JP2017176922A - Desulfurizing agent addition control method - Google Patents

Desulfurizing agent addition control method Download PDF

Info

Publication number
JP2017176922A
JP2017176922A JP2016063864A JP2016063864A JP2017176922A JP 2017176922 A JP2017176922 A JP 2017176922A JP 2016063864 A JP2016063864 A JP 2016063864A JP 2016063864 A JP2016063864 A JP 2016063864A JP 2017176922 A JP2017176922 A JP 2017176922A
Authority
JP
Japan
Prior art keywords
value
sox concentration
desulfurization agent
sox
desulfurizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016063864A
Other languages
Japanese (ja)
Other versions
JP6498626B2 (en
Inventor
鈴木 義昭
Yoshiaki Suzuki
義昭 鈴木
雅史 山下
Masafumi Yamashita
雅史 山下
尚之 長谷川
Naoyuki Hasegawa
尚之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016063864A priority Critical patent/JP6498626B2/en
Publication of JP2017176922A publication Critical patent/JP2017176922A/en
Application granted granted Critical
Publication of JP6498626B2 publication Critical patent/JP6498626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desulfurizing agent addition control method reducing the used amount of a desulfurizing agent while observing the emission standard of SOx concentration in an exhaust gas.SOLUTION: In a desulfurizing agent addition control method controlling the addition amount of a desulfurizing agent into an exhaust gas on the basis of SOx concentration after a desulfurization process in the desulfurization process neutralizing sulfur oxides (SOx) in the exhaust gas by adding the desulfurizing agent: a control value at this time is calculated on the basis of a first difference being the difference between the N hour moving average value of SOx concentration before N hours and the current N hour moving average value of SOx concentration, and a control value used for the calculation of the addition amount of the desulfurizing agent before N hours; and the addition amount of the desulfurizing agent is determined on the basis of the control value at this time.SELECTED DRAWING: Figure 2

Description

本発明は、脱硫剤添加制御方法に関する。   The present invention relates to a desulfurization agent addition control method.

金属類を含むスラッジなどに適切な溶剤を加えて1300〜1400度の高温で加熱溶解し、銅や金・銀などの有価金属を回収することが行われている。スラッジを溶融炉で溶融した際に発生する排ガスには各種排出規制物質が含まれており、各排出規制物質の濃度を排出基準以下に浄化して排出する必要がある。   An appropriate solvent is added to sludge containing metals and dissolved at high temperature of 1300 to 1400 degrees to recover valuable metals such as copper, gold and silver. The exhaust gas generated when the sludge is melted in the melting furnace contains various emission control substances, and it is necessary to purify and discharge the concentration of each emission control substance below the emission standard.

特許文献1には、排出規制物質の1つであるフッ素の濃度を、排出基準を満たす濃度まで浄化処理する方法が開示されている。   Patent Document 1 discloses a method for purifying the concentration of fluorine, which is one of emission control substances, to a concentration that satisfies emission standards.

特開2015−85242号公報Japanese Patent Laying-Open No. 2015-85242

ところで、排出規制物質の1つに硫黄酸化物(SOx)がある。一般に、排ガス中のSOxは、排ガスに脱硫剤を添加することによって除去されるが、脱硫剤の添加量を脱硫工程後のSOxの濃度に基づいて手動で決定した場合、その添加量が過剰になってしまうおそれがある。   Incidentally, sulfur oxide (SOx) is one of emission control substances. Generally, SOx in exhaust gas is removed by adding a desulfurizing agent to the exhaust gas. However, if the addition amount of the desulfurizing agent is manually determined based on the concentration of SOx after the desulfurization process, the addition amount is excessive. There is a risk of becoming.

本発明は上記の課題に鑑み、排ガス中のSOx濃度の排出基準を遵守しつつ、脱硫剤の使用量を低減する脱硫剤添加制御方法を提供すること目的とする。   In view of the above problems, an object of the present invention is to provide a desulfurization agent addition control method that reduces the amount of desulfurization agent used while complying with the emission standard of SOx concentration in exhaust gas.

本発明に係る脱硫剤添加制御方法は、脱硫剤の添加により排ガス中の硫黄酸化物(SOx)を中和する脱硫工程において、前記脱硫工程後のSOx濃度に基づいて前記排ガスに添加する前記脱硫剤の添加量を制御する脱硫剤添加制御方法であって、N時間前のSOx濃度のN時間移動平均値と、現在のSOx濃度のN時間移動平均値との差分である第1差分と、前記N時間前に前記脱硫剤の添加量の算出に用いた制御値と、に基づいて、今回の制御値を算出し、前記今回の制御値に基づいて前記脱硫剤の添加量を決定する方法である。   The desulfurization agent addition control method according to the present invention is the desulfurization step of adding to the exhaust gas based on the SOx concentration after the desulfurization step in the desulfurization step of neutralizing sulfur oxide (SOx) in the exhaust gas by adding the desulfurization agent. A desulfurization agent addition control method for controlling the addition amount of the agent, the first difference being the difference between the N time moving average value of the SOx concentration before N hours and the N time moving average value of the current SOx concentration, A method of calculating the current control value based on the control value used to calculate the addition amount of the desulfurizing agent N hours before and determining the addition amount of the desulfurization agent based on the current control value It is.

この場合において、前記第1差分に所定の係数を乗算した値に、前記N時間前の制御値を加算することにより、前記今回の制御値を算出してもよい。   In this case, the current control value may be calculated by adding the control value N hours before to the value obtained by multiplying the first difference by a predetermined coefficient.

この場合において、SOx濃度のM時間移動平均値が第1の閾値以上である場合、前記所定の係数に所定の値を加算してもよい。   In this case, when the M time moving average value of the SOx concentration is equal to or more than the first threshold value, a predetermined value may be added to the predetermined coefficient.

また、所定時間毎にSOx濃度の瞬時値を取得し、前記SOx濃度の瞬時値が第2の閾値以上である場合、前記SOx濃度の瞬時値と前記第2の閾値との差分である第2差分を更に用いて、前記今回の制御値を算出してもよい。   In addition, an instantaneous value of the SOx concentration is acquired every predetermined time, and when the instantaneous value of the SOx concentration is equal to or greater than a second threshold value, a second value that is a difference between the instantaneous value of the SOx concentration and the second threshold value is obtained. The current control value may be calculated by further using the difference.

この場合において、前記SOx濃度の瞬時値に応じた補正係数を更に用いて、前記今回の制御値を算出してもよい。   In this case, the current control value may be calculated by further using a correction coefficient corresponding to the instantaneous value of the SOx concentration.

また、前記SOx濃度の瞬時換算値が第3の閾値以下の場合、前記今回の制御値を固定値としてもよい。   Further, when the instantaneous conversion value of the SOx concentration is equal to or smaller than the third threshold value, the current control value may be a fixed value.

本発明に係る脱硫剤添加制御方法によれば、排ガス中のSOx濃度の排出基準を遵守しつつ、脱硫剤の使用量を低減することができる。   According to the desulfurization agent addition control method according to the present invention, the amount of desulfurization agent used can be reduced while complying with the emission standard for SOx concentration in exhaust gas.

スラッジの処理工程を表す工程図である。It is process drawing showing the process of a sludge. 脱硫剤添加制御方法のフローチャートである。It is a flowchart of a desulfurization agent addition control method.

図1は、スラッジの処理工程を表す工程図である。図1で例示するように、出発原料は金属類を含むスラッジである。   FIG. 1 is a process diagram showing a sludge treatment process. As illustrated in FIG. 1, the starting material is sludge containing metals.

(溶融工程)
溶融工程では、スラッジを溶融炉に投入し、焼却処理する。
(Melting process)
In the melting step, sludge is put into a melting furnace and incinerated.

(冷却工程)
冷却工程では、溶融炉からの高温の排ガスを廃熱ボイラーに導入し、300℃以下に冷却する。
(Cooling process)
In the cooling step, high-temperature exhaust gas from the melting furnace is introduced into the waste heat boiler and cooled to 300 ° C. or lower.

(除塵工程)
除塵工程では、集塵機を用いて、排ガス中の塵を取り除く。この除塵工程によって、フッ素除去工程においてカルシウム塩との反応効率を上げることができる。集塵機はいずれのタイプでもよいが、大きさや処理能力の面から電気集塵機が好ましい。
(Dust removal process)
In the dust removal process, dust in the exhaust gas is removed using a dust collector. By this dust removal step, the reaction efficiency with the calcium salt can be increased in the fluorine removal step. Any type of dust collector may be used, but an electric dust collector is preferable in terms of size and processing capacity.

(フッ素除去工程)
フッ素除去工程では、排ガスにフッ素を除去するためのカルシウム塩を投入する。カルシウム塩としては生石灰、消石灰、塩化カルシウム、石膏、及び炭酸カルシウムの何れを使用してもよい。排ガスは、溶融炉にて生成した硫黄酸化物や窒素酸化物を含有する酸性ガスであることから、中和効果を有する塩基性の消石灰や炭酸カルシウムが好ましい。またカルシウム塩を投入する時には、活性炭に代表される炭素系吸着剤をも添加するとさらに清浄効果が期待される。
(Fluorine removal process)
In the fluorine removal step, a calcium salt for removing fluorine is introduced into the exhaust gas. As the calcium salt, any of quick lime, slaked lime, calcium chloride, gypsum, and calcium carbonate may be used. Since the exhaust gas is an acidic gas containing sulfur oxides and nitrogen oxides generated in a melting furnace, basic slaked lime and calcium carbonate having a neutralizing effect are preferable. In addition, when adding a calcium salt, if a carbon-based adsorbent typified by activated carbon is also added, a further cleaning effect is expected.

(回収工程1)
回収工程1では、投入されたカルシウム塩や活性炭が適当な集塵機、例えばバグフィルターにより分離回収される。回収物としてのカルシウム塩にはフッ素がフッ化カルシウムとして含有されている。
(Recovery process 1)
In the recovery step 1, the input calcium salt and activated carbon are separated and recovered by a suitable dust collector, for example, a bag filter. The recovered calcium salt contains fluorine as calcium fluoride.

(脱硫工程)
脱硫工程では、フッ素を除去した排ガスに、脱硫剤(例えば、ナトリウムの炭酸塩)を添加して硫黄酸化物(SOx)を中和する。これは、排ガス中に酸成分、とくに硫黄酸化物(SOx)が含まれていると後工程である脱硝工程において、脱硝触媒が被毒されることになり好ましくないからである。
(Desulfurization process)
In the desulfurization step, the sulfur oxide (SOx) is neutralized by adding a desulfurization agent (for example, sodium carbonate) to the exhaust gas from which fluorine has been removed. This is because if the exhaust gas contains an acid component, particularly sulfur oxide (SOx), the denitration catalyst is poisoned in the denitration process, which is a subsequent process, which is not preferable.

脱硫工程において、投入する脱硫剤は、一般的なSOx中和用試薬、例えば炭酸ナトリウム、炭酸水素ナトリウムなどでよい。例えば、市販の脱硫剤(旭硝子社製のアクレシア(登録商標)等)を使用することができる。その粒径は特に指定されないが、後述する回収工程2において粉塵を回収する集塵機の能力に応じて選択される。   In the desulfurization step, the desulfurizing agent to be added may be a general SOx neutralizing reagent such as sodium carbonate or sodium hydrogen carbonate. For example, a commercially available desulfurization agent (Acrecia (registered trademark) manufactured by Asahi Glass Co., Ltd.) can be used. The particle size is not particularly specified, but is selected according to the ability of the dust collector to collect dust in the collecting step 2 described later.

(回収工程2)
回収工程2では、脱硫工程で生じた粉塵、すなわち炭酸ナトリウムの中和反応により生じた硫酸ナトリウム、硫酸水素ナトリウム、亜硫酸ナトリウム等を固気分離する。なお、この分離された粉塵は、特に処理することなく水に溶解させた後、通常の排水処理工程に投入して排出することが可能である。
(Recovery process 2)
In the recovery process 2, the dust generated in the desulfurization process, that is, sodium sulfate, sodium hydrogen sulfate, sodium sulfite, and the like generated by the neutralization reaction of sodium carbonate are separated into solid and gas. The separated dust can be dissolved in water without any particular treatment and then discharged into a normal waste water treatment process.

(脱硝工程)
脱硝工程では、回収工程2により粉塵が除去された排ガスに、アンモニアを添加して脱硝触媒により窒素酸化物を取り除く。脱硝工程後の排ガスは、大気中に放出される。この脱硝工程は、脱硝触媒塔などを用いるなど、一般的に用いられる方法で行えばよい。なお、本実施形態では脱硝工程後、排ガス中に含まれるSOx濃度が分析計によって測定される。
(Denitration process)
In the denitration process, ammonia is added to the exhaust gas from which dust has been removed in the recovery process 2, and nitrogen oxides are removed by the denitration catalyst. The exhaust gas after the denitration process is released into the atmosphere. This denitration step may be performed by a generally used method such as using a denitration catalyst tower. In this embodiment, the SOx concentration contained in the exhaust gas is measured by an analyzer after the denitration process.

次に、上述したスラッジの処理工程のうち、脱硫工程において排ガスに添加される脱硫剤の添加量を制御する脱硫剤添加制御方法について説明する。脱硫剤添加量制御は、脱硫剤を排ガスに添加する脱硫剤添加装置に接続された制御装置により実行される。   Next, a desulfurization agent addition control method for controlling the amount of desulfurization agent added to the exhaust gas in the desulfurization step among the above-described sludge treatment steps will be described. The desulfurization agent addition amount control is executed by a control device connected to a desulfurization agent addition device that adds the desulfurization agent to the exhaust gas.

本実施形態において、制御装置は、脱硝工程後のSOx濃度の1時間移動平均値を排出基準未満の所定の範囲に収め、かつ、脱硫剤の使用量を低減するよう脱硫剤の添加量を制御する。脱硫剤の添加量の決定には、MV値を用いる。なお、MV値は、例えば、脱硫剤の添加弁の開放度等を制御するための指標であり、MV値と脱硫剤の添加量の相関は、事前に試験を行うことで求めることができる。なお、MV値は、脱硫剤の添加量の決定に用いられる制御値の一例である。   In the present embodiment, the control device controls the addition amount of the desulfurizing agent so that the one-hour moving average value of the SOx concentration after the denitration step falls within a predetermined range less than the emission standard and the amount of the desulfurizing agent is reduced. To do. The MV value is used to determine the addition amount of the desulfurizing agent. The MV value is an index for controlling the degree of opening of the desulfurization agent addition valve, for example, and the correlation between the MV value and the addition amount of the desulfurization agent can be obtained by conducting a test in advance. The MV value is an example of a control value used for determining the addition amount of the desulfurizing agent.

図2は、本実施形態にかかる脱硫剤添加制御方法を示すフローチャートである。図2の処理は、脱硫剤添加量制御が開始され、脱硫剤添加量制御が終了されるまで、所定時間おきに実行される。   FIG. 2 is a flowchart showing a desulfurization agent addition control method according to the present embodiment. The processing in FIG. 2 is executed at predetermined intervals until the desulfurization agent addition amount control is started and the desulfurization agent addition amount control is terminated.

まず、ステップS11において、制御装置は、分析計から、脱硝工程後のSOx濃度の1時間移動平均値を取得する。なお、SOx濃度の1時間移動平均値は、SOx濃度のM時間移動平均値の一例である。   First, in step S11, the control device obtains a one-hour moving average value of the SOx concentration after the denitration process from the analyzer. The 1-hour moving average value of the SOx concentration is an example of the M-time moving average value of the SOx concentration.

次に、ステップS13において、制御装置は、ステップS11で取得したSOx濃度の1時間移動平均値が閾値V1以上か否かを判断する。   Next, in step S13, the control device determines whether or not the one-hour moving average value of the SOx concentration acquired in step S11 is equal to or greater than a threshold value V1.

SOx濃度の1時間移動平均値が閾値V1以上の場合、ステップS13の判断が肯定され、ステップS14に移行する。なお、閾値V1は、第1の閾値の一例である。   If the one-hour moving average value of the SOx concentration is equal to or greater than the threshold value V1, the determination in step S13 is affirmed and the process proceeds to step S14. The threshold value V1 is an example of a first threshold value.

ステップS14に移行すると、制御装置は、MV値の算出に使用する係数であるGainに所定の値を加算する。所定の値は、SOx濃度の移動平均値に基づいて決定される。   If transfering it to step S14, a control apparatus will add a predetermined value to Gain which is a coefficient used for calculation of MV value. The predetermined value is determined based on the moving average value of the SOx concentration.

一方、ステップS13の判断が否定された場合、ステップS14の処理をスキップして、ステップS15に移行する。   On the other hand, if the determination in step S13 is negative, the process of step S14 is skipped and the process proceeds to step S15.

ステップS15に移行すると、制御装置は、所定時間ごとに取得されるSOx濃度の瞬時値が閾値V2以上であるか否かを判断する。SOx濃度の瞬時値は、測定によって求められる。なお、閾値V2は、第2の閾値の一例である。   If transfering it to step S15, a control apparatus will judge whether the instantaneous value of SOx density | concentration acquired for every predetermined time is more than threshold value V2. The instantaneous value of the SOx concentration is obtained by measurement. The threshold value V2 is an example of a second threshold value.

SOx濃度の瞬時値が閾値V2未満である場合、ステップS15の判断が否定され、ステップS16に移行する。   If the instantaneous value of the SOx concentration is less than the threshold value V2, the determination in step S15 is negative and the process proceeds to step S16.

ステップS16に移行すると、制御装置は、SOx濃度の瞬時値が閾値V3以下であるか否か判断する。ここでの判断が否定された場合、ステップS17に移行する。なお、閾値V3は、第3の閾値の一例である。   In step S16, the control device determines whether or not the instantaneous value of the SOx concentration is equal to or less than the threshold value V3. When judgment here is denied, it transfers to step S17. The threshold value V3 is an example of a third threshold value.

ステップS17に移行すると、制御装置は、以下の式(1)により、MV値を算出する。   If transfering it to step S17, a control apparatus will calculate MV value by the following formula | equation (1).

MV=Gain×Δx+Bias+MVx (1)   MV = Gain × Δx + Bias + MVx (1)

ここで、Δxは、例えば、2時間前のSOx濃度の2時間移動平均値と現在のSOx濃度の2時間移動平均値との差分である。なお、SOx濃度の移動平均値を算出する期間(時間)は、2時間に限定されるものではなく、2時間未満であっても、2時間以上であってもよい。SOx濃度の移動平均値を算出する期間(時間)は、例えば、スラッジを溶融炉に投入する時間間隔に基づいて決定すればよい。2時間前のSOx濃度の2時間移動平均値と現在のSOx濃度の2時間移動平均値との差分は、N時間前のSOx濃度のN時間移動平均値と、現在のSOx濃度のN時間移動平均値との差分である第1差分の一例である。   Here, Δx is, for example, the difference between the 2-hour moving average value of the SOx concentration two hours ago and the 2-hour moving average value of the current SOx concentration. The period (time) for calculating the moving average value of the SOx concentration is not limited to 2 hours, and may be less than 2 hours or 2 hours or more. What is necessary is just to determine the period (time) which calculates the moving average value of SOx density | concentration based on the time interval which throws sludge into a melting furnace, for example. The difference between the 2-hour moving average value of the SOx concentration two hours ago and the 2-hour moving average value of the current SOx concentration is the N-hour moving average value of the SOx concentration N hours ago and the N-time movement of the current SOx concentration. It is an example of the 1st difference which is a difference with an average value.

Biasは定数である。MVxは、例えば、2時間前に制御装置により算出されたMV値である。なお、本実施形態において、制御開始直後では、Δxの値として、制御開始直後のタイミングで分析計から出力される、SOx濃度の1時間移動平均値を使用する。また、制御開始直後は、MVx=0とする。   Bias is a constant. MVx is, for example, an MV value calculated by the control device two hours ago. In the present embodiment, immediately after the start of control, the 1-hour moving average value of the SOx concentration output from the analyzer at the timing immediately after the start of control is used as the value of Δx. Immediately after the start of control, MVx = 0.

ところで、SOx濃度の瞬時値が閾値V3以下の場合、ステップS16の判断が肯定され、ステップS18に移行する。   By the way, when the instantaneous value of the SOx concentration is equal to or less than the threshold value V3, the determination in step S16 is affirmed, and the process proceeds to step S18.

ステップS18に移行すると、制御装置は、MV=固定値とする。   In step S18, the control device sets MV = fixed value.

ところで、SOx濃度の瞬時値が閾値V2以上である場合、ステップS15の判断が肯定され、ステップS19に移行する。   By the way, when the instantaneous value of the SOx concentration is equal to or higher than the threshold value V2, the determination in step S15 is affirmed, and the process proceeds to step S19.

ステップS19に移行すると、制御装置は、以下の式(2)により、MV値を算出する。   If transfering it to step S19, a control apparatus will calculate MV value by the following formula | equation (2).

MV=補正係数×Gain×Δx´
+Gain×Δx+Bias+MVx (2)
MV = correction coefficient × Gain × Δx ′
+ Gain × Δx + Bias + MVx (2)

ここで、Δx´は、SOx濃度の瞬時値と閾値V2との差分(SOx濃度の瞬時値−閾値V2)である。補正係数は、SOx濃度の瞬時値に基づいて決定される値である。   Here, Δx ′ is the difference between the instantaneous value of SOx concentration and the threshold value V2 (instantaneous value of SOx concentration−threshold value V2). The correction coefficient is a value determined based on the instantaneous value of the SOx concentration.

続くステップS21では、制御装置はステップS17〜S19のいずれかにおいて算出されたMV値を所定の計算式に代入することによって、脱硫剤の添加量を決定し、脱硫剤を排ガスに添加する。   In subsequent step S21, the control device determines the addition amount of the desulfurizing agent by substituting the MV value calculated in any of steps S17 to S19 into a predetermined calculation formula, and adds the desulfurizing agent to the exhaust gas.

本実施形態によれば、2時間前のSOx濃度の2時間移動平均値と、現在のSOx濃度の2時間移動平均値との差分であるΔxと、2時間前に脱硫剤の添加量の算出に用いたMVxと、に基づいて、MV値を算出し、MV値に基づいて脱硫剤の添加量を決定するので、2時間前に算出された添加量の脱硫剤を排ガスに添加した結果を踏まえて今回の脱硫剤の添加量を決定できる。これにより、必要量以上の脱硫剤が排ガスに添加されるのを防止することができ、脱硫剤の添加量を低減することができる。   According to the present embodiment, Δx, which is the difference between the 2-hour moving average value of the SOx concentration two hours ago and the 2-hour moving average value of the current SOx concentration, and the addition amount of the desulfurization agent two hours ago are calculated. The MV value is calculated based on the MVx used in the above, and the addition amount of the desulfurization agent is determined based on the MV value. Therefore, the result of adding the addition amount of the desulfurization agent calculated two hours ago to the exhaust gas Based on this, the amount of desulfurization agent can be determined. Thereby, it is possible to prevent the desulfurizing agent beyond the required amount from being added to the exhaust gas, and to reduce the amount of desulfurizing agent added.

上述した脱硫剤添加量制御を12ヶ月間実施したところ、SOx濃度の1時間移動平均値の平均値は排出基準未満であり、脱硫剤の使用量は脱硝工程後のSOx濃度に基づいて手動で脱硫剤の添加量を決定した場合の使用量の約4割となった。以上の結果から、上述した脱硫剤添加制御方法により、排ガス中のSOx濃度の排出基準を遵守しつつ、脱硫剤の使用量を低減できることが明らかとなった。   When the above-described desulfurization agent addition amount control was performed for 12 months, the average value of the 1 hour moving average value of the SOx concentration was less than the emission standard, and the amount of desulfurization agent used was manually determined based on the SOx concentration after the denitration process. This was about 40% of the amount used when the amount of desulfurizing agent was determined. From the above results, it became clear that the use amount of the desulfurizing agent can be reduced by the above-described desulfurizing agent addition control method while complying with the emission standard of the SOx concentration in the exhaust gas.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

Claims (6)

脱硫剤の添加により排ガス中の硫黄酸化物(SOx)を中和する脱硫工程において、前記脱硫工程後のSOx濃度に基づいて前記排ガスに添加する前記脱硫剤の添加量を制御する脱硫剤添加制御方法であって、
N時間前のSOx濃度のN時間移動平均値と、現在のSOx濃度のN時間移動平均値との差分である第1差分と、前記N時間前に前記脱硫剤の添加量の算出に用いた制御値と、に基づいて、今回の制御値を算出し、前記今回の制御値に基づいて前記脱硫剤の添加量を決定する脱硫剤添加制御方法。
Desulfurization agent addition control for controlling the addition amount of the desulfurization agent added to the exhaust gas based on the SOx concentration after the desulfurization step in a desulfurization step of neutralizing sulfur oxide (SOx) in the exhaust gas by adding a desulfurization agent A method,
Used to calculate the first difference, which is the difference between the N-hour moving average value of the SOx concentration before N hours and the N-time moving average value of the current SOx concentration, and the addition amount of the desulfurizing agent before the N hours. A desulfurization agent addition control method for calculating a control value for this time based on the control value and determining an addition amount of the desulfurization agent based on the control value for the current time.
前記第1差分に所定の係数を乗算した値に、前記N時間前の制御値を加算することにより、前記今回の制御値を算出する請求項1に記載の脱硫剤添加制御方法。   2. The desulfurization agent addition control method according to claim 1, wherein the control value for the current time is calculated by adding the control value for the N hours ago to a value obtained by multiplying the first difference by a predetermined coefficient. SOx濃度のM時間移動平均値が第1の閾値以上である場合、前記所定の係数に所定の値を加算する、請求項2に記載の脱硫剤添加制御方法。   3. The desulfurization agent addition control method according to claim 2, wherein when the M time moving average value of the SOx concentration is equal to or greater than a first threshold value, a predetermined value is added to the predetermined coefficient. 所定時間毎にSOx濃度の瞬時値を取得し、前記SOx濃度の瞬時値が第2の閾値以上である場合、前記SOx濃度の瞬時値と前記第2の閾値との差分である第2差分を更に用いて、前記今回の制御値を算出する請求項1から3のいずれか1項記載の脱硫剤添加制御方法。   When an instantaneous value of SOx concentration is acquired every predetermined time and the instantaneous value of SOx concentration is equal to or greater than a second threshold, a second difference that is a difference between the instantaneous value of SOx concentration and the second threshold is obtained. The desulfurization agent addition control method according to any one of claims 1 to 3, further used to calculate the current control value. 前記SOx濃度の瞬時値に応じた補正係数を更に用いて、前記今回の制御値を算出する請求項4に記載の脱硫剤添加制御方法。   The desulfurization agent addition control method according to claim 4, wherein the current control value is calculated by further using a correction coefficient corresponding to the instantaneous value of the SOx concentration. 前記SOx濃度の瞬時値が第3の閾値以下の場合、前記今回の制御値を固定値とする請求項4又は5記載の脱硫剤添加制御方法。

The desulfurization agent addition control method according to claim 4 or 5, wherein when the instantaneous value of the SOx concentration is equal to or less than a third threshold value, the current control value is a fixed value.

JP2016063864A 2016-03-28 2016-03-28 Desulfurization agent addition control method Active JP6498626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016063864A JP6498626B2 (en) 2016-03-28 2016-03-28 Desulfurization agent addition control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016063864A JP6498626B2 (en) 2016-03-28 2016-03-28 Desulfurization agent addition control method

Publications (2)

Publication Number Publication Date
JP2017176922A true JP2017176922A (en) 2017-10-05
JP6498626B2 JP6498626B2 (en) 2019-04-10

Family

ID=60003166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063864A Active JP6498626B2 (en) 2016-03-28 2016-03-28 Desulfurization agent addition control method

Country Status (1)

Country Link
JP (1) JP6498626B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159601A1 (en) * 2018-02-16 2019-08-22 三菱日立パワーシステムズ環境ソリューション株式会社 Plant equipment monitoring control system and plant equipment monitoring control method
JP2020146643A (en) * 2019-03-14 2020-09-17 荏原環境プラント株式会社 Exhaust gas treatment system and method
JP2021166976A (en) * 2020-04-13 2021-10-21 栗田工業株式会社 Exhaust gas treatment system and exhaust gas treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105536A (en) * 1996-06-20 1998-01-13 Nkk Corp Reaction bag filter system and its operation
JP2003210934A (en) * 2002-01-23 2003-07-29 Mitsubishi Heavy Ind Ltd Equipment for exhaust-gas treatment
JP2007237019A (en) * 2006-03-06 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Feed amount control method for exhaust gas treatment chemical and exhaust gas treatment apparatus
JP2010221150A (en) * 2009-03-24 2010-10-07 Kurita Water Ind Ltd Method and apparatus for treatment of combustion exhaust gas
JP2012086105A (en) * 2010-10-15 2012-05-10 Kurita Water Ind Ltd Method for treating acidic gas
JP2013022471A (en) * 2011-07-14 2013-02-04 Kurita Water Ind Ltd Method for treating acidic gas
JP2014100670A (en) * 2012-11-20 2014-06-05 Kurita Water Ind Ltd Method for stable acidic gas treatment and combustion exhaust gas treatment facility

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105536A (en) * 1996-06-20 1998-01-13 Nkk Corp Reaction bag filter system and its operation
JP2003210934A (en) * 2002-01-23 2003-07-29 Mitsubishi Heavy Ind Ltd Equipment for exhaust-gas treatment
JP2007237019A (en) * 2006-03-06 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Feed amount control method for exhaust gas treatment chemical and exhaust gas treatment apparatus
JP2010221150A (en) * 2009-03-24 2010-10-07 Kurita Water Ind Ltd Method and apparatus for treatment of combustion exhaust gas
JP2012086105A (en) * 2010-10-15 2012-05-10 Kurita Water Ind Ltd Method for treating acidic gas
JP2013022471A (en) * 2011-07-14 2013-02-04 Kurita Water Ind Ltd Method for treating acidic gas
JP2014100670A (en) * 2012-11-20 2014-06-05 Kurita Water Ind Ltd Method for stable acidic gas treatment and combustion exhaust gas treatment facility

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159601A1 (en) * 2018-02-16 2019-08-22 三菱日立パワーシステムズ環境ソリューション株式会社 Plant equipment monitoring control system and plant equipment monitoring control method
JP2019144624A (en) * 2018-02-16 2019-08-29 三菱日立パワーシステムズ環境ソリューション株式会社 Plant equipment monitoring control system and plant equipment monitoring control method
TWI697748B (en) * 2018-02-16 2020-07-01 日商三菱日立電力系統環保股份有限公司 Factory machine monitoring and control system and factory machine monitoring and control method
CN111684377A (en) * 2018-02-16 2020-09-18 三菱日立电力系统环保株式会社 Plant monitoring and controlling system and plant monitoring and controlling method
JP7011486B2 (en) 2018-02-16 2022-01-26 三菱重工パワー環境ソリューション株式会社 Plant equipment monitoring and control system and plant equipment monitoring and control method
US11314236B2 (en) 2018-02-16 2022-04-26 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Plant equipment monitoring control system and plant equipment monitoring control method
CN111684377B (en) * 2018-02-16 2023-08-08 三菱重工动力环保有限公司 Plant monitoring control system and plant monitoring control method
JP2020146643A (en) * 2019-03-14 2020-09-17 荏原環境プラント株式会社 Exhaust gas treatment system and method
JP7299721B2 (en) 2019-03-14 2023-06-28 荏原環境プラント株式会社 Exhaust gas treatment system and exhaust gas treatment method
JP2021166976A (en) * 2020-04-13 2021-10-21 栗田工業株式会社 Exhaust gas treatment system and exhaust gas treatment method
KR20220162753A (en) 2020-04-13 2022-12-08 쿠리타 고교 가부시키가이샤 Exhaust gas treatment system and exhaust gas treatment method

Also Published As

Publication number Publication date
JP6498626B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP6121874B2 (en) Method for treating exhaust gas from combustion furnace containing fluorine
JP6498626B2 (en) Desulfurization agent addition control method
US8167975B2 (en) Exhaust gas purifying method and apparatus
AU2011259878B2 (en) Exhaust gas processing system and method
JP2009166012A (en) Exhaust gas treatment system and its operation method of coal fired boiler
CA2672577A1 (en) Exhaust gas treating method and apparatus
JP6066191B2 (en) Mercury recovery method in exhaust gas
TWI450754B (en) Method for treating acidic gas
CN104815541A (en) Method and system for removal of mercury from a flue gas
JP2009166013A (en) Exhaust gas treatment system of coal fired boiler
JP2013173106A (en) Method and device for recovering mercury in exhaust gas
TWI465283B (en) Treatment method for acidic gas
JP4518460B2 (en) Method for selectively recovering fluorine components from exhaust gas
JP2013202434A (en) Method for disposing of fluidized bed-system boiler ash and disposer
JP2017060905A (en) Processing apparatus and method of cement kiln exhaust gas
JP2017057122A (en) Apparatus and method for treating cement kiln exhaust gas
JP2016022439A (en) Cement kiln exhaust gas treatment apparatus and treatment method
JP2010051840A (en) Agent for treating flue gas, and method for treating flue gas
JP5467586B2 (en) Selenium-containing liquid treatment system, wet desulfurization apparatus, and selenium-containing liquid treatment method
JPH108118A (en) Production of desulfurizing agent for steel making from waste gas of waste incineration
TWI845824B (en) Exhaust treatment system and exhaust treatment method
JP6248695B2 (en) Method for producing calcium fluoride and method for removing hydrogen fluoride from exhaust gas
JP6984684B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP4661577B2 (en) Fly ash treatment method
JP2013169495A (en) Cement kiln exhaust gas treatment apparatus and treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190313

R150 Certificate of patent or registration of utility model

Ref document number: 6498626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250