JP2014100670A - Method for stable acidic gas treatment and combustion exhaust gas treatment facility - Google Patents

Method for stable acidic gas treatment and combustion exhaust gas treatment facility Download PDF

Info

Publication number
JP2014100670A
JP2014100670A JP2012254690A JP2012254690A JP2014100670A JP 2014100670 A JP2014100670 A JP 2014100670A JP 2012254690 A JP2012254690 A JP 2012254690A JP 2012254690 A JP2012254690 A JP 2012254690A JP 2014100670 A JP2014100670 A JP 2014100670A
Authority
JP
Japan
Prior art keywords
addition amount
acid gas
gas concentration
addition
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012254690A
Other languages
Japanese (ja)
Other versions
JP6020085B2 (en
JP2014100670A5 (en
Inventor
Mitsuhiro Masuko
光博 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012254690A priority Critical patent/JP6020085B2/en
Priority to CN201310576689.8A priority patent/CN103831011B/en
Publication of JP2014100670A publication Critical patent/JP2014100670A/en
Publication of JP2014100670A5 publication Critical patent/JP2014100670A5/ja
Application granted granted Critical
Publication of JP6020085B2 publication Critical patent/JP6020085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for a stable acidic gas treatment and a combustion exhaust gas treatment facility that appropriately control an addition amount of two alkali agents with mutually different characteristics to be added to an acidic gas.SOLUTION: A combustion exhaust gas treatment facility 10 applied with the method for a stable acidic gas treatment comprises: a first adding device 42 and a second adding device 44 provided in an introduction passage 3; an acidic gas measurement device 30 provided in an exhaust passage 4; and an addition amount control device 50. The addition amount control device 50 includes: a first addition amount calculation section 60 that receives an acidic gas density signal S0 and outputs a first addition amount signal S21; and a second addition amount calculation section 70 that receives the first addition amount signal S21 and outputs a second addition amount signal S22. The first adding device 42 and the second adding device 44 on the basis of the first addition amount signal S21 and the second addition amount signal S22 respectively add a first alkali agent and a second alkali agent to a combustion exhaust gas flowing in the introduction passage 3.

Description

本発明は、都市ごみ廃棄物焼却炉、産業廃棄物焼却炉、発電ボイラ、炭化炉、民間工場等の燃焼施設において発生する有害な塩化水素、硫黄酸化物等の酸性ガスを含む燃焼排ガスの安定処理方法及び燃焼排ガス処理施設に関し、詳しくは、酸性ガスを処理するアルカリ剤の添加量を効率的に制御する燃焼排ガスの安定処理方法及び燃焼排ガス処理施設に関する。   The present invention stabilizes combustion exhaust gas containing acidic gases such as harmful hydrogen chloride and sulfur oxide generated in combustion facilities such as municipal waste waste incinerators, industrial waste incinerators, power generation boilers, carbonization furnaces, private factories, etc. More specifically, the present invention relates to a combustion exhaust gas stabilization treatment method and a combustion exhaust gas treatment facility that efficiently controls the amount of an alkaline agent added to treat acid gas.

都市ごみ廃棄物焼却炉、産業廃棄物焼却炉、発電ボイラ、炭化炉、民間工場等の燃焼施設の燃焼炉において発生する燃焼排ガスは、有害な塩化水素ガス、硫黄酸化物ガス等の酸性ガスを含む。そして、燃焼施設は、酸性ガスに、消石灰、重曹等のアルカリ剤を添加し、その後、バグフィルターのような集塵機で除塵し、その後、有害な酸性ガスが殆ど含まれない状態で煙突から排出される。
集塵機で集塵された飛灰は、有害なパラジウム(Pd)、カドミウム(Cd)等の重金属類を含有している。これら有害な重金属類は、安定化処理された後、最終処分場で埋め立て処分される(例えば、特許文献1参照)。
Combustion exhaust gas generated in combustion furnaces of municipal waste incinerators, industrial waste incinerators, power generation boilers, carbonization furnaces, private factories, etc., is treated with acidic gases such as harmful hydrogen chloride gas and sulfur oxide gas. Including. The combustion facility adds an alkaline agent such as slaked lime or baking soda to the acid gas, and then removes the dust with a dust collector such as a bag filter, after which it is discharged from the chimney with almost no harmful acid gas. The
The fly ash collected by the dust collector contains harmful heavy metals such as palladium (Pd) and cadmium (Cd). These harmful heavy metals are stabilized and then landfilled at the final disposal site (see, for example, Patent Document 1).

酸性ガスを処理する消石灰は、塩化水素ガスとの反応速度が塩化水素ガスの濃度と共に増加するという性質を有する(例えば、非特許文献1参照)が、酸性ガスとの反応性が低く、硫黄酸化物との反応性が特に低い性質を有する。   Slaked lime for treating acid gas has the property that the reaction rate with hydrogen chloride gas increases with the concentration of hydrogen chloride gas (see, for example, Non-Patent Document 1), but the reactivity with acid gas is low and sulfur oxidation is performed. Reactivity with the product is particularly low.

酸性ガスを処理するアルカリ剤である重曹は消石灰に比べて酸性ガスとの反応性が高く、5〜30μmに微粉加工された重曹は酸性ガスとの反応性が特に高い性質を有する(例えば、特許文献2参照)。換言すると、重曹は、酸性ガスを安定的に処理することでき、また、酸性ガスの未反応分が少ない。したがって、酸性ガスの濃度が激しく変動しても、酸性ガスの濃度に応じて適切な量の重曹を添加することにより、酸性ガスを安定的に処理しつつ、重曹の添加量を削減することができる。このため、集塵された飛灰の量ひいては埋め立て処分量を削減できるので、重曹を酸性ガスに添加することは、環境負荷の低減に有効な手段である。   Sodium bicarbonate, which is an alkaline agent for treating acid gas, has a higher reactivity with acid gas than slaked lime, and sodium bicarbonate finely processed to 5 to 30 μm has a particularly high reactivity with acid gas (for example, patents). Reference 2). In other words, baking soda can stably treat acidic gas, and there is little unreacted content of acidic gas. Therefore, even if the concentration of acid gas fluctuates drastically, by adding an appropriate amount of baking soda according to the concentration of acid gas, the amount of sodium bicarbonate added can be reduced while stably treating the acid gas. it can. For this reason, since the amount of the collected fly ash and hence the landfill disposal amount can be reduced, adding sodium bicarbonate to the acid gas is an effective means for reducing the environmental load.

特開平9−99215号公報JP-A-9-99215 特開2000−218128号公報JP 2000-218128 A

社団法人 化学工学会 発行、化学工学論文集 33(2), 154−159, 2007−03−20(http://ci.nii.ac.jp/naid/10018903497)Published by Japan Society for Chemical Engineering, Journal of Chemical Engineering 33 (2), 154-159, 2007-03-20 (http://ci.nii.ac.jp/naid/100189903497)

ところで、一般に、産業廃棄物焼却炉、民間工場等の燃焼炉から排出される酸性ガスの濃度は激しく変動する。消石灰は、経済的に安価であるが、酸性ガスとの反応が遅く、硫黄酸化物との反応が特に遅い。このため、消石灰のみを酸性ガスに添加する方法を、酸性ガスの濃度の変動が激しい産業廃棄物焼却炉、民間工場等に適用しにくい。   By the way, in general, the concentration of acid gas discharged from a combustion furnace such as an industrial waste incinerator or a private factory varies greatly. Although slaked lime is economically cheap, the reaction with acid gas is slow and the reaction with sulfur oxide is particularly slow. For this reason, it is difficult to apply the method of adding only slaked lime to acid gas to industrial waste incinerators, private factories and the like where the concentration of acid gas varies greatly.

また、重曹は、酸性ガスとの反応性が高いと共に反応が速く、酸性ガスを安定的に処理することができる。しかし、重曹は消石灰に比べて高価である。このため、重曹のみを酸性ガスに添加して安定的に処理する方法を、特に大量の酸性ガスが発生する産業廃棄物焼却炉、民間工場等に適用すると、経済的な負担が大きくなる。   Baking soda has a high reactivity with the acid gas and a fast reaction, so that the acid gas can be treated stably. However, baking soda is more expensive than slaked lime. For this reason, when the method of adding only baking soda to acid gas and stably treating it is applied to industrial waste incinerators, private factories and the like that generate a large amount of acid gas, the economic burden increases.

本発明は、酸性ガスに添加する互いに性質の異なる2つのアルカリ剤の添加量を適切に制御する酸性ガス安定処理方法及び燃焼排ガス処理施設を提供することを目的とする。   An object of the present invention is to provide an acid gas stable treatment method and a combustion exhaust gas treatment facility that appropriately control the addition amounts of two alkaline agents having different properties added to an acid gas.

本発明者らは、互いに性質の異なる2つのアルカリ剤のうち、第1アルカリ剤の添加量は酸性ガスに関する情報に基づいて算出し、第2アルカリ剤の添加量は第1アルカリ剤の添加量の情報に基づいて算出し、それらの添加量のアルカリ剤を酸性ガスに添加することにより、上記目的が達成されることを見いだし、本発明を完成した。   The inventors calculated the addition amount of the first alkaline agent based on the information on the acid gas, and the addition amount of the second alkaline agent is the addition amount of the first alkaline agent among the two alkaline agents having different properties. It was calculated based on the above information, and it was found that the above-mentioned object was achieved by adding the alkali agent in the added amount to the acidic gas, and the present invention was completed.

本発明は以下のものを提供するものである。
本発明に係る安定処理方法は、酸性ガスが含まれる燃焼排ガスを燃焼排ガス処理施設で安定的に処理するものである。安定処理方法は、前記燃焼排ガスを集塵機で処理した処理後燃焼排ガス中の酸性ガス濃度を測定する酸性ガス濃度測定工程と、前記酸性ガス濃度に基づいて酸性ガスに関する情報である酸性ガス情報を算出し、前記酸性ガス情報に基づいて第1アルカリ剤の通常添加量を算出し、前記通常添加量に基づいて第1添加量を算出する第1算出工程と、前記第1添加量に関する第1添加量情報に基づいて、第2アルカリ剤の第2添加量を算出する第2算出工程と、前記第1添加量の前記第1アルカリ剤を前記処理後燃焼排ガスに添加する第1添加工程と、前記第2添加量の前記第2アルカリ剤を前記処理後燃焼排ガスに添加する第2添加工程とを含む。
The present invention provides the following.
The stable treatment method according to the present invention stably treats flue gas containing acid gas at a flue gas treatment facility. The stable treatment method includes an acid gas concentration measurement step for measuring the acid gas concentration in the treated flue gas after treating the flue gas with a dust collector, and acid gas information that is information on the acid gas based on the acid gas concentration And calculating a normal addition amount of the first alkaline agent based on the acid gas information, calculating a first addition amount based on the normal addition amount, and a first addition relating to the first addition amount. A second calculation step of calculating a second addition amount of the second alkaline agent based on the quantity information; a first addition step of adding the first addition amount of the first alkaline agent to the treated combustion exhaust gas; A second addition step of adding the second addition amount of the second alkaline agent to the post-treatment combustion exhaust gas.

前記第1添加量情報は、所定時間における前記第1添加量の平均第1添加量を含み、前記第2算出工程は、過去の第2添加量から前記所定時間における前記第2添加量の平均第2添加量を含む第2添加量情報を算出し、前記平均第1添加量と前記平均第2添加量と予め規定された目標添加量とに基づいて前記第2添加量を算出することが好ましい。   The first addition amount information includes an average first addition amount of the first addition amount at a predetermined time, and the second calculation step includes calculating an average of the second addition amount at the predetermined time from a past second addition amount. Calculating second addition amount information including the second addition amount, and calculating the second addition amount based on the average first addition amount, the average second addition amount, and a predetermined target addition amount; preferable.

前記酸性ガス情報は、前記酸性ガス濃度測定工程において測定されたリアルタイムの酸性ガス濃度である瞬時酸性ガス濃度の変化の割合を表す酸性ガス濃度量を含み、前記第1算出工程は、前記酸性ガス濃度量に応じて、前記通常添加量を所定の補正方法に基づいて補正することが好ましい。   The acid gas information includes an acid gas concentration amount that represents a change rate of an instantaneous acid gas concentration that is a real-time acid gas concentration measured in the acid gas concentration measurement step, and the first calculation step includes the acid gas concentration The normal addition amount is preferably corrected based on a predetermined correction method according to the concentration amount.

安定処理方法は、予め、前記瞬時酸性ガス濃度と前記第1アルカリ剤の添加量とを関係づけた基本添加量対応情報を規定し、前記第1算出工程は、前記酸性ガス濃度量が一定状態を保っている又は減少している下降状態の場合、前記瞬時酸性ガス濃度と基本減少用添加量対応情報とに基づいて前記通常添加量を算出し、また、前記酸性ガス濃度量が増加している上昇状態の場合、前記瞬時酸性ガス濃度と、前記基本添加量対応情報における酸性ガス濃度の値を所定の補正方法で小さくした増加用添加量対応情報と、に基づいて前記通常添加量を算出することが好ましい。   The stable processing method prescribes basic addition amount correspondence information that relates the instantaneous acid gas concentration and the addition amount of the first alkaline agent in advance, and the first calculation step includes a state where the acid gas concentration amount is constant. Is maintained or decreased, the normal addition amount is calculated based on the instantaneous acid gas concentration and the basic reduction addition amount correspondence information, and the acid gas concentration amount increases. In the case of a rising state, the normal addition amount is calculated based on the instantaneous acid gas concentration and the addition amount correspondence information for increase in which the acid gas concentration value in the basic addition amount correspondence information is reduced by a predetermined correction method. It is preferable to do.

前記第1算出工程は、前記酸性ガス濃度量が一定状態を保っている又は減少している下降状態の場合、前記通常添加量を、予め規定された0を超え1未満の範囲にある下降補正値で補正することが好ましい。   In the first calculation step, when the acid gas concentration amount is in a descending state where the state is constant or decreasing, the normal addition amount is corrected to be in a range of more than 0 and less than 1. It is preferable to correct the value.

前記第1添加工程において添加できる最大添加量と最小添加量との間に複数の対応添加量上限値が設けられ、前記複数の対応添加量上限値は、それぞれ、複数の酸性ガス濃度に対応しており、前記酸性ガス情報は、前記酸性ガス濃度測定工程において測定された酸性ガス濃度である瞬時酸性ガス濃度を含んでおり、前記第1算出工程は、前記瞬時酸性ガス濃度が、前記複数の酸性ガス濃度のうち隣接する2つの酸性ガス濃度の範囲内にある場合、その隣接する2つの酸性ガス濃度のうち高い濃度に対応する対応添加量上限値に基づいて、前記通常添加量を算出することが好ましい。   A plurality of corresponding addition amount upper limit values are provided between the maximum addition amount and the minimum addition amount that can be added in the first addition step, and the plurality of corresponding addition amount upper limit values respectively correspond to a plurality of acid gas concentrations. The acidic gas information includes an instantaneous acidic gas concentration that is an acidic gas concentration measured in the acidic gas concentration measuring step, and the first calculating step includes determining that the instantaneous acidic gas concentration is the plurality of acidic gas concentrations. When the acid gas concentration is within the range of two adjacent acid gas concentrations, the normal addition amount is calculated based on the corresponding addition upper limit corresponding to the higher concentration of the two adjacent acid gas concentrations. It is preferable.

前記酸性ガス情報は、所定時間における前記酸性ガス濃度の平均値である平均酸性ガス濃度を含み、前記第1算出工程は、前記平均酸性ガス濃度が予め規定された緊急添加濃度を超えると、前記通常添加量の変わりに、予め規定された緊急添加量に基づいて前記第1添加量として算出することが好ましい。   The acidic gas information includes an average acidic gas concentration that is an average value of the acidic gas concentration in a predetermined time, and the first calculation step is performed when the average acidic gas concentration exceeds a predefined emergency addition concentration, Instead of the normal addition amount, it is preferable to calculate the first addition amount based on the emergency addition amount defined in advance.

前記酸性ガスは、塩化水素ガスと硫黄酸化物ガスとを含み、前記酸性ガス濃度測定工程は、前記酸性ガス中の塩化水素ガス濃度を測定する塩化水素ガス濃度測定工程と、前記酸性ガス中の硫黄酸化物濃度を測定する硫黄酸化物濃度測定工程と、を含み、前記酸性ガス情報は、前記塩化水素ガスに関する塩化水素情報と前記硫黄酸化物ガスに関する硫黄酸化物情報とを含み、前記第1算出工程は、前記塩化水素情報に基づいて算出した塩化水素ガス添加量と、前記硫黄酸化物情報に基づいて算出した硫黄酸化物ガス添加量と、基礎添加量とに基づいて前記通常添加量を算出し、前記基礎添加量は、所定の時間における前記第1添加量の平均添加量に基づいて算出されることが好ましい。   The acidic gas includes hydrogen chloride gas and sulfur oxide gas, and the acidic gas concentration measuring step includes a hydrogen chloride gas concentration measuring step of measuring the hydrogen chloride gas concentration in the acidic gas, and the acidic gas in the acidic gas. A sulfur oxide concentration measuring step for measuring a sulfur oxide concentration, wherein the acid gas information includes hydrogen chloride information related to the hydrogen chloride gas and sulfur oxide information related to the sulfur oxide gas, and In the calculating step, the normal addition amount is calculated based on the hydrogen chloride gas addition amount calculated based on the hydrogen chloride information, the sulfur oxide gas addition amount calculated based on the sulfur oxide information, and the basic addition amount. Preferably, the basic addition amount is calculated based on an average addition amount of the first addition amount at a predetermined time.

前記第1アルカリ剤が、少なくとも5〜30μmの微粉の重曹を含有したアルカリ剤であり、前記第2アルカリ剤が、少なくとも消石灰を含有したアルカリ剤であることが好ましい。   It is preferable that the first alkaline agent is an alkaline agent containing at least 5 to 30 μm fine powdered sodium bicarbonate, and the second alkaline agent is an alkaline agent containing at least slaked lime.

安定化処理方法は、さらに、前記集塵機において集塵された飛灰に、鉄系化合物、リン酸含有化合物及び中和剤から選ばれる少なくとも1種以上を添加する固定化処理工程を含むことが好ましい。   The stabilization treatment method preferably further includes an immobilization treatment step of adding at least one selected from an iron-based compound, a phosphoric acid-containing compound, and a neutralizing agent to the fly ash collected in the dust collector. .

本発明に係る燃焼排ガス処理施設は、上述のいずれかに記載の酸性ガス安定化処理方法を実行するものである。燃焼排ガス処理施設は、集塵機と、前記燃焼排ガスを前記集塵機に導入する導入路と、前記集塵機で処理された処理後燃焼排ガスを前記集塵機から排出する排出路と、前記酸性ガス濃度測定工程を実行し、酸化ガス情報信号として出力する酸化ガス測定装置と、前記酸化ガス情報信号に基づいて前記第1算出工程を実行し、前記第1添加量を第1添加量信号として出力する第1添加量算出部と前記第1添加量信号に基づいて前記第2算出工程を実行し、前記第2添加量を第2添加量信号として出力する第2添加量算出部とを有する添加量制御装置と、前記第1添加量信号に基づいて前記第1添加工程を実行する第1添加装置と、前記第2添加量信号に基づいて前記第2添加工程を実行する第2添加装置と、を備える。   The combustion exhaust gas treatment facility according to the present invention executes the acid gas stabilization treatment method described above. The flue gas treatment facility executes a dust collector, an introduction path for introducing the flue gas into the dust collector, an exhaust path for discharging the treated flue gas treated by the dust collector from the dust collector, and the acid gas concentration measurement step And an oxidant gas measuring device that outputs the oxidant gas information signal, and a first additive amount that executes the first calculation step based on the oxidant gas information signal and outputs the first additive amount as the first additive amount signal. An addition amount control device including a calculation unit and a second addition amount calculation unit that executes the second calculation step based on the first addition amount signal and outputs the second addition amount as a second addition amount signal; A first addition device that executes the first addition step based on the first addition amount signal; and a second addition device that executes the second addition step based on the second addition amount signal.

本発明によれば、酸性ガスに添加する互いに性質の異なる2つのアルカリ剤の添加量を適切に制御する酸性ガス安定処理方法及び燃焼排ガス処理施設を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the acidic gas stable processing method and combustion exhaust gas treatment facility which control appropriately the addition amount of two alkaline agents with a mutually different property added to acidic gas can be provided.

本発明に係る酸性ガス安定処理方法及び燃焼排ガス処理施設を示す概念図である。It is a conceptual diagram which shows the acidic gas stabilization processing method and combustion exhaust gas treatment facility which concern on this invention. 図1に示した酸性ガス安定処理方法及び燃焼排ガス処理施設の一部の詳細概念図である。It is a detailed conceptual diagram of a part of the acid gas stabilization method and the combustion exhaust gas treatment facility shown in FIG. 図1に示した酸性ガス安定処理方法及び燃焼排ガス処理施設の別の一部の詳細概念図である。FIG. 2 is a detailed conceptual diagram of another part of the acid gas stabilization method and the combustion exhaust gas treatment facility shown in FIG. 1. 図1に示した酸性ガス安定処理方法及び燃焼排ガス処理施設の基本添加量対応情報とその補正を示すグラフである。It is a graph which shows the acid gas stable processing method shown in FIG. 1 and the basic addition amount corresponding | compatible information of a combustion exhaust gas treatment facility, and its correction | amendment. 図1に示した酸性ガス安定処理方法及び燃焼排ガス処理施設の基本添加量対応情報とその別の補正を示すグラフである。It is a graph which shows the basic addition amount corresponding | compatible information of the acidic gas stable processing method and combustion exhaust gas processing facility shown in FIG. 1, and its another correction | amendment. 図1に示した酸性ガス安定処理方法を説明するフローチャートである。It is a flowchart explaining the acidic gas stable processing method shown in FIG. 図6に続く酸性ガス安定処理方法を説明するフローチャートである。It is a flowchart explaining the acidic gas stabilization processing method following FIG. 比較例の結果を示すグラフである。It is a graph which shows the result of a comparative example. 実施例1の結果を示すグラフである。3 is a graph showing the results of Example 1. 実施例2の結果を示すグラフである。10 is a graph showing the results of Example 2. 比較例の結果を示す時系列グラフである。It is a time series graph which shows the result of a comparative example. 実施例1の結果を示す時系列グラフである。3 is a time series graph showing the results of Example 1. FIG. 実施例2の結果を示す時系列グラフである。6 is a time series graph showing the results of Example 2.

以下、本発明に係る実施の形態を、添付図面を参照して説明する。なお、以下に実施形態を挙げて具体的に説明するが、本発明はこれに限定されるものではない。   Embodiments according to the present invention will be described below with reference to the accompanying drawings. In addition, although an embodiment is given and demonstrated concretely below, this invention is not limited to this.

図1から図3に示すように、本発明に係る酸性ガス安定処理方法が適用される燃焼排ガス処理施設10は、例えば、都市ごみ廃棄物焼却炉、産業廃棄物焼却炉、発電ボイラ、炭化炉、民間工場等の燃焼施設である。燃焼排ガス処理施設10は、都市ごみのような燃焼物を燃焼させ、有害な酸性ガスを含む高温の燃焼排ガスを発生させる燃焼炉12と、燃焼排ガスの熱を利用するボイラ14と、燃焼排ガスの熱を減温させる減温塔16と、1つ以上の集塵機18と、燃焼排ガスを集塵機18で処理した処理後燃焼排ガスを排気する煙突22と、取り除かれた飛灰を回収する飛灰集積装置19とを備える。   As shown in FIGS. 1 to 3, a combustion exhaust gas treatment facility 10 to which the acid gas stabilization method according to the present invention is applied includes, for example, a municipal waste incinerator, an industrial waste incinerator, a power generation boiler, and a carbonization furnace. It is a combustion facility such as a private factory. The combustion exhaust gas treatment facility 10 combusts combustibles such as municipal waste, generates a high-temperature combustion exhaust gas containing harmful acid gas, a boiler 14 that uses the heat of the combustion exhaust gas, and combustion exhaust gas A temperature-decreasing tower 16 for reducing heat, one or more dust collectors 18, a chimney 22 for exhausting the exhaust gas after treatment by treating the exhaust gas with the dust collector 18, and a fly ash accumulator for collecting the removed fly ash 19.

燃焼排ガス処理施設10は、燃焼炉12で発生した高温の燃焼排ガスを、ボイラ14を経由して減温塔16に送る配管2と、減温塔16から集塵機18に接続している導入路3と、集塵機18から煙突22に接続している排出路4とを含む。燃焼排ガス処理施設10が複数の集塵機18を備える場合、導入路3の終端は、複数の集塵機18のうち、減温塔16から最も遠い位置に設けられた集塵機18の位置をいう。   The combustion exhaust gas treatment facility 10 includes a pipe 2 that sends high-temperature combustion exhaust gas generated in the combustion furnace 12 to the temperature reduction tower 16 via the boiler 14, and an introduction path 3 that connects the temperature reduction tower 16 to the dust collector 18. And the discharge path 4 connected to the chimney 22 from the dust collector 18. When the combustion exhaust gas treatment facility 10 includes a plurality of dust collectors 18, the end of the introduction path 3 refers to the position of the dust collector 18 provided at a position farthest from the temperature reducing tower 16 among the plurality of dust collectors 18.

燃焼排ガス処理施設10は、配管2及び導入路3内の燃焼排ガスを効率良く集塵機18に送り、また、排出路4内の処理後燃焼排ガスを効率良く煙突22から排出するように、排出路4にファン20を備える。   The combustion exhaust gas treatment facility 10 efficiently sends the combustion exhaust gas in the pipe 2 and the introduction passage 3 to the dust collector 18, and the exhaust passage 4 so as to efficiently exhaust the treated combustion exhaust gas in the discharge passage 4 from the chimney 22. A fan 20 is provided.

燃焼排ガス処理施設10は、さらに、燃焼炉12から排出される燃焼排ガス中の酸性ガスを安定化処理するために、導入路3に設けられた第1添加装置42及び第2添加装置44と、排出路4に設けられた酸性ガス測定装置30と、添加量制御装置50とを含む。   The combustion exhaust gas treatment facility 10 further includes a first addition device 42 and a second addition device 44 provided in the introduction path 3 for stabilizing the acidic gas in the combustion exhaust gas discharged from the combustion furnace 12, An acid gas measuring device 30 provided in the discharge path 4 and an addition amount control device 50 are included.

第1添加装置42は、添加量制御装置50からの第1添加量信号S21に基づいて、導入路3内を流れる燃焼排ガスに第1アルカリ剤を添加する添加装置である。第2添加装置44は、添加量制御装置50からの第2添加量信号S22に基づいて、導入路3内を流れる燃焼排ガスに第2アルカリ剤を添加する添加装置である。したがって、第2添加装置44は、第1添加装置42が添加する第1アルカリ剤の添加量に応じて第2アルカリ剤を導入路3に添加する。   The first addition device 42 is an addition device that adds the first alkaline agent to the combustion exhaust gas flowing in the introduction path 3 based on the first addition amount signal S21 from the addition amount control device 50. The second addition device 44 is an addition device that adds the second alkaline agent to the combustion exhaust gas flowing in the introduction path 3 based on the second addition amount signal S22 from the addition amount control device 50. Therefore, the second addition device 44 adds the second alkaline agent to the introduction path 3 in accordance with the amount of the first alkaline agent added by the first addition device 42.

第1アルカリ剤は、酸性ガスの適正処理を目的として添加されるので、その種類には特に制限はないが、酸性ガスとの反応性が比較的高いアルカリ剤が好ましい。第1アルカリ剤としては、平均粒子径が5〜30μmに調整された微粉重曹、比表面積が30m2/g以上の高反応消石灰が例示できる。特に、平均粒子径が5〜30μmの微粉重曹は、塩化水素だけでなく、硫黄酸化物とも高い反応性を示すことから、硫黄酸化物の処理が必要な施設においては、微粉重曹を適用することが好ましい。また、例えば重曹等のこれらアルカリ剤は、粒度の粗いアルカリ剤を現地で粉砕して利用しても良い。 Since the first alkaline agent is added for the purpose of proper treatment of the acidic gas, the type thereof is not particularly limited, but an alkaline agent having a relatively high reactivity with the acidic gas is preferable. Examples of the first alkaline agent include fine powdered baking soda adjusted to an average particle size of 5 to 30 μm and highly reactive slaked lime having a specific surface area of 30 m 2 / g or more. In particular, fine powdered baking soda with an average particle size of 5 to 30 μm is highly reactive not only with hydrogen chloride but also with sulfur oxides. Is preferred. In addition, these alkali agents such as baking soda may be used by pulverizing a coarse particle alkali agent on site.

第2アルカリ剤は、酸性ガスの粗取りを目的として添加されるので、その種類には特に制限はないが、酸性ガスとの反応性が比較的低くてもよく、安価なアルカリ剤が経済的に好ましい。第2アルカリ剤としては、例えば、JIS特号消石灰、比表面積が30m2/g以上の高反応消石灰、水酸化ナトリウム、粗重曹、セスキ炭酸ナトリウム、天然ソーダ、酸化マグネシウム、水酸化マグネシウム等が例示できる。また、第2アルカリ剤は、各アルカリ剤を水に溶解したスラリー又は水溶液でもよい。 Since the second alkali agent is added for the purpose of roughening the acid gas, the type thereof is not particularly limited, but the reactivity with the acid gas may be relatively low, and an inexpensive alkali agent is economical. Is preferred. Examples of the second alkaline agent include JIS special slaked lime, highly reactive slaked lime with a specific surface area of 30 m 2 / g or more, sodium hydroxide, crude sodium bicarbonate, sodium sesquicarbonate, natural soda, magnesium oxide, magnesium hydroxide and the like. it can. The second alkaline agent may be a slurry or an aqueous solution in which each alkaline agent is dissolved in water.

第2アルカリ剤が消石灰である場合において、第2アルカリ剤は、発生する酸性ガス濃度(HCl、SO2)あたり、0.5〜3当量、好ましくは1〜2当量となるよう添加することが好ましい。
第1アルカリ剤が微粉重曹である場合において、第1アルカリ剤は、塩化水素、硫黄酸化物共に安定して処理することができるように、発生する酸性ガス濃度(HCl、SO2)あたり、0.10〜0.60当量、好ましくは0.15〜0.50当量となるよう添加することが好ましい。
In the case where the second alkaline agent is slaked lime, the second alkaline agent may be added so as to be 0.5 to 3 equivalents, preferably 1 to 2 equivalents per acid gas concentration (HCl, SO 2 ) generated. preferable.
When the first alkaline agent is fine powdered sodium bicarbonate, the first alkaline agent is 0 per acid gas concentration (HCl, SO 2 ) generated so that both hydrogen chloride and sulfur oxide can be stably treated. .10 to 0.60 equivalent, preferably 0.15 to 0.50 equivalent.

第1添加装置42及び第2添加装置44は、いずれも、導入路3に設けられていればよく、例えば、酸性ガスの流れ方向Wにおいて、第1添加装置42が第2添加装置44の上流側であってもよく、第2添加装置44が第1添加装置42の上流側であってもよい。   The first addition device 42 and the second addition device 44 only need to be provided in the introduction path 3. For example, in the acid gas flow direction W, the first addition device 42 is upstream of the second addition device 44. The second addition device 44 may be on the upstream side of the first addition device 42.

集塵機18は、例えば、燃焼排ガスから飛灰を取り除くバグフィルターである。燃焼排ガス処理施設10が複数の集塵機18を備える場合、酸性ガスが適正に処理されるように、導入路3において第2添加装置44を第1添加装置42の上流側に設け、複数の集塵機18のうちの1つを第1添加装置42と第2添加装置44との間に設け、他の1つを第1添加装置42の下流側に設けることが好ましい。   The dust collector 18 is, for example, a bag filter that removes fly ash from combustion exhaust gas. When the combustion exhaust gas treatment facility 10 includes a plurality of dust collectors 18, the second addition device 44 is provided on the upstream side of the first addition device 42 in the introduction path 3 so that the acidic gas is appropriately processed, and the plurality of dust collectors 18. One of them is preferably provided between the first addition device 42 and the second addition device 44, and the other one is preferably provided downstream of the first addition device 42.

酸性ガス測定装置30は、燃焼排ガスを集塵機18で処理した処理後燃焼排ガス中の酸性ガス濃度を測定し、測定された酸性ガス濃度を酸性ガス濃度信号S0として出力する。具体的には、酸性ガス測定装置30は、塩化水素ガス濃度測定装置32と、硫黄酸化物ガス濃度測定装置34とを含む。塩化水素ガス濃度測定装置32は、排出路4内を流れる処理後燃焼排ガス中のリアルタイムの塩化水素ガス濃度である瞬時酸化水素ガス濃度を測定し、測定された瞬時塩化水素ガス濃度を塩化水素ガス濃度信号S1として出力する。同様に、硫黄酸化物ガス濃度測定装置34は、排出路4内を流れる処理後燃焼排ガス中のリアルタイムの硫黄酸化物ガス濃度である瞬時硫黄酸化靴ガス濃度を測定し、測定された瞬時硫黄酸化物ガス濃度を硫黄酸化物ガス濃度信号S2として出力する。   The acid gas measuring device 30 measures the acid gas concentration in the treated flue gas after treating the flue gas with the dust collector 18, and outputs the measured acid gas concentration as the acid gas concentration signal S0. Specifically, the acid gas measurement device 30 includes a hydrogen chloride gas concentration measurement device 32 and a sulfur oxide gas concentration measurement device 34. The hydrogen chloride gas concentration measuring device 32 measures the instantaneous hydrogen oxide gas concentration, which is the real-time hydrogen chloride gas concentration in the treated exhaust gas after flowing through the discharge passage 4, and uses the measured instantaneous hydrogen chloride gas concentration as the hydrogen chloride gas. Output as the density signal S1. Similarly, the sulfur oxide gas concentration measuring device 34 measures the instantaneous sulfur oxidation shoe gas concentration, which is the real-time sulfur oxide gas concentration in the post-treatment combustion exhaust gas flowing in the discharge passage 4, and the measured instantaneous sulfur oxidation. The product gas concentration is output as a sulfur oxide gas concentration signal S2.

塩化水素ガス濃度測定装置32及び硫黄酸化物ガス濃度測定装置34は、それぞれ、塩化水素ガス濃度及び硫黄酸化物ガス濃度を測定できる測定装置であればよく、測定装置の形式は限定されない。塩化水素ガス濃度は、イオン電極法、レーザーによる単一吸収線吸収分光法等で測定可能であり、硫黄酸化物ガス濃度は、非分散型赤外線吸収法、紫外線蛍光法等で測定が可能である。
また、燃焼排ガス処理施設10は、通常、排出路4に設置されている塩化水素ガス濃度測定装置32の塩化水素ガス濃度信号S1と、硫黄酸化物ガス濃度測定装置34の硫黄酸化物ガス濃度信号S2とに応じて、第1アルカリ剤の添加量をフィードバック制御するので、従来の燃焼排ガス処理施設に、新たな測定装置を設置することなく、第1アルカリ剤と第2アルカリ剤との添加量を適正に制御することが可能である。
The hydrogen chloride gas concentration measuring device 32 and the sulfur oxide gas concentration measuring device 34 may be any measuring device that can measure the hydrogen chloride gas concentration and the sulfur oxide gas concentration, respectively, and the type of the measuring device is not limited. Hydrogen chloride gas concentration can be measured by ion electrode method, laser single absorption line absorption spectroscopy, etc., and sulfur oxide gas concentration can be measured by non-dispersive infrared absorption method, ultraviolet fluorescence method, etc. .
Further, the combustion exhaust gas treatment facility 10 normally has a hydrogen chloride gas concentration signal S1 of the hydrogen chloride gas concentration measuring device 32 installed in the discharge passage 4 and a sulfur oxide gas concentration signal of the sulfur oxide gas concentration measuring device 34. Since the addition amount of the first alkaline agent is feedback-controlled according to S2, the addition amount of the first alkaline agent and the second alkaline agent without installing a new measuring device in the conventional flue gas treatment facility Can be controlled appropriately.

添加量制御装置50は、酸性ガス濃度(ppm)を制御目標値(制御出力開始濃度ともいう)SV(ppm)以下にするフィードバック制御が行えるように、酸性ガス濃度信号S0を受信し、第1添加量信号S21を出力する第1添加量算出部60と、第1添加量信号S21を受信し、第2添加量信号S22を出力する第2添加量算出部70とを備える。
第1添加量信号S21は、第1添加装置42が添加する第1アルカリ剤の単位時間当たりの第1添加量(kg/h)を示す。第2添加量信号S22は、第1添加装置42が添加する第2アルカリ剤の単位時間当たりの第2添加量(kg/h)を示す。
添加量制御装置50は、処理後燃焼排ガスの酸性ガス濃度(ppm)が制御目標値SV(ppm)以下になるように、酸性ガス濃度信号S0の酸性ガス濃度に基づいて、第1添加量信号S21、第2添加量信号S22を出力する。
The addition amount control device 50 receives the acid gas concentration signal S0 so that feedback control can be performed to set the acid gas concentration (ppm) to a control target value (also referred to as control output start concentration) SV (ppm) or less. A first addition amount calculation unit 60 that outputs an addition amount signal S21 and a second addition amount calculation unit 70 that receives the first addition amount signal S21 and outputs a second addition amount signal S22.
The first addition amount signal S21 indicates the first addition amount (kg / h) per unit time of the first alkaline agent added by the first addition device 42. The second addition amount signal S22 indicates the second addition amount (kg / h) per unit time of the second alkaline agent added by the first addition device 42.
The addition amount control device 50 determines the first addition amount signal based on the acid gas concentration of the acid gas concentration signal S0 so that the acid gas concentration (ppm) of the treated combustion exhaust gas is equal to or less than the control target value SV (ppm). S21, the second addition amount signal S22 is output.

ここで、一般に、塩化水素ガス濃度測定装置は、計測遅延時間が5〜10分と長いイオン電極法を採用している装置が主流である。また、一般に、硫黄酸化物ガス濃度測定装置は、計測遅延時間が3〜5分である赤外線吸収法を採用している装置が主流である。
添加量制御装置50は、塩化水素ガス濃度測定装置32や硫黄酸化物ガス濃度測定装置34の計測遅延時間、第1添加装置42及び第2添加装置44から導入路3までの添加遅延時間等、遅延時間が大きくなるにつれて、フィードバック制御の悪影響を受け、第1添加装置42及び第2添加装置44がそれぞれ添加する第1アルカリ剤及び第2アルカリ剤の添加量を増加させるおそれがある。
そこで、添加量制御装置50は、後述するように、計測遅延時間やフィードバック制御の演算に要する時間を考慮した、計測遅延時間による安定化制御を行う。
Here, in general, a hydrogen chloride gas concentration measuring device is mainly a device employing an ion electrode method having a long measurement delay time of 5 to 10 minutes. In general, a sulfur oxide gas concentration measuring device mainly uses an infrared absorption method with a measurement delay time of 3 to 5 minutes.
The addition amount control device 50 includes a measurement delay time of the hydrogen chloride gas concentration measurement device 32 and the sulfur oxide gas concentration measurement device 34, an addition delay time from the first addition device 42 and the second addition device 44 to the introduction path 3, and the like. As the delay time increases, the feedback control may be adversely affected, and the amounts of the first alkaline agent and the second alkaline agent added by the first addition device 42 and the second addition device 44 may be increased.
Therefore, as will be described later, the addition amount control device 50 performs stabilization control based on the measurement delay time in consideration of the measurement delay time and the time required for feedback control calculation.

第1添加量算出部60は、メイン添加量算出部61と、基礎添加量算出部63と、通常添加量算出部64と、緊急時判断部65と、仮添加量算出部66と、機器添加量制限部67とを備える。   The first addition amount calculation unit 60 includes a main addition amount calculation unit 61, a basic addition amount calculation unit 63, a normal addition amount calculation unit 64, an emergency determination unit 65, a temporary addition amount calculation unit 66, and an equipment addition A quantity limiting unit 67.

メイン添加量算出部61は、酸性ガス濃度信号S0に基づいて、第1アルカリ剤の基本となる添加量を算出する。メイン添加量算出部61は、酸性ガス濃度信号S0のうち塩化水素ガス濃度信号S1を受信する塩化水素ガス算出部62aと、硫黄酸化物ガス濃度信号S2を受信する硫黄酸化物ガス算出部62bとを備える。   The main addition amount calculation unit 61 calculates the basic addition amount of the first alkaline agent based on the acid gas concentration signal S0. The main addition amount calculation unit 61 includes a hydrogen chloride gas calculation unit 62a that receives the hydrogen chloride gas concentration signal S1 in the acid gas concentration signal S0, and a sulfur oxide gas calculation unit 62b that receives the sulfur oxide gas concentration signal S2. Is provided.

塩化水素ガス算出部62aは、後述するように、塩化水素ガス濃度信号S1に基づいて、単位時間当たりの添加量(kg/h)である塩化水素側添加量AgS1(kg/h)を算出し、塩化水素添加量信号S3として出力する。   As will be described later, the hydrogen chloride gas calculation unit 62a calculates the hydrogen chloride side addition amount AgS1 (kg / h), which is the addition amount (kg / h) per unit time, based on the hydrogen chloride gas concentration signal S1. The hydrogen chloride addition amount signal S3 is output.

硫黄酸化物ガス算出部62bは、後述するように、硫黄酸化物ガス濃度信号S2に基づいて、単位時間当たりの添加量(kg/h)である硫黄酸化物側添加量AgS2(kg/h)を算出し、硫黄酸化物添加量信号S4として出力する。   As will be described later, the sulfur oxide gas calculation unit 62b is based on the sulfur oxide gas concentration signal S2, and the sulfur oxide side addition amount AgS2 (kg / h), which is the addition amount per unit time (kg / h). Is calculated and output as a sulfur oxide addition amount signal S4.

基礎添加量算出部63は、第1添加量信号S21の第1添加量(kg/h)に基づいて、基礎添加量Fa(kg/h)を算出し、算出した基礎添加量Fa(kg/h)を基礎添加量信号S5として出力する。
基礎添加量Fa(kg/h)は、例えば、10分間のような所定の時間当たりにおける第1添加量(kg/h)の平均添加量(kg/h)とされる。
The basic addition amount calculation unit 63 calculates the basic addition amount Fa (kg / h) based on the first addition amount (kg / h) of the first addition amount signal S21, and calculates the calculated basic addition amount Fa (kg / h). h) is output as the basic addition amount signal S5.
The basic addition amount Fa (kg / h) is an average addition amount (kg / h) of the first addition amount (kg / h) per predetermined time such as 10 minutes, for example.

通常添加量算出部64は、塩化水素添加量信号S3、硫黄酸化物添加量信号S4、基礎添加量信号S5に基づいて、単位時間当たりの添加量(kg/h)である通常添加量AgSQを算出し、通常添加量信号S6として出力する。   Based on the hydrogen chloride addition signal S3, the sulfur oxide addition signal S4, and the basic addition signal S5, the normal addition amount calculation unit 64 calculates the normal addition amount AgSQ that is the addition amount (kg / h) per unit time. Calculate and output as a normal addition amount signal S6.

一般に、添加量制御装置には、PID制御がよく用いられる。そして、PID制御は、単一の上限出力値と下限出力値しか設定できない。このため、例えば、一般のPID制御において、排出路における塩化水素ガス濃度の制御目標値(ppm)を40ppmに設定した場合、塩化水素ガス濃度が制御目標値以下であるとき、PID制御は、制御出力の下限である下限添加量(kg/h)で添加するよう信号を出力し、また、塩化水素ガス濃度が制御目標値以上であるとき、制御出力の上限である上限添加量(kg/h)で添加するよう信号を出力する。このとき、塩化水素ガス濃度が短時間で高くなったり低くなったりすることが繰り返す状態が発生すると、一般のPID制御は、短時間で、下限添加量と上限添加量との間の出力値を繰り返して出力することによる、アルカリ剤の不適切添加(過剰添加、不足添加)を引き起こす。このような場合、排出路における塩化水素ガス濃度は大きく変動すると共に、導入路におけるアルカリ剤の過剰添加の原因となる。   Generally, PID control is often used for the addition amount control device. In PID control, only a single upper limit output value and lower limit output value can be set. Therefore, for example, in general PID control, when the control target value (ppm) of the hydrogen chloride gas concentration in the discharge path is set to 40 ppm, when the hydrogen chloride gas concentration is equal to or lower than the control target value, the PID control is A signal is output to add at the lower limit addition amount (kg / h) which is the lower limit of the output, and when the hydrogen chloride gas concentration is equal to or higher than the control target value, the upper limit addition amount (kg / h) which is the upper limit of the control output ) Output a signal to add. At this time, when a state in which the hydrogen chloride gas concentration repeatedly increases or decreases in a short time occurs, the general PID control performs an output value between the lower limit addition amount and the upper limit addition amount in a short time. Repeated output causes inadequate addition (excessive addition, insufficient addition) of alkaline agent. In such a case, the hydrogen chloride gas concentration in the discharge path varies greatly and causes excessive addition of the alkaline agent in the introduction path.

そこで、通常添加量算出部64は、従来のフィードバック制御(PID制御)では加味できない導入路3における塩化水素ガス濃度、硫黄酸化物ガス濃度に関連し、かつ、妥当性のある値として、過去平均添加量を示す基礎添加量Fa(kg/h)をベースとして第1添加量(kg/h)を算出することにより、添加量制御装置50は、第1アルカリ剤の添加不良(過剰添加、不足添加)により引き起こす酸化ガス濃度のハンチングを抑制し、適切な量の第1アルカリ剤の添加を安定して行うことができる。   Therefore, the normal addition amount calculation unit 64 is related to the hydrogen chloride gas concentration and the sulfur oxide gas concentration in the introduction path 3 that cannot be taken into account by the conventional feedback control (PID control), and is a past average as a reasonable value. By calculating the first addition amount (kg / h) on the basis of the basic addition amount Fa (kg / h) indicating the addition amount, the addition amount control device 50 allows the first alkaline agent to be added poorly (excessive addition, shortage). Hunting of the oxidizing gas concentration caused by the addition) can be suppressed, and an appropriate amount of the first alkaline agent can be stably added.

緊急時判断部65は、塩化水素ガス濃度信号S1に基づいて算出した平均濃度(ppm)が予め規定した緊急平均塩化水素ガス濃度(ppm)を超えた状態か否かを判断し、又は、硫黄酸化物ガス濃度信号S2に基づいて算出した平均濃度(ppm)が予め規定した緊急平均硫黄酸化物濃度(ppm)を超えた状態か否かを判断し、緊急又は定常を示す緊急時判断信号S7を出力する。   The emergency determination unit 65 determines whether or not the average concentration (ppm) calculated based on the hydrogen chloride gas concentration signal S1 exceeds a predefined emergency average hydrogen chloride gas concentration (ppm), or sulfur. It is determined whether or not the average concentration (ppm) calculated based on the oxide gas concentration signal S2 exceeds a predefined emergency average sulfur oxide concentration (ppm), and an emergency determination signal S7 indicating emergency or steady state. Is output.

一般に、燃焼排ガス処理施設は、排出される処理後燃焼排ガスを、塩化水素ガス濃度(ppm)や硫黄酸化物ガス濃度(ppm)の1時間平均濃度(ppm)で管理する。
これに対して、燃焼排ガス処理施設10は、集塵機によって処理された処理後燃焼排ガスの濃度(ppm)に基づいて、集塵機で処理される前の燃焼排ガスにアルカリ剤を添加する添加量(kg/h)を制御するフィードバック制御を行う。このフィードバック制御は、塩化水素ガス濃度(ppm)や硫黄酸化物ガス濃度(ppm)の瞬時値に対し制御目標値(ppm)を設けるのが一般的であるが、制御目標値(ppm)はあくまで最終目標値であり、最終目標値になるよう制御している最中に、制御目標値(ppm)を超える塩化水素ガス濃度(ppm)や硫黄酸化物ガス濃度(ppm)となることがある。
特に、アルカリ剤の添加量(kg/h)の削減と塩化水素ガスや硫黄酸化物ガスの安定処理は相反する思想であることから、アルカリ剤の添加量(kg/h)を削減すると、1時間平均濃度(ppm)が決められた管理濃度(ppm)を超える可能性が高い。
Generally, a combustion exhaust gas treatment facility manages the exhaust gas after treatment, which is discharged, with an average concentration (ppm) of one hour of hydrogen chloride gas concentration (ppm) or sulfur oxide gas concentration (ppm).
On the other hand, the flue gas treatment facility 10 adds an amount (kg / kg) of adding an alkaline agent to the flue gas before being treated by the dust collector based on the concentration (ppm) of the flue gas after treatment treated by the dust collector. h) feedback control for controlling. In this feedback control, the control target value (ppm) is generally set for the instantaneous value of the hydrogen chloride gas concentration (ppm) or the sulfur oxide gas concentration (ppm). While the final target value is being controlled to reach the final target value, the hydrogen chloride gas concentration (ppm) or the sulfur oxide gas concentration (ppm) may exceed the control target value (ppm).
In particular, since the reduction of the addition amount (kg / h) of the alkali agent and the stabilization treatment of hydrogen chloride gas or sulfur oxide gas are contradictory ideas, if the addition amount (kg / h) of the alkali agent is reduced, 1 There is a high possibility that the time average concentration (ppm) will exceed the determined control concentration (ppm).

そこで、緊急時判断部65は、塩化水素ガス濃度信号S1に基づいて算出した、例えば、1時間における塩化水素ガス濃度の平均濃度(ppm)が予め規定した緊急平均塩化水素ガス濃度(ppm)を超えた状態か否かを判断し、又は、硫黄酸化物ガス濃度信号S2に基づいて算出した、例えば、1時間における硫黄酸化物ガス濃度の平均濃度(ppm)が予め規定した緊急平均硫黄酸化物濃度(ppm)を超えた状態か否かを判断し、少なくともいずれかが、超えた状態と判断した場合、緊急を示す緊急時判断信号S7を出力し、そうでない場合、定常を示す緊急時判断信号S7を出力し、仮添加量算出部66に適切な添加量を選択させる。   Therefore, the emergency judgment unit 65 calculates the emergency average hydrogen chloride gas concentration (ppm), which is calculated based on the hydrogen chloride gas concentration signal S1, for example, the average concentration (ppm) of the hydrogen chloride gas concentration in one hour. For example, the emergency average sulfur oxide that is determined based on the sulfur oxide gas concentration signal S2 is determined, for example, the average concentration (ppm) of the sulfur oxide gas concentration in one hour is determined in advance. It is determined whether or not the concentration (ppm) has been exceeded. If at least one of the concentrations is determined to be exceeded, an emergency determination signal S7 indicating an emergency is output. Otherwise, an emergency determination indicating a steady state is output. The signal S7 is output, and the temporary addition amount calculation unit 66 is made to select an appropriate addition amount.

仮添加量算出部66は、定常を示す緊急時判断信号S7を受信している場合、通常添加量信号S6に基づいて仮第1添加量信号S8を出力し、緊急を示す緊急時判断信号S7を受信している場合、通常添加量(kg/h)よりも多い予め規定した緊急添加量(kg/h)を仮第1添加量信号S8として出力する。
つまり、仮添加量算出部66は、酸性ガス濃度(ppm)の平均値が予め規定された緊急添加濃度(ppm)を超えると、通常添加量(kg/h)の変わりに、予め規定された緊急添加量(kg/h)を添加するような第1添加量を算出する。このため、アルカリ剤の添加量(kg/h)をフィードバック制御する際に、1時間平均値(ppm)が管理濃度(ppm)以上、もしくはそれに近い濃度(ppm)に達した場合、仮添加量算出部66は、緊急時判断部65からの緊急時判断信号S7に基づいて、通常添加量(kg/h)よりも多い緊急添加量(kg/h)を算出するので、添加量削減と酸性ガスの安定処理が両立できる安心度の高い制御が可能となる。
The temporary addition amount calculation unit 66 outputs the temporary first addition amount signal S8 based on the normal addition amount signal S6 when receiving the emergency determination signal S7 indicating the steady state, and the emergency determination signal S7 indicating the emergency. Is received, a predetermined emergency addition amount (kg / h) larger than the normal addition amount (kg / h) is output as the provisional first addition amount signal S8.
That is, when the average value of the acid gas concentration (ppm) exceeds the predefined emergency addition concentration (ppm), the provisional addition amount calculation unit 66 is defined in advance instead of the normal addition amount (kg / h). A first addition amount that adds an urgent addition amount (kg / h) is calculated. For this reason, when feedback control is performed on the addition amount (kg / h) of the alkaline agent, if the one-hour average value (ppm) reaches or exceeds the control concentration (ppm), the provisional addition amount Since the calculation unit 66 calculates the emergency addition amount (kg / h) larger than the normal addition amount (kg / h) based on the emergency determination signal S7 from the emergency determination unit 65, the addition amount can be reduced and the acidity can be reduced. Highly reliable control that can achieve both stable gas treatment is possible.

機器添加量制限部67は、仮第1添加量信号S8に基づいて、第1添加量(kg/h)を算出する。具体的には、機器添加量制限部67は、仮第1添加量(kg/h)が第1添加装置42の最大添加量LHS(kg/h)を超えている場合は、最大添加量LHS(kg/h)を第1添加量(kg/h)として第1添加量信号S21の出力を行う。また、機器添加量制限部67は、仮第1添加量(kg/h)が第1添加装置42の最小添加量LOS(kg/h)を下回っている場合は、最小添加量LOS(kg/h)を第1添加量(kg/h)として第1添加量信号S21の出力を行う。
これにより、機器添加量制限部67は、制御目標値SV(ppm)以下になるように、常に、最大添加量LHS(kg/h)と最小添加量LOS(kg/h)との間にある第1添加量(kg/h)の第1アルカリ剤を添加させるべく、第1添加量信号S21の出力を行う。
The device addition amount limiting unit 67 calculates the first addition amount (kg / h) based on the temporary first addition amount signal S8. Specifically, when the provisional first addition amount (kg / h) exceeds the maximum addition amount LHS (kg / h) of the first addition device 42, the device addition amount restriction unit 67 determines the maximum addition amount LHS. The first addition amount signal S21 is output with (kg / h) as the first addition amount (kg / h). In addition, when the provisional first addition amount (kg / h) is lower than the minimum addition amount LOS (kg / h) of the first addition device 42, the device addition amount limiting unit 67 determines the minimum addition amount LOS (kg / h). The first addition amount signal S21 is output with h) as the first addition amount (kg / h).
Thus, the device addition amount limiting unit 67 is always between the maximum addition amount LHS (kg / h) and the minimum addition amount LOS (kg / h) so as to be equal to or less than the control target value SV (ppm). In order to add the first addition amount (kg / h) of the first alkaline agent, the first addition amount signal S21 is output.

第2添加量算出部70は、平均第1添加量算出部71と、平均第2添加量算出部72と、目標添加量規定部73と、第2添加量信号S22を出力する第2添加量基礎算出部74とを備える。   The second addition amount calculating unit 70 outputs an average first addition amount calculating unit 71, an average second addition amount calculating unit 72, a target addition amount defining unit 73, and a second addition amount signal S22. A basic calculation unit 74.

平均第1添加量算出部71は、第1添加量信号S21を受信し、例えば、10分のような所定時間における第1添加量(kg/h)の平均値である平均第1添加量AgSQA(kg/h)を算出し、算出された平均第1添加量AgSQA(kg/h)を平均第1添加量信号S11として出力する。   The average first addition amount calculation unit 71 receives the first addition amount signal S21 and, for example, an average first addition amount AgSQA that is an average value of the first addition amount (kg / h) in a predetermined time such as 10 minutes. (Kg / h) is calculated, and the calculated average first addition amount AgSQA (kg / h) is output as the average first addition amount signal S11.

平均第2添加量算出部72は、第2添加量信号S22に基づいて、例えば、10分のような所定時間における第2添加量(kg/h)の平均値である平均第2添加量(kg/h)を算出し、算出された平均第2添加量AgCQA(kg/h)を平均第2添加量信号S12として出力する。   Based on the second addition amount signal S22, the average second addition amount calculation unit 72, for example, an average second addition amount (average value of the second addition amount (kg / h) in a predetermined time such as 10 minutes ( kg / h) is calculated, and the calculated average second addition amount AgCQA (kg / h) is output as the average second addition amount signal S12.

目標添加量規定部73は、予め規定された目標添加量AgSQT(kg/h)を目標添加量信号S13として出力する。   The target addition amount defining unit 73 outputs a predetermined target addition amount AgSQT (kg / h) as a target addition amount signal S13.

第2添加量基礎算出部74は、平均第1添加量信号S11と、平均第2添加量信号S12と、目標添加量信号S13とに基づいて、第2添加量AgCQ(kg/h)を第2添加量信号S22として出力する。   The second addition amount basic calculation unit 74 calculates the second addition amount AgCQ (kg / h) based on the average first addition amount signal S11, the average second addition amount signal S12, and the target addition amount signal S13. 2 is output as an addition amount signal S22.

第1添加装置42は、第1添加量信号S21に基づいて第1添加量(kg/h)の第1アルカリ剤を処理後燃焼排ガスに添加する。同様に、第2添加装置44は、第2添加量信号S22に基づいて第2添加量(kg/h)の第2アルカリ剤を処理後燃焼排ガスに添加する。   The first addition device 42 adds the first addition amount (kg / h) of the first alkaline agent to the treated exhaust gas based on the first addition amount signal S21. Similarly, the second addition device 44 adds the second addition amount (kg / h) of the second alkaline agent to the processed combustion exhaust gas based on the second addition amount signal S22.

飛灰集積装置19は、集塵機18によって燃焼排ガスから取り除かれた飛灰を回収する。飛灰集積装置19は、集塵された飛灰に、鉄系化合物、リン酸含有化合物及び中和剤から選ばれる少なくとも1種以上を添加して、飛灰を安定化処理する。
具体的には、飛灰に含まれる重金属類は、一般的に、ジエチルジチオカルバミン酸塩等のキレートの添加によって固定化され、不溶化処理される。しかし、重金属類のキレートによる固定効果は短期的には高いが、最終処分場における酸性雨によるpH低下及びキレートの酸化自己分解により、固定化された重金属類から鉛等の重金属類が再溶出する虞がある。
そこで、リン酸等のリン酸化合物を重金属類に添加することによって、添加された重金属類は、無機鉱物であるヒドロキシアパタイト形態まで変化させることができるので、最終処分場における長期安定性に優れる。このため、リン酸等のリン酸化合物を重金属類に添加する安定化処理は、環境保護の観点から非常に価値の高い処理方法である。さらに、微粉重曹で処理した飛灰をリン酸等の重金属固定剤で処理する方法は、多くの環境負荷低減効果を持つ有効な手段である。
The fly ash accumulator 19 collects fly ash removed from the combustion exhaust gas by the dust collector 18. The fly ash accumulator 19 stabilizes the fly ash by adding at least one selected from an iron-based compound, a phosphoric acid-containing compound, and a neutralizer to the collected fly ash.
Specifically, heavy metals contained in fly ash are generally fixed and insolubilized by addition of a chelate such as diethyldithiocarbamate. However, although the fixing effect of chelates of heavy metals is high in the short term, heavy metals such as lead re-elute from the immobilized heavy metals due to the pH drop due to acid rain and the oxidative autolysis of the chelates at the final disposal site. There is a fear.
Therefore, by adding a phosphoric acid compound such as phosphoric acid to heavy metals, the added heavy metals can be changed to the form of hydroxyapatite, which is an inorganic mineral, so that the long-term stability at the final disposal site is excellent. For this reason, the stabilization process which adds phosphoric acid compounds, such as phosphoric acid, to a heavy metal is a very high-value processing method from a viewpoint of environmental protection. Furthermore, the method of treating fly ash treated with fine powdered sodium bicarbonate with a heavy metal fixing agent such as phosphoric acid is an effective means having many environmental load reducing effects.

飛灰に含まれる重金属を固定する重金属固定剤は、特に制限なく、飛灰に適用が可能で重金属の固定効果を得ることができるものであればよい。重金属固定剤としては、一般的に有機キレート剤が使用されている。有機キレート剤としては、ピペラジンジチオカルバミン酸塩、ジエチルジチオカルバミン酸塩、ジメチルジチオカルバミン酸塩、ジブチルジチオカルバミン酸塩等が例示できる。   The heavy metal fixing agent for fixing heavy metals contained in fly ash is not particularly limited as long as it can be applied to fly ash and can obtain the effect of fixing heavy metals. As the heavy metal fixing agent, an organic chelating agent is generally used. Examples of the organic chelating agent include piperazine dithiocarbamate, diethyldithiocarbamate, dimethyldithiocarbamate, and dibutyldithiocarbamate.

また、処分場における重金属の長期固定化の観点からは、クロロピロモルファイトを形成し鉱物の形態で固定するリン酸化合物による重金属固定は、有効な手段である。リン酸化合物としては、リン酸もしくはリン酸塩は、水溶性のリン酸化合物であれば良く、形状は粉体でも、水溶液でもよいが、例えば、正リン酸(オルソリン酸)、ポリリン酸、メタリン酸、次リン酸、亜リン酸、次亜リン酸、ピロリン酸、過リン酸、第一リン酸ソーダ、第二リン酸ソーダ、第三リン酸ソーダ、第一リン酸カリウム、第二リン酸カリウム、第三リン酸カリウム、第一リン酸カルシウム、第二リン酸カルシウム、第一リン酸マグネシウム、第二リン酸マグネシウム、第一リン酸アンモニウム、第二リン酸アンモニウム、過燐酸石灰、トリポリリン酸ナトリウム、トリポリリン酸カリウム、ヘキサメタリン酸ナトリウム、ヘキサメタリン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、亜リン酸ナトリウム、亜リン酸カリウム、次亜リン酸ナトリウム、次亜リン酸カリウム等が上げられる。特に正リン酸、第一リン酸塩、第二リン酸塩、第三リン酸塩、トリポリリン酸塩、ヘキサメタリン酸塩、ピロリン酸塩は良好な重金属固定効果を示す。また、酸度の高い正リン酸等は配管への腐食の懸念があるため、リン酸塩の水溶液や水酸化ナトリウム等のアルカリ剤を混合し、pHを3以上にして適用することが好ましい。   Further, from the viewpoint of long-term immobilization of heavy metals at a disposal site, heavy metal immobilization with a phosphoric acid compound that forms chloropyromorphite and immobilizes in the form of minerals is an effective means. As the phosphoric acid compound, phosphoric acid or phosphate may be a water-soluble phosphoric acid compound, and the shape may be a powder or an aqueous solution. For example, orthophosphoric acid (orthophosphoric acid), polyphosphoric acid, metalin Acid, hypophosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, superphosphoric acid, primary sodium phosphate, secondary sodium phosphate, tertiary sodium phosphate, primary potassium phosphate, secondary phosphoric acid Potassium, tribasic potassium phosphate, primary calcium phosphate, dibasic calcium phosphate, primary magnesium phosphate, secondary magnesium phosphate, primary ammonium phosphate, secondary ammonium phosphate, lime superphosphate, sodium tripolyphosphate, tripolyphosphoric acid Potassium, sodium hexametaphosphate, potassium hexametaphosphate, sodium pyrophosphate, potassium pyrophosphate, sodium phosphite, phosphorus Potassium, sodium hypophosphite, potassium hypophosphite, and the like. In particular, orthophosphoric acid, primary phosphate, secondary phosphate, tertiary phosphate, tripolyphosphate, hexametaphosphate, and pyrophosphate exhibit a good heavy metal fixing effect. Moreover, since orthophosphoric acid having a high acidity is likely to corrode the pipe, it is preferable to apply an aqueous solution of phosphate or an alkali agent such as sodium hydroxide to adjust the pH to 3 or more.

また、六価クロム、砒素、セレン、水銀等が重金属から溶出しないように、これらの剤に加え、鉄系化合物を添加することが好ましい。鉄系化合物としては、塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、ポリ硫酸鉄、鉄粉等が上げられ、塩化第一鉄が最も好ましい。   In addition to these agents, it is preferable to add an iron-based compound so that hexavalent chromium, arsenic, selenium, mercury and the like are not eluted from heavy metals. Examples of the iron-based compound include ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, polyiron sulfate, and iron powder, and ferrous chloride is most preferable.

さらに飛灰に多くのアルカリ残分が含まれている場合、安価な塩化アルミニウム、ポリ塩化アルミニウム、塩酸、硫酸バンド等の中和剤をアルカリ剤と共に併用することが好ましい。
飛灰の固化処理を行う際には、焼き石膏、ポルトランドセメント、早強セメント、ジェットセメント、高炉セメント、アルミナセメント等のセメント類を添加しても良い。
特に飛灰中の重金属に、鉄系化合物、リン酸化合物、中和剤の少なくとも1つ以上を適用し、重金属処理を実施する場合、未反応のアルカリ残分は、これらの重金属固定剤の添加量を増加させる。これに対し、本発明に係る安定処理方法を適用することにより、アルカリ剤の添加量を適正化し、未反応のアルカリ残分を減少させることができ、飛灰重金属固定剤の添加量を削減でき、環境負荷を低減できる。
Further, when a large amount of alkali residue is contained in the fly ash, it is preferable to use an inexpensive neutralizing agent such as aluminum chloride, polyaluminum chloride, hydrochloric acid, or sulfuric acid band together with the alkali agent.
When the fly ash is solidified, cements such as calcined gypsum, Portland cement, early-strength cement, jet cement, blast furnace cement, and alumina cement may be added.
In particular, when applying heavy metal treatment by applying at least one of iron-based compounds, phosphate compounds, and neutralizing agents to heavy metals in fly ash, unreacted alkali residues are added to these heavy metal fixing agents. Increase the amount. In contrast, by applying the stabilization method according to the present invention, the amount of alkali agent added can be optimized, the amount of unreacted alkali residue can be reduced, and the amount of fly ash heavy metal fixing agent added can be reduced. , Environmental load can be reduced.

また、飛灰の上記中和剤、リン酸等の酸性薬剤の添加量を規定する手段として、飛灰中のアルカリ残分を測定し、測定されたアルカリ残分の値に応じて添加量を調節することが好ましい。これにより、中和剤、リン酸等の酸性薬剤を過不足なく添加することができ、薬品の適正利用及び安定処理を実現することができる。   In addition, as a means for prescribing the addition amount of the above-mentioned neutralizing agent and the acidic agent such as phosphoric acid of fly ash, the alkali residue in fly ash is measured, and the addition amount is determined according to the value of the measured alkali residue. It is preferable to adjust. Thereby, acidic agents, such as a neutralizing agent and phosphoric acid, can be added without excess and deficiency, and the appropriate utilization of chemicals and a stable treatment can be realized.

図2に示すように、塩化水素ガス算出部62aは、塩化水素ガス用の、基本添加量対応情報(図4及び図5参照)が規定されている添加量対応規定部625aと、濃度量算出部622aと、基礎添加量算出部623aと、上昇補正値規定部621aと、下降補正値規定部624aと、添加量算出部626aとを備える。   As shown in FIG. 2, the hydrogen chloride gas calculating unit 62a includes an addition amount correspondence defining unit 625a in which basic addition amount correspondence information (see FIGS. 4 and 5) for hydrogen chloride gas is defined, and a concentration amount calculation. Unit 622a, basic addition amount calculation unit 623a, increase correction value defining unit 621a, decrease correction value defining unit 624a, and addition amount calculating unit 626a.

添加量対応規定部625aは、瞬時塩化水素ガス濃度PVに対して添加すべき第1アルカリ剤の添加量を規定した基本添加量対応情報を規定している。
基本添加量対応情報は、第1アルカリ剤の添加量を添加量制御装置50の下限(最小添加量LOS(kg/h))に対応する酸性ガス濃度と上限(最大添加量LHS(kg/h))に対応する酸性ガス濃度との間に、ある一定の塩化水素ガス濃度範囲で、ある一定の制御出力値を超える出力がされないよう添加量を制限するように、規定されている。
The addition amount correspondence defining unit 625a defines basic addition amount correspondence information that defines the addition amount of the first alkaline agent to be added to the instantaneous hydrogen chloride gas concentration PV.
The basic addition amount correspondence information includes an acid gas concentration and an upper limit (maximum addition amount LHS (kg / h) corresponding to the lower limit (minimum addition amount LOS (kg / h)) of the addition amount control device 50. )), The amount of addition is limited so that an output exceeding a certain control output value does not occur within a certain hydrogen chloride gas concentration range.

一般のPID制御は、制御出力上限値は1つしかなく、例えば、制御目標値を40ppmとすると、例えば、酸性ガス濃度が制御目標値以上になると導入路内の酸性ガス濃度にかかわらず、その制御出力上限値まで第1アルカリ剤を添加し、ひいては、過剰添加を引き起こす。   In general PID control, there is only one control output upper limit value. For example, when the control target value is 40 ppm, for example, when the acid gas concentration exceeds the control target value, regardless of the acid gas concentration in the introduction path, The first alkaline agent is added up to the control output upper limit value, thereby causing excessive addition.

これに対し、添加量対応規定部625aは、現在の酸性ガス濃度に応じた制御出力の制限を加えられるように、すなわち、導入路3の酸性ガス濃度に応じて適正な量の第1アルカリ剤を添加することができ、第1アルカリ剤の添加量を削減することができるように、基本添加量対応情報を規定している。   On the other hand, the addition amount correspondence defining unit 625a is able to limit the control output in accordance with the current acid gas concentration, that is, in accordance with the acid gas concentration in the introduction path 3, an appropriate amount of the first alkaline agent. The basic addition amount correspondence information is defined so that the addition amount of the first alkaline agent can be reduced.

例えば、基本添加量対応情報は、具体的には、図4及び図5に示すように、塩化水素ガス濃度信号S1の瞬時塩化水素ガス濃度PVに対して添加すべき添加量SQ(kg/h)の関係を0−点a−点b間を結ぶ線、点c−点d間を結ぶ線、点e以降の線からなる添加量対応情報線Lで示される。   For example, as shown in FIG. 4 and FIG. 5, the basic addition amount correspondence information specifically includes the addition amount SQ (kg / h) to be added to the instantaneous hydrogen chloride gas concentration PV of the hydrogen chloride gas concentration signal S1. ) Is indicated by an addition amount correspondence information line L including a line connecting 0-point a-point b, a line connecting point c-point d, and a line after point e.

添加量対応情報線Lは、具体的には以下のようになっている。瞬時塩化水素ガス濃度PV(ppm)が、0ppmから、制御目標値(制御出力開始濃度ともいう)SV(ppm)未満までの範囲(0から点aの範囲)では、添加量SQ(kg/h)は0に規定される。
瞬時塩化水素ガス濃度PV(ppm)が、制御目標値SV(ppm)以上、第1出力制限添加量LM1(kg/h)に対応する第1出力制限対応濃度SM1(ppm)未満の範囲(点aから点bの範囲)では、添加量SQ(kg/h)は以下の式に基づいて規定される。
The addition amount correspondence information line L is specifically as follows. When the instantaneous hydrogen chloride gas concentration PV (ppm) ranges from 0 ppm to less than the control target value (also referred to as control output start concentration) SV (ppm) (range from 0 to point a), the addition amount SQ (kg / h) ) Is defined as 0.
Range (points) where the instantaneous hydrogen chloride gas concentration PV (ppm) is not less than the control target value SV (ppm) and less than the first output limit corresponding concentration SM1 (ppm) corresponding to the first output limit addition amount LM1 (kg / h) In the range from a to point b), the addition amount SQ (kg / h) is defined based on the following equation.

添加量SQ=(第1出力制限添加量LM1)×(瞬時塩化水素ガス濃度PV−制御目標値SV)/(第1出力制限対応濃度SM1−制御目標値SV) Addition amount SQ = (first output limit addition amount LM1) × (instantaneous hydrogen chloride gas concentration PV−control target value SV) / (first output limit corresponding concentration SM1−control target value SV)

瞬時塩化水素ガス濃度PV(ppm)が、第1出力制限添加量LM1(kg/h)に対応する第1出力制限対応濃度SM1(ppm)以上、第2出力制限添加量LM2(kg/h)に対応する第2出力制限対応濃度SM2(ppm)未満の範囲(点cから点dの範囲)では、添加量SQ(kg/h)は第2出力制限添加量LM2(kg/h)に規定される。
瞬時塩化水素ガス濃度PV(ppm)が、第2出力制限添加量LM2(kg/h)に対応する第2出力制限対応濃度SM2(ppm)以上(点e以降の範囲)では、添加量SQ(kg/h)は出力上限添加量LM3に規定される。なお、第2出力制限添加量LM2、出力上限添加量LM3は、いずれも、対応添加量上限値である。
The instantaneous hydrogen chloride gas concentration PV (ppm) is equal to or higher than the first output limit corresponding concentration SM1 (ppm) corresponding to the first output limit addition amount LM1 (kg / h), and the second output limit addition amount LM2 (kg / h) In the range less than the second output limit corresponding concentration SM2 (ppm) corresponding to the range (the range from the point c to the point d), the addition amount SQ (kg / h) is defined as the second output limit addition amount LM2 (kg / h). Is done.
When the instantaneous hydrogen chloride gas concentration PV (ppm) is equal to or higher than the second output limit corresponding concentration SM2 (ppm) corresponding to the second output limit addition amount LM2 (kg / h) (range after the point e), the addition amount SQ ( kg / h) is defined as the output upper limit addition amount LM3. The second output limit addition amount LM2 and the output upper limit addition amount LM3 are both corresponding addition amount upper limit values.

図2に示すように、濃度量算出部622aは、塩化水素ガス濃度信号S1に基づいて、瞬時塩化水素ガス濃度(ppm)が上昇しているか下降しているかを判断できるよう、瞬時塩化水素ガス濃度(ppm)の増減の割合(瞬時塩化水素ガス濃度の変化の傾き)を表す塩化水素ガス濃度量θを算出する。   As shown in FIG. 2, the concentration amount calculation unit 622a can determine whether the instantaneous hydrogen chloride gas concentration (ppm) is increasing or decreasing based on the hydrogen chloride gas concentration signal S1. A hydrogen chloride gas concentration amount θ representing a rate of increase / decrease in concentration (ppm) (slope of change in instantaneous hydrogen chloride gas concentration) is calculated.

基礎添加量算出部623aは、基礎添加量算出部63と同様、例えば、10分間のような所定の時間における第1添加量(kg/h)の平均添加量に基づいて基礎添加量Fa(kg/h)を算出する。   The basic addition amount calculation unit 623a is similar to the basic addition amount calculation unit 63, for example, based on the average addition amount of the first addition amount (kg / h) at a predetermined time such as 10 minutes, the basic addition amount Fa (kg / H).

上昇補正値規定部621aは、塩化水素ガス濃度量θの値が正のとき、すなわち、塩化水素ガス濃度が上昇している上昇状態のとき、基本添加量対応情報を補正する基本となる上昇補正値SVA(ppm)を規定している。   When the value of the hydrogen chloride gas concentration amount θ is positive, that is, when the hydrogen chloride gas concentration is increasing, the increase correction value defining unit 621a is the basic increase correction that corrects the basic addition amount correspondence information. The value SVA (ppm) is specified.

下降補正値規定部624aは、塩化水素ガス濃度量θの値が変化しないか負のとき、すなわち、塩化水素ガス濃度が安定しているか降下している下降状態のとき、基本添加量対応情報を補正する基本となる降下補正係数LMG(単位は無次元)を規定している。降下補正係数LMGは、1未満の値とされる。   When the value of the hydrogen chloride gas concentration θ does not change or is negative, that is, when the hydrogen chloride gas concentration is stable or is in a descending state, the downward correction value defining unit 624a displays the basic addition amount correspondence information. A descent correction coefficient LMG (unit is dimensionless) that is a basis for correction is defined. The descent correction coefficient LMG is set to a value less than 1.

添加量算出部626aは、酸性ガス濃度量θ、基礎添加量Fa、上昇補正値SVA、降下補正係数LMGに基づいて、基本添加量対応情報を補正し、塩化水素添加量信号S3を出力する。   The addition amount calculation unit 626a corrects the basic addition amount correspondence information based on the acid gas concentration amount θ, the basic addition amount Fa, the increase correction value SVA, and the decrease correction coefficient LMG, and outputs a hydrogen chloride addition amount signal S3.

図3に示すように、硫黄酸化物ガス算出部62bも、塩化水素ガス算出部62aと同様、硫黄化合物用の、基本添加量対応情報(図4及び図5と同様)が規定されている添加量対応規定部625bと、濃度量算出部622bと、基礎添加量算出部623bと、上昇補正値規定部621bと、下降補正値規定部624bと、添加量算出部626bとを備える。   As shown in FIG. 3, the sulfur oxide gas calculation unit 62b is also provided with basic addition amount correspondence information (similar to FIG. 4 and FIG. 5) for sulfur compounds, like the hydrogen chloride gas calculation unit 62a. An amount correspondence defining unit 625b, a concentration amount calculating unit 622b, a basic addition amount calculating unit 623b, an increase correction value defining unit 621b, a decrease correction value defining unit 624b, and an addition amount calculating unit 626b are provided.

添加量対応規定部625bは、硫黄酸化物ガス濃度に対して添加すべき第1アルカリ剤の添加量を規定した基本添加量対応情報を規定している。基本添加量対応情報である硫黄酸化物ガス濃度信号S2の瞬時硫黄酸化物ガス濃度PVに対して添加すべき添加量SQ(kg/h)の関係は、図4及び図5に示す添加量対応情報線Lと同様の関係である。   The addition amount correspondence defining part 625b defines basic addition amount correspondence information that defines the addition amount of the first alkaline agent to be added to the sulfur oxide gas concentration. The relationship of the addition amount SQ (kg / h) to be added to the instantaneous sulfur oxide gas concentration PV of the sulfur oxide gas concentration signal S2 which is basic addition amount correspondence information is shown in FIG. 4 and FIG. The relationship is the same as that of the information line L.

図3に示すように、濃度量算出部622bは、硫黄酸化物ガス濃度信号S2に基づいて、瞬時硫黄酸化物ガス濃度(ppm)の増減の割合(瞬時硫黄酸化物ガス濃度の変化の傾き)を表す硫黄酸化物ガス濃度量θを算出し、瞬時硫黄酸化物ガス濃度(ppm)が上昇しているか下降しているかを判断する。   As shown in FIG. 3, the concentration amount calculation unit 622b is configured to increase or decrease the instantaneous sulfur oxide gas concentration (ppm) based on the sulfur oxide gas concentration signal S2 (inclination of change in instantaneous sulfur oxide gas concentration). Is calculated to determine whether the instantaneous sulfur oxide gas concentration (ppm) is rising or falling.

基礎添加量算出部623bは、基礎添加量算出部63と同様、例えば、10分間のような所定の時間における第1添加量(kg/h)の平均添加量に基づいて基礎添加量Faを算出する。
上昇補正値規定部621bは、硫黄酸化物ガス濃度量θの値が正のとき、すなわち、硫黄酸化物ガス濃度が上昇しているとき、基本添加量対応情報を補正する基本となる上昇補正値SVA(ppm)を規定している。
下降補正値規定部624bは、硫黄酸化物ガス濃度量θの値が変化しないか負のとき、すなわち、硫黄酸化物ガス濃度が安定しているか降下しているとき、基本添加量対応情報を補正する基本となる降下補正係数LMG(単位は無次元)を規定している。降下補正係数LMGは、1未満の値とされる。
Similar to the basic addition amount calculation unit 63, the basic addition amount calculation unit 623b calculates the basic addition amount Fa based on the average addition amount of the first addition amount (kg / h) at a predetermined time such as 10 minutes, for example. To do.
The increase correction value defining unit 621b is a basic increase correction value for correcting the basic addition amount correspondence information when the value of the sulfur oxide gas concentration amount θ is positive, that is, when the sulfur oxide gas concentration is increasing. SVA (ppm) is specified.
The downward correction value defining unit 624b corrects the basic addition amount correspondence information when the value of the sulfur oxide gas concentration amount θ does not change or is negative, that is, when the sulfur oxide gas concentration is stable or decreasing. A basic descent correction coefficient LMG (unit is dimensionless) is defined. The descent correction coefficient LMG is set to a value less than 1.

添加量算出部626bは、硫黄酸化物ガス濃度量θ、基礎添加量Fa、上昇補正値SVA、降下補正係数LMGに基づいて、基本添加量対応情報を補正し、硫黄酸化物添加量信号S4を出力する。   The addition amount calculation unit 626b corrects the basic addition amount correspondence information based on the sulfur oxide gas concentration amount θ, the basic addition amount Fa, the increase correction value SVA, and the decrease correction coefficient LMG, and generates a sulfur oxide addition amount signal S4. Output.

燃焼排ガス処理施設10が行う酸性ガス安定処理方法を説明する。
まず、燃焼排ガス処理施設10が作動中、燃焼排ガスを集塵機18で処理し、導入路3内を流れる処理後燃焼排ガス中の酸性ガス濃度を測定する酸性ガス濃度測定工程が行われる。
具体的には、塩化水素ガス濃度測定装置32が、酸性ガス中のリアルタイムの塩化水素ガス濃度である瞬時塩化水素ガス濃度を測定する塩化水素ガス濃度測定工程を行い、測定された瞬時塩化水素ガス濃度を塩化水素ガス濃度信号S1として、出力する。同様に、硫黄酸化物ガス濃度測定装置34が、酸性ガス中のリアルタイムの硫黄酸化物ガス濃度である瞬時硫黄酸化物ガス濃度を測定する硫黄酸化物濃度測定工程を行い、測定された瞬時硫黄酸化物ガス濃度を硫黄酸化物ガス濃度信号S2として、出力する。
An acid gas stabilization method performed by the combustion exhaust gas treatment facility 10 will be described.
First, while the combustion exhaust gas treatment facility 10 is in operation, an acid gas concentration measurement step is performed in which the combustion exhaust gas is treated by the dust collector 18 and the acid gas concentration in the treated combustion exhaust gas flowing through the introduction path 3 is measured.
Specifically, the hydrogen chloride gas concentration measuring device 32 performs a hydrogen chloride gas concentration measuring step for measuring an instantaneous hydrogen chloride gas concentration which is a real-time hydrogen chloride gas concentration in the acid gas, and the measured instantaneous hydrogen chloride gas is measured. The concentration is output as a hydrogen chloride gas concentration signal S1. Similarly, the sulfur oxide gas concentration measuring device 34 performs a sulfur oxide concentration measuring step of measuring an instantaneous sulfur oxide gas concentration which is a real-time sulfur oxide gas concentration in the acid gas, and the measured instantaneous sulfur oxidation. The product gas concentration is output as the sulfur oxide gas concentration signal S2.

図6及び図7に示すように、塩化水素ガス算出部62aは、塩化水素ガス濃度信号S1に基づいて、単位時間当たりの第1添加剤の添加量(kg/h)である塩化水素側添加量AgS1(kg/h)を算出し、塩化水素添加量信号S3として出力する。
図6に示すように、基礎添加量算出部623aにおいて、例えば、10分間のような所定の時間における第1添加量(kg/h)の平均添加量に基づいて基礎添加量Faを算出する(ステップST01)。ここで算出された基礎添加量Faは添加量SQ(kg/h)を下げるための基礎となる値であり、ステップST11及びST15で用いられる。
As shown in FIGS. 6 and 7, the hydrogen chloride gas calculation unit 62a adds the hydrogen chloride side addition that is the addition amount (kg / h) of the first additive per unit time based on the hydrogen chloride gas concentration signal S1. An amount AgS1 (kg / h) is calculated and output as a hydrogen chloride addition amount signal S3.
As shown in FIG. 6, the basic addition amount calculation unit 623a calculates the basic addition amount Fa based on the average addition amount of the first addition amount (kg / h) at a predetermined time such as 10 minutes, for example ( Step ST01). The basic addition amount Fa calculated here is a value serving as a basis for lowering the addition amount SQ (kg / h), and is used in steps ST11 and ST15.

次に、添加量算出部626aは、濃度量算出部622aが塩化水素ガス濃度信号S1に基づいて算出した瞬時塩化水素ガス濃度(ppm)に基づいて、瞬時塩化水素ガス濃度(ppm)が上昇している上昇状態か、一定状態を保っている又は減少している下降状態かを判断する(ステップST03)。添加量算出部626aは、上昇状態と判断した場合、ステップST04に処理を移し、下降状態と判断した場合、ステップST18に処理を移す。   Next, the addition amount calculation unit 626a increases the instantaneous hydrogen chloride gas concentration (ppm) based on the instantaneous hydrogen chloride gas concentration (ppm) calculated by the concentration amount calculation unit 622a based on the hydrogen chloride gas concentration signal S1. It is determined whether it is in a rising state, or is in a constant state or is in a decreasing state (step ST03). If it is determined that the addition amount calculation unit 626a is in the rising state, the process proceeds to step ST04. If it is determined that the addition amount calculation unit 626a is in the falling state, the process proceeds to step ST18.

図4に示すように、添加量算出部626aは、ステップST03において上昇状態と判断しているので、添加量対応情報線Lを添加量対応情報線L1を介して添加量対応情報線L2に補正する(ステップST04)。
具体的には、添加量算出部626aは、まず、添加量対応情報線L(0−点a−点b間を結ぶ線、点c−点d間を結ぶ線、点e以降の線)の瞬時塩化水素ガス濃度PVの値を上昇補正値SVAだけ減算して、添加量対応情報線L1(0−点a1−点b1間を結ぶ線、点c1−点d1間を結ぶ線、点e1以降の線)を算出する。
添加量算出部626aは、次に、添加量対応情報線L1で得られる添加量SQの値を基礎添加量Faだけ少なくした添加量対応情報線L2(0−点a1−点b2間を結ぶ線、点c2−点d2間を結ぶ線、点e2以降の線)を算出する。
図6に示すように、次に、添加量算出部626aは、添加量対応情報線L2に基づいて、瞬時塩化水素ガス濃度PVに応じた添加すべき添加量SQ(kg/h)を算出する(ステップST05〜ST17)。
As shown in FIG. 4, the addition amount calculation unit 626a determines that the addition amount correspondence information line L is in the rising state in step ST03, so that the addition amount correspondence information line L is corrected to the addition amount correspondence information line L2 via the addition amount correspondence information line L1. (Step ST04).
Specifically, the addition amount calculation unit 626a first adds an addition amount correspondence information line L (a line connecting 0-point a-point b, a line connecting point c-point d, a line after point e). The value of the instantaneous hydrogen chloride gas concentration PV is subtracted by the increase correction value SVA, and the addition amount correspondence information line L1 (a line connecting 0-point a1-point b1, a line connecting point c1-point d1, and after point e1) ).
The addition amount calculation unit 626a then adds the addition amount correspondence information line L2 (the line connecting 0-point a1 to point b2) obtained by reducing the value of the addition amount SQ obtained by the addition amount correspondence information line L1 by the basic addition amount Fa. , A line connecting point c2 to point d2, a line after point e2).
As shown in FIG. 6, next, the addition amount calculation unit 626a calculates the addition amount SQ (kg / h) to be added according to the instantaneous hydrogen chloride gas concentration PV, based on the addition amount correspondence information line L2. (Steps ST05 to ST17).

まず、添加量算出部626aは、瞬時塩化水素ガス濃度PVが、0から(制御目標値SV(ppm)−上昇補正値SVA(ppm))までの範囲にあると判断すると(ステップST05)、添加量対応情報線L2に基づいて、添加量SQ(kg/h)を0と算出する(ステップST07)。   First, when the addition amount calculation unit 626a determines that the instantaneous hydrogen chloride gas concentration PV is in a range from 0 to (control target value SV (ppm) −increase correction value SVA (ppm)) (step ST05), the addition Based on the amount correspondence information line L2, the addition amount SQ (kg / h) is calculated as 0 (step ST07).

また、添加量算出部626aは、瞬時塩化水素ガス濃度PVが、(制御目標値SV(ppm)−上昇補正値SVA(ppm))から(第1出力制限対応濃度SM1(ppm)−上昇補正値SVA(ppm))までの範囲にあると判断すると(ステップST09)、添加量対応情報線L2に基づいて、添加量SQ(kg/h)を算出する(ステップST11)。
具体的には、添加量対応情報線L2の(制御目標値SV(ppm)−上昇補正値SVA(ppm))から(第1出力制限対応濃度SM1(ppm)−上昇補正値SVA(ppm))までの範囲における添加量SQ(kg/h)は、以下の式に基づいて算出される。
Further, the addition amount calculation unit 626a determines that the instantaneous hydrogen chloride gas concentration PV is from (control target value SV (ppm) −increase correction value SVA (ppm)) to (first output restriction corresponding concentration SM1 (ppm) −increase correction value). If it is determined that it is in the range up to SVA (ppm) (step ST09), the addition amount SQ (kg / h) is calculated based on the addition amount correspondence information line L2 (step ST11).
Specifically, from (control target value SV (ppm) −increase correction value SVA (ppm)) of the addition amount correspondence information line L2, (first output restriction corresponding concentration SM1 (ppm) −increase correction value SVA (ppm)) The addition amount SQ (kg / h) in the range up to is calculated based on the following equation.

添加量SQ=(第1出力制限添加量LM1−基礎添加量Fa)×(瞬時塩化水素ガス濃度PV−(制御目標値SV−上昇補正値SVA))/(第1出力制限対応濃度SM1−制御目標値SV) Addition amount SQ = (first output limit addition amount LM1−basic addition amount Fa) × (instantaneous hydrogen chloride gas concentration PV− (control target value SV−increase correction value SVA)) / (first output limit corresponding concentration SM1−control) Target value SV)

また、添加量算出部626aは、瞬時塩化水素ガス濃度PVが、(第1出力制限対応濃度SM1(ppm)−上昇補正値SVA(ppm))から(第2出力制限対応濃度SM2(ppm)−上昇補正値SVA(ppm))までの範囲にあると判断すると(ステップST13)、添加量対応情報線L2に基づいて、添加量SQ(kg/h)を算出する(ステップST15)。ここで、添加量対応情報線L2の(第1出力制限対応濃度SM1(ppm)−上昇補正値SVA(ppm))から(第2出力制限対応濃度SM2(ppm)−上昇補正値SVA(ppm))までの範囲における添加量SQ(kg/h)は、以下の式に基づいて算出される。   Further, the addition amount calculation unit 626a determines that the instantaneous hydrogen chloride gas concentration PV is from (first output restriction corresponding concentration SM1 (ppm) −increased correction value SVA (ppm)) to (second output restriction corresponding concentration SM2 (ppm) −). If it is determined that the value is within the range up to the correction value SVA (ppm) (step ST13), the addition amount SQ (kg / h) is calculated based on the addition amount correspondence information line L2 (step ST15). Here, from (first output restriction corresponding concentration SM1 (ppm) −increase correction value SVA (ppm)) of the addition amount correspondence information line L2, (second output restriction corresponding concentration SM2 (ppm) −increase correction value SVA (ppm)) The addition amount SQ (kg / h) in the range up to is calculated based on the following equation.

添加量SQ=第2出力制限添加量LM2−基礎添加量Fa Addition amount SQ = second output limit addition amount LM2-basic addition amount Fa

また、添加量算出部626aは、瞬時塩化水素ガス濃度PVが、(第2出力制限対応濃度SM2(ppm)−上昇補正値SVA(ppm))を超えると判断すると(ステップST13)、添加量対応情報線L2に基づいて、添加量SQ(kg/h)を算出する(ステップST17)。ここで、添加量対応情報線L2の(第2出力制限対応濃度SM2(ppm)−上昇補正値SVA(ppm))を超える範囲における添加量SQ(kg/h)は、以下の式に基づいて算出される。   If the addition amount calculation unit 626a determines that the instantaneous hydrogen chloride gas concentration PV exceeds (second output limit corresponding concentration SM2 (ppm) −increase correction value SVA (ppm)) (step ST13), the addition amount correspondence Based on the information line L2, the addition amount SQ (kg / h) is calculated (step ST17). Here, the addition amount SQ (kg / h) in the range exceeding the (second output limit corresponding concentration SM2 (ppm) −the increase correction value SVA (ppm)) of the addition amount correspondence information line L2 is based on the following equation: Calculated.

添加量SQ=出力上限添加量LM3−基礎添加量Fa Addition amount SQ = Output upper limit addition amount LM3-Basic addition amount Fa

図7に示すように、次に、添加量算出部626aは、ステップST03において下降状態と判断しているので、添加量対応情報線Lに基づいて、瞬時塩化水素ガス濃度PVに応じた添加すべき添加量SQ(kg/h)を算出する(ステップST19〜ST33)。   As shown in FIG. 7, next, the addition amount calculation unit 626a determines that it is in the descending state in step ST03, so that the addition amount corresponding to the instantaneous hydrogen chloride gas concentration PV is added based on the addition amount correspondence information line L. A power addition amount SQ (kg / h) is calculated (steps ST19 to ST33).

図5に示すように、添加量算出部626aは、ステップST03において下降状態と判断しているので、添加量対応情報線Lを添加量対応情報線L3を介して添加量対応情報線L4に補正する(ステップST18)。   As shown in FIG. 5, the addition amount calculation unit 626a determines that the addition amount correspondence information line L is in the descending state in step ST03, so that the addition amount correspondence information line L is corrected to the addition amount correspondence information line L4 via the addition amount correspondence information line L3. (Step ST18).

具体的には、添加量算出部626aは、まず、添加量対応情報線L(0−点a−点b間を結ぶ線、点c−点d間を結ぶ線、点e以降の線)の瞬時塩化水素ガス濃度PVの値を基礎添加量Faだけ下げて、添加量対応情報線L3(0−点a−点b3間を結ぶ線、点c3−点d3間を結ぶ線、点e3以降の線)を算出する。   Specifically, the addition amount calculation unit 626a first adds an addition amount correspondence information line L (a line connecting 0-point a-point b, a line connecting point c-point d, a line after point e). The instantaneous hydrogen chloride gas concentration PV is decreased by the basic addition amount Fa, and the addition amount correspondence information line L3 (a line connecting 0-point a-point b3, a line connecting point c3-point d3, and after point e3 Line).

図7に示すように、添加量算出部626aは、まず、添加量対応情報線L3に基づいて、瞬時塩化水素ガス濃度PVに応じた添加すべき添加量SQ(kg/h)として算出する(ステップST19〜ST31)。図5における添加量対応情報線L4は、添加量対応情報線L3を降下補正係数LMGの割合だけ小さくした線であり、0−点a−点b4間を結ぶ線、点c4−点d4間を結ぶ線、点e4以降の線である。   As shown in FIG. 7, the addition amount calculation unit 626a first calculates the addition amount SQ (kg / h) to be added according to the instantaneous hydrogen chloride gas concentration PV based on the addition amount correspondence information line L3 ( Steps ST19 to ST31). The addition amount correspondence information line L4 in FIG. 5 is a line obtained by reducing the addition amount correspondence information line L3 by the ratio of the drop correction coefficient LMG, and a line connecting between the point 0 and the point b4 and between the point c4 and the point d4. A connecting line, a line after point e4.

まず、添加量算出部626aは、瞬時塩化水素ガス濃度PVが、0から(制御目標値SV(ppm))までの範囲にあると判断すると(ステップST19)、添加量対応情報線L4に基づいて、添加量SQ1(kg/h)を0と算出する(ステップST21)。   First, when the addition amount calculation unit 626a determines that the instantaneous hydrogen chloride gas concentration PV is in a range from 0 to (control target value SV (ppm)) (step ST19), based on the addition amount correspondence information line L4. The addition amount SQ1 (kg / h) is calculated as 0 (step ST21).

また、添加量算出部626aは、瞬時塩化水素ガス濃度PVが、(制御目標値SV(ppm))から(第1出力制限対応濃度SM1(ppm))までの範囲にあると判断すると(ステップST23)、添加量対応情報線L3に基づいて、添加量SQ1(kg/h)を算出する(ステップST25)。
具体的には、添加量対応情報線L3の(制御目標値SV(ppm))から(第1出力制限対応濃度SM1(ppm))までの範囲における添加量SQ1(kg/h)は、以下の式に基づいて算出される。
In addition, when the addition amount calculation unit 626a determines that the instantaneous hydrogen chloride gas concentration PV is in the range from (control target value SV (ppm)) to (first output restriction corresponding concentration SM1 (ppm)) (step ST23). ), The addition amount SQ1 (kg / h) is calculated based on the addition amount correspondence information line L3 (step ST25).
Specifically, the addition amount SQ1 (kg / h) in the range from (control target value SV (ppm)) to (first output restriction corresponding concentration SM1 (ppm)) of the addition amount correspondence information line L3 is as follows. Calculated based on the formula.

添加量SQ1=(第1出力制限添加量LM1×降下補正係数LMG−基礎添加量Fa)×(瞬時塩化水素ガス濃度PV−制御目標値SV)/(第1出力制限対応濃度SM1−制御目標値SV) Addition amount SQ1 = (first output limit addition amount LM1 × drop correction coefficient LMG−basic addition amount Fa) × (instantaneous hydrogen chloride gas concentration PV−control target value SV) / (first output limit corresponding concentration SM1−control target value) SV)

また、添加量算出部626aは、瞬時塩化水素ガス濃度PVが、(第1出力制限対応濃度SM1(ppm))から(第2出力制限対応濃度SM2(ppm))までの範囲にあると判断すると(ステップST27)、添加量対応情報線L3に基づいて、添加量SQ1(kg/h)を算出する(ステップST29)。ここで、添加量対応情報線L3の(第1出力制限対応濃度SM1(ppm))から(第2出力制限対応濃度SM2(ppm))までの範囲における添加量SQ1(kg/h)は、以下の式に基づいて算出される。   Further, when the addition amount calculation unit 626a determines that the instantaneous hydrogen chloride gas concentration PV is in a range from (first output restriction corresponding concentration SM1 (ppm)) to (second output restriction corresponding concentration SM2 (ppm)). (Step ST27) Based on the addition amount correspondence information line L3, the addition amount SQ1 (kg / h) is calculated (step ST29). Here, the addition amount SQ1 (kg / h) in the range from (first output restriction correspondence concentration SM1 (ppm)) to (second output restriction correspondence concentration SM2 (ppm)) of the addition amount correspondence information line L3 is as follows. It is calculated based on the following formula.

添加量SQ1=第2出力制限添加量LM2×降下補正係数LMG−基礎添加量Fa Addition amount SQ1 = second output limit addition amount LM2 × drop correction coefficient LMG−basic addition amount Fa

また、添加量算出部626aは、瞬時塩化水素ガス濃度PVが、(第2出力制限対応濃度SM2(ppm))を超えると判断すると(ステップST27)、添加量対応情報線L3に基づいて、添加量SQ1(kg/h)を算出する(ステップST31)。ここで、添加量対応情報線L3の(第2出力制限対応濃度SM2(ppm))を超える範囲における添加量SQ1(kg/h)は、以下の式に基づいて算出される。   If the addition amount calculation unit 626a determines that the instantaneous hydrogen chloride gas concentration PV exceeds (second output restriction corresponding concentration SM2 (ppm)) (step ST27), the addition amount calculation unit 626a adds based on the addition amount correspondence information line L3. The amount SQ1 (kg / h) is calculated (step ST31). Here, the addition amount SQ1 (kg / h) in the range exceeding the (second output restriction corresponding concentration SM2 (ppm)) of the addition amount correspondence information line L3 is calculated based on the following equation.

添加量SQ1=出力上限添加量LM3×降下補正係数LMG−基礎添加量Fa Addition amount SQ1 = Output upper limit addition amount LM3 × Descent correction coefficient LMG−Basic addition amount Fa

こうして、添加量算出部626aは、添加量SQ(kg/h)を塩化水素側添加量AgS1(kg/h)とし、塩化水素側添加量AgS1(kg/h)を示す塩化水素添加量信号S3として出力する。   Thus, the addition amount calculation unit 626a sets the addition amount SQ (kg / h) as the hydrogen chloride side addition amount AgS1 (kg / h), and the hydrogen chloride addition amount signal S3 indicating the hydrogen chloride side addition amount AgS1 (kg / h). Output as.

硫黄酸化物ガス算出部62bは、硫黄酸化物ガス濃度信号S2に基づいて、単位時間当たりの第1添加剤の添加量(kg/h)である硫黄酸化物側添加量AgS2(kg/h)を算出し、硫黄酸化物添加量信号S4として出力する。硫黄酸化物ガス算出部62bで硫黄酸化物側添加量AgS2を算出する添加量算出部626bも、添加量算出部626aと同様に、硫黄酸化物ガス濃度信号S2に基づいて添加量SQ(kg/h)算出し、算出された添加量SQ(kg/h)を硫黄酸化物側添加量AgS2(kg/h)として出力する。   Based on the sulfur oxide gas concentration signal S2, the sulfur oxide gas calculation unit 62b calculates the sulfur oxide side addition amount AgS2 (kg / h), which is the addition amount (kg / h) of the first additive per unit time. Is calculated and output as a sulfur oxide addition amount signal S4. Similarly to the addition amount calculation unit 626a, the addition amount calculation unit 626b that calculates the sulfur oxide side addition amount AgS2 by the sulfur oxide gas calculation unit 62b is also based on the addition amount SQ (kg / kg). h) Calculate and output the calculated addition amount SQ (kg / h) as the sulfur oxide side addition amount AgS2 (kg / h).

基礎添加量算出部63は、常に、第1添加量信号S21の第1添加量(kg/h)に基づいて、基礎添加量Fa(kg/h)を基礎添加量信号S5として出力する。   The basic addition amount calculation unit 63 always outputs the basic addition amount Fa (kg / h) as the basic addition amount signal S5 based on the first addition amount (kg / h) of the first addition amount signal S21.

通常添加量算出部64は、以下の式に基づいて、塩化水素添加量信号S3の塩化水素側添加量AgS1、硫黄酸化物添加量信号S4の硫黄酸化物側添加量AgS2、基礎添加量信号S5の基礎添加量Fa(kg/h)に基づいて、通常添加量AgSQ(kg/h)を算出する。このとき、塩化水素側添加量AgS1(kg/h)と硫黄酸化物側添加量AgS2(kg/h)とは、いずれも、上述の計算式で示したように下限(基礎添加量Fa(kg/h))が影響しないように、基礎添加量Faを減算して、超えた部分の添加量を示している。このため、通常添加量AgSQ(kg/h)は、通常添加量AgSQ(kg/h)の下限が基礎添加量Fa(kg/h)となるように、塩化水素側添加量AgS1(kg/h)と硫黄酸化物側添加量AgS2(kg/h)との他に、下限(基礎添加量)を加えて、塩化水素ガス濃度信号S1と硫黄酸化物ガス濃度信号S2とから導かれる添加量の下限を調整している。   The normal addition amount calculation unit 64, based on the following formula, adds the hydrogen chloride side addition amount AgS1 of the hydrogen chloride addition amount signal S3, the sulfur oxide side addition amount AgS2 of the sulfur oxide addition amount signal S4, and the basic addition amount signal S5. The normal addition amount AgSQ (kg / h) is calculated based on the basic addition amount Fa (kg / h). At this time, the hydrogen chloride side addition amount AgS1 (kg / h) and the sulfur oxide side addition amount AgS2 (kg / h) are both lower limit (basic addition amount Fa (kg / H)) is subtracted from the basic addition amount Fa so as not to affect the addition amount of the portion exceeding the basic addition amount Fa. Therefore, the normal addition amount AgSQ (kg / h) is equal to the hydrogen chloride side addition amount AgS1 (kg / h) so that the lower limit of the normal addition amount AgSQ (kg / h) is the basic addition amount Fa (kg / h). ) And sulfur oxide side addition amount AgS2 (kg / h), in addition to the lower limit (basic addition amount), the addition amount derived from the hydrogen chloride gas concentration signal S1 and the sulfur oxide gas concentration signal S2 The lower limit is adjusted.

通常添加量AgSQ(kg/h)=塩化水素側添加量AgS1(kg/h)+硫黄酸化物側添加量AgS2(kg/h)+基礎添加量Fa(kg/h) Normal addition amount AgSQ (kg / h) = hydrogen chloride side addition amount AgS1 (kg / h) + sulfur oxide side addition amount AgS2 (kg / h) + basic addition amount Fa (kg / h)

緊急時判断部65は、常に、塩化水素ガス濃度信号S1及び硫黄酸化物ガス濃度信号S2に基づいて、緊急又は定常を示す緊急時判断信号S7を出力する。   The emergency determination unit 65 always outputs an emergency determination signal S7 indicating emergency or steady state based on the hydrogen chloride gas concentration signal S1 and the sulfur oxide gas concentration signal S2.

仮添加量算出部66は、定常を示す緊急時判断信号S7を受信している場合、通常添加量信号S6に基づいて仮第1添加量信号S8を出力し、緊急を示す緊急時判断信号S7を受信している場合、通常添加量AgSQ(kg/h)よりも多い予め規定した緊急添加量(kg/h)を仮第1添加量信号S8として出力する。   The temporary addition amount calculation unit 66 outputs the temporary first addition amount signal S8 based on the normal addition amount signal S6 when receiving the emergency determination signal S7 indicating the steady state, and the emergency determination signal S7 indicating the emergency. Is received, the emergency addition amount (kg / h) defined in advance larger than the normal addition amount AgSQ (kg / h) is output as the provisional first addition amount signal S8.

機器添加量制限部67は、仮第1添加量信号S8に基づいて、第1添加装置42の最大添加量LHS(kg/h)と、最小添加量LOS(kg/h)との範囲になるよう、第1添加量(kg/h)を算出する。   The device addition amount limiting unit 67 falls within the range of the maximum addition amount LHS (kg / h) of the first addition device 42 and the minimum addition amount LOS (kg / h) based on the temporary first addition amount signal S8. Thus, the first addition amount (kg / h) is calculated.

平均第1添加量算出部71は、第1添加量信号S21に基づいて算出した平均第1添加量AgSQA(kg/h)を平均第1添加量信号S11として出力する。   The average first addition amount calculation unit 71 outputs the average first addition amount AgSQA (kg / h) calculated based on the first addition amount signal S21 as the average first addition amount signal S11.

平均第2添加量算出部72は、第2添加量信号S22に基づいて算出した平均第2添加量(kg/h)を平均第2添加量信号S12として出力する。   The average second addition amount calculation unit 72 outputs the average second addition amount (kg / h) calculated based on the second addition amount signal S22 as the average second addition amount signal S12.

目標添加量規定部73は、目標添加量AgSQT(kg/h)を示す目標添加量信号S13として出力する。   The target addition amount defining unit 73 outputs the target addition amount signal S13 indicating the target addition amount AgSQT (kg / h).

第2添加量基礎算出部74は、平均第1添加量信号S11と、平均第2添加量信号S12と、目標添加量信号S13とに基づいて、例えば、以下の式を用いて第2添加量AgCQ(kg/h)を算出し、第2添加量信号S22として出力する。   Based on the average first addition signal S11, the average second addition signal S12, and the target addition signal S13, the second addition amount basic calculation unit 74 uses, for example, the following expression to calculate the second addition amount: AgCQ (kg / h) is calculated and output as the second addition amount signal S22.

第2添加量AgCQ=平均第1添加量AgSQA+平均第2添加量AgCQA−目標添加量AgSQT Second addition amount AgCQ = average first addition amount AgSQA + average second addition amount AgCQA−target addition amount AgSQT

第1添加装置42は、第1添加量信号S21に基づいて、第1添加量の第1アルカリ剤を導入路3内の燃焼排ガスに添加し、また、第2添加装置44は、第2添加量信号S22に基づいて、第2添加量の第2アルカリ剤を導入路3内の燃焼排ガスに添加する。   The first addition device 42 adds the first addition amount of the first alkaline agent to the combustion exhaust gas in the introduction passage 3 based on the first addition amount signal S21, and the second addition device 44 adds the second addition amount. Based on the quantity signal S22, a second addition amount of the second alkaline agent is added to the combustion exhaust gas in the introduction path 3.

燃焼排ガス処理施設10は、互いに異なる2つのアルカリ剤の添加量を適切に制御することができるので、酸性ガスの安定処理を維持しつつ、アルカリ剤の過剰な添加を防止することができる。また、アルカリ剤の添加量を適正に行うことができるので、飛灰中の未反応アルカリの残分を減少させ、飛灰の発生量を減少させることができ、重金属類を固定化させる固定剤の使用量を減少させ、ひいては、環境負荷を低減させることができる。   Since the flue gas treatment facility 10 can appropriately control the addition amounts of two different alkali agents, it is possible to prevent excessive addition of the alkali agent while maintaining a stable treatment of acid gas. Moreover, since the addition amount of the alkali agent can be appropriately performed, the amount of unreacted alkali in the fly ash can be reduced, the amount of fly ash generated can be reduced, and the fixing agent that immobilizes heavy metals. Can be reduced, and as a result, the environmental load can be reduced.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明に係る燃焼排ガス処理施設10は、第1アルカリ剤及び第2アルカリ剤の適正な添加及び酸性ガスの安定処理が可能なように、集塵機18の下流側に塩化水素ガス濃度信号S1、硫黄酸化物ガス濃度信号S2に基づいて第1アルカリ剤の添加量を制御し、また、第1アルカリ剤の添加量に基づいて第2アルカリ剤の添加量を制御するフィードバック制御をするものであり、本発明は実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. The combustion exhaust gas treatment facility 10 according to the present invention can appropriately add the first alkaline agent and the second alkaline agent and stably treat the acidic gas. As described above, the addition amount of the first alkaline agent is controlled on the downstream side of the dust collector 18 based on the hydrogen chloride gas concentration signal S1 and the sulfur oxide gas concentration signal S2, and based on the addition amount of the first alkaline agent. The feedback control is performed to control the amount of the second alkaline agent added, and the present invention is not limited to the examples.

比較例
酸性ガスの変動が激しい産業廃棄物焼却炉において、アルカリ剤添加装置が設置されている位置より、上流側の導入路3(入口HCl)に塩化水素測定機器(京都電子工業株式会社製、KLA−1)を設置し、塩化水素ガス濃度を測定した。また、消石灰(第2アルカリ剤、JIS特号消石灰)を集塵機18の上流側に338kg/hの定量で添加すると共に、微粉重曹(第1アルカリ剤2、栗田工業株式会社製、ハイパーサーB−200)を集塵機18の下流側の排出路4に設置された塩化水素測定機器(京都電子工業株式会社製、KLA−1)で測定された塩化水素ガス濃度(出口HCl)が出力される塩化水素ガス濃度信号S1と、硫黄酸化物測定機器(富士電機株式会社製、ZRG)で測定された硫黄酸化物ガス濃度(出口SOx)が出力される硫黄酸化物ガス濃度信号S2と、に基づいて排出路4内の濃度を管理する酸素換算値にてフィードバック制御を実施した。
尚、この際、微粉重曹(第1アルカリ剤)の出口塩化水素(入口HCl)、硫黄酸化物濃度信号によるフィードバック制御は、以下に示す設定で行った。
Comparative Example In an industrial waste incinerator where the fluctuation of acid gas is intense, a hydrogen chloride measuring device (manufactured by Kyoto Electronics Industry Co., Ltd.) is introduced into the upstream introduction path 3 (inlet HCl) from the position where the alkali agent addition device is installed. KLA-1) was installed and the hydrogen chloride gas concentration was measured. Further, slaked lime (second alkaline agent, JIS special slaked lime) is added to the upstream side of the dust collector 18 at a fixed amount of 338 kg / h, and fine baking soda (first alkaline agent 2, Kurita Kogyo Co., Ltd., Hypercer B-) The hydrogen chloride gas concentration (outlet HCl) measured by a hydrogen chloride measuring device (KLA-1 manufactured by Kyoto Electronics Industry Co., Ltd.) installed in the discharge channel 4 downstream of the dust collector 18 is output. Emission based on the gas concentration signal S1 and the sulfur oxide gas concentration signal S2 from which the sulfur oxide gas concentration (exit SOx) measured by the sulfur oxide measuring device (manufactured by Fuji Electric Co., Ltd., ZRG) is output Feedback control was performed with an oxygen conversion value for managing the concentration in the passage 4.
At this time, feedback control by fine hydrogen chloride (first alkaline agent) outlet hydrogen chloride (inlet HCl) and sulfur oxide concentration signal was performed with the following settings.

また、本適用方法における飛灰を定期的に採取し、アルカリ剤の未反応分の指標となる原灰INDEX(アルカリ残分)を測定した。さらに、硫酸バンド、リン酸水溶液を添加し、重金属の溶出試験(環境庁告示13号試験)を行い、必要添加量を評価した。
本評価条件においては、消石灰を1.88当量(338kg/h)、微粉重曹0.28当量(115kg/h)添加することにより出口塩化水素ガス濃度(出口HCl)を195ppm(制御目標値200ppm)と制御目標値と同等の処理ができており、適正な制御が可能であった。
図8及び図11に入口塩化水素ガス濃度(入口HCl)と消石灰添加当量の推移を示す。
図8のグラフによれば、入口塩化水素ガス濃度(入口HCl)が増加するにつれて消石灰添加当量が低下する傾向がある。これは、入口塩化水素ガス濃度(入口HCl)が低い場合には消石灰が過剰に噴霧され、入口塩化水素ガス濃度(入口HCl)が低下した際には消石灰が不足し、比較的高価な第1アルカリ剤の添加量が増加することを示す。
飛灰の重金属処理に関しては、飛灰中の原灰INDEX(アルカリ残分)平均は、305であった。また、75%リン酸水溶液3%を添加し、27%硫酸アルミニウム水溶液の添加量を変え必要添加量を評価した結果、27%硫酸アルミニウム水溶液の必要添加量は、平均で55%であった。
Further, fly ash in this application method was periodically collected, and raw ash INDEX (alkaline residue) serving as an index of the unreacted portion of the alkali agent was measured. Further, a sulfuric acid band and a phosphoric acid aqueous solution were added, and a heavy metal elution test (Environment Agency Notification No. 13 test) was conducted to evaluate the required addition amount.
In this evaluation condition, 1.88 equivalents (338 kg / h) of slaked lime and 0.28 equivalents (115 kg / h) of fine powdered sodium bicarbonate were added, and the outlet hydrogen chloride gas concentration (outlet HCl) was 195 ppm (control target value 200 ppm). The process was equivalent to the control target value, and proper control was possible.
8 and 11 show changes in the inlet hydrogen chloride gas concentration (inlet HCl) and slaked lime addition equivalent.
According to the graph of FIG. 8, the slaked lime addition equivalent tends to decrease as the inlet hydrogen chloride gas concentration (inlet HCl) increases. This is because the slaked lime is excessively sprayed when the inlet hydrogen chloride gas concentration (inlet HCl) is low, and the slaked lime is insufficient when the inlet hydrogen chloride gas concentration (inlet HCl) is lowered. It shows that the amount of alkali agent added increases.
Regarding the heavy metal treatment of fly ash, the average of raw ash INDEX (alkali residue) in the fly ash was 305. Moreover, as a result of adding 3% of 75% phosphoric acid aqueous solution and changing the addition amount of 27% aluminum sulfate aqueous solution and evaluating the required addition amount, the required addition amount of 27% aluminum sulfate aqueous solution was 55% on average.

第2アルカリ剤の添加条件
第2アルカリ剤:消石灰:338(kg/h)定量添加
Second alkaline agent addition conditions Second alkaline agent: slaked lime: 338 (kg / h) fixed addition

第1アルカリ剤:微粉重曹のフィードバック制御
AgSO=AgSQ÷LHS×100
AgSO:微粉重曹添加出力(%)
AgSQ:微粉重曹添加量(通常添加量)(kg/h)
LHS:微粉重曹添加装置の最大添加量(第1添加装置の最大添加量):400(kg/h)
AgSQ=(AgS1+AgS2)+Fa
AgS1:出口HCl測定機器の出力から規定される添加量(塩化水素側添加量)(kg/h)
AgS2:出口SO2測定機器の出力から規定される添加量(硫黄酸化物側添加量)(kg/h)
Fa:微粉重曹基礎添加量(基礎添加量)(kg/h)
Fa:基礎添加量(kg/h):n分移動平均添加量(kg/h)×係数(%)÷100
n分移動平均:10(分)
係数:70.0(%)
ここで、AgSQがLHSを超える場合は、LHSとした。
また、AgSQがLOS(微粉重曹添加装置の最小添加量(第1添加装置の最小添加量))(kg/h)以下の場合は、LOSとした。
LOS:微粉重曹添加装置の最小添加量(第1添加装置の最小添加量):40(kg/h)
また、出口HCl濃度(塩化水素ガス濃度)、出口SO2濃度(硫黄酸化物ガス濃度)がある一定濃度以上になった場合、本添加出力とは緊急添加量の添加出力を規定した。
First alkaline agent: feedback control of fine powdered baking soda AgSO = AgSQ ÷ LHS × 100
AgSO: Fine powder baking soda addition output (%)
AgSQ: Fine powder baking soda addition amount (normal addition amount) (kg / h)
LHS: Maximum addition amount of fine powder baking soda addition device (maximum addition amount of first addition device): 400 (kg / h)
AgSQ = (AgS1 + AgS2) + Fa
AgS1: Addition amount specified from the output of the outlet HCl measuring device (addition amount on the hydrogen chloride side) (kg / h)
AgS2: Addition amount defined from the output of the outlet SO2 measuring device (addition amount on the sulfur oxide side) (kg / h)
Fa: Fine powder baking soda basic addition amount (basic addition amount) (kg / h)
Fa: Basic addition amount (kg / h): n-minute moving average addition amount (kg / h) × factor (%) ÷ 100
n-minute moving average: 10 (minutes)
Coefficient: 70.0 (%)
Here, when AgSQ exceeded LHS, it was set as LHS.
Moreover, it was set as LOS when AgSQ is below LOS (the minimum addition amount of the fine powder sodium bicarbonate addition device (the minimum addition amount of the first addition device)) (kg / h).
LOS: Minimum addition amount of fine powder baking soda addition device (minimum addition amount of first addition device): 40 (kg / h)
In addition, when the outlet HCl concentration (hydrogen chloride gas concentration) and the outlet SO2 concentration (sulfur oxide gas concentration) exceed a certain concentration, the addition output of the emergency addition amount is defined as the main addition output.

緊急添加量
緊急添加[出口HCl 1時間平均による制御]
HCl緊急添加濃度:213(ppm)
HCl緊急添加量:260(kg/h)
緊急添加[出口SO2 1時間平均による制御]
SO2緊急添加濃度:200(ppm)
SO2緊急添加量:260(kg/h)
Urgent addition amount Urgent addition [Control by outlet HCl 1 hour average]
HCl emergency addition concentration: 213 (ppm)
HCl urgent addition amount: 260 (kg / h)
Emergency addition [Exit SO2 1 hour average control]
SO2 emergency addition concentration: 200 (ppm)
SO2 emergency addition amount: 260 (kg / h)

制御設定を表1及び表2に示す。   Tables 1 and 2 show the control settings.

実施例1
同一施設において、消石灰(第2アルカリ剤、JIS特号消石灰)を前述した微粉重曹(第1アルカリ剤、栗田工業株式会社製、ハイパーサーB−200)の添加量をもとに添加制御した以外は、比較例と同一の方法で行った。
消石灰(第2アルカリ剤)と微粉重曹(第1アルカリ剤)との制御は、以下に示す制御設定で行った。
Example 1
In the same facility, except for controlling the addition of slaked lime (second alkaline agent, JIS special slaked lime) based on the addition amount of fine powder baking soda (first alkaline agent, manufactured by Kurita Kogyo Co., Ltd., Hypercer B-200). Was performed in the same manner as in the comparative example.
Control of slaked lime (second alkaline agent) and fine powdered sodium bicarbonate (first alkaline agent) was performed with the control settings shown below.

また、本適用方法における飛灰も定期的に採取し、比較例と同様にアルカリ剤の未反応分の指標となる原灰INDEX(アルカリ残分)平均を測定すると共に、硫酸バンド、リン酸水溶液を用いて、必要添加量を評価した。
消石灰の添加量を微粉重曹の添加量で以下の式で制御したことにより、消石灰を1.74当量(295kg/h)、微粉重曹0.28当量(106kg/h)の添加で出口塩化水素ガス濃度(出口HCl)を195ppm(制御目標値200ppm)と同様に適正な制御が可能であった。また、本発明により消石灰を制御することで、消石灰の必要添加量を比較例に比べ削減することができた。
In addition, fly ash in this application method is also collected periodically, and the raw ash INDEX (alkali residue) average, which is an indicator of the unreacted amount of the alkaline agent, is measured as in the comparative example, and a sulfuric acid band and a phosphoric acid aqueous solution are measured. Was used to evaluate the required addition amount.
By controlling the amount of slaked lime added with the amount of fine powdered baking soda according to the following equation, the outlet hydrogen chloride gas was added by adding 1.74 equivalents (295 kg / h) of slaked lime and 0.28 equivalents (106 kg / h) of finely powdered sodium bicarbonate. The concentration (outlet HCl) could be appropriately controlled as with 195 ppm (control target value 200 ppm). Moreover, the required addition amount of slaked lime was able to be reduced compared with the comparative example by controlling slaked lime by this invention.

図9及び図12に、入口塩化水素ガス濃度(入口HCl)と消石灰添加当量の推移を示すが、入口塩化水素ガス濃度増加時に、添加当量のバラツキはわずかであり、また、添加当量が低下する傾向は減少した。
飛灰の重金属処理に関しては、飛灰中の原灰INDEX(アルカリ残分)平均は、260と比較例に比べアルカリ残分を低下することができた。また、添加当量のバラツキもわずかであり、変動の範囲は230〜290であった。
また、同様に75%リン酸水溶液3%を添加し、27%硫酸アルミニウム水溶液の添加量を変え必要添加量を評価した結果、27%硫酸アルミニウム水溶液の必要添加量は、平均で45%と重金属固定剤の添加量を削減することができた。
9 and 12 show the transition of the inlet hydrogen chloride gas concentration (inlet HCl) and the slaked lime addition equivalent, but when the inlet hydrogen chloride gas concentration increases, the variation of the addition equivalent is slight and the addition equivalent decreases. The trend decreased.
Regarding the heavy metal treatment of fly ash, the average of the raw ash INDEX (alkali residue) in the fly ash was 260, which was lower than that of the comparative example. Moreover, the variation of the addition equivalent was also slight, and the range of fluctuation was 230-290.
Similarly, 3% of 75% phosphoric acid aqueous solution was added, and the addition amount of 27% aluminum sulfate aqueous solution was changed and the necessary addition amount was evaluated. As a result, the required addition amount of 27% aluminum sulfate aqueous solution was 45% on average and heavy metal The amount of fixative added could be reduced.

第2アルカリ剤(JIS特号消石灰適用)のフィードバック制御
AgCO=AgCQ÷LHC×100
AgCO:消石灰添加出力(%)
AgCQ:消石灰添加量(kg/h)
Feedback control of the second alkaline agent (JIS special slaked lime applied) AgCO = AgCQ ÷ LHC × 100
AgCO: Slaked lime addition output (%)
AgCQ: Slaked lime addition amount (kg / h)

AgCQ=AgCQAve+AgSQAve−AgSQT
AgCQAve:第2アルカリ剤消石灰のn分移動平均添加量(kg/h)
AgSQAve:第1アルカリ剤微粉重曹のn分移動平均添加量(kg/h)
AgSQT:第1アルカリ剤微粉重曹の目標添加量(kg/h)
ここで、AgCQがLMHCを超える場合は、LMHCとした。
また、AgCQがLMOC以下の場合は、LMOCとした。
また、n分移動平均は、以下のように設定する。
第2アルカリ剤(消石灰)の制御
LOC:消石灰機器最小添加量:45(kg/h)
LHC:消石灰機器最大添加量(kg/h):450(kg/h)
LMOC消石灰制御最小添加量:200(kg/h)
LMHC消石灰制御最大添加量:360(kg/h)
消石灰:AgCQAveのn分移動平均時間:10分
微粉重曹:AgSQAveのn分移動平均時間:30分
また、微粉重曹の目標添加量は、以下のように設定する。
微粉重曹の目標添加量:105(kg/h)
また、第1アルカリ剤(微粉重曹)の制御は、比較例1と同一設定にした。
AgCQ = AgCQAve + AgSQAve-AgSQT
AgCQAve: n-minute moving average addition amount of the second alkaline agent slaked lime (kg / h)
AgSQAve: n-minute moving average addition amount (kg / h) of the first alkaline agent fine powder baking soda
AgSQT: Target addition amount (kg / h) of 1st alkaline agent fine powder baking soda
Here, when AgCQ exceeded LMHC, it was set as LMHC.
Moreover, when AgCQ was below LMOC, it was set as LMOC.
The moving average for n is set as follows.
Control LOC of the second alkaline agent (slaked lime): Minimum addition amount of slaked lime equipment: 45 (kg / h)
LHC: Slaked lime equipment maximum addition amount (kg / h): 450 (kg / h)
LMOC slaked lime control minimum addition amount: 200 (kg / h)
LMHC slaked lime control maximum addition amount: 360 (kg / h)
Slaked lime: AgCQAve n-minute moving average time: 10 minutes Fine powder baking soda: AgSQAve n-minute moving average time: 30 minutes Also, the target addition amount of fine powdered sodium bicarbonate is set as follows.
Target amount of fine baking soda: 105 (kg / h)
Further, the control of the first alkaline agent (fine powder baking soda) was set to the same setting as in Comparative Example 1.

実施例2
同一施設において、消石灰(第2アルカリ剤、JIS特号消石灰)を前述した微粉重曹(第1アルカリ剤、栗田工業株式会社製、ハイパーサーB−200)の添加量をもとに添加制御した以外は、比較例と同一の方法で行った。
尚、この際、消石灰(第2アルカリ剤)と微粉重曹(第1アルカリ剤)との制御は、以下に示す制御設定で行った。
Example 2
In the same facility, except for controlling the addition of slaked lime (second alkaline agent, JIS special slaked lime) based on the addition amount of fine powder baking soda (first alkaline agent, manufactured by Kurita Kogyo Co., Ltd., Hypercer B-200). Was performed in the same manner as in the comparative example.
At this time, the control of slaked lime (second alkaline agent) and fine powdered sodium bicarbonate (first alkaline agent) was performed with the following control settings.

AgCQ=AgCQ1Ave
AgCQ1Ave:AgCQ1のn分移動平均添加量(kg/h)
AgCQ1=A×AgSQ+B
AgSQ:アルカリ剤2微粉重曹の添加量(kg/h)
AgCQ1の係数A:1.5
AgCQ1の切片B:100
ここで、AgCQがLMHCを超える場合は、LMHCとした。
また、AgCQがLMOC以下の場合は、LMOCとした。
LOC:消石灰機器最小添加量:45(kg/h)
LHC:消石灰機器最大添加量:450(kg/h)
LMOC:消石灰 制御最小添加量:45(kg/h)
LMHC:消石灰 制御最大添加量:405(kg/h)
また、n分移動平均は、以下のように設定する。
AgCQ1:Aveのn分移動平均時間:30(分)
AgCQ = AgCQ1Ave
AgCQ1Ave: n-minute moving average addition amount of AgCQ1 (kg / h)
AgCQ1 = A × AgSQ + B
AgSQ: Alkaline agent 2 Addition amount of fine powdered baking soda (kg / h)
AgCQ1 coefficient A: 1.5
AgCQ1 section B: 100
Here, when AgCQ exceeded LMHC, it was set as LMHC.
Moreover, when AgCQ was below LMOC, it was set as LMOC.
LOC: Slaked lime equipment minimum addition amount: 45 (kg / h)
LHC: Slaked lime equipment maximum addition amount: 450 (kg / h)
LMOC: Slaked lime Controlled minimum addition amount: 45 (kg / h)
LMHC: Slaked lime Controlled maximum addition amount: 405 (kg / h)
The moving average for n is set as follows.
AgCQ1: Ave n-minute moving average time: 30 (minutes)

また、本適用方法における飛灰も定期的に採取し、比較例と同様にアルカリ剤の未反応分の指標となる原灰INDEX(アルカリ残分)平均を測定すると共に、硫酸バンド、リン酸水溶液を用いて、必要添加量を評価した。   In addition, fly ash in this application method is also collected periodically, and the raw ash INDEX (alkali residue) average, which is an indicator of the unreacted amount of the alkaline agent, is measured as in the comparative example. Was used to evaluate the required addition amount.

消石灰の添加量を微粉重曹の添加量で以下の式で制御したことにより、消石灰を1.65当量(268kg/h)、微粉重曹0.29当量(109kg/h)の添加で出口塩化水素ガス濃度(出口HCl)を199ppm(制御目標値200ppm)と同様に適正な制御が可能であった。
また、本発明により消石灰を制御することで、消石灰の必要添加量を比較例に比べ大きく削減することができた。
By controlling the addition amount of slaked lime with the addition amount of fine powdered sodium bicarbonate by the following formula, 1.65 equivalents (268 kg / h) of slaked lime and 0.29 equivalents of fine powdered sodium bicarbonate (109 kg / h) were added to the outlet hydrogen chloride gas. The concentration (outlet HCl) could be appropriately controlled in the same manner as 199 ppm (control target value 200 ppm).
Moreover, the required addition amount of slaked lime was able to be reduced significantly compared with the comparative example by controlling slaked lime by this invention.

図10及び図13に入口塩化水素濃度(入口HCl)と消石灰添加当量の推移を示すが、本制御は、入口塩化水素濃度(入口HCl)の変動に関わらず、安定した当量で消石灰の添加が可能であり、非常にコントロール性に優れた制御である。
また、飛灰の重金属処理に関しても、飛灰中の原灰INDEX(アルカリ残分)平均は、230と比較例に比べアルカリ残分を低下し、コントロール性向上により変動も少なくなっており、酸性薬剤で処理しやすい飛灰性状と言える。
また、同様に75%リン酸水溶液3%を添加し、27%硫酸アルミニウム水溶液の添加量を変え必要添加量を評価した結果、27%硫酸アルミニウム水溶液の必要添加量は、平均で40%と重金属固定剤の添加量も削減することができた。
FIGS. 10 and 13 show the transition of the inlet hydrogen chloride concentration (inlet HCl) and the slaked lime addition equivalent, but this control allows the addition of slaked lime with a stable equivalent regardless of the fluctuation of the inlet hydrogen chloride concentration (inlet HCl). This control is possible and has excellent controllability.
In addition, regarding the heavy metal treatment of fly ash, the average of raw ash INDEX (alkali residue) in fly ash is 230, which is lower than the comparative example and has less fluctuation due to improved controllability. It can be said that the fly ash properties are easy to treat with drugs.
Similarly, 3% of 75% phosphoric acid aqueous solution was added, and the addition amount of 27% aluminum sulfate aqueous solution was changed and the required addition amount was evaluated. As a result, the required addition amount of 27% aluminum sulfate aqueous solution was 40% on average and heavy metal The amount of fixative added could also be reduced.

酸性ガス処理の結果を表3に、重金属処理結果を表4に測定結果を示す。
The results of acid gas treatment are shown in Table 3, and the results of heavy metal treatment are shown in Table 4.

AgCQ 第2添加量
AgCQA 平均第2添加量
AgS1 塩化水素側添加量
AgS2 硫黄酸化物側添加量
AgSQ 第1添加量、通常添加量
AgSQA 平均第1添加量
AgSQT 目標添加量
Fa 基礎添加量
L、L1、L2、L3、L4 添加量対応情報線
LHS 最大添加量
LM1 第1出力制限添加量
LM2 第2出力制限添加量
LM3 出力上限添加量
LMG 降下補正係数
LOS 最小添加量
PV 瞬時塩化水素ガス濃度、瞬時硫黄酸化物ガス濃度
S0 酸性ガス濃度信号
S1 塩化水素ガス濃度信号
S2 硫黄酸化物ガス濃度信号
S3 塩化水素添加量信号
S4 硫黄酸化物添加量信号
S5 基礎添加量信号
S6 通常添加量信号
S7 緊急時判断信号
S8 仮第1添加量信号
S11 平均第1添加量信号
S12 平均第2添加量信号
S13 目標添加量信号
S21 第1添加量信号
S22 第2添加量信号
SM1 第1出力制限対応濃度
SM2 第2出力制限対応濃度
SQ、SQ1 添加量
SV 制御目標値
SVA 上昇補正値
2 配管
3 導入路
4 排出路
10 燃焼排ガス処理施設
12 燃焼炉
14 ボイラ
16 減温塔
18 集塵機
19 飛灰集積装置
20 ファン
22 煙突
30 酸性ガス測定装置
32 塩化水素ガス濃度測定装置
34 硫黄酸化物ガス濃度測定装置
42 第1添加装置
44 第2添加装置
50 添加量制御装置
60 第1添加量算出部
61 メイン添加量算出部
62a 塩化水素ガス算出部
62b 硫黄酸化物ガス算出部
63 基礎添加量算出部
64 通常添加量算出部
65 緊急時判断部
66 仮添加量算出部
67 機器添加量制限部
70 第2添加量算出部
71 平均第1添加量算出部
72 平均第2添加量算出部
73 目標添加量規定部
74 第2添加量基礎算出部
621a、621b 上昇補正値規定部
622a、622b 濃度量算出部
623a、623b 基礎添加量算出部
624a、624b 下降補正値規定部
625a、625b 添加量対応規定部
626a、626b 添加量算出部
AgCQ Second addition amount AgCQA Average second addition amount AgS1 Hydrogen chloride side addition amount AgS2 Sulfur oxide side addition amount AgSQ First addition amount, normal addition amount AgSQA Average first addition amount AgSQT Target addition amount Fa Basic addition amount L, L1 , L2, L3, L4 Addition amount correspondence information line LHS Maximum addition amount LM1 First output limit addition amount LM2 Second output limit addition amount LM3 Output upper limit addition amount LMG Lowering correction coefficient LOS Minimum addition amount PV Instantaneous hydrogen chloride gas concentration, instantaneous Sulfur oxide gas concentration S0 Acid gas concentration signal S1 Hydrogen chloride gas concentration signal S2 Sulfur oxide gas concentration signal S3 Hydrogen chloride addition amount signal S4 Sulfur oxide addition amount signal S5 Basic addition amount signal S6 Normal addition amount signal S7 Emergency judgment Signal S8 Temporary first addition amount signal S11 Average first addition amount signal S12 Average second addition amount signal S13 Target addition amount signal S 21 First addition amount signal S22 Second addition amount signal SM1 First output restriction corresponding concentration SM2 Second output restriction correspondence concentration SQ, SQ1 Addition amount SV Control target value SVA Increase correction value 2 Pipe 3 Inlet path 4 Exhaust path 10 Combustion exhaust gas Treatment facility 12 Combustion furnace 14 Boiler 16 Temperature reducing tower 18 Dust collector 19 Fly ash accumulator 20 Fan 22 Chimney 30 Acid gas measuring device 32 Hydrogen chloride gas concentration measuring device 34 Sulfur oxide gas concentration measuring device 42 First addition device 44 Second Addition device 50 Addition amount control device 60 First addition amount calculation unit 61 Main addition amount calculation unit 62a Hydrogen chloride gas calculation unit 62b Sulfur oxide gas calculation unit 63 Basic addition amount calculation unit 64 Normal addition amount calculation unit 65 Emergency determination unit 66 Temporary addition amount calculation unit 67 Equipment addition amount restriction unit 70 Second addition amount calculation unit 71 Average first addition amount calculation unit 72 Average second addition amount calculation unit 73 Target addition amount defining unit 74 Second addition amount basic calculating units 621a and 621b Ascending correction value defining units 622a and 622b Concentration amount calculating units 623a and 623b Basic addition amount calculating units 624a and 624b Decreasing correction value defining units 625a and 625b Definition part 626a, 626b addition amount calculation part

Claims (11)

酸性ガスが含まれる燃焼排ガスを燃焼排ガス処理施設で安定的に処理する安定処理方法であって、
前記燃焼排ガスを集塵機で処理した処理後燃焼排ガス中の酸性ガス濃度を測定する酸性ガス濃度測定工程と、
前記酸性ガス濃度に基づいて酸性ガスに関する情報である酸性ガス情報を算出し、前記酸性ガス情報に基づいて第1アルカリ剤の通常添加量を算出し、前記通常添加量に基づいて第1添加量を算出する第1算出工程と、
前記第1添加量に関する第1添加量情報に基づいて、第2アルカリ剤の第2添加量を算出する第2算出工程と、
前記第1添加量の前記第1アルカリ剤を前記処理後燃焼排ガスに添加する第1添加工程と、
前記第2添加量の前記第2アルカリ剤を前記処理後燃焼排ガスに添加する第2添加工程とを含む、酸性ガス安定処理方法。
A stable treatment method for stably treating flue gas containing acid gas at a flue gas treatment facility,
An acid gas concentration measuring step for measuring the acid gas concentration in the treated flue gas after treating the flue gas with a dust collector;
Based on the acid gas concentration, acid gas information that is information on the acid gas is calculated, the normal addition amount of the first alkaline agent is calculated based on the acid gas information, and the first addition amount is calculated based on the normal addition amount. A first calculation step of calculating
A second calculation step of calculating a second addition amount of the second alkaline agent based on the first addition amount information regarding the first addition amount;
A first addition step of adding the first addition amount of the first alkaline agent to the treated combustion exhaust gas;
A second addition step of adding the second addition amount of the second alkaline agent to the post-treatment combustion exhaust gas.
前記第1添加量情報は、所定時間における前記第1添加量の平均第1添加量を含み、
前記第2算出工程は、過去の第2添加量から前記所定時間における前記第2添加量の平均第2添加量を含む第2添加量情報を算出し、前記平均第1添加量と前記平均第2添加量と予め規定された目標添加量とに基づいて前記第2添加量を算出する、請求項1に記載の酸性ガス安定処理方法。
The first addition amount information includes an average first addition amount of the first addition amount at a predetermined time,
The second calculation step calculates second addition amount information including an average second addition amount of the second addition amount at the predetermined time from the past second addition amount, and calculates the average first addition amount and the average first addition amount. The acid gas stabilization method according to claim 1, wherein the second addition amount is calculated based on two addition amounts and a predetermined target addition amount.
前記酸性ガス情報は、前記酸性ガス濃度測定工程において測定されたリアルタイムの酸性ガス濃度である瞬時酸性ガス濃度の変化の割合を表す酸性ガス濃度量を含み、
前記第1算出工程は、前記酸性ガス濃度量に応じて、前記通常添加量を所定の補正方法に基づいて補正する、請求項1又は2に記載の酸性ガス安定化処理方法。
The acid gas information includes an acid gas concentration amount representing a rate of change in instantaneous acid gas concentration, which is a real-time acid gas concentration measured in the acid gas concentration measurement step,
The acid gas stabilization method according to claim 1 or 2, wherein the first calculation step corrects the normal addition amount based on a predetermined correction method according to the acid gas concentration amount.
予め、前記瞬時酸性ガス濃度と前記第1アルカリ剤の添加量とを関係づけた基本添加量対応情報を規定し、
前記第1算出工程は、前記酸性ガス濃度量が一定状態を保っている又は減少している下降状態の場合、前記瞬時酸性ガス濃度と基本減少用添加量対応情報とに基づいて前記通常添加量を算出し、
また、前記酸性ガス濃度量が増加している上昇状態の場合、前記瞬時酸性ガス濃度と、前記基本添加量対応情報における酸性ガス濃度の値を所定の補正方法で小さくした増加用添加量対応情報と、に基づいて前記通常添加量を算出する、請求項3に記載の酸性ガス安定化処理方法。
In advance, the basic addition amount correspondence information that relates the instantaneous acid gas concentration and the addition amount of the first alkaline agent is defined,
In the first calculation step, when the acid gas concentration amount is in a descending state where the acid gas concentration amount remains constant or decreases, the normal addition amount is based on the instantaneous acid gas concentration and basic decrease addition amount correspondence information. To calculate
Further, when the acid gas concentration amount is increasing, the increase acid amount correspondence information in which the value of the acid gas concentration in the instantaneous acid gas concentration and the basic additive amount correspondence information is reduced by a predetermined correction method. The acid gas stabilization treatment method according to claim 3, wherein the normal addition amount is calculated based on:
前記第1算出工程は、前記酸性ガス濃度量が一定状態を保っている又は減少している下降状態の場合、前記通常添加量を、予め規定された0を超え1未満の範囲にある下降補正値で補正する、請求項3又は4に記載の酸性ガス安定化処理方法。   In the first calculation step, when the acid gas concentration amount is in a descending state where the state is constant or decreasing, the normal addition amount is corrected to be in a range of more than 0 and less than 1. The acid gas stabilization treatment method according to claim 3 or 4, wherein the acid gas stabilization treatment method is corrected by a value. 前記第1添加工程において添加できる最大添加量と最小添加量との間に複数の対応添加量上限値が設けられ、
前記複数の対応添加量上限値は、それぞれ、複数の酸性ガス濃度に対応しており、
前記酸性ガス情報は、前記酸性ガス濃度測定工程において測定された酸性ガス濃度である瞬時酸性ガス濃度を含んでおり、
前記第1算出工程は、前記瞬時酸性ガス濃度が、前記複数の酸性ガス濃度のうち隣接する2つの酸性ガス濃度の範囲内にある場合、その隣接する2つの酸性ガス濃度のうち高い濃度に対応する対応添加量上限値に基づいて、前記通常添加量を算出する、請求項3から5のいずれかに記載の酸性ガス安定処理方法。
A plurality of corresponding addition amount upper limit values are provided between the maximum addition amount and the minimum addition amount that can be added in the first addition step,
Each of the plurality of corresponding addition amount upper limit values corresponds to a plurality of acid gas concentrations,
The acid gas information includes an instantaneous acid gas concentration that is an acid gas concentration measured in the acid gas concentration measurement step,
The first calculation step corresponds to a higher concentration of the two adjacent acidic gas concentrations when the instantaneous acidic gas concentration is within a range of two adjacent acidic gas concentrations of the plurality of acidic gas concentrations. The acid gas stable treatment method according to claim 3, wherein the normal addition amount is calculated based on a corresponding addition amount upper limit value.
前記酸性ガス情報は、所定時間における前記酸性ガス濃度の平均値である平均酸性ガス濃度を含み、
前記第1算出工程は、前記平均酸性ガス濃度が予め規定された緊急添加濃度を超えると、前記通常添加量の変わりに、予め規定された緊急添加量に基づいて前記第1添加量として算出する、請求項1から6のいずれかに記載の酸性ガス安定処理方法。
The acid gas information includes an average acid gas concentration that is an average value of the acid gas concentration in a predetermined time,
In the first calculation step, when the average acid gas concentration exceeds a predefined emergency addition concentration, the first addition amount is calculated based on a predefined emergency addition amount instead of the normal addition amount. The acid gas stable treatment method according to any one of claims 1 to 6.
前記酸性ガスは、塩化水素ガスと硫黄酸化物ガスとを含み、
前記酸性ガス濃度測定工程は、前記酸性ガス中の塩化水素ガス濃度を測定する塩化水素ガス濃度測定工程と、前記酸性ガス中の硫黄酸化物濃度を測定する硫黄酸化物濃度測定工程と、を含み、
前記酸性ガス情報は、前記塩化水素ガスに関する塩化水素情報と前記硫黄酸化物ガスに関する硫黄酸化物情報とを含み、
前記第1算出工程は、前記塩化水素情報に基づいて算出した塩化水素ガス添加量と、前記硫黄酸化物情報に基づいて算出した硫黄酸化物ガス添加量と、基礎添加量とに基づいて前記通常添加量を算出し、
前記基礎添加量は、所定の時間における前記第1添加量の平均添加量に基づいて算出される、請求項1から7のいずれかに記載の酸性ガス安定処理方法。
The acidic gas includes hydrogen chloride gas and sulfur oxide gas,
The acid gas concentration measurement step includes a hydrogen chloride gas concentration measurement step for measuring a hydrogen chloride gas concentration in the acid gas, and a sulfur oxide concentration measurement step for measuring a sulfur oxide concentration in the acid gas. ,
The acid gas information includes hydrogen chloride information about the hydrogen chloride gas and sulfur oxide information about the sulfur oxide gas,
The first calculating step is based on the hydrogen chloride gas addition amount calculated based on the hydrogen chloride information, the sulfur oxide gas addition amount calculated based on the sulfur oxide information, and the basic addition amount. Calculate the amount added,
The acid gas stabilization method according to any one of claims 1 to 7, wherein the basic addition amount is calculated based on an average addition amount of the first addition amount at a predetermined time.
前記第1アルカリ剤が、少なくとも5〜30μmの微粉の重曹を含有したアルカリ剤であり、
前記第2アルカリ剤が、少なくとも消石灰を含有したアルカリ剤である、請求項1から8のいずれかに記載の酸性ガス安定処理方法。
The first alkaline agent is an alkaline agent containing at least 5 to 30 μm of fine baking soda,
The acid gas stabilization method according to any one of claims 1 to 8, wherein the second alkali agent is an alkali agent containing at least slaked lime.
さらに、前記集塵機において集塵された飛灰に、鉄系化合物、リン酸含有化合物及び中和剤から選ばれる少なくとも1種以上を添加する固定化処理工程を含む、請求項1から9のいずれかに記載の酸性ガス安定処理方法。   Furthermore, the immobilization process process which adds the at least 1 sort (s) chosen from an iron-type compound, a phosphoric acid containing compound, and a neutralizing agent to the fly ash collected in the said dust collector is described in any one of Claim 1 to 9 The acid gas stable treatment method according to 1. 請求項1から10のいずれかに記載の酸性ガス安定化処理方法を実行する燃焼排ガス処理施設であって、
集塵機と、
前記燃焼排ガスを前記集塵機に導入する導入路と、
前記集塵機で処理された処理後燃焼排ガスを前記集塵機から排出する排出路と、
前記酸性ガス濃度測定工程を実行し、酸化ガス情報信号として出力する酸化ガス測定装置と、
前記酸化ガス情報信号に基づいて前記第1算出工程を実行し、前記第1添加量を第1添加量信号として出力する第1添加量算出部と前記第1添加量信号に基づいて前記第2算出工程を実行し、前記第2添加量を第2添加量信号として出力する第2添加量算出部とを有する添加量制御装置と、
前記第1添加量信号に基づいて前記第1添加工程を実行する第1添加装置と、
前記第2添加量信号に基づいて前記第2添加工程を実行する第2添加装置と、を備える燃焼排ガス処理施設。
A combustion exhaust gas treatment facility for executing the acid gas stabilization treatment method according to any one of claims 1 to 10,
A dust collector,
An introduction path for introducing the combustion exhaust gas into the dust collector;
A discharge path for discharging the treated exhaust gas after the treatment by the dust collector from the dust collector;
An oxidizing gas measuring device that performs the acid gas concentration measuring step and outputs it as an oxidizing gas information signal;
The first calculation step is executed based on the oxidant gas information signal, and the first addition amount calculation unit that outputs the first addition amount as a first addition amount signal, and the second addition based on the first addition amount signal. An addition amount control device including a second addition amount calculation unit that executes a calculation step and outputs the second addition amount as a second addition amount signal;
A first addition device for performing the first addition step based on the first addition amount signal;
A flue gas treatment facility comprising: a second addition device that executes the second addition step based on the second addition amount signal.
JP2012254690A 2012-11-20 2012-11-20 Acid gas stabilization method and combustion exhaust gas treatment facility Active JP6020085B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012254690A JP6020085B2 (en) 2012-11-20 2012-11-20 Acid gas stabilization method and combustion exhaust gas treatment facility
CN201310576689.8A CN103831011B (en) 2012-11-20 2013-11-18 The stable processing method of sour gas and burning and gas-exhausting processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254690A JP6020085B2 (en) 2012-11-20 2012-11-20 Acid gas stabilization method and combustion exhaust gas treatment facility

Publications (3)

Publication Number Publication Date
JP2014100670A true JP2014100670A (en) 2014-06-05
JP2014100670A5 JP2014100670A5 (en) 2014-09-18
JP6020085B2 JP6020085B2 (en) 2016-11-02

Family

ID=50795095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254690A Active JP6020085B2 (en) 2012-11-20 2012-11-20 Acid gas stabilization method and combustion exhaust gas treatment facility

Country Status (2)

Country Link
JP (1) JP6020085B2 (en)
CN (1) CN103831011B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070971B1 (en) * 2015-02-18 2017-02-01 Jfeエンジニアリング株式会社 Exhaust gas treatment apparatus and exhaust gas treatment method
JP2017124348A (en) * 2016-01-12 2017-07-20 株式会社プランテック Refuse incinerator exhaust gas treatment method and refuse incinerator exhaust gas treatment facility
JP2017176922A (en) * 2016-03-28 2017-10-05 Jx金属株式会社 Desulfurizing agent addition control method
WO2018101030A1 (en) * 2016-12-02 2018-06-07 日立造船株式会社 Exhaust gas treatment apparatus, incineration facility, and exhaust gas treatment method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324590B (en) * 2014-10-17 2016-10-05 安徽盛运环保工程有限公司 Dangerous waste incineration smoke comprehensive absorbs deacidification system
CN105731496B (en) * 2014-12-06 2017-10-27 中国石油化工股份有限公司 It is a kind of that sodium acid carbonate is produced by sour gas and the method and device of hydrogen sulfide is purified
CN105731497B (en) * 2014-12-06 2017-07-14 中国石油化工股份有限公司 A kind of utilization sour gas produces the method and device of sodium acid carbonate
WO2018133047A1 (en) * 2017-01-20 2018-07-26 深圳市能源环保有限公司 Injection chelating treatment method for waste incineration fly ash
JP6517290B2 (en) * 2017-09-04 2019-05-22 株式会社プランテック Exhaust gas treatment method and exhaust gas treatment apparatus
CN108392976A (en) * 2018-05-21 2018-08-14 宁波市北仑环保固废处置有限公司 A kind of sodium bicarbonate automation deacidification system and its process
CN109603508A (en) * 2018-12-05 2019-04-12 中冶南方都市环保工程技术股份有限公司 Using the coal gas flue gas processing device and method of sodium bicarbonate dry desulfurization
CN114610086A (en) * 2022-04-08 2022-06-10 深圳能源环保股份有限公司 PH value-based waste incineration fly ash treatment method and device and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075758A (en) * 2004-09-10 2006-03-23 Jfe Engineering Kk Desalination controlling apparatus and desalination controlling method
US7040891B1 (en) * 2005-06-08 2006-05-09 Giuliani Anthony J System for reducing fuel consumption and pollutant emissions from asphalt cement production
JP2007237019A (en) * 2006-03-06 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Feed amount control method for exhaust gas treatment chemical and exhaust gas treatment apparatus
JP2010221150A (en) * 2009-03-24 2010-10-07 Kurita Water Ind Ltd Method and apparatus for treatment of combustion exhaust gas
JP2011056495A (en) * 2009-08-11 2011-03-24 Kurita Water Ind Ltd Method for preventing elution of heavy metal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5598245B2 (en) * 2010-10-15 2014-10-01 栗田工業株式会社 Acid gas treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075758A (en) * 2004-09-10 2006-03-23 Jfe Engineering Kk Desalination controlling apparatus and desalination controlling method
US7040891B1 (en) * 2005-06-08 2006-05-09 Giuliani Anthony J System for reducing fuel consumption and pollutant emissions from asphalt cement production
JP2007237019A (en) * 2006-03-06 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Feed amount control method for exhaust gas treatment chemical and exhaust gas treatment apparatus
JP2010221150A (en) * 2009-03-24 2010-10-07 Kurita Water Ind Ltd Method and apparatus for treatment of combustion exhaust gas
JP2011056495A (en) * 2009-08-11 2011-03-24 Kurita Water Ind Ltd Method for preventing elution of heavy metal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070971B1 (en) * 2015-02-18 2017-02-01 Jfeエンジニアリング株式会社 Exhaust gas treatment apparatus and exhaust gas treatment method
JP6124097B1 (en) * 2015-02-18 2017-05-10 Jfeエンジニアリング株式会社 Exhaust gas treatment apparatus and exhaust gas treatment method
JP2017094319A (en) * 2015-02-18 2017-06-01 Jfeエンジニアリング株式会社 Exhaust gas treatment device and exhaust gas treatment method
JP2017124348A (en) * 2016-01-12 2017-07-20 株式会社プランテック Refuse incinerator exhaust gas treatment method and refuse incinerator exhaust gas treatment facility
JP2017176922A (en) * 2016-03-28 2017-10-05 Jx金属株式会社 Desulfurizing agent addition control method
WO2018101030A1 (en) * 2016-12-02 2018-06-07 日立造船株式会社 Exhaust gas treatment apparatus, incineration facility, and exhaust gas treatment method
JPWO2018101030A1 (en) * 2016-12-02 2019-10-17 日立造船株式会社 Exhaust gas treatment apparatus, incineration equipment, and exhaust gas treatment method

Also Published As

Publication number Publication date
JP6020085B2 (en) 2016-11-02
CN103831011B (en) 2017-10-31
CN103831011A (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP6020085B2 (en) Acid gas stabilization method and combustion exhaust gas treatment facility
JP5338421B2 (en) Combustion exhaust gas treatment method and apparatus
TWI450754B (en) Method for treating acidic gas
JP5880481B2 (en) Acid gas stabilization method and flue gas treatment facility
JP5991677B2 (en) Exhaust gas treatment equipment
CN109092045A (en) A kind of limestone-gypsum method flue gas desulfurization slurries oxidation controlling method
KR101528743B1 (en) Method for Treating Acidic Gas
TWI465283B (en) Treatment method for acidic gas
JP2010075897A (en) Apparatus for fly ash treatment, method for fly ash treatment, waste disposal system, and operation method for waste disposal system
WO2020255462A1 (en) Additive supply amount determination device, combustion facility equipped with same, and combustion facility operation method
JP6020305B2 (en) Exhaust gas treatment method
WO2020148955A1 (en) Exhaust gas treatment system and exhaust gas treatment method
JP4284251B2 (en) Corrosion control method for waste power generation boiler
WO2022196728A1 (en) Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus
JP5070815B2 (en) Exhaust gas treatment method
JP2009131726A (en) Method of treating flue gas
JP6417149B2 (en) Exhaust gas treatment apparatus and treatment method using the same
WO2013136420A1 (en) Method for treating acidic gas
PL405249A1 (en) Method for reducing emission of mercury from coal firing boilers
JPH0221852B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6020085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250