選ばれる炭化水素樹脂を配合してもよい。ここで、脂環族系炭化水素樹脂とは、石油のC5留分から抽出されたシクロペンタジエン及び/又はシクロペンタジエンを二量体化したジシクロペンタジエンを主原料に製造された石油樹脂をいう。また、脂肪族系炭化水素樹脂とは、石油のC5留分を主原料に製造された石油樹脂をいい、脂肪族系炭化水素樹脂とは、石油のC9留分を主原料に製造された石油樹脂をいう。
 これらの炭化水素樹脂の内、シクロペンタジエンを二量体化した高純度のジシクロペンタジエンを主原料に製造された、ジシクロペンタジエン樹脂(DCPD樹脂)が、ゴム補強性を高める観点から好ましい。
 ジシクロペンタジエン樹脂としては、日本ゼオン(株)製、クイントン1000シリーズ(クイントン1105、クイントン1325、クイントン1340)等が好適に挙げられる。
<Hydrocarbon resin>
If necessary, the rubber composition according to this embodiment includes one type from an alicyclic hydrocarbon resin, an aliphatic hydrocarbon resin, and an aromatic hydrocarbon resin in addition to the cocondensate (B). You may mix | blend the hydrocarbon resin chosen above. Here, the alicyclic hydrocarbon resin refers to a petroleum resin produced mainly from cyclopentadiene and / or dicyclopentadiene obtained by dimerizing cyclopentadiene extracted from a C5 fraction of petroleum. An aliphatic hydrocarbon resin refers to a petroleum resin produced using a C5 fraction of petroleum as a main raw material, and an aliphatic hydrocarbon resin refers to a petroleum produced using a C9 fraction of petroleum as a main raw material. Refers to resin.
Of these hydrocarbon resins, a dicyclopentadiene resin (DCPD resin) produced from a high-purity dicyclopentadiene obtained by dimerizing cyclopentadiene as a main raw material is preferable from the viewpoint of enhancing rubber reinforcement.
Preferred examples of the dicyclopentadiene resin include quinton 1000 series (Quinton 1105, quinton 1325, quinton 1340) manufactured by Nippon Zeon Co., Ltd.
<その他の添加剤>
 本発明に係るゴム組成物には、本発明の効果が損なわれない範囲で、所望により、通常ゴム工業界で用いられる各種薬品、例えば、加硫剤、加硫促進剤、加硫遅延剤、プロセスオイル、老化防止剤、亜鉛華、ステアリン酸などを配合できる。
(加硫剤)
 本発明に係るゴム組成物に配合可能な加硫剤としては、硫黄等が挙げられる。硫黄成分としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、及び高分散性硫黄等が挙げられる。通常は粉末硫黄が好ましい。
 加硫剤の使用量は、ゴム成分(A)100質量部に対し、硫黄分として0.1質量部以上10質量部以下が好ましく、更に好ましくは1.0質量部以上8.0質量部以下である。0.1質量部未満では加硫ゴムの破壊強度、耐摩耗性、低燃費性が低下するおそれがあり、10質量部を超えるとゴム弾性が失われる原因となる。
<Other additives>
In the rubber composition according to the present invention, various chemicals commonly used in the rubber industry, for example, a vulcanizing agent, a vulcanization accelerator, a vulcanization retarder, as desired, as long as the effects of the present invention are not impaired. Process oil, anti-aging agent, zinc white, stearic acid, etc. can be blended.
(Vulcanizing agent)
Examples of the vulcanizing agent that can be blended in the rubber composition according to the present invention include sulfur. Examples of the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Usually powdered sulfur is preferred.
The amount of the vulcanizing agent used is preferably 0.1 parts by mass or more and 10 parts by mass or less, more preferably 1.0 part by mass or more and 8.0 parts by mass or less as a sulfur content with respect to 100 parts by mass of the rubber component (A). It is. If the amount is less than 0.1 parts by mass, the rupture strength, wear resistance, and fuel efficiency of the vulcanized rubber may be reduced. If the amount exceeds 10 parts by mass, the rubber elasticity is lost.
(加硫促進剤)
 本発明に係るゴム組成物に配合可能な加硫促進剤としては、ゴム工業便覧<第四版>(平成6年1月20日社団法人、日本ゴム協会発行)の412~413頁に記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が挙げられる。これらのなかでも、例えば、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)、2-メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)、ジフェニルグアニジン(DPG)が挙げられる。
 中でも、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)、又はジベンゾチアジルジスルフィド(MBTS)とジフェニルグアニジン(DPG)とを併用することが好ましい。
 加硫促進剤の使用量は特に限定されるものではないが、ゴム成分(A)100質量部あたり0.5~3質量部の範囲が好ましい。中でも0.5~1.5質量部の範囲が特に好ましい。酸化亜鉛の使用量は特に限定されるものではないが、ゴム成分(A)100質量部あたり3~15質量部の範囲が好ましい。中でも5~10質量部の範囲が特に好ましい。
(Vulcanization accelerator)
Vulcanization accelerators that can be blended in the rubber composition according to the present invention are described in pages 412 to 413 of the Rubber Industry Handbook <Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994). Examples thereof include thiazole vulcanization accelerators, sulfenamide vulcanization accelerators, and guanidine vulcanization accelerators. Among these, for example, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2 -Benzothiazolylsulfenamide (DCBS), 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS), diphenylguanidine (DPG).
Among them, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2-benzothiazolylsulfur It is preferable to use phenamide (DCBS) or dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG) in combination.
The amount of the vulcanization accelerator used is not particularly limited, but is preferably in the range of 0.5 to 3 parts by mass per 100 parts by mass of the rubber component (A). In particular, the range of 0.5 to 1.5 parts by mass is particularly preferable. The amount of zinc oxide used is not particularly limited, but is preferably in the range of 3 to 15 parts by mass per 100 parts by mass of the rubber component (A). In particular, the range of 5 to 10 parts by mass is particularly preferable.
(加硫遅延剤)
 本発明に係るゴム組成物に配合可能な加硫遅延剤としては、無水フタル酸、安息香酸、サリチル酸、N-ニトロソジフェニルアミン、N-(シクロヘキシルチオ)-フタルイミド(CTP)、スルホンアミド誘導体、ジフェニルウレア、ビス(トリデシル)ペンタエリスリトール-ジホスファイト等が例示され、N-(シクロヘキシルチオ)-フタルイミド(CTP)が好ましく用いられる。
(プロセスオイル)
 本発明に係るゴム組成物に配合可能な軟化剤として用いられるプロセスオイルとしては、SBRとの相溶性の観点から、芳香族系オイルが用いられる。また、低温特性を重視する観点から、ナフテン系オイル又はパラフィン系オイルが用いられる。その使用量は、ゴム成分(A)100質量部に対して、0~100質量部が好ましく、100質量部以下であれば加硫ゴムの引張強度、低燃費性(低発熱性)が悪化するのを抑制することができる。
(Vulcanization retarder)
Examples of the vulcanization retarder that can be blended in the rubber composition according to the present invention include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) -phthalimide (CTP), sulfonamide derivatives, diphenylurea And bis (tridecyl) pentaerythritol-diphosphite and the like, and N- (cyclohexylthio) -phthalimide (CTP) is preferably used.
(Process oil)
As the process oil used as a softening agent that can be blended in the rubber composition according to the present invention, an aromatic oil is used from the viewpoint of compatibility with SBR. In addition, naphthenic oil or paraffinic oil is used from the viewpoint of emphasizing low temperature characteristics. The amount used is preferably 0 to 100 parts by mass with respect to 100 parts by mass of the rubber component (A). If the amount is 100 parts by mass or less, the tensile strength and low fuel consumption (low heat generation) of the vulcanized rubber are deteriorated. Can be suppressed.
(老化防止剤)
 本発明に係るゴム組成物に配合可能な老化防止剤としては、日本ゴム協会編「ゴム工業便覧<第四版>」の436~443頁に記載されるものが挙げられる。これらの中でも、例えば、3C(N-イソプロピル-N’-フェニル-p-フェニレンジアミン)、6C[N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン]、RD又は224(2,2,4-トリメチル-1,2-ジヒドロキノリン重合体)、AW(6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン)、ジフェニルアミンとアセトンの高温縮合物等を挙げることができる。
 その使用量は、ゴム成分(A)100質量部に対して、0.1~5.0質量部が好ましく、更に好ましくは0.3~3.0質量部である。
(有機酸)
 本発明に係るゴム組成物において、用いることのできる有機酸としては、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸、アラキジン酸、ベヘン酸、リグノセリン酸、カプリン酸、ペラルゴン酸、カプリル酸、エナント酸、カプロン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、ネルボン酸等の飽和脂肪酸及び不飽和脂肪酸並びにロジン酸や変性ロジン酸等の樹脂酸などが挙げられる。
 本発明に係るゴム組成物の製造方法においては、上記有機酸の内、加硫促進助剤としての機能を十分に発揮する必要があることから有機酸中の50モル%以上がステアリン酸であることが好ましい。有機酸中の50モル%以下は、スチレン-ブタジエン共重合体を乳化重合で作製した場合に含まれるロジン酸(変性ロジン酸も包含される。)及び/又は脂肪酸であってもよい。
(Anti-aging agent)
Antiaging agents that can be blended in the rubber composition according to the present invention include those described on pages 436 to 443 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Among these, for example, 3C (N-isopropyl-N′-phenyl-p-phenylenediamine), 6C [N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine], RD or 224 (2,2,4-trimethyl-1,2-dihydroquinoline polymer), AW (6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline), high-temperature condensate of diphenylamine and acetone, etc. Can be mentioned.
The amount used is preferably 0.1 to 5.0 parts by weight, more preferably 0.3 to 3.0 parts by weight, per 100 parts by weight of the rubber component (A).
(Organic acid)
Examples of organic acids that can be used in the rubber composition according to the present invention include stearic acid, palmitic acid, myristic acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, capric acid, pelargonic acid, caprylic acid, and enanthic acid. And saturated fatty acids such as caproic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, and nervonic acid, and resin acids such as rosin acid and modified rosin acid.
In the method for producing a rubber composition according to the present invention, among the organic acids, 50 mol% or more in the organic acid is stearic acid because it is necessary to sufficiently function as a vulcanization acceleration aid. It is preferable. 50 mol% or less in the organic acid may be rosin acid (including modified rosin acid) and / or fatty acid contained when the styrene-butadiene copolymer is prepared by emulsion polymerization.
[共縮合物(B)の製造方法]
 本発明に係る共縮合物の製造方法は、下記の工程を下記の順番で含む。
 (a)アルカリ存在下、p-tert-ブチルフェノールとo-フェニルフェノールの混合物をホルムアルデヒドと反応させて、レゾール型縮合物を得る工程。
 (b)p-tert-ブチルフェノールとo-フェニルフェノールの総量に対して0.8倍モル以上のレゾルシンをさらに反応させる工程。
[Method for Producing Cocondensate (B)]
The method for producing a cocondensate according to the present invention includes the following steps in the following order.
(A) A step of reacting a mixture of p-tert-butylphenol and o-phenylphenol with formaldehyde in the presence of an alkali to obtain a resol-type condensate.
(B) a step of further reacting 0.8 times mol or more of resorcin with respect to the total amount of p-tert-butylphenol and o-phenylphenol.
 工程(a)で用いるp-tert-ブチルフェノールとo-フェニルフェノールの混合物(以下、これら2種のフェノール類を総称して「フェノール誘導体」と称することがある)におけるo-フェニルフェノールの比率は特に限定されないが、フェノール誘導体の総量に対して35モル%~85モル%であることが好ましく、40モル%~85モル%であることがより好ましく、60モル%~85モル%であることがさらに好ましい。35モル%より少ないと、得られる共縮合物の軟化点が高くなり、ゴム成分(A)と混練するときに分散不良となる場合がある。85モル%より多いと、高価なo-フェニルフェノールが多量に必要となり、工業上有利に共縮合物を製造できなくなる場合がある。なお、本発明におけるp-tert-ブチルフェノールとo-フェニルフェノールの混合物とは、反応器に投入する前に事前に混合したものの他、それぞれ別個に反応器に投入し、結果として反応器内で混合物となったものも含まれる。 The ratio of o-phenylphenol in the mixture of p-tert-butylphenol and o-phenylphenol used in step (a) (hereinafter, these two types of phenols may be collectively referred to as “phenol derivatives”) is particularly Although not limited, it is preferably 35 mol% to 85 mol%, more preferably 40 mol% to 85 mol%, and further preferably 60 mol% to 85 mol%, based on the total amount of the phenol derivative. preferable. If it is less than 35 mol%, the softening point of the resulting cocondensate will be high, and dispersion may be poor when kneaded with the rubber component (A). If it exceeds 85 mol%, a large amount of expensive o-phenylphenol is required, and it may be impossible to produce a cocondensate in an industrially advantageous manner. In addition, the mixture of p-tert-butylphenol and o-phenylphenol in the present invention is a mixture mixed in advance before being charged into the reactor, and separately charged into the reactor, resulting in the mixture in the reactor. Also included are.
 工程(a)で用いるホルムアルデヒドとしては、ホルムアルデヒド自体のほか、水溶液であるホルマリン、又はパラホルムアルデヒドやトリオキサンのような、容易にホルムアルデヒドを発生する化合物を使用することができる。ホルムアルデヒドの仕込みモル比は特に限定されないが、フェノール誘導体の総量に対して1~3倍モルであることが好ましく、その中でも1.5~2.5倍モルの範囲が特に好ましい。1倍モルより少ない場合、未反応モノマーが多くなり臭気や揮発性有機化合物が増加する場合がある。また、3倍モルよりも多い場合、ホルムアルデヒドが未反応のまま多く残存するため、樹脂が三次元構造化して軟化点が高くなる場合がある。 As the formaldehyde used in the step (a), in addition to formaldehyde itself, a formalin that is an aqueous solution, or a compound that easily generates formaldehyde such as paraformaldehyde or trioxane can be used. The molar ratio of formaldehyde charged is not particularly limited, but it is preferably 1 to 3 times by mole, more preferably 1.5 to 2.5 times by mole, based on the total amount of phenol derivatives. When the amount is less than 1 mole, unreacted monomers may increase and odor and volatile organic compounds may increase. Further, when the amount is more than 3 times mole, a large amount of formaldehyde remains unreacted, so that the resin may have a three-dimensional structure and the softening point may be increased.
 アルカリとしては、アルカリ金属やアルカリ土類金属の水酸化物又は炭酸塩の他、アンモニア、アミンのような、通常のレゾール型縮合物を製造する際に用いられるものを使用することができる。アルカリ金属やアルカリ土類金属の水酸化物又は炭酸塩の具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。この中でも、水酸化ナトリウム、水酸化カリウムが好ましい。これらのアルカリは固体状のものでも、水溶液状のものでも利用可能であるが、反応性、取扱いの面から水溶液のものを使用することが好ましい。水溶液状のものを使用する場合、その濃度は通常、10質量%~50質量%のものを使用する。アルカリの仕込みモル比とは特に限定されないが、フェノール誘導体の総量に対して0.03~0.6倍モルの範囲が好ましく、0.03~0.3倍モルの範囲がより好ましい。 As the alkali, in addition to hydroxides or carbonates of alkali metals or alkaline earth metals, those used for producing ordinary resol-type condensates such as ammonia and amines can be used. Specific examples of the alkali metal or alkaline earth metal hydroxide or carbonate include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, and potassium carbonate. Among these, sodium hydroxide and potassium hydroxide are preferable. These alkalis can be used in the form of a solid or an aqueous solution, but it is preferable to use an aqueous solution in terms of reactivity and handling. When an aqueous solution is used, the concentration is usually 10% by mass to 50% by mass. The alkali charge molar ratio is not particularly limited, but is preferably in the range of 0.03 to 0.6 times mol, more preferably in the range of 0.03 to 0.3 times mol with respect to the total amount of the phenol derivative.
 工程(a)の反応、すなわちアルカリ存在下、p-tert-ブチルフェノールとo-フェニルフェノールの混合物と、ホルムアルデヒドとの反応は、溶媒中で行うことも可能である。使用する溶媒は特に限定されることはなく、水、アルコール、芳香族炭化水素等を用いることができる。より具体的には、水、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、エチルベンゼン、クメン、モノクロロベンゼンなどが例示される。中でも水、トルエン、キシレンが好ましい。これらの溶媒は単独あるいは2種類以上を併用して用いることも可能である。溶媒を使用する場合、通常フェノール誘導体の総量に対して0.4~4質量倍(例えば0.4~2質量倍)使用する。また、工程(a)の反応は通常、反応温度40~100℃、反応時間1~48時間(例えば1~8時間)で実施される。 The reaction of step (a), that is, the reaction of a mixture of p-tert-butylphenol and o-phenylphenol with formaldehyde in the presence of an alkali can also be carried out in a solvent. The solvent to be used is not particularly limited, and water, alcohol, aromatic hydrocarbon and the like can be used. More specifically, water, methanol, ethanol, propanol, butanol, toluene, xylene, ethylbenzene, cumene, monochlorobenzene and the like are exemplified. Of these, water, toluene, and xylene are preferable. These solvents can be used alone or in combination of two or more. When a solvent is used, it is usually used in an amount of 0.4 to 4 times (for example, 0.4 to 2 times) the total amount of phenol derivatives. The reaction in the step (a) is usually carried out at a reaction temperature of 40 to 100 ° C. and a reaction time of 1 to 48 hours (eg 1 to 8 hours).
 かかる反応により得られたレゾール型縮合物は、使用したアルカリを中和せずにそのまま工程(b)の反応、すなわちレゾルシンとの反応に使用してもよいし、酸を加えることでアルカリを中和した後に使用してもよい。中和を行う際に使用する酸の種類は特に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸、シュウ酸、p-トルエンスルホン酸などが例として挙げられる。これらの酸は1種類のみを単独で使用してもよいし、2種類以上を混合して使用してもよい。この際、使用される酸の総量は特に限定されないが、通常使用したアルカリに対し等量(物質量基準)の酸を使用することが好ましい。また、未反応のホルムアルデヒドや中和で生成した無機塩類等を除去するために、必要に応じて水と混和しない有機溶媒を用いてレゾール型縮合物を抽出し、洗浄する処理を追加してもよい。 The resol-type condensate obtained by such a reaction may be used as it is in the reaction of step (b) without neutralizing the used alkali, that is, the reaction with resorcin, or by adding an acid to neutralize the alkali. It may be used after being summed. The type of acid used for neutralization is not particularly limited, and examples include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, p-toluenesulfonic acid, and the like. These acids may be used alone or in combination of two or more. At this time, the total amount of the acid used is not particularly limited, but it is preferable to use an equivalent amount (based on the amount of substance) of the acid that is normally used. In addition, in order to remove unreacted formaldehyde and inorganic salts generated by neutralization, a resol-type condensate may be extracted and washed using an organic solvent that is not miscible with water as necessary. Good.
 工程(b)において、得られたレゾール型縮合物とレゾルシンを反応させる際のレゾルシンの仕込みモル比は、フェノール誘導体の総量に対して0.5倍モル以上であることが好ましく、より好ましくは0.8~4.0倍モル、さらに好ましくは0.8~2.0倍モル、特に好ましくは1.0~2.0倍モルである。4.0倍モルよりも多い場合、未反応のレゾルシンが多く残存するため揮発性が問題となる場合がある。0.5倍モルより低い場合、反応が完結しないため本来の性能が出ない場合やレゾール型縮合物同士の反応が優先的に進行し、得られる共縮合物が高分子化する結果、軟化点が150℃以下とならない場合がある。 In the step (b), the charged molar ratio of resorcin when reacting the obtained resole-type condensate with resorcin is preferably 0.5 times mol or more, more preferably 0 with respect to the total amount of phenol derivatives. The amount is from 0.8 to 4.0 times mol, more preferably from 0.8 to 2.0 times mol, particularly preferably from 1.0 to 2.0 times mol. If it is more than 4.0 moles, volatility may be a problem because a large amount of unreacted resorcin remains. If it is lower than 0.5 mol, the reaction will not be completed and the original performance will not be achieved, or the reaction between resol-type condensates will proceed preferentially, and the resulting cocondensate will be polymerized, resulting in a softening point. May not be 150 ° C. or lower.
 レゾール型縮合物とレゾルシンとの反応は、溶媒を使用せず反応を行うことも可能であるが、p-tert-ブチルフェノールとo-フェニルフェノールの総量に対して0.2質量倍以上の溶媒存在下で実施した場合、遊離レゾルシンを12質量%以下とすることが可能となり好ましい。さらに好ましくはp-tert-ブチルフェノールとo-フェニルフェノールの総量に対して0.4~4.0質量倍、特に好ましくは0.4~2.0質量倍の溶媒存在下で実施する。0.2質量倍より少ない場合、レゾルシンとレゾール型縮合物との反応より、レゾール型縮合物同士の反応が優先的に進行する場合があり、得られる共縮合物が高分子化するためか、遊離レゾルシンを12質量%以下とすることができない。また、4.0質量倍以上使用しても反応は進行するが、容積効率が低下し経済的有利に共縮合物を製造することができない。 Although the reaction between the resole-type condensate and resorcin can be carried out without using a solvent, the presence of a solvent more than 0.2 mass times the total amount of p-tert-butylphenol and o-phenylphenol When carried out below, free resorcin can be reduced to 12% by mass or less, which is preferable. More preferably, the reaction is carried out in the presence of 0.4 to 4.0 times by mass, particularly preferably 0.4 to 2.0 times by mass of solvent with respect to the total amount of p-tert-butylphenol and o-phenylphenol. If less than 0.2 mass times, the reaction between resole-type condensates may proceed preferentially over the reaction between resorcin and resole-type condensates, and the resulting cocondensate may be polymerized, Free resorcin cannot be reduced to 12% by mass or less. In addition, the reaction proceeds even when used in an amount of 4.0 mass times or more, but the volumetric efficiency is lowered and the cocondensate cannot be produced economically advantageously.
 使用可能な溶媒は特に限定されないが、例えばアルコール類、ケトン類、芳香族炭化水素類等である。より具体的には、メタノール、エタノール、プロパノール、ブタノール、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、トルエン、キシレン、エチルベンゼン、クメン、モノクロロベンゼンなどが例示される。この中でも、ケトン類、芳香族炭化水素類が好ましく、さらにはメチルイソブチルケトン、トルエン、キシレンが好ましい。これらの溶媒は必要に応じ単独あるいは2種類以上を併用して用いることも可能である。また、本溶媒はレゾール型縮合物を製造する際に使用した溶媒をそのまま使用してもよいし、適宜新たな溶媒を加えてもよい。 The usable solvent is not particularly limited, and examples thereof include alcohols, ketones, and aromatic hydrocarbons. More specifically, methanol, ethanol, propanol, butanol, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, toluene, xylene, ethylbenzene, cumene, monochlorobenzene and the like are exemplified. Among these, ketones and aromatic hydrocarbons are preferable, and methyl isobutyl ketone, toluene, and xylene are more preferable. These solvents can be used alone or in combination of two or more as required. Moreover, the solvent used when manufacturing a resol type condensate may be used for this solvent as it is, and a new solvent may be added suitably.
 レゾール型縮合物とレゾルシンとの反応は、特に限定されないが、通常、反応温度40~150℃、反応時間1~48時間(例えば1~8時間)で実施される。
 共縮合物中に含まれる遊離レゾルシン含量を12質量%以下とするためには、後述する溶媒除去工程を実施する前に反応混合物中の遊離レゾルシン含量が12質量%以下になるまで120℃以上で反応を行うことが好ましい。本反応段階で遊離レゾルシンが12質量%より多く残存している場合、後述する溶媒除去工程で遊離レゾルシンを同時に12質量%未満になるまで除去しようとしても工業的に実施困難な高温、高減圧度条件が必要であり、かつ、この際に得られる共縮合物が熱により着色したり、高分子化が進行したりする結果、軟化点が150℃を超え、混練時にゴムに配合して使用するゴムと金属コードとの接着剤として不適となる。
 120℃以上で反応を行うとは、反応中いずれかの時点で120℃以上になっていればよく、例えば反応初期は120℃未満で反応を開始させ、その後徐々に昇温させて120℃以上とする方法などが例示される。反応温度が一度も120℃以上とならない場合、反応混合物中の遊離レゾルシンが12質量%以下にならない。また、前述の通り、0.2質量倍以上の溶媒非存在下で本反応を実施した場合、得られる共縮合物が高分子化するためか、遊離レゾルシン含量が12質量%以下とならない。反応混合物とは、本反応の原料であるレゾール型縮合物やレゾルシン、溶媒等、反応容器内に含まれる全てものを示し、反応混合物中のレゾルシン含量は例えばガスクロマトグラフを用いた分析により定量可能である。なお、遊離レゾルシン含量を減らすため、単に原料レゾルシンの使用量を減らす方法も考えられるが、この方法で製造した場合、反応中に原料レゾルシンが不足し、代わりに共縮合物中のレゾルシン部位がさらに反応して高分子化するため、軟化点が非常に高くなってしまう。
The reaction between the resole-type condensate and resorcin is not particularly limited, but is usually carried out at a reaction temperature of 40 to 150 ° C. and a reaction time of 1 to 48 hours (eg, 1 to 8 hours).
In order to reduce the content of free resorcin contained in the cocondensate to 12% by mass or less, before carrying out the solvent removal step described later, the content of free resorcin is 120 ° C. or higher until the content of free resorcin in the reaction mixture becomes 12% by mass or less It is preferable to carry out the reaction. If more than 12% by mass of free resorcin remains in this reaction stage, it is difficult to implement industrially at a high temperature and a high degree of vacuum even if it is attempted to remove free resorcin at the same time until it becomes less than 12% by mass in the solvent removal step described later. Conditions are necessary, and the cocondensate obtained at this time is colored by heat or polymerization proceeds. As a result, the softening point exceeds 150 ° C., and is used by blending with rubber during kneading. Unsuitable as an adhesive between rubber and metal cord.
The reaction is performed at 120 ° C or higher as long as it is 120 ° C or higher at any time during the reaction. For example, the reaction is started at less than 120 ° C in the initial stage of reaction, and then gradually heated to 120 ° C or higher. The method etc. which are made are illustrated. If the reaction temperature never exceeds 120 ° C., free resorcin in the reaction mixture does not become 12% by mass or less. In addition, as described above, when this reaction is carried out in the absence of a solvent of 0.2 mass times or more, the resulting cocondensate is polymerized, or the free resorcin content is not 12 mass% or less. The reaction mixture refers to everything contained in the reaction vessel, such as resole-type condensate, resorcin, solvent, etc., which are the raw materials for this reaction, and the resorcin content in the reaction mixture can be quantified by analysis using, for example, a gas chromatograph. is there. In order to reduce the free resorcin content, a method of simply reducing the amount of raw material resorcin used is also conceivable. However, when produced by this method, the raw material resorcin is insufficient during the reaction, and instead, the resorcin site in the cocondensate is further increased. Since it reacts and polymerizes, the softening point becomes very high.
 工程(b)におけるレゾール型縮合物とレゾルシンとの反応では、系内に水が存在すると反応速度が遅くなる傾向があり、レゾール型縮合物とレゾルシンとの反応で生成した水により反応速度が低下する場合があるため、反応を促進する目的で脱水しながら反応を行うことが好ましい。また、この脱水反応においては、反応で生成する水を十分に脱水するため、反応当初は減圧下で脱水し、その後内温を120℃以上とするため、常圧で更に脱水する方法とすることが好ましい。
 レゾール型縮合物とレゾルシンとの反応に溶媒を使用する場合、通常、反応後、反応で使用した溶媒を除去する。溶媒の除去条件は特に限定されないが、例えば内圧45~10kPaの減圧下、120~160℃で実施される。なお、本除去操作により遊離レゾルシン含量をある程度減らすことも可能であるが、溶媒除去前の反応混合物中の遊離レゾルシン含量が12質量%より多い場合、溶媒除去後の共縮合物の遊離レゾルシン含量を12質量%以下としようとするためには工業的に実施困難な高温、高減圧度条件が必要であり、かつ、この際に得られる共縮合物が熱により着色し、製品価値を下げることがある。
In the reaction between the resole-type condensate and resorcin in step (b), the reaction rate tends to be slow if water is present in the system, and the reaction rate is reduced by the water generated by the reaction between the resole-type condensate and resorcin. Therefore, it is preferable to carry out the reaction while dehydrating for the purpose of promoting the reaction. In addition, in this dehydration reaction, water generated in the reaction is sufficiently dehydrated, so that it is dehydrated under reduced pressure at the beginning of the reaction, and then the internal temperature is set to 120 ° C. or higher. Is preferred.
When a solvent is used for the reaction between the resole-type condensate and resorcin, the solvent used in the reaction is usually removed after the reaction. The conditions for removing the solvent are not particularly limited. For example, the solvent removal is performed at 120 to 160 ° C. under a reduced pressure of 45 to 10 kPa. Although it is possible to reduce the free resorcin content to some extent by this removal operation, when the free resorcin content in the reaction mixture before solvent removal is more than 12% by mass, the free resorcin content of the cocondensate after solvent removal is reduced. In order to make it 12% by mass or less, high temperature and high pressure reduction conditions that are difficult to implement industrially are necessary, and the cocondensate obtained at this time is colored by heat, thereby reducing the product value. is there.
[ゴム組成物の調製]
 本発明に係るゴム組成物は、上述した各種成分及び添加剤を、ロールなどの開放式混練機、バンバリーミキサーなどの密閉式混練機などの混練り機を用いて混練りすることによって得られる。
 すなわち、本発明に係るゴム組成物は、混練の第一段階で、ゴム成分(A)と、共縮合物(B)と、必要に応じ充填材とを混練した後、混練の最終段階で、加硫剤、加硫促進剤、メチレンドナー化合物及び必要に応じその他の配合剤を混合することによって作製できる。
[Preparation of rubber composition]
The rubber composition according to the present invention can be obtained by kneading the various components and additives described above using a kneader such as an open kneader such as a roll or a closed kneader such as a Banbury mixer.
That is, the rubber composition according to the present invention is the first stage of kneading, and after kneading the rubber component (A), the cocondensate (B), and a filler as necessary, in the final stage of kneading, It can be prepared by mixing a vulcanizing agent, a vulcanization accelerator, a methylene donor compound, and other compounding agents as required.
[金属コード]
 本発明に係る金属コードは、ブラスめっきが周面に施されたスチールワイヤの単線からなる金属コード又は該スチールワイヤを撚り合わせてなる金属コードである。この本発明に係る金属コードは、ブラスめっきがCu58~70質量%、Co及びNiから選ばれる少なくとも1種の金属0.5~10質量%及び残部をZnからなる3元又は4元めっきである。Cu(銅)とZn(亜鉛)とCo(コバルト)又はNi(ニッケル)との3種の金属の組み合わせの場合、3元めっきとなり、Cu(銅)とZn(亜鉛)とCo(コバルト)とNi(ニッケル)との4種の金属の組み合わせの場合、4元めっきとなる。例えば、Cu(銅)とZn(亜鉛)とCo(コバルト)及び/又はNi(ニッケル)との質量比を調整した後、調整された質量で、Cu、Zn、Ni、Coの順にスチールワイヤにめっきを繰り返し、あるいは場合によってはCu、Zn、Co、Niの順にスチールワイヤにめっきを繰り返し、その後450~550℃において3~6秒間熱拡散して、所望する3元又は4元めっきが得られる。
 ブラスめっきの組成において、Cuが58質量%以上であれば、伸線性が向上して断線が起こりにくくなり生産性が向上する。一方、Cuが70質量%以下であれば、湿熱接着性が改良されて、タイヤが曝される環境に対して十分な耐久性を享受し得ることとなる。Co及び/又はNiが0.5~10質量%の範囲であれば、ゴム組成物との初期接着性及び湿熱接着性が向上して好ましい。
[Metal cord]
The metal cord according to the present invention is a metal cord made of a single wire of steel wire with brass plating applied to the peripheral surface or a metal cord made by twisting the steel wire. The metal cord according to the present invention is a ternary or quaternary plating in which brass plating is 58 to 70% by mass of Cu, 0.5 to 10% by mass of at least one metal selected from Co and Ni, and the balance is Zn. . In the case of a combination of three kinds of metals of Cu (copper), Zn (zinc) and Co (cobalt) or Ni (nickel), it becomes ternary plating, and Cu (copper), Zn (zinc) and Co (cobalt) In the case of a combination of four metals with Ni (nickel), quaternary plating is performed. For example, after adjusting the mass ratio of Cu (copper), Zn (zinc), Co (cobalt) and / or Ni (nickel), the adjusted mass is applied to steel wires in the order of Cu, Zn, Ni, Co. Repeated plating or, in some cases, repeated plating on steel wire in the order of Cu, Zn, Co, Ni, and then thermally diffused at 450-550 ° C. for 3-6 seconds to obtain the desired ternary or quaternary plating .
In the composition of brass plating, if Cu is 58% by mass or more, the wire drawing property is improved and disconnection hardly occurs, and the productivity is improved. On the other hand, if Cu is 70 mass% or less, wet heat adhesiveness will be improved and sufficient durability can be enjoyed with respect to the environment to which the tire is exposed. When Co and / or Ni is in the range of 0.5 to 10% by mass, the initial adhesiveness and wet heat adhesiveness with the rubber composition are preferably improved.
 ブラスめっき層の平均厚みは、好適には、0.13~0.35μmであり、更に好適には、0.13~0.30μmである。ブラスめっき層の平均厚みが0.13μm以上であれば、鉄地が露出する部分が少なくなり初期接着性が向上し、一方、0.35μm以下であれば、ゴム物品使用中の熱によって過剰に接着反応が進行することを抑制して、より強固な接着を得ることができる。 The average thickness of the brass plating layer is preferably 0.13 to 0.35 μm, and more preferably 0.13 to 0.30 μm. If the average thickness of the brass plating layer is 0.13 μm or more, the portion where the iron base is exposed is reduced and the initial adhesiveness is improved. On the other hand, if it is 0.35 μm or less, it is excessive due to heat during use of the rubber article. It is possible to obtain a stronger bond by suppressing the progress of the adhesion reaction.
 更に、スチールワイヤの直径は、0.60mm以下であることが好ましく、0.40mm以下であることがより好ましい。この直径が0.60mm以下であれば、使用したゴム物品が曲げ変形下で繰り返し歪みを受けたときに表面歪が小さくなるので、座屈を引き起こしにくくなる。 Furthermore, the diameter of the steel wire is preferably 0.60 mm or less, and more preferably 0.40 mm or less. When the diameter is 0.60 mm or less, the surface strain is reduced when the used rubber article is repeatedly strained under bending deformation, so that it is difficult to cause buckling.
[空気入りタイヤの作製]
 本発明に係るゴム組成物を本発明に係る金属コードに被覆して金属コード-ゴム複合体が形成された後、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。生タイヤを成形加工した後、この生タイヤを加硫機中で加熱加圧して、加硫を行って、本発明に係る金属コード-ゴム複合体を具備したタイヤを作製することができる。
[Production of pneumatic tires]
After the rubber cord according to the present invention is coated on the metal cord according to the present invention to form a metal cord-rubber composite, it is pasted and molded by a normal method on a tire molding machine to form a raw tire. . After forming the green tire, the green tire is heated and pressurized in a vulcanizer and vulcanized to produce a tire having the metal cord-rubber composite according to the present invention.
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[共縮合物の評価方法]
 共縮合物の分析及び物性評価は以下のようにして行った。
(a)共縮合物の平均分子量の測定
 共縮合物の平均分子量は、以下装置及び条件で分析したゲル透過クロマトグラフィー(GPC)により、ポリスチレン換算重量平均分子量として算出した。
・使用機器:HLC-8220GPC(東ソー株式会社製)、
・カラム:TSK ガードカラム SUPER HZ-L(東ソー株式会社製)
    +TSK-GEL SUPER HZ1000(4.6mmφ×150mm)
    +TSK-GEL SUPER HZ2500(4.6mmφ×150mm)
    +TSK-GEL SUPER HZ4000(4.6mmφ×150mm)、
・カラム温度:40℃、
・注入量:10μL、
・キャリアー及び流速:テトラヒドロフラン 0.35mL/min、
・サンプル調製:共縮合物約0.02gをテトラヒドロフラン20mLに溶解。
[Method for evaluating cocondensate]
Analysis and physical property evaluation of the co-condensate were performed as follows.
(A) Measurement of average molecular weight of cocondensate The average molecular weight of the cocondensate was calculated as a polystyrene-converted weight average molecular weight by gel permeation chromatography (GPC) analyzed under the following apparatus and conditions.
-Equipment used: HLC-8220GPC (manufactured by Tosoh Corporation),
Column: TSK guard column SUPER HZ-L (manufactured by Tosoh Corporation)
+ TSK-GEL SUPER HZ1000 (4.6mmφ × 150mm)
+ TSK-GEL SUPER HZ2500 (4.6mmφ × 150mm)
+ TSK-GEL SUPER HZ4000 (4.6 mmφ × 150 mm),
Column temperature: 40 ° C
-Injection volume: 10 μL,
Carrier and flow rate: tetrahydrofuran 0.35 mL / min,
Sample preparation: About 0.02 g of the cocondensate is dissolved in 20 mL of tetrahydrofuran.
(b)残留モノマー及び残留溶媒の測定
 残留モノマー及び残留溶媒については、以下の条件に基づくガスクロマトグラフィーにより定量を行った。
・使用機器 :島津製作所社製 ガスクロマトグラフ GC-14B、
・カラム  :ガラスカラム外径5mm×内径3.2mm×長さ3.1m、
・充填剤  :充填剤 Silicone OV-17 10% Chromosorb WHP 80/100mesh, max.temp.340℃、
・カラム温度:80℃→280℃、
・気化室温度:250℃、
・検出器温度:280℃、
・検出器  :FID、
・キャリアー:N(40ml/min)、
・燃焼ガス :水素(60kPa),空気(60kPa)、
・注入量  :2μL。
 共縮合物を約0.5g、内標としてアニソール0.05gをアセトン10mLに溶解させ上記条件にて分析した。内部標準法(GC-IS法)により、共縮合物中の残留溶媒、残留モノマーの含有量(%)を測定した。なお、実施例および比較例の本文中に記載した含有量(%)は、特に断りのない限り質量パーセントとして表すものとする。
(B) Measurement of residual monomer and residual solvent The residual monomer and residual solvent were quantified by gas chromatography based on the following conditions.
-Equipment used: Gas chromatograph GC-14B manufactured by Shimadzu Corporation
Column: Glass column outer diameter 5 mm x inner diameter 3.2 mm x length 3.1 m,
Filler: Filler Silicone OV-17 10% Chromosorb WHP 80/100 mesh, max. temp. 340 ° C,
Column temperature: 80 ° C. → 280 ° C.
・ Vaporization chamber temperature: 250 ℃
-Detector temperature: 280 ° C
・ Detector: FID,
・ Carrier: N 2 (40 ml / min),
Combustion gas: hydrogen (60 kPa), air (60 kPa),
-Injection volume: 2 μL.
About 0.5 g of the cocondensate and 0.05 g of anisole as an internal standard were dissolved in 10 mL of acetone and analyzed under the above conditions. Residual solvent and residual monomer contents (%) in the cocondensate were measured by an internal standard method (GC-IS method). In addition, content (%) described in the text of Examples and Comparative Examples is expressed as mass percent unless otherwise specified.
(c)軟化点の測定
 JIS-K2207-1996(環球法)に準拠した方法により測定した。
(d)共縮合物中の各構成単位の含有比
 以下条件に基づく方法によりH―NMR分析を行った。
・装置:日本電子社製「JMN-ECS」(400MHz)、
・溶媒:重水素置換ジメチルスルホキシド。
・各成分の化学シフト:テトラメチルシランを基準(0ppm)とし、以下の値に示されるピークをそれぞれの成分のピークとした。
・p-tert-ブチルフェノール由来のp-tert-ブチル基のプロトン:1.0~1.2ppm、ホルムアルデヒド由来のメチレン基のプロトン:3.4~3.9ppm、o-フェニルフェノール由来のo-フェニル基のプロトン:7.1~7.5ppm。
 なお、以下の実施例・比較例中の構成比率については以下の基準に基づく比率である。
o-フェニルフェノール:p-tert-ブチルフェノールを1としたときの割合(モル倍)、ホルムアルデヒド由来のメチレン基:o-フェニルフェノールとp-tert-ブチルフェノールの合計量に対する割合(モル倍)。
(C) Measurement of softening point It was measured by a method based on JIS-K2207-1996 (ring and ball method).
(D) Content ratio of each structural unit in the cocondensate 1 H-NMR analysis was performed by a method based on the following conditions.
・ Equipment: “JMN-ECS” (400 MHz) manufactured by JEOL Ltd.
Solvent: deuterium substituted dimethyl sulfoxide.
-Chemical shift of each component: Tetramethylsilane was used as a reference (0 ppm), and the peak indicated by the following values was defined as the peak of each component.
P-tert-Butylphenol-derived p-tert-butyl group proton: 1.0 to 1.2 ppm, formaldehyde-derived methylene group proton: 3.4 to 3.9 ppm, o-phenylphenol-derived o-phenyl Group proton: 7.1-7.5 ppm.
In addition, about the component ratio in a following example and a comparative example, it is a ratio based on the following references | standards.
o-Phenylphenol: Ratio when p-tert-butylphenol is 1 (mole times), methylene group derived from formaldehyde: Ratio to the total amount of o-phenylphenol and p-tert-butylphenol (mole times).
[共縮合物(B)の製造例]
製造例1
 還流冷却器及び温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン97.3g(1.2mol)、p-tert-ブチルフェノール15.0g(0.10mol)、o-フェニルフェノール85.0g(0.50mol)、トルエン75.4gを順に加えた。その後、内温45℃まで昇温し、24%水酸化ナトリウム水溶液20g(0.12mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて2時間保温した。その後、内温80℃になるまで再度昇温し、さらに4時間保温した。
 反応終了後、内温65℃以下になるまで冷却し、水49g及びシュウ酸二水和物7.55g(1.13mol)を加えて中和し、トルエン22.6gを加えた後、静置し、水層を除去した。
 レゾルシン62.7g(0.57mol)を加え、内温70℃まで昇温し、減圧下で4時間かけて共沸脱水を行った。この間内温は90℃まで上昇した。続いて、常圧で内温115℃まで昇温し、1時間共沸脱水を行った。その後、内温145~150℃まで昇温し、2時間保温することで溶媒トルエンを留去した。その後、内温140~150℃に保ったまま16kPaまで減圧し、2時間保温することで溶媒トルエンをさらに留去した。以上の操作により、橙色の共縮合物177gを得た。
 共縮合物の平均分子量:2160、共縮合物の軟化点:123℃、共縮合物中の残留トルエン分:1.1%、残留p-tert-ブチルフェノール分:0.0%、残留o-フェニルフェノール分:0.4%、残留レゾルシン分:9.5%。共縮合物の各構成単位の比率;o-フェニルフェノール:5.40、メチレン基:1.33。
[Production Example of Cocondensate (B)]
Production Example 1
In a four-necked separable flask equipped with a reflux condenser and a thermometer, 97.3 g (1.2 mol) of formalin with a purity of 37%, 15.0 g (0.10 mol) of p-tert-butylphenol, 85 of o-phenylphenol 85 0.0 g (0.50 mol) and 75.4 g of toluene were sequentially added. Thereafter, the temperature was raised to an internal temperature of 45 ° C., 20 g (0.12 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the heat generation stopped. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C. and kept at that temperature for 2 hours. Thereafter, the temperature was raised again until the internal temperature reached 80 ° C., and the temperature was further kept for 4 hours.
After completion of the reaction, the reaction mixture was cooled to an internal temperature of 65 ° C. or less, neutralized by adding 49 g of water and 7.55 g (1.13 mol) of oxalic acid dihydrate, and 22.6 g of toluene was added, and then allowed to stand. And the aqueous layer was removed.
62.7 g (0.57 mol) of resorcin was added, the temperature was raised to an internal temperature of 70 ° C., and azeotropic dehydration was performed for 4 hours under reduced pressure. During this time, the internal temperature rose to 90 ° C. Subsequently, the temperature was raised to 115 ° C. at normal pressure, and azeotropic dehydration was performed for 1 hour. Thereafter, the temperature was raised to an internal temperature of 145 to 150 ° C., and the solvent toluene was distilled off by keeping the temperature for 2 hours. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and the solvent toluene was further distilled off by maintaining the temperature for 2 hours. By the above operation, 177 g of orange cocondensate was obtained.
Average molecular weight of the cocondensate: 2160, softening point of the cocondensate: 123 ° C., residual toluene content in the cocondensate: 1.1%, residual p-tert-butylphenol content: 0.0%, residual o-phenyl Phenol content: 0.4%, Residual resorcin content: 9.5%. Ratio of each structural unit of the cocondensate: o-phenylphenol: 5.40, methylene group: 1.33.
 上記製造例1で得られた共縮合物(B)をレゾルシン樹脂1として用い、従来品として市販品の樹脂接着剤であるSUMIKANOL620(田岡化学工業社製)をレゾルシン樹脂2として用いた。第1表に、レゾルシン樹脂1及び2の評価結果を示す。
 第1表において、遊離フェノール類とは、本願製造例1の場合は、p-tert-ブチルフェノール及びo-フェニルフェノールの合計量を表す。SUMIKANOL620の場合は、p-tert-オクチルフェノール及びp-クレゾールの合計量を表す。
The cocondensate (B) obtained in Production Example 1 was used as resorcin resin 1, and SUMIKANOL620 (manufactured by Taoka Chemical Co., Ltd.), which is a commercially available resin adhesive, was used as resorcin resin 2 as a conventional product. Table 1 shows the evaluation results of resorcin resins 1 and 2.
In Table 1, the free phenols represent the total amount of p-tert-butylphenol and o-phenylphenol in the case of Production Example 1 of the present application. In the case of SUMIKANOL620, it represents the total amount of p-tert-octylphenol and p-cresol.
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
[金属コードの製造例]
製造例2~13
 第2表に示すCu、Zn、Ni、Coの質量%にて、Cu、Zn、Co、Niの順に直径1.7mmのスチールワイヤにめっきを繰り返し、その後550℃において5秒間熱拡散処理を行い、所望する3元又は4元めっきを得た後、伸線加工を施し、めっき平均厚み0.25μmの直径0.30mmのスチールワイヤを得た。得られた各スチールワイヤを用いて、1×3×0.30(mm)構造の撚りコードである12種類の金属コードを作製した。
 なお、ブラスめっき中にCoを含有する金属コードは、被覆ゴム組成物のコバルト脂肪酸塩を削除又は削減することが可能となるので、被覆ゴム組成物の劣化後の耐亀裂進展性を向上することができる。
[Production example of metal cord]
Production Examples 2 to 13
Repeated plating on a steel wire with a diameter of 1.7 mm in the order of Cu, Zn, Co, and Ni in the mass% of Cu, Zn, Ni, and Co shown in Table 2, followed by thermal diffusion treatment at 550 ° C. for 5 seconds. After obtaining the desired ternary or quaternary plating, wire drawing was performed to obtain a steel wire having a plating average thickness of 0.25 μm and a diameter of 0.30 mm. Using the obtained steel wires, 12 types of metal cords, which are twist cords having a structure of 1 × 3 × 0.30 (mm), were produced.
In addition, since the metal cord containing Co in the brass plating can remove or reduce the cobalt fatty acid salt of the coated rubber composition, it can improve the crack resistance after deterioration of the coated rubber composition. Can do.
実施例1~11及び比較例1~8
 下記第2表に示す配合処方に従い、まず、バンバリーミキサーで天然ゴム、カーボンブラック、レゾルシン樹脂1又は2及びコバルト脂肪酸塩を混練し、160℃に達した時点で排出した。次いで、得られた混合物に、60℃に保温した関西ロール製6インチオープンロールにより老化防止剤、酸化亜鉛、不溶性硫黄、加硫促進剤及びメチレンドナーを添加混合して、金属コード被覆用ゴム組成物を調製した。第2表中の各成分の詳細は下記の通りである。第2表の配合処方中の数値の単位は質量部を表す。得られた7種類の未加硫ゴム組成物の作業性を評価した。次いで、7種類の未加硫ゴム組成物を160℃で20分間加硫し、各加硫ゴム組成物の劣化後の耐亀裂進展性を評価した。結果を第2表に示す。
 次に、上記12種類の金属コードを、それぞれ12.5mm間隔で配列したものの両面を、上記各未加硫ゴム組成物(下記第2表記載の配合処方の7種類の未加硫ゴム組成物)からなる未加硫ゴムシートを用いて被覆して、第2表の金属コードとゴム組成物との組み合わせからなる実施例1~11及び比較例1~8の19種類の金属コード-ゴム複合体を作製した。得られた19種類の金属コード-ゴム複合体の初期接着性及び湿熱接着性を評価した。結果を第2表に示す。
Examples 1 to 11 and Comparative Examples 1 to 8
According to the formulation shown in Table 2 below, first, natural rubber, carbon black, resorcin resin 1 or 2 and cobalt fatty acid salt were kneaded with a Banbury mixer and discharged when the temperature reached 160 ° C. Next, an anti-aging agent, zinc oxide, insoluble sulfur, a vulcanization accelerator, and a methylene donor were added to and mixed with the obtained mixture by a 6-inch open roll made of Kansai Roll that was kept at 60 ° C., and a rubber composition for coating a metal cord A product was prepared. Details of each component in Table 2 are as follows. The unit of the numerical values in the formulation of Table 2 represents parts by mass. The workability of the seven types of unvulcanized rubber compositions obtained was evaluated. Subsequently, seven types of unvulcanized rubber compositions were vulcanized at 160 ° C. for 20 minutes, and the crack resistance after deterioration of each vulcanized rubber composition was evaluated. The results are shown in Table 2.
Next, both of the above-mentioned 12 types of metal cords arranged at intervals of 12.5 mm are attached to the respective unvulcanized rubber compositions (seven types of unvulcanized rubber compositions having the compounding formulations described in Table 2 below). 19 types of metal cord-rubber composites of Examples 1 to 11 and Comparative Examples 1 to 8 comprising combinations of the metal cords of Table 2 and rubber compositions. The body was made. The 19 kinds of obtained metal cord-rubber composites were evaluated for initial adhesion and wet heat adhesion. The results are shown in Table 2.
[金属コード-ゴム複合体及び加硫ゴム組成物の評価方法]
(a)初期接着性
 金属コードを、12.5mm間隔で平行に並べ、該金属コードを上下からゴム組成物で被覆し、160℃で7分間加硫して、ゴム組成物とスチールコードとを接着させた。このようにして、厚さ1mmのゴムシートに金属コードが埋設された、ゴム-金属複合体を得た(金属コードは、ゴムシートの厚さ方向中央に、シート表面に、12.5mm間隔で並んでいる)。その後、ASTM D 2229-2004に準拠して、加硫直後の各サンプルから金属コードを引き抜き、金属コードに付着しているゴムの被覆率を目視観察にて0~100%で決定し、初期接着性の指標とした。結果は、比較例1を100とする指数で表示した。指数値が大きい程、初期接着性に優れていることを示す。
初期接着性指数={(供試試料の金属コードに付着しているゴムの被覆率)/(比較例1の試料の金属コードに付着しているゴムの被覆率)}×100
(b)湿熱接着性(湿熱老化後の接着性)
 金属コードを、12.5mm間隔で平行に並べ、該金属コードを上下からゴム組成物で被覆し、160℃で20分間加硫して、ゴム組成物と金属コードとを接着させた。このようにして、厚さ1mmのゴムシートの間に金属コードが埋設された金属コード-ゴム複合体を得た(金属コードは、ゴムシートの厚さ中央方向に、シート表面に平行に、12.5mm間隔で並んでいる)。この金属コード-ゴム複合体を75℃、相対湿度95%雰囲気下で10日間劣化させた後、ASTM D 2229-2004に準拠して、各サンプルから金属コードを引き抜き、金属コードに付着しているゴムの被覆率を目視観察にて0~100%で決定し、温熱劣化性の指標とした。結果は、比較例1を100とする指数で表示した。指数値が大きい程、湿熱接着性に優れていることを示す。すなわち、耐温熱劣化性に優れていることを示す。
湿熱接着性指数={(供試試料の金属コードに付着しているゴムの被覆率)/(比較例1の試料の金属コードに付着しているゴムの被覆率)}×100
(c)劣化後耐亀裂進展性
 上記未加硫試料を160℃で20分間加硫して、厚さ2mmの加硫ゴムサンプルを作製し、これらの試料をそれぞれ100℃で24時間劣化させた。その後、上島製疲労試験機を用いて前記試料の定応力疲労試験を行い、破断するまでの回数を測定した。結果は、比較例1を100とする指数で表示した。指数値が大きい程、劣化後の耐亀裂進展性に優れることを示す。
劣化後耐亀裂進展性指数={(供試試料が切断するまでの回数)/(比較例1の試料が切断するまでの回数)}×100
[Evaluation method of metal cord-rubber composite and vulcanized rubber composition]
(A) Initial adhesiveness Metal cords are arranged in parallel at an interval of 12.5 mm, the metal cords are covered with a rubber composition from above and below, and vulcanized at 160 ° C. for 7 minutes to obtain a rubber composition and a steel cord. Glued. In this way, a rubber-metal composite was obtained in which a metal cord was embedded in a rubber sheet having a thickness of 1 mm (the metal cord was at the center of the rubber sheet in the thickness direction and on the sheet surface at intervals of 12.5 mm. Are lined up). Thereafter, in accordance with ASTM D 2229-2004, the metal cord is pulled out from each sample immediately after vulcanization, and the coverage of the rubber adhering to the metal cord is determined by visual observation from 0 to 100%, and the initial adhesion It was used as an index of sex. The results were expressed as an index with Comparative Example 1 as 100. It shows that it is excellent in initial stage adhesiveness, so that an index value is large.
Initial adhesiveness index = {(Rubber coverage attached to metal cord of test sample) / (Rubber coverage attached to metal cord of sample of Comparative Example 1)} × 100
(B) Wet heat adhesion (adhesion after wet heat aging)
The metal cords were arranged in parallel at intervals of 12.5 mm, the metal cords were covered with the rubber composition from above and below, and vulcanized at 160 ° C. for 20 minutes to bond the rubber composition and the metal cord. In this way, a metal cord-rubber composite in which a metal cord was embedded between rubber sheets having a thickness of 1 mm was obtained (the metal cord was in the direction of the thickness center of the rubber sheet, parallel to the sheet surface, 12 .. arranged at intervals of 5 mm). After the metal cord-rubber composite was deteriorated for 10 days at 75 ° C. and 95% relative humidity, the metal cord was pulled out from each sample and adhered to the metal cord according to ASTM D 2229-2004. The rubber coverage was determined from 0 to 100% by visual observation and used as an indicator of thermal degradation. The results were expressed as an index with Comparative Example 1 as 100. It shows that it is excellent in wet heat adhesiveness, so that an index value is large. That is, it shows that it is excellent in resistance to thermal degradation.
Wet heat adhesion index = {(Rubber coverage attached to metal cord of test sample) / (Rubber coverage attached to metal cord of sample of Comparative Example 1)} × 100
(C) Crack growth resistance after deterioration The unvulcanized sample was vulcanized at 160 ° C. for 20 minutes to prepare vulcanized rubber samples having a thickness of 2 mm, and these samples were each deteriorated at 100 ° C. for 24 hours. . Thereafter, the sample was subjected to a constant stress fatigue test using a Ueshima fatigue tester, and the number of times until fracture was measured. The results were expressed as an index with Comparative Example 1 as 100. It shows that it is excellent in the crack progress property after deterioration, so that an index value is large.
Crack growth resistance index after degradation = {(number of times until the test sample is cut) / (number of times until the sample of Comparative Example 1 is cut)} × 100
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000005

 
(注)
*1:天然ゴム:SMR-CV60、
*2:カーボンブラック:東海カーボン株式会社製「シースト300」(HAF-LSグレード)、
*3:レゾルシン樹脂1:上記製造例1で得られた共縮合物(B)
*4:レゾルシン樹脂2:田岡化学工業株式会社製、商品名「SUMIKANOL620」
*5:コバルト脂肪酸塩:ステアリン酸コバルト(試薬)、
*6:酸化亜鉛:正同化学工業株式会社製、商品名「酸化亜鉛2種」
*7:老化防止剤:N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン:大内新興化学工業株式会社製、商品名「ノクラック6C」
*8:加硫促進剤:N,N-ジシクロヘキシル-2-べンゾチアゾリルスルフェンアミド(試薬)、
*9:不溶性硫黄:フレキシス社製、商品名「クリステックスHS  OT-20」、
*10:メチレンドナー化合物: 変性エーテル化メチロールメラミン樹脂 田岡化学工業株式会社製「スミカノール507AP」
(note)
* 1: Natural rubber: SMR-CV60,
* 2: Carbon black: “Seast 300” (HAF-LS grade) manufactured by Tokai Carbon Co., Ltd.
* 3: Resorcin resin 1: Cocondensate (B) obtained in Production Example 1 above
* 4: Resorcin resin 2: manufactured by Taoka Chemical Co., Ltd., trade name “SUMIKANOL620”
* 5: Cobalt fatty acid salt: cobalt stearate (reagent)
* 6: Zinc oxide: manufactured by Shodo Chemical Co., Ltd., trade name "Zinc oxide 2 types"
* 7: Anti-aging agent: N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine: manufactured by Ouchi Shinsei Chemical Co., Ltd., trade name “NOCRACK 6C”
* 8: Vulcanization accelerator: N, N-dicyclohexyl-2-benzothiazolylsulfenamide (reagent),
* 9: Insoluble sulfur: manufactured by Flexis, trade name “Christex HS OT-20”
* 10: Methylene donor compound: Modified etherified methylol melamine resin “Sumikanol 507AP” manufactured by Taoka Chemical Industries, Ltd.
 第2表から明らかなように、本発明の金属コード-ゴム複合体は、いずれも比較例1~8の金属コード-ゴム複合体と比較して初期接着性及び湿熱接着性が良好であった。また、本発明に係る共縮合物(B)を配合したゴム組成物を用いた金属コード-ゴム複合体は、いずれも、比較例1~8の金属コード-ゴム複合体と比較して湿熱接着性が更に向上した。さらにブラスめっき中にCoを含有する金属コードは、被覆ゴム組成物のコバルト脂肪酸塩を削除することが可能となるので、コバルト脂肪酸塩を含まない実施例4のゴム組成物の劣化後の耐亀裂進展性が著しく向上した。
 また、本発明に係るレゾルシン樹脂として好適に用いられる共縮合物(B)を配合したゴム組成物は、実施例5のゴム組成物と比較して、REACH規則に定められるSVHCの候補物質が存在せず、REACHの規制を受ける懸念がなくなるので好ましい。
 さらに、実施例1~4及び8~10に係るゴム組成物に含まれる、遊離レゾルシン以外の未反応モノマー及び残存溶媒の総量は、ゴム成分に対して0.03質量%となり、0.17質量%より大幅に少なく、実施例5にかかる従来品(SUMIKANOL620)を配合したゴム組成物に含まれる、遊離レゾルシン以外の未反応モノマー及び残存溶媒の総量0.246質量%と比較して、未加硫ゴム組成物の混練り時の臭気の発生が大幅に削減され、作業環境保全のための設備投資が大幅に軽減されることとなった。
As is apparent from Table 2, the metal cord-rubber composites of the present invention all had better initial adhesion and wet heat adhesion than the metal cord-rubber composites of Comparative Examples 1-8. . In addition, the metal cord-rubber composites using the rubber composition containing the cocondensate (B) according to the present invention are all wet-heat bonded as compared with the metal cord-rubber composites of Comparative Examples 1-8. Improved further. Furthermore, since the metal cord containing Co in the brass plating can remove the cobalt fatty acid salt of the coated rubber composition, the crack resistance after deterioration of the rubber composition of Example 4 that does not contain the cobalt fatty acid salt. Progressability has improved significantly.
Further, the rubber composition containing the cocondensate (B) suitably used as the resorcin resin according to the present invention has SVHC candidate substances stipulated in the REACH regulations as compared with the rubber composition of Example 5. Without fear of being subject to REACH regulations.
Further, the total amount of unreacted monomers other than free resorcin and the residual solvent contained in the rubber compositions according to Examples 1 to 4 and 8 to 10 was 0.03% by mass, 0.17% by mass with respect to the rubber component. % Of the unreacted monomer other than free resorcin and the residual solvent contained in the rubber composition containing the conventional product (SUMIKANOL 620) according to Example 5, compared with 0.246% by mass. Odor generation during kneading of the vulcanized rubber composition has been greatly reduced, and capital investment for work environment conservation has been greatly reduced.
 本発明の金属コード-ゴム複合体は、ゴム物品、中でもタイヤのカーカスやベルトの補強材として好適である。特に、本発明の金属コード-ゴム複合体を、トラックおよびバス用タイヤ、乗用車用タイヤ、中でも乗用車用ラジアルタイヤのベルトに適用する場合には、ゴムとの接着速度が速くなることにより、タイヤの加硫時間を大幅に短縮することができる効果をも得ることができる。一方、トラックおよびバス用タイヤ、中でもトラックおよびバス用ラジアルタイヤのカーカスに適用する場合には、ビード部においてゴムとの接着速度が速くなるため、加硫時間の短縮と併せて、ビード部耐久性の向上をも図ることが可能となる。
 
The metal cord-rubber composite of the present invention is suitable as a reinforcing material for rubber articles, particularly tire carcasses and belts. In particular, when the metal cord-rubber composite of the present invention is applied to a belt of a tire for trucks and buses, a tire for a passenger car, particularly a radial tire for a passenger car, the adhesion speed with the rubber is increased, so that An effect that the vulcanization time can be greatly shortened can also be obtained. On the other hand, when applied to the carcass of truck and bus tires, especially truck and bus radial tires, the speed of adhesion to rubber increases at the bead part, so that the bead part durability is shortened along with shortening of the vulcanization time. It is also possible to improve.

Claims (5)

  1.  ブラスめっきが周面に施されたスチールワイヤの単線からなる金属コード又は該スチールワイヤを撚り合わせてなる金属コードにゴム組成物を被覆してなる金属コード-ゴム複合体であって、該ゴム組成物がゴム成分(A)とゴム成分(A)100質量部に対し、レゾルシン樹脂0.1~10質量部とを配合してなり、かつ該ブラスめっきがCu58~70質量%、Co及びNiから選ばれる少なくとも1種の金属0.5~10質量%及び残部をZnからなる3元又は4元めっきであることを特徴とする金属コード-ゴム複合体。 A metal cord-rubber composite formed by coating a rubber composition on a metal cord made of a single wire of steel wire having brass plating applied to its peripheral surface or a metal cord formed by twisting the steel wire, the rubber composition The rubber component (A) and 100 parts by mass of the rubber component (A) are mixed with 0.1 to 10 parts by mass of a resorcin resin, and the brass plating is composed of 58 to 70% by mass of Cu, Co and Ni. A metal cord-rubber composite, characterized in that it is a ternary or quaternary plating comprising 0.5 to 10% by mass of at least one selected metal and the balance being Zn.
  2.  前記レゾルシン樹脂が、下記式(1)で表されるp-tert-ブチルフェノール由来の構成単位、下記式(2)で表されるo-フェニルフェノール由来の構成単位、及び下記式(3)で表されるレゾルシン由来の構成単位を含み軟化点が150℃以下の共縮合物(B)であることを特徴とする請求項1に記載の金属コード-ゴム複合体。
    Figure JPOXMLDOC01-appb-C000001

     
    The resorcin resin is represented by a structural unit derived from p-tert-butylphenol represented by the following formula (1), a structural unit derived from o-phenylphenol represented by the following formula (2), and the following formula (3). The metal cord-rubber composite according to claim 1, which is a cocondensate (B) containing a structural unit derived from resorcin and having a softening point of 150 ° C or lower.
    Figure JPOXMLDOC01-appb-C000001

  3.  前記共縮合物(B)の軟化点が80℃以上150℃以下である請求項2に記載の金属コード-ゴム複合体。 The metal cord-rubber composite according to claim 2, wherein the softening point of the cocondensate (B) is 80 ° C or higher and 150 ° C or lower.
  4.  前記共縮合物(B)の軟化点が80℃以上140℃以下である請求項2又は3に記載の金属コード-ゴム複合体。 The metal cord-rubber composite according to claim 2 or 3, wherein the softening point of the cocondensate (B) is 80 ° C or higher and 140 ° C or lower.
  5.  前記ブラスめっきの平均厚みが0.13~0.35μmである請求項1~4のいずれか1項に記載の金属コード-ゴム複合体。 The metal cord-rubber composite according to any one of claims 1 to 4, wherein an average thickness of the brass plating is 0.13 to 0.35 µm.
PCT/JP2015/077404 2014-10-01 2015-09-28 Metal cord-rubber composite body WO2016052451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-203531 2014-10-01
JP2014203531 2014-10-01

Publications (1)

Publication Number Publication Date
WO2016052451A1 true WO2016052451A1 (en) 2016-04-07

Family

ID=55630480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077404 WO2016052451A1 (en) 2014-10-01 2015-09-28 Metal cord-rubber composite body

Country Status (1)

Country Link
WO (1) WO2016052451A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029378A1 (en) * 2019-08-14 2021-02-18 株式会社ブリヂストン Steel cord/rubber composite, tire, conveyor belt, hose, and rubber crawler
CN112608529A (en) * 2019-10-03 2021-04-06 横滨橡胶株式会社 Rubber composition for bonding steel cord and conveyor belt

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394577A (en) * 1977-01-31 1978-08-18 Sumitomo Chem Co Ltd Method of adhesion of steel cord to rubber by vulcanizing
JPS54114552A (en) * 1978-02-28 1979-09-06 Sumitomo Chem Co Ltd Improved rubber composition
JPS6349501A (en) * 1986-08-20 1988-03-02 Yokohama Rubber Co Ltd:The Radial tire
JPH01203435A (en) * 1988-02-08 1989-08-16 Bridgestone Corp Steel cord and rubber composite material
JP2001234140A (en) * 2000-02-25 2001-08-28 Bridgestone Corp Adhesive rubber composition
JP2004066298A (en) * 2002-08-06 2004-03-04 Bridgestone Corp Steel cord for reinforcing rubber article, and its manufacturing method
JP2005290373A (en) * 2004-03-12 2005-10-20 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2006118104A (en) * 2004-10-25 2006-05-11 Bridgestone Corp Steel cord for reinforcing rubber, method for producing the same and rubber-steel cord composite and pneumatic tire
JP2007177386A (en) * 2005-12-01 2007-07-12 Sumitomo Rubber Ind Ltd Metallic cord, rubber/cord composite, and pneumatic tire using the same
JP2007211152A (en) * 2006-02-10 2007-08-23 Bridgestone Corp Rubber composition and pneumatic tire
JP2011219837A (en) * 2010-04-13 2011-11-04 Nippon Steel Corp Extra fine plated steel wire having excellent adhesiveness to rubber
CN103012870A (en) * 2012-12-20 2013-04-03 青岛科技大学 Modified carcass ply compound of all-steel radial tire
JP2014019062A (en) * 2012-07-18 2014-02-03 Sumitomo Rubber Ind Ltd Method for manufacturing a tire and pneumatic tire
JP2014152220A (en) * 2013-02-07 2014-08-25 Taoka Chem Co Ltd Co-condensation product and rubber composition containing the same
WO2014156870A1 (en) * 2013-03-26 2014-10-02 田岡化学工業株式会社 Cocondensate and method for producing same, and rubber composition containing cocondensate
JP2015163668A (en) * 2014-01-29 2015-09-10 田岡化学工業株式会社 Resin composition and production method thereof, and rubber composition including co-condensed object

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394577A (en) * 1977-01-31 1978-08-18 Sumitomo Chem Co Ltd Method of adhesion of steel cord to rubber by vulcanizing
JPS54114552A (en) * 1978-02-28 1979-09-06 Sumitomo Chem Co Ltd Improved rubber composition
JPS6349501A (en) * 1986-08-20 1988-03-02 Yokohama Rubber Co Ltd:The Radial tire
JPH01203435A (en) * 1988-02-08 1989-08-16 Bridgestone Corp Steel cord and rubber composite material
JP2001234140A (en) * 2000-02-25 2001-08-28 Bridgestone Corp Adhesive rubber composition
JP2004066298A (en) * 2002-08-06 2004-03-04 Bridgestone Corp Steel cord for reinforcing rubber article, and its manufacturing method
JP2005290373A (en) * 2004-03-12 2005-10-20 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2006118104A (en) * 2004-10-25 2006-05-11 Bridgestone Corp Steel cord for reinforcing rubber, method for producing the same and rubber-steel cord composite and pneumatic tire
JP2007177386A (en) * 2005-12-01 2007-07-12 Sumitomo Rubber Ind Ltd Metallic cord, rubber/cord composite, and pneumatic tire using the same
JP2007211152A (en) * 2006-02-10 2007-08-23 Bridgestone Corp Rubber composition and pneumatic tire
JP2011219837A (en) * 2010-04-13 2011-11-04 Nippon Steel Corp Extra fine plated steel wire having excellent adhesiveness to rubber
JP2014019062A (en) * 2012-07-18 2014-02-03 Sumitomo Rubber Ind Ltd Method for manufacturing a tire and pneumatic tire
CN103012870A (en) * 2012-12-20 2013-04-03 青岛科技大学 Modified carcass ply compound of all-steel radial tire
JP2014152220A (en) * 2013-02-07 2014-08-25 Taoka Chem Co Ltd Co-condensation product and rubber composition containing the same
WO2014156870A1 (en) * 2013-03-26 2014-10-02 田岡化学工業株式会社 Cocondensate and method for producing same, and rubber composition containing cocondensate
JP2015163668A (en) * 2014-01-29 2015-09-10 田岡化学工業株式会社 Resin composition and production method thereof, and rubber composition including co-condensed object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029378A1 (en) * 2019-08-14 2021-02-18 株式会社ブリヂストン Steel cord/rubber composite, tire, conveyor belt, hose, and rubber crawler
CN114222840A (en) * 2019-08-14 2022-03-22 株式会社普利司通 Steel cord/rubber composite, tire, conveyor belt, hose, and rubber crawler
EP4015704A4 (en) * 2019-08-14 2023-08-16 Bridgestone Corporation Steel cord/rubber composite, tire, conveyor belt, hose, and rubber crawler
CN112608529A (en) * 2019-10-03 2021-04-06 横滨橡胶株式会社 Rubber composition for bonding steel cord and conveyor belt

Similar Documents

Publication Publication Date Title
JP5865544B1 (en) Rubber composition for tire
EP2730432B1 (en) Rubber composition and pneumatic tire
JP6245752B2 (en) Cocondensate, method for producing the same, and rubber composition containing cocondensate
JP5727989B2 (en) Steel cord coating, steel cord adjacent strip or rubber composition for tie gum and pneumatic tire
JP6933068B2 (en) Rubber composition for steel cord coating and tires
JP5808305B2 (en) Rubber composition and pneumatic tire
US20130158163A1 (en) Method for manufacturing rubber composition, rubber composition, and tire using same
JP2014031400A (en) Rubber composition for side wall reinforcement layer of run flat tire and run flat tire
JP2015163668A (en) Resin composition and production method thereof, and rubber composition including co-condensed object
JP6016297B2 (en) Cocondensate and rubber composition containing the same
WO2016052449A1 (en) Metal cord-rubber composite body
JP6675137B2 (en) Resin composition, method for producing the same, and rubber composition containing resin composition
JP2014152220A (en) Co-condensation product and rubber composition containing the same
WO2016052451A1 (en) Metal cord-rubber composite body
JP2018172488A (en) Novolak type co-condensate for rubber blend, and manufacturing method of co-condensate
WO2016052447A1 (en) Rubber composition for tire
JP6292715B2 (en) Cocondensate, method for producing the same, and rubber composition containing cocondensate
JP2010163593A (en) Rubber composition for bead filler and tire using the same
WO2016052450A1 (en) Metal cord-rubber composite body
JP2014105225A (en) Co-condensed material and rubber composition containing the same
JP6880565B2 (en) Pneumatic tires
JP2011184611A (en) Use of s-(4-aminobutyl)thiosulfuric acid or metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP2019183060A (en) Novolak type co-condensate for rubber blending, and manufacturing method of rubber composition containing the co-condensate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP