JP2014094981A - Liquid epoxy resin composition for encapsulating semiconductor and semiconductor device using the same - Google Patents

Liquid epoxy resin composition for encapsulating semiconductor and semiconductor device using the same Download PDF

Info

Publication number
JP2014094981A
JP2014094981A JP2012245422A JP2012245422A JP2014094981A JP 2014094981 A JP2014094981 A JP 2014094981A JP 2012245422 A JP2012245422 A JP 2012245422A JP 2012245422 A JP2012245422 A JP 2012245422A JP 2014094981 A JP2014094981 A JP 2014094981A
Authority
JP
Japan
Prior art keywords
epoxy resin
semiconductor
resin composition
semiconductor device
liquid epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012245422A
Other languages
Japanese (ja)
Inventor
Takashi Hasegawa
貴志 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012245422A priority Critical patent/JP2014094981A/en
Priority to PCT/JP2013/050229 priority patent/WO2014073220A1/en
Publication of JP2014094981A publication Critical patent/JP2014094981A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/81024Applying flux to the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/8191Cleaning, e.g. oxide removal step, desmearing
    • H01L2224/81911Chemical cleaning, e.g. etching, flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide, on a flip chip packaging occasion for curing an encapsulating resin with a method for post-feeding the encapsulating resin onto a circuit substrate, a liquid epoxy resin composition for encapsulating a semiconductor having an excellent reliability and unlikely to yield residual voids within a cured encapsulated resin, and a semiconductor device using the same.SOLUTION: The liquid epoxy resin composition for encapsulating a semiconductor is used as an encapsulating resin heated and cured after having been fed into a gap between a semiconductor device and a circuit substrate in a state where pads formed respectively on the semiconductor device and the circuit substrate are being mutually connected via an electroconductive bump, and includes an epoxy resin liquid at normal temperature, an amine curative, a thermosetting acrylic resin, a thermal polymerization initiator for the thermosetting acrylic resin, and an inorganic filler.

Description

本発明は、半導体封止用液状エポキシ樹脂組成物とそれを用いた半導体装置に関する。   The present invention relates to a liquid epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.

近年、樹脂封止型半導体装置は、デバイスの高密度化、高集積度化、動作の高速化などの傾向にあり、従来型のパッケージ(QFPなど)よりさらに小型化、薄型化することのできる半導体デバイスのパッケージが要求されている。   In recent years, resin-encapsulated semiconductor devices tend to have higher device density, higher integration, and faster operation, and can be made smaller and thinner than conventional packages (such as QFP). There is a need for semiconductor device packages.

これらの要求に対してBGA(Ball grid array)、CSP(Chip size package)、ベアチップ実装などの高密度実装が可能なフリップチップ型の半導体装置がある。   In response to these demands, there are flip chip type semiconductor devices capable of high-density mounting such as BGA (Ball grid array), CSP (Chip size package), and bare chip mounting.

フリップチップ型の半導体装置の実装においては、実装部品の半導体デバイスにはんだによりバンプ電極を形成しておき、バンプ電極に対応するように設けられた実装用の電極パッドが形成された回路基板に、フェースダウンで半導体デバイスを載置する。そしてリフロー処理することによりはんだを溶融させてバンプ電極と電極パッドとを直接接続する。   In mounting a flip chip type semiconductor device, a bump electrode is formed by solder on a semiconductor device of a mounting component, and a circuit board on which a mounting electrode pad provided so as to correspond to the bump electrode is formed, Place semiconductor devices face down. Then, the solder is melted by reflow treatment to directly connect the bump electrode and the electrode pad.

フリップチップ型の半導体装置は、例えば、温度サイクル試験時において、熱応力による歪により、電気的な接合不良を引き起こすおそれがあるなど、信頼性が問題になることがあった。すなわち、半導体デバイスと回路基板の熱膨張係数差に由来する熱応力が接続部に集中して接続部を破壊する場合がある。   The flip-chip type semiconductor device has a problem in reliability, for example, in the temperature cycle test, there is a possibility of causing a poor electrical connection due to distortion due to thermal stress. That is, the thermal stress derived from the difference in thermal expansion coefficient between the semiconductor device and the circuit board may concentrate on the connection portion and break the connection portion.

信頼性を高める方法として、リフロー処理により電極同士を接合した後、半導体デバイスと回路基板との間に形成される隙間を樹脂組成物で封止することにより、この熱応力を分散して接続信頼性を高めるアンダーフィル技術が広く用いられている。アンダーフィル技術は、バンプを保護し、半導体デバイスと回路基板との熱膨張率の差異により発生するはんだ接合部の応力を緩和し、耐湿性、気密性を確保するなどの機能を有している。   As a method to improve reliability, after joining the electrodes by reflow treatment, the gap formed between the semiconductor device and the circuit board is sealed with a resin composition to disperse this thermal stress and to improve the connection reliability. Underfill technology that enhances performance is widely used. Underfill technology has functions such as protecting bumps, relieving stress in solder joints caused by differences in thermal expansion coefficient between semiconductor devices and circuit boards, and ensuring moisture resistance and airtightness. .

アンダーフィル技術としては、半導体デバイスを回路基板上に搭載し、リフロー処理することにより電極同士を接合した後に、回路基板と半導体デバイスとの隙間に封止樹脂を注入する後供給方式が広く用いられている。   As an underfill technique, a post-supply method is widely used in which a semiconductor device is mounted on a circuit board, electrodes are joined by reflow treatment, and then a sealing resin is injected into the gap between the circuit board and the semiconductor device. ing.

フリップチップ実装に用いられる封止材料としては、常温で液状のエポキシ樹脂を主剤とし、これに硬化剤、無機充填剤などを配合した液状のエポキシ樹脂組成物が代表的なものとして用いられている(特許文献1、2)。   As a sealing material used for flip-chip mounting, a liquid epoxy resin composition in which a liquid epoxy resin is used as a main ingredient at room temperature and a curing agent, an inorganic filler or the like is blended is typically used. (Patent Documents 1 and 2).

近年では、前記のようなフリップチップ型のパッケージを用いた電化製品としてデジタルカメラやビデオ、ノート型パソコン、携帯電話といったものが挙げられるが、今後の製品自体の小型化・薄型化・複雑化に伴い、これらには耐衝撃性および高信頼性が求められ、製品の内部の基板や各電子部品にも同様な性質が求められる。そのため、パッケージの方にも信頼性を維持しつつ、薄型化、複雑化、ワンチップ化による大型化・高密度化による金線などの狭ピッチ化で難しくなる作業性の向上も必要となる。   In recent years, electronic products using flip-chip packages such as those mentioned above include digital cameras, videos, notebook computers, mobile phones, etc., but in the future, the products themselves will become smaller, thinner and more complex. Accordingly, they are required to have impact resistance and high reliability, and the same properties are required for the substrate and each electronic component inside the product. Therefore, while maintaining the reliability of the package as well, it is necessary to improve workability that becomes difficult due to the thinning, complexity, and downsizing of gold wires and the like by increasing the size and density by making one chip.

このように高密度化などが進行する中、エポキシ樹脂の硬化剤としてアミン硬化剤を用いた封止材料がフリップチップデバイスで標準となってきている。   As the density increases, sealing materials using amine curing agents as epoxy resin curing agents are becoming standard in flip chip devices.

特開2009−149820号公報JP 2009-149820 A 特開2007−091849号公報JP 2007-091849 A

しかしながら、封止樹脂としてエポキシ樹脂組成物を使用する技術では、リフロー後に硬化した封止樹脂中にボイドが残るという問題点があった。   However, the technique using an epoxy resin composition as a sealing resin has a problem that voids remain in the sealing resin cured after reflow.

このボイドの発生要因としては、樹脂組成物中の成分の分解や揮発、水分の蒸発、回路基板表面を保護するソルダーレジストに含有される未硬化の低分子成分の揮発などが挙げられる。   Factors for the generation of voids include decomposition and volatilization of components in the resin composition, evaporation of moisture, volatilization of uncured low molecular components contained in a solder resist that protects the circuit board surface, and the like.

そして硬化された封止樹脂中に残されたボイドは、半導体デバイスと回路基板との接合の信頼性を低下させる原因になる。   The voids left in the cured sealing resin cause a decrease in the reliability of bonding between the semiconductor device and the circuit board.

しかしながら、フリップチップデバイスで標準となりつつあるアミン硬化剤は、硬化が非常に遅いため、硬化温度で他部材から出るガスをトラップしやすいという問題点があった。   However, the amine curing agent, which is becoming the standard for flip chip devices, has a problem that it is easy to trap gas emitted from other members at the curing temperature because the curing is very slow.

本発明は、以上の通りの事情に鑑みてなされたものであり、封止樹脂を回路基板へ後供給する方法によって封止樹脂の硬化を行うフリップチップ実装において、硬化された封止樹脂中にボイドが残りにくく、かつ、信頼性に優れた半導体封止用液状エポキシ樹脂組成物とそれを用いた半導体装置を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and in flip-chip mounting in which the sealing resin is cured by a method of supplying the sealing resin to the circuit board later, in the cured sealing resin. It is an object of the present invention to provide a liquid epoxy resin composition for semiconductor encapsulation that is less likely to leave voids and has excellent reliability, and a semiconductor device using the same.

上記の課題を解決するために、本発明の半導体封止用液状エポキシ樹脂組成物は、半導体デバイスと回路基板とのそれぞれに形成されたパッド同士が導電性バンプを介して接続された半導体デバイスと回路基板との隙間に供給し加熱硬化する封止樹脂として使用される半導体封止用液状エポキシ樹脂組成物において、常温で液状のエポキシ樹脂、アミン硬化剤、熱硬化性アクリル樹脂、熱硬化性アクリル樹脂の熱重合開始剤、および無機充填剤を含有することを特徴としている。   In order to solve the above problems, a liquid epoxy resin composition for semiconductor encapsulation of the present invention includes a semiconductor device in which pads formed on each of a semiconductor device and a circuit board are connected via a conductive bump. In a liquid epoxy resin composition for semiconductor encapsulation used as a sealing resin that is supplied to a gap with a circuit board and cured by heating, an epoxy resin that is liquid at room temperature, an amine curing agent, a thermosetting acrylic resin, and a thermosetting acrylic It is characterized by containing a thermal polymerization initiator for the resin and an inorganic filler.

この半導体封止用液状エポキシ樹脂組成物において、熱硬化性アクリル樹脂の含有量が、半導体封止用液状エポキシ樹脂組成物の全量に対して1.0〜15質量%の範囲内であることが好ましい。   In this liquid epoxy resin composition for semiconductor encapsulation, the content of the thermosetting acrylic resin is within the range of 1.0 to 15% by mass relative to the total amount of the liquid epoxy resin composition for semiconductor encapsulation. preferable.

この半導体封止用液状エポキシ樹脂組成物において、常温で液状のエポキシ樹脂を含む全エポキシ樹脂と、アミン硬化剤との化学量論上の当量比が0.5〜1.5の範囲内であることが好ましい。   In this liquid epoxy resin composition for semiconductor encapsulation, the stoichiometric equivalent ratio of all epoxy resins including epoxy resin that is liquid at room temperature and amine curing agent is in the range of 0.5 to 1.5. It is preferable.

この半導体封止用液状エポキシ樹脂組成物において、無機充填剤の含有量が、半導体封止用液状エポキシ樹脂組成物の全量に対して40〜70質量%の範囲内であることが好ましい。   In this liquid epoxy resin composition for semiconductor encapsulation, the content of the inorganic filler is preferably in the range of 40 to 70 mass% with respect to the total amount of the liquid epoxy resin composition for semiconductor encapsulation.

本発明の半導体装置は、半導体デバイスと、この半導体デバイスが実装される回路基板とを備え、半導体デバイスと回路基板とのそれぞれに形成されたパッド同士が導電性バンプを介して接続され、半導体デバイスと回路基板との隙間が前記の半導体封止用液状エポキシ樹脂組成物の硬化物により封止されていることを特徴としている。   A semiconductor device of the present invention includes a semiconductor device and a circuit board on which the semiconductor device is mounted, and pads formed on the semiconductor device and the circuit board are connected to each other through conductive bumps. The gap between the circuit board and the circuit board is sealed with a cured product of the liquid epoxy resin composition for semiconductor sealing.

本発明の半導体封止用液状エポキシ樹脂組成物および半導体装置によれば、硬化された封止樹脂中にボイドが残りにくく、かつ、信頼性にも優れている。   According to the liquid epoxy resin composition for semiconductor encapsulation and the semiconductor device of the present invention, voids hardly remain in the cured encapsulating resin and are excellent in reliability.

以下に、本発明について詳細に説明する。   The present invention is described in detail below.

本発明の半導体封止用液状エポキシ樹脂組成物には、エポキシ樹脂として、常温で液状のエポキシ樹脂が使用される。   In the liquid epoxy resin composition for semiconductor encapsulation of the present invention, an epoxy resin that is liquid at room temperature is used as the epoxy resin.

なお、本明細書において「常温で液状」とは、大気圧下での5〜28℃の温度範囲、特に室温18℃前後において流動性を持つことを意味する。エポキシ樹脂の粘度は、25℃において250P以下であることが好ましく、1〜250Pであることがより好ましい。粘度をこの範囲にすると、半導体封止用液状エポキシ樹脂組成物の注入を行う際の作業性、加工性を良好なものとすることができる。   In the present specification, “liquid at normal temperature” means having fluidity in a temperature range of 5 to 28 ° C. under atmospheric pressure, particularly around 18 ° C. at room temperature. The viscosity of the epoxy resin is preferably 250 P or less at 25 ° C., and more preferably 1 to 250 P. When the viscosity is within this range, workability and workability when injecting the liquid epoxy resin composition for semiconductor encapsulation can be improved.

常温で液状のエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するものであれば、その分子量、分子構造は特に限定されず各種のものを用いることができる。   The epoxy resin that is liquid at room temperature is not particularly limited as long as it has two or more epoxy groups in one molecule, and various types can be used.

具体的には、例えば、グリシジルエーテル型、グリシジルアミン型、グリシジルエステル型、オレフィン酸化型(脂環式)などの各種の液状のエポキシ樹脂を用いることができる。   Specifically, for example, various liquid epoxy resins such as glycidyl ether type, glycidyl amine type, glycidyl ester type, and olefin oxidation type (alicyclic) can be used.

さらに具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂などの水添ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、脂肪族系エポキシ樹脂、トリグリシジルイソシアヌレート、グリシジル基含有シリコーン樹脂などを用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。また、官能基数が3個または4個の多官能エポキシ樹脂や、その他脂環式エポキシ樹脂やグリシジルアミン型エポキシ樹脂の3官能タイプ、4官能タイプなども用いることができる。   More specifically, for example, water such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, etc. Bisphenol epoxy resin, biphenyl epoxy resin, naphthalene ring-containing epoxy resin, alicyclic epoxy resin, dicyclopentadiene epoxy resin, phenol novolac epoxy resin, cresol novolac epoxy resin, triphenylmethane epoxy resin, fat A group epoxy resin, triglycidyl isocyanurate, a glycidyl group-containing silicone resin, or the like can be used. These may be used alone or in combination of two or more. Further, a polyfunctional epoxy resin having 3 or 4 functional groups, a trifunctional type, a tetrafunctional type, or the like of an alicyclic epoxy resin or a glycidylamine type epoxy resin can also be used.

これらの中でも、半導体封止用液状エポキシ樹脂組成物の低粘度化と硬化物の物性を考慮すると、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、脂環式エポキシ樹脂が好ましい。   Among these, considering the low viscosity of the liquid epoxy resin composition for semiconductor encapsulation and the physical properties of the cured product, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, naphthalene ring-containing epoxy resin, fat Cyclic epoxy resins are preferred.

ビスフェノール型エポキシ樹脂のうち、ビスフェノールA型エポキシ樹脂としては、例えば、次式で表わされるエポキシ樹脂などが挙げられる。   Among the bisphenol type epoxy resins, examples of the bisphenol A type epoxy resin include an epoxy resin represented by the following formula.

Figure 2014094981
Figure 2014094981

(式中、R1〜R8は、水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、または炭素数6〜10のアラルキル基を示し、全てが同一でも互いに異なっていてもよい。pは0〜20、好ましくは0〜10の整数を示す。)
本発明の半導体封止用液状エポキシ樹脂組成物において、常温で液状のエポキシ樹脂との混合物全体として常温で液状となれば、常温で固形のエポキシ樹脂を配合してもよい。
(Wherein, R 1 to R 8 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or aralkyl group having 6 to 10 carbon atoms, All may be the same or different from each other, and p represents an integer of 0 to 20, preferably 0 to 10.)
In the liquid epoxy resin composition for semiconductor encapsulation of the present invention, a solid epoxy resin at room temperature may be blended as long as the mixture with the epoxy resin that is liquid at room temperature becomes liquid at room temperature.

本発明の半導体封止用液状エポキシ樹脂組成物には、アミン硬化剤が配合される。アミン硬化剤としては、例えば、分子内に1級または2級アミノ基を少なくとも一つ有している化合物を用いることができ、低アウトガス性、保存安定性、および硬化物の耐熱性の観点から芳香族アミン類が好ましい。   An amine curing agent is blended in the liquid epoxy resin composition for semiconductor encapsulation of the present invention. As the amine curing agent, for example, a compound having at least one primary or secondary amino group in the molecule can be used. From the viewpoint of low outgassing property, storage stability, and heat resistance of the cured product. Aromatic amines are preferred.

芳香族アミン類としては、例えば、芳香族第1級アミン類、芳香族第2級アミン類、芳香族第3級アミン類、芳香族ジアミン類などを用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。   As aromatic amines, for example, aromatic primary amines, aromatic secondary amines, aromatic tertiary amines, aromatic diamines and the like can be used. These may be used alone or in combination of two or more.

芳香族第1級アミン類としては、例えば、アニリン、o,m,p−トルイジン、o,m,p−エチルアニリン、キシリジン、メシジン、o,m,p−クロロアニリン、クロロトルイジン、ジクロロアニリン、トリクロロアニリン、o,m,p−フルオロアニリン、o,m,p−ブロモアニリン、フルオロクロロアニリン、o,m,p−アミノフェノール、o,m,p−アミノチオフェノール、アニシジン、フェネチジン、o,m,p−アミノ安息香酸、アミノクロロフェノール、アミノベンゾニトリル、クレシジン、トルイジンスルホン酸、スルファニル酸、クロロトルイジンスルホン酸、アミノナフタレンスルホン酸、アミノベンゾトリフルオライド、アミノベンゼンスルホン酸、p−アミノアセトアニリド、ナフチルアミン、ナフチルアミンスルホン酸、アミノナフトールスルホン酸などが挙げられる。   Examples of aromatic primary amines include aniline, o, m, p-toluidine, o, m, p-ethylaniline, xylidine, mesidine, o, m, p-chloroaniline, chlorotoluidine, dichloroaniline, Trichloroaniline, o, m, p-fluoroaniline, o, m, p-bromoaniline, fluorochloroaniline, o, m, p-aminophenol, o, m, p-aminothiophenol, anisidine, phenetidine, o, m, p-aminobenzoic acid, aminochlorophenol, aminobenzonitrile, cresidine, toluidinesulfonic acid, sulfanilic acid, chlorotoluidinesulfonic acid, aminonaphthalenesulfonic acid, aminobenzotrifluoride, aminobenzenesulfonic acid, p-aminoacetanilide, Naphthylamine, naphthylua Nsuruhon acid, and the like aminonaphtholsulfonic acid.

芳香族第2級アミン類としては、例えば、N−メチルアニリン、N−エチルアニリン、N−エチルトルイジン、ジフェニルアミン、ヒドロキシフェニルグリシン、N−メチルアミノフェノールサルフェートなどが挙げられる。   Examples of the aromatic secondary amines include N-methylaniline, N-ethylaniline, N-ethyltoluidine, diphenylamine, hydroxyphenylglycine, N-methylaminophenol sulfate and the like.

芳香族第3級アミン類としては、例えば、N,N−ジメチルアニリン、N−エチル−N−ヒドロキシエチルトルイジン、N,N−ジエチルトルイジン、N−ベンジル−N−エチルアニリン、N,N−ジグリシジルアニリンなどが挙げられる。   Examples of aromatic tertiary amines include N, N-dimethylaniline, N-ethyl-N-hydroxyethyltoluidine, N, N-diethyltoluidine, N-benzyl-N-ethylaniline, and N, N-di. Examples thereof include glycidyl aniline.

芳香族ジアミン類としては、例えば、o,m,p−フェニレンジアミン、クロロ−p−フェニレンジアミン、クロロ−m−フェニレンジアミン、フルオロフェニレンジアミン、ジクロロフェニレンジアミン、メチルフェニレンジアミン、ジメチルフェニレンジアミン、キシリレンジアミン、トルイレンジアミンなどのフェニレンジアミン類、ベンジジン、o−トリジン、ダイアニシジン、ジアミノジフェニルメタン、ジアミノジクロロジフェニルメタン、ジアミノジメチルジフェニルメタン、ジアミノジエチルジフェニルメタンなどのジフェニルメタン類、ナフタレンジアミン、ジアミノベンズアニリド、ジアミノジフェニルエーテル、ジアミノスチルベンジスルホン酸、ジアミノフェノールジハイドロクロライド、ロイコジアミノアンスラキノン、アミノ−N,N−ジエチルアミノトルイジンハイドロクロライド又はアミノ−N−エチル−N−(β−メタンスルホンアミドエチル)−トルイジンサルフェートハイドレートなどが挙げられる。   Aromatic diamines include, for example, o, m, p-phenylenediamine, chloro-p-phenylenediamine, chloro-m-phenylenediamine, fluorophenylenediamine, dichlorophenylenediamine, methylphenylenediamine, dimethylphenylenediamine, and xylylenediamine. Phenylenediamines such as amines and toluylenediamine, benzidine, o-tolidine, dianisidine, diaminodiphenylmethane, diaminodichlorodiphenylmethane, diaminomethane such as diaminodiethyldiphenylmethane, naphthalenediamine, diaminobenzanilide, diaminodiphenyl ether, diaminostilbene Disulfonic acid, diaminophenol dihydrochloride, leuco diaminoanthra Non amino -N, N-diethylamino-toluidine hydrochloride or amino -N- ethyl -N- (beta-methanesulfonamido ethyl) - such as toluidine sulfate hydrate can be mentioned.

本発明の半導体封止用液状エポキシ樹脂組成物におけるエポキシ樹脂とアミン硬化剤との化学量論上の当量比(アミン硬化剤/エポキシ樹脂)は、0.5〜1.5の範囲内が好ましく、当量比が0.6〜1.4となる量がより好ましい。この当量比が1.5以下であると、硬化不足や硬化物の耐熱性や強度の低下を抑制することができ、また当量比が0.5以上であると、接着強度の低下や硬化物の耐熱性や吸湿量の増加も抑制することができる。   The stoichiometric equivalent ratio (amine curing agent / epoxy resin) of the epoxy resin and the amine curing agent in the liquid epoxy resin composition for semiconductor encapsulation of the present invention is preferably in the range of 0.5 to 1.5. More preferably, the equivalent ratio is 0.6 to 1.4. When this equivalent ratio is 1.5 or less, insufficient curing or a decrease in heat resistance or strength of the cured product can be suppressed, and when the equivalent ratio is 0.5 or more, a decrease in adhesive strength or a cured product is achieved. The increase in heat resistance and moisture absorption can also be suppressed.

本発明の半導体封止用液状エポキシ樹脂組成物において、エポキシ樹脂の硬化剤には、アミン硬化剤と共に、アミン硬化剤以外の他の硬化剤を配合してもよい。このような硬化剤としては、特に限定されないが、例えば、イミダゾール類、フェノール類、酸無水物類などを用いることができる。   In the liquid epoxy resin composition for semiconductor encapsulation of the present invention, a curing agent other than the amine curing agent may be blended in the epoxy resin curing agent together with the amine curing agent. Although it does not specifically limit as such a hardening | curing agent, For example, imidazoles, phenols, acid anhydrides, etc. can be used.

本発明の半導体封止用液状エポキシ樹脂組成物には、熱硬化性アクリル樹脂が配合される。アミン硬化剤を使用すると硬化が遅いため反応温度で回路基板等の部材からのガスをボイドとしてトラップするが、硬化の速い熱硬化性アクリル樹脂を添加し、ラジカル反応によって硬化することにより、部材からのガスが出るまでに増粘させて、ボイドのトラップを抑制することができる。   The liquid epoxy resin composition for semiconductor encapsulation of the present invention is blended with a thermosetting acrylic resin. When the amine curing agent is used, the curing is slow, so the gas from the circuit board or other member is trapped as a void at the reaction temperature, but by adding a fast-curing thermosetting acrylic resin and curing by radical reaction, from the member It is possible to suppress the trapping of voids by increasing the viscosity before the gas is released.

熱硬化性アクリル樹脂に使用される成分としては、耐熱性を確保する点を考慮すると、2個以上の(メタ)アクリロイル基を持つ化合物が好ましく、2〜6個の(メタ)アクリロイル基を持つ化合物がより好ましく、2個の(メタ)アクリロイル基を持つ化合物がさらに好ましい。   As a component used for the thermosetting acrylic resin, a compound having two or more (meth) acryloyl groups is preferable and 2 to 6 (meth) acryloyl groups are preferable in consideration of securing heat resistance. A compound is more preferable, and a compound having two (meth) acryloyl groups is more preferable.

2個以上の(メタ)アクリロイル基を持つ化合物としては、次式(II)または(III)で表わされる、ビスフェノール骨格にアルキレンオキサイドが付加された構造を有するジ(メタ)アクリレートが好ましい。このビスフェノール骨格にアルキレンオキサイドが付加された構造を有するジ(メタ)アクリレートを用いると、耐熱性および密着性に優れた硬化物を得ることができる。   As the compound having two or more (meth) acryloyl groups, di (meth) acrylate having a structure in which an alkylene oxide is added to a bisphenol skeleton represented by the following formula (II) or (III) is preferable. When di (meth) acrylate having a structure in which alkylene oxide is added to this bisphenol skeleton is used, a cured product having excellent heat resistance and adhesion can be obtained.

Figure 2014094981
Figure 2014094981

(式中、R11は水素、メチル基、またはエチル基を示し、R12は2価の有機基を示し、mおよびnは1〜20の整数を示す。) (In the formula, R 11 represents hydrogen, a methyl group, or an ethyl group, R 12 represents a divalent organic group, and m and n represent integers of 1 to 20.)

Figure 2014094981
Figure 2014094981

(式中、R11は水素、メチル基、またはエチル基を示し、R12は2価の有機基を示し、mおよびnは1〜20の整数を示す。)
このようなビスフェノール骨格にアルキレンオキサイドが付加された構造を有するジ(メタ)アクリレートとしては、例えば、アロニックスM−210、M−211B(東亞合成製)、NKエステルABE−300、A−BPE−4、A−BPE−6、A−BPE−10、A−BPE−20、A−BPE−30、BPE−100、BPE−200、BPE−500、BPE−900、BPE−1300N(新中村化学製)などのEO変性ビスフェノールA型ジ(メタ)アクリレート(n=2〜20)、アロニックスM−208(東亞合成製)などのEO変性ビスフェノールF型ジ(メタ)アクリレート(n=2〜20)、デナコールアクリレートDA−250(ナガセ化成製)、ビスコート540(大阪有機化学工業製)などのPO変性ビスフェノールA型ジ(メタ)アクリレート(n=2〜20)、デナコールアクリレートDA−721(ナガセ化成製)などのPO変性フタル酸ジアクリレートなどが挙げられる。
(In the formula, R 11 represents hydrogen, a methyl group, or an ethyl group, R 12 represents a divalent organic group, and m and n represent integers of 1 to 20.)
Examples of the di (meth) acrylate having a structure in which an alkylene oxide is added to the bisphenol skeleton include, for example, Aronix M-210, M-211B (manufactured by Toagosei), NK ester ABE-300, and A-BPE-4. A-BPE-6, A-BPE-10, A-BPE-20, A-BPE-30, BPE-100, BPE-200, BPE-500, BPE-900, BPE-1300N (manufactured by Shin-Nakamura Chemical) EO modified bisphenol A type di (meth) acrylate (n = 2 to 20) such as EO modified bisphenol F type di (meth) acrylate (n = 2 to 20) such as Aronix M-208 (manufactured by Toagosei), Dena PO-modified bisphenol such as coal acrylate DA-250 (manufactured by Nagase Kasei) and biscoat 540 (manufactured by Osaka Organic Chemical Industry) And PO-modified phthalic acid diacrylates such as diol A type di (meth) acrylate (n = 2 to 20) and Denacol acrylate DA-721 (manufactured by Nagase Kasei).

その他、2個の(メタ)アクリロイル基を持つ化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ダイマージオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレートなどが挙げられる。   Other examples of the compound having two (meth) acryloyl groups include ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimer diol di (meth) acrylate, dimethylol tricyclodecane di (meth) An acrylate etc. are mentioned.

また、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートなどが挙げられる。   Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) An acrylate etc. are mentioned.

また、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジンクジ(メタ)アクリレート、シクロヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、シクロヘキサンジエタノールジ(メタ)アクリレート、シクロヘキサンジアルキルアルコールジ(メタ)アクリレート、ジメタノールトリシクロデカンジ(メタ)アクリレートなどが挙げられる。   Also, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, zinc di (meth) acrylate, cyclohexanediol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, cyclohexane Examples include diethanol di (meth) acrylate, cyclohexanedialkyl alcohol di (meth) acrylate, dimethanol tricyclodecane di (meth) acrylate, and the like.

また、ビスフェノールA、ビスフェノールFまたはビスフェノールAD1モルとグリシジルアクリレート2モルとの反応物、ビスフェノールA、ビスフェノールFまたはビスフェノールAD1モルとグリシジルメタクリレート2モルとの反応物などが挙げられる。   Further, a reaction product of 1 mol of bisphenol A, bisphenol F or bisphenol AD and 2 mol of glycidyl acrylate, a reaction product of 1 mol of bisphenol A, bisphenol F or bisphenol AD and 2 mol of glycidyl methacrylate, and the like can be mentioned.

また、架橋多環構造を有する(メタ)アクリレートが挙げられる。具体的には、例えば、ジシクロペンタジエン骨格を有する(メタ)アクリレート、パーヒドロ−1,4:5,8−ジメタノナフタレン骨格を有する(メタ)アクリレート、ノルボルナン骨格を有する(メタ)アクリレート、ジシクロペンタジエニルジアクリレート(トリシクロデカンジメタノールジアクリレート)、パーヒドロ−1,4:5,8−ジメタノナフタレン−2,3,7−トリメチロールトリアクリレート、ノルボルナンジメチロールジアクリレート、パーヒドロ−1,4:5,8−ジメタノナフタレン−2,3−ジメチロールジアクリレートなどが挙げられる。   Moreover, the (meth) acrylate which has a bridge | crosslinking polycyclic structure is mentioned. Specifically, for example, (meth) acrylate having a dicyclopentadiene skeleton, (meth) acrylate having a perhydro-1,4: 5,8-dimethananaphthalene skeleton, (meth) acrylate having a norbornane skeleton, dicyclo Pentadienyl diacrylate (tricyclodecane dimethanol diacrylate), perhydro-1,4: 5,8-dimethananaphthalene-2,3,7-trimethylol triacrylate, norbornane dimethylol diacrylate, perhydro-1, 4: 5,8-dimethananaphthalene-2,3-dimethylol diacrylate and the like.

また、エポキシ(メタ)アクリレートが挙げられる。エポキシ(メタ)アクリレートは、エポキシ樹脂と、アクリル酸、メタクリル酸などの不飽和一塩基酸との付加反応物であるオリゴマーを用いることができる。その原料のエポキシ樹脂としては、ビスフェノールA、ビスフェノールFなどのビスフェノールに代表されるビスフェノール類とエピハロヒドリンとの縮合によって得られるジグリシジル化合物(ビスフェノール型エポキシ樹脂)を用いることができる。また、フェノール骨格を有するエポキシ樹脂として、フェノールまたはクレゾールとホルマリンに代表されるアルデヒドとの縮合物であるフェノールノボラック類とエピハロヒドリンとの縮合によって得られる多価グリシジルエーテル(フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂)を用いることができる。また、シクロヘキシル環を有するエポキシ樹脂を用いることができる。   Moreover, epoxy (meth) acrylate is mentioned. As the epoxy (meth) acrylate, an oligomer that is an addition reaction product of an epoxy resin and an unsaturated monobasic acid such as acrylic acid or methacrylic acid can be used. As the raw material epoxy resin, a diglycidyl compound (bisphenol type epoxy resin) obtained by condensation of bisphenols typified by bisphenols such as bisphenol A and bisphenol F and epihalohydrin can be used. In addition, as an epoxy resin having a phenol skeleton, a polyvalent glycidyl ether (phenol novolac-type epoxy resin, cresol novolak) obtained by condensation of phenol or cresol and phenol novolaks which are condensates of aldehydes typified by formalin and epihalohydrin is used. Type epoxy resin). An epoxy resin having a cyclohexyl ring can be used.

その他、3個以上の(メタ)アクリロイル基を持つ化合物としては、例えば、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールペンタアクリレート、エトキシ化(3)トリメチロールプロパントリアクリレート、エトキシ化(6)トリメチロールプロパントリアクリレート、エトキシ化(9)トリメチロールプロパントリアクリレート、プロポキシ化(6)トリメチロールプロパントリアクリレート、プロポキシ化(3)グリセリルトリアクリレート、高プロポキシ化(55)グリセリルトリアクリレート、エトキシ化(15)トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、テトラエチレングリコールジアクリレート、ジメチロールプロパンテトラアクリレート、トリプロピレングリコールジアクリレート、ペンタアクリレートエステル、1,3−アダマンタンジオールジメタクリレート、1,3−アダマンタンジオールジアクリレート、1,3−アダマンタンジメタノールジメタクリレート、1,3−アダマンタンジメタノールジアクリレートなどが挙げられる。   Other examples of the compound having three or more (meth) acryloyl groups include pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol pentaacrylate, ethoxylation (3) trimethylolpropane triacrylate, ethoxylation (6) Trimethylolpropane triacrylate, ethoxylated (9) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane triacrylate, propoxylated (3) glyceryl triacrylate, highly propoxylated (55) glyceryl triacrylate, ethoxylated ( 15) Trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, tetraethylene glycol diacrylate, dimethylolpro Tetraacrylate, tripropylene glycol diacrylate, pentaacrylate ester, 1,3-adamantanediol dimethacrylate, 1,3-adamantanediol diacrylate, 1,3-adamantane dimethanol dimethacrylate, 1,3-adamantane dimethanol dimethacrylate An acrylate etc. are mentioned.

その他、熱硬化性アクリル樹脂には、前記の各成分以外に、各種のビニルモノマー、例えば、単官能ビニルモノマーなどを配合してもよい。   In addition to the above components, various vinyl monomers such as a monofunctional vinyl monomer may be added to the thermosetting acrylic resin.

本発明の半導体封止用液状エポキシ樹脂組成物における熱硬化性アクリル樹脂の含有量は、半導体封止用液状エポキシ樹脂組成物の全量に対して1.0〜15質量%の範囲内が好ましい。含有量がこの範囲内であると、増粘によるボイドを抑制し、信頼性の低下も抑制できる。   The content of the thermosetting acrylic resin in the liquid epoxy resin composition for semiconductor encapsulation of the present invention is preferably in the range of 1.0 to 15 mass% with respect to the total amount of the liquid epoxy resin composition for semiconductor encapsulation. If the content is within this range, voids due to thickening can be suppressed, and a decrease in reliability can also be suppressed.

本発明の半導体封止用液状エポキシ樹脂組成物には、熱重合開始剤が配合される。   A thermal polymerization initiator is blended in the liquid epoxy resin composition for semiconductor encapsulation of the present invention.

熱重合開始剤としては、例えば、有機過酸化物を使用することができる。具体的には、例えば、ジアシルパーオキサイド系化合物、パーオキシエステル系化合物、ハイドロパーオキサイド系化合物、ジアルキルパーオキサイド系化合物、ケトンパーオキサイド系化合物、パーオキシケタール系化合物、アルキルパーエステル系化合物、パーカーボネート系化合物などを用いることができる。   As the thermal polymerization initiator, for example, an organic peroxide can be used. Specifically, for example, diacyl peroxide compounds, peroxy ester compounds, hydroperoxide compounds, dialkyl peroxide compounds, ketone peroxide compounds, peroxyketal compounds, alkyl peroxide compounds, A carbonate compound or the like can be used.

熱重合開始剤の有機過酸化物は、ボイドの抑制、保存性などの点を考慮すると、10時間半減期温度が60〜200℃の範囲内のものが好ましく、例えば、高温(通常80℃を超える温度)で、熱のみで有機過酸化物を分解させて硬化させる高温加熱硬化系のものが好ましい。   The organic peroxide of the thermal polymerization initiator is preferably one having a 10-hour half-life temperature in the range of 60 to 200 ° C., for example, considering the suppression of voids and storage stability. A high-temperature heat-curing system in which the organic peroxide is decomposed and cured only by heat at a higher temperature).

具体的には、クメンヒドロキシパーオキサイド、ターシャリーブチルイソプロピルモノカーボネート、ターシャリーブチルパーオキシベンゾエート、ジイソプロピルベンゼンヒドロパーオキサイドなどが好ましい。   Specifically, cumene hydroxy peroxide, tertiary butyl isopropyl monocarbonate, tertiary butyl peroxybenzoate, diisopropylbenzene hydroperoxide and the like are preferable.

熱重合開始剤の含有量としては、特に限定されないが、熱硬化性アクリル樹脂100質量部に対して、0.2〜5質量部が好ましい。含有量がこの範囲内であると、増粘によるボイドを抑制し、信頼性の低下も抑制できる。   Although it does not specifically limit as content of a thermal-polymerization initiator, 0.2-5 mass parts is preferable with respect to 100 mass parts of thermosetting acrylic resins. If the content is within this range, voids due to thickening can be suppressed, and a decrease in reliability can also be suppressed.

本発明の半導体封止用液状エポキシ樹脂組成物には、無機充填剤が配合される。無機充填剤を配合することで、硬化物の熱膨張係数を調整することができる。   An inorganic filler is blended in the liquid epoxy resin composition for semiconductor encapsulation of the present invention. The thermal expansion coefficient of the cured product can be adjusted by blending the inorganic filler.

無機充填剤としては、例えば、溶融シリカ(溶融球状シリカ、溶融破砕シリカ)、合成シリカ、結晶シリカなどのシリカ粉末、アルミナ、酸化チタンなどの酸化物、タルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素などの窒化物などを用いることができる。   Examples of the inorganic filler include silica powder such as fused silica (fused spherical silica and fused crushed silica), synthetic silica and crystalline silica, oxides such as alumina and titanium oxide, talc, fired clay, unfired clay, mica, Silicates such as glass, carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates such as barium sulfate, calcium sulfate and calcium sulfite Alternatively, borates such as sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate, and sodium borate, and nitrides such as aluminum nitride, boron nitride, and silicon nitride can be used.

これらの中でも、耐熱性、耐湿性、強度などを向上できることから溶融シリカ、結晶シリカ、合成シリカが好ましい。   Among these, fused silica, crystalline silica, and synthetic silica are preferable because heat resistance, moisture resistance, strength, and the like can be improved.

無機充填剤の形状は、破砕状、針状、リン片状、球状など特に限定されないが、分散性や粘度制御の観点から、球状のものを用いることが好ましい。   The shape of the inorganic filler is not particularly limited, such as a crushed shape, a needle shape, a flake shape, and a spherical shape, but a spherical shape is preferably used from the viewpoint of dispersibility and viscosity control.

無機充填剤のサイズは、フリップチップ接続した際の半導体チップと回路基板との間の空隙よりも平均粒径が小さいものであればよいが、充填密度や粘度制御の観点から、平均粒径10μm以下のものが好ましく、5μm以下のものがより好ましく、3μm以下のものがさらに好ましく、0.2〜3μmのものが特に好ましい。   The inorganic filler may be any size as long as the average particle size is smaller than the gap between the semiconductor chip and the circuit board when flip-chip connected. From the viewpoint of filling density and viscosity control, the average particle size is 10 μm. The following are preferable, those of 5 μm or less are more preferable, those of 3 μm or less are more preferable, and those of 0.2 to 3 μm are particularly preferable.

なお、ここで平均粒径は、市販のレーザー回折・散乱式粒度分布測定装置を用いて、レーザー回折・散乱法による粒度分布の測定値から、累積分布によるメディアン径(d50、体積基準)として求めることができる。   Here, the average particle size is obtained as a median diameter (d50, volume basis) by cumulative distribution from a measured value of particle size distribution by a laser diffraction / scattering method using a commercially available laser diffraction / scattering type particle size distribution measuring device. be able to.

無機充填剤は、最大粒径が10μm以下であることが好ましく、0.5〜10μmであることがより好ましい。最大粒径が10μm以下であると、20μm以下の狭いギャップにも対応することができる。また最大粒径が0.5μm以上であると、粘度増加を抑制することができる。   The inorganic filler preferably has a maximum particle size of 10 μm or less, and more preferably 0.5 to 10 μm. When the maximum particle size is 10 μm or less, a narrow gap of 20 μm or less can be handled. Further, when the maximum particle size is 0.5 μm or more, an increase in viscosity can be suppressed.

さらに、粘度や硬化物の物性を調整するために、粒径の異なる無機充填剤を2種以上組み合わせて用いてもよい。   Furthermore, in order to adjust the viscosity and physical properties of the cured product, two or more kinds of inorganic fillers having different particle diameters may be used in combination.

本発明の半導体封止用液状エポキシ樹脂組成物における無機充填剤の配合量は、半導体封止用液状エポキシ樹脂組成物の全量に対して40〜70質量%が好ましい。この範囲内にすると、熱膨張係数を小さくして温度サイクル試験における信頼性を向上させることができ、粘度が高くなりすぎて作業性が低下することも抑制できる。   As for the compounding quantity of the inorganic filler in the liquid epoxy resin composition for semiconductor sealing of this invention, 40-70 mass% is preferable with respect to the whole quantity of the liquid epoxy resin composition for semiconductor sealing. Within this range, the thermal expansion coefficient can be reduced to improve the reliability in the temperature cycle test, and it is also possible to suppress the workability from being lowered due to the viscosity becoming too high.

本発明の半導体封止用液状エポキシ樹脂組成物には、シランカップリング剤を配合することができる。シランカップリング剤は、無機充填剤と樹脂の濡れ、被着体との接着性を改善する。   A silane coupling agent can be blended in the liquid epoxy resin composition for semiconductor encapsulation of the present invention. The silane coupling agent improves the wettability of the inorganic filler and the resin and the adhesion between the adherend and the adherend.

シランカップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのグリシドキシシラン、γ−メルカプトプロピルトリメトキシシランなどのメルカプトシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシランなどのアミノシラン、アルキルシラン、ウレイドシラン、ビニルシランなどを用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。   Examples of the silane coupling agent include glycidoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. , Mercaptosilane such as γ-mercaptopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, etc. Aminosilane, alkylsilane, ureidosilane, vinylsilane and the like can be used. These may be used alone or in combination of two or more.

本発明の半導体封止用液状エポキシ樹脂組成物におけるシランカップリング剤の含有量は、無機充填剤とシランカップリング剤の合計量に対して0.1〜2.0質量%が好ましい。この範囲内にすると、硬化物の密着性を向上させることができ、硬化物中のボイドの発生なども抑制できる。   As for content of the silane coupling agent in the liquid epoxy resin composition for semiconductor sealing of this invention, 0.1-2.0 mass% is preferable with respect to the total amount of an inorganic filler and a silane coupling agent. Within this range, the adhesion of the cured product can be improved, and the generation of voids in the cured product can also be suppressed.

本発明の半導体封止用液状エポキシ樹脂組成物には、本発明の効果を損なわない範囲内において、さらに他の添加剤を配合することができる。このような他の添加剤としては、例えば、硬化促進剤、消泡剤、レベリング剤、低応力剤、着色剤などが挙げられる。   The liquid epoxy resin composition for semiconductor encapsulation of the present invention can further contain other additives within a range not impairing the effects of the present invention. Examples of such other additives include curing accelerators, antifoaming agents, leveling agents, low stress agents, and coloring agents.

本発明の半導体封止用液状エポキシ樹脂組成物は、例えば、次の手順で製造することができる。前記の各成分を同時にまたは別々に配合し、必要に応じて加熱処理や冷却処理を行いながら、撹拌、溶解、混合、分散を行う。次に、この混合物に無機充填剤を加え、必要に応じて加熱処理や冷却処理を行いながら、再度、撹拌、混合、分散を行うことにより、本発明の半導体封止用液状エポキシ樹脂組成物を得ることができる。この撹拌、溶解、混合、分散には、ディスパー、プラネタリーミキサー、ボールミル、3本ロールなどを組み合わせて用いることができる。   The liquid epoxy resin composition for semiconductor encapsulation of the present invention can be produced, for example, by the following procedure. The above components are blended simultaneously or separately, and stirring, dissolution, mixing, and dispersion are performed while performing heat treatment or cooling treatment as necessary. Next, an inorganic filler is added to the mixture, and the liquid epoxy resin composition for semiconductor encapsulation of the present invention is obtained by stirring, mixing, and dispersing again while performing heat treatment and cooling treatment as necessary. Can be obtained. For this stirring, dissolution, mixing, and dispersion, a disper, a planetary mixer, a ball mill, three rolls, or the like can be used in combination.

本発明の半導体封止用液状エポキシ樹脂組成物は、作業性や加工性の観点から、25℃で液状であることが好ましい。また、本発明の半導体封止用液状エポキシ樹脂組成物の粘度は、25℃において1000Pa・s以下であることが好ましく、200Pa・s以下であることがより好ましく、100Pa・s以下であることがさらに好ましく、1〜100Pa・s以下であることが特に好ましい。粘度をこの範囲にすると、半導体封止用液状エポキシ樹脂組成物の注入を行う際の作業性の低下を抑制できる。ここで、粘度はE型回転粘度計を用いて、25℃で、回転数0.5rpmで測定したときの値である。   The liquid epoxy resin composition for semiconductor encapsulation of the present invention is preferably liquid at 25 ° C. from the viewpoints of workability and workability. Moreover, the viscosity of the liquid epoxy resin composition for semiconductor encapsulation of the present invention is preferably 1000 Pa · s or less, more preferably 200 Pa · s or less, and 100 Pa · s or less at 25 ° C. More preferably, it is particularly preferably 1 to 100 Pa · s or less. When the viscosity is within this range, it is possible to suppress a decrease in workability when the liquid epoxy resin composition for semiconductor encapsulation is injected. Here, the viscosity is a value when measured using an E-type rotational viscometer at 25 ° C. and a rotational speed of 0.5 rpm.

次に、本発明の半導体封止用液状エポキシ樹脂組成物を用いて製造される半導体装置について説明する。   Next, the semiconductor device manufactured using the liquid epoxy resin composition for semiconductor encapsulation of this invention is demonstrated.

本発明の半導体装置は、半導体デバイスと、この半導体デバイスが実装される回路基板とを備えている。半導体デバイスと回路基板とのそれぞれに形成されたパッド同士が導電性バンプを介して接続され、半導体デバイスと回路基板との隙間が前記の半導体封止用液状エポキシ樹脂組成物の硬化物により封止されている。   The semiconductor device of the present invention includes a semiconductor device and a circuit board on which the semiconductor device is mounted. Pads formed on each of the semiconductor device and the circuit board are connected via conductive bumps, and the gap between the semiconductor device and the circuit board is sealed with a cured product of the liquid epoxy resin composition for semiconductor sealing. Has been.

半導体デバイスとしては、回路基板上に導電性バンプを介して接続されるデバイスであれば、半導体チップ(ベアチップ)、CSP、BGAなどのいずれであってもよい。半導体チップとしては、特に限定されず、シリコン、ゲルマニウムなどの元素半導体、ガリウムヒ素、インジウムリンなどの化合物半導体など、各種の半導体を用いることができる。半導体チップにはチップ側パッドが形成されており、チップ側パッドと回路基板側パッドとは導電性バンプにより電気的に接続されている。   The semiconductor device may be a semiconductor chip (bare chip), CSP, BGA, or the like as long as it is a device connected to the circuit board via conductive bumps. The semiconductor chip is not particularly limited, and various semiconductors such as elemental semiconductors such as silicon and germanium, and compound semiconductors such as gallium arsenide and indium phosphide can be used. A chip-side pad is formed on the semiconductor chip, and the chip-side pad and the circuit board-side pad are electrically connected by a conductive bump.

回路基板としては、例えば、ガラスエポキシ、ポリイミド、ポリエステル、セラミックなどの絶縁基板上に、銅などの金属材料からなる金属層を形成し、金属層の不要な箇所をエッチングにより除去することによって回路パターンが形成されたもの、上記の絶縁基板表面に導電性物質を印刷して回路パターンを形成したものなどを用いることができる。回路の表面には、低融点はんだ、高融点はんだ、スズ、インジウム、金、ニッケル、銀、銅、パラジウムなどからなる金属層が形成されていてもよい。この金属層は単一の成分のみで構成されていても、複数の成分から構成されていてもよい。また、複数の金属層が積層された構造をしていてもよい。   As a circuit board, for example, a metal layer made of a metal material such as copper is formed on an insulating substrate such as glass epoxy, polyimide, polyester, or ceramic, and an unnecessary portion of the metal layer is removed by etching. Or a circuit pattern formed by printing a conductive material on the surface of the insulating substrate can be used. A metal layer made of low melting point solder, high melting point solder, tin, indium, gold, nickel, silver, copper, palladium or the like may be formed on the surface of the circuit. This metal layer may be composed of only a single component or may be composed of a plurality of components. Moreover, you may have the structure where the some metal layer was laminated | stacked.

回路基板は、例えば、BGA、CSPなどの半導体装置に用いられるインターポーザであってもよいし、マザーボード、ドータボードと呼ばれる大型のプリント配線板であってもよい(すなわち本発明の半導体封止用液状エポキシ樹脂組成物は、半導体チップのインターポーザへの一次実装に加えて、半導体パッケージの接続を補強するための二次実装のアンダーフィル材にも用いることができる。)。また、回路基板としてビルドアップ回路基板を用いることができる。ビルドアップ回路基板には、感光性樹脂層、プリプレグ硬化層などからなる絶縁層が1層または複数層形成され、絶縁層上には回路が形成されている。ビルドアップ回路基板の表面にはソルダーレジストが形成され、最上層の回路のソルダーレジストに被覆されない領域は、回路基板側パッドとなっている。   The circuit board may be, for example, an interposer used in a semiconductor device such as BGA or CSP, or a large printed wiring board called a mother board or a daughter board (that is, the liquid epoxy for semiconductor encapsulation of the present invention). In addition to the primary mounting of the semiconductor chip to the interposer, the resin composition can also be used as an underfill material for secondary mounting to reinforce the connection of the semiconductor package. Further, a build-up circuit board can be used as the circuit board. On the build-up circuit board, one or a plurality of insulating layers made of a photosensitive resin layer, a prepreg cured layer, and the like are formed, and a circuit is formed on the insulating layer. A solder resist is formed on the surface of the build-up circuit board, and a region not covered with the solder resist of the uppermost circuit is a circuit board side pad.

導電性バンプの材質としては、低融点はんだ、高融点はんだ、スズ、インジウム、金、銀、銅などが挙げられる。導電性バンプは、単一の成分のみで構成されていても、複数の成分から構成されていてもよい。また、導電性バンプは、これらの成分からなる金属層を含む積層構造を有してもよい。また、はんだボールのような導電性ボールであってもよい。   Examples of the material of the conductive bump include low melting point solder, high melting point solder, tin, indium, gold, silver, and copper. The conductive bump may be composed of only a single component or may be composed of a plurality of components. The conductive bump may have a laminated structure including a metal layer made of these components. Further, it may be a conductive ball such as a solder ball.

本発明の半導体装置は、例えば、次の方法で製造することができる。ロジン系フラックスを半導体チップに形成されたはんだバンプ表面に、フラックス塗布装置を用いて塗布した後、チップマウンターを用いて半導体チップと回路基板を位置合わせして、圧着することによって半導体チップを回路基板上の所定の位置に配置する。次に、リフロー装置を用いて、所定の加熱プロファイルにて加熱処理を行い、はんだバンプを溶解させて半導体チップと基板をフリップチップ接続する。次に、フラックスの残渣を溶剤で洗浄した後、100〜120℃に加熱した状態で、本発明の半導体封止用液状エポキシ樹脂組成物を滴下し、半導体チップと基板の間の空隙に毛細管現象を利用して注入する。注入完了後、半導体封止用液状エポキシ樹脂組成物を硬化させるため、120〜170℃に加熱した加熱オーブン中で0.5〜5時間加熱処理を行う。   The semiconductor device of the present invention can be manufactured, for example, by the following method. After applying the rosin-based flux to the solder bump surface formed on the semiconductor chip using a flux application device, the semiconductor chip and the circuit board are aligned using a chip mounter, and then the semiconductor chip is bonded to the circuit board. Place it in a predetermined position on the top. Next, using a reflow apparatus, heat treatment is performed with a predetermined heating profile, and solder bumps are melted to flip-chip connect the semiconductor chip and the substrate. Next, after the residue of the flux is washed with a solvent, the liquid epoxy resin composition for semiconductor encapsulation of the present invention is dropped in a state heated to 100 to 120 ° C., and capillary action is generated in the gap between the semiconductor chip and the substrate. Inject using. After the injection is completed, a heat treatment is performed in a heating oven heated to 120 to 170 ° C. for 0.5 to 5 hours in order to cure the liquid epoxy resin composition for semiconductor encapsulation.

本発明の半導体装置は、例えば、携帯電話、多機能携帯電話、携帯情報端末、デジタルカメラ、ノートパソコンなどのモバイル機器などに用いることができる。   The semiconductor device of the present invention can be used for mobile devices such as a mobile phone, a multi-function mobile phone, a portable information terminal, a digital camera, and a notebook computer.

以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、表1および表2に示す配合量は質量部を表す。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples. In addition, the compounding quantity shown in Table 1 and Table 2 represents a mass part.

表1および表2に示す配合成分として、以下のものを用いた。
(エポキシ樹脂)
・ビスフェノールA型エポキシ樹脂、三菱化学(株)「828」、エポキシ当量189、常温で液状(粘度120〜150P/25℃)
・テトラグリシジルアミン型エポキシ樹脂、三菱化学(株)「604」、エポキシ当量110〜130、高粘稠液体
(アミン硬化剤)
・3,3’−ジエチル−4,4’−ジアミノジフェニルメタン(芳香族アミン)、日本化薬(株)「カヤハードA−A」
・変性芳香族アミン、三菱化学(株)「W」
(熱硬化性アクリル樹脂)
・エトキシ化ビスフェノールAジアクリレート、新中村化学工業(株)「A−BPE−30」
・エトキシ化ビスフェノールAジメタクリレート、新中村化学工業(株)「BPE−80N」
(熱重合開始剤)
・有機過酸化物、クメンヒドロキシパーオキサイド、日油製「パークミル(登録商標)H」
・有機過酸化物、ターシャリーブチルイソプロピルモノカーボネート、日油(株)「パーブチル(登録商標)I」
・有機過酸化物、ターシャリーブチルパーオキシベンゾエート、日油(株)「パーブチル(登録商標)Z」
(無機充填剤)
・合成シリカ、MCRユニテック社「QS−3」
(シランカップリング剤)
・エポキシシランカップリング剤、3−グリシドキシプロピルトリメトキシシラン、モメンティブ・パフォーマンス・マテリアルズ社「A187」
表1および表2に示す配合量で各成分を配合し、常法に従って撹拌、溶解、混合、分散することにより半導体封止用液状エポキシ樹脂組成物を調製した。
As the blending components shown in Table 1 and Table 2, the following were used.
(Epoxy resin)
・ Bisphenol A type epoxy resin, Mitsubishi Chemical Corporation “828”, epoxy equivalent 189, liquid at room temperature (viscosity 120-150 P / 25 ° C.)
-Tetraglycidylamine type epoxy resin, Mitsubishi Chemical Corporation "604", epoxy equivalent 110-130, highly viscous liquid (amine curing agent)
・ 3,3′-diethyl-4,4′-diaminodiphenylmethane (aromatic amine), Nippon Kayaku Co., Ltd. “Kayahard AA”
・ Modified aromatic amine, Mitsubishi Chemical Corporation "W"
(Thermosetting acrylic resin)
・ Ethoxylated bisphenol A diacrylate, Shin-Nakamura Chemical Co., Ltd. “A-BPE-30”
・ Ethoxylated bisphenol A dimethacrylate, Shin-Nakamura Chemical Co., Ltd. “BPE-80N”
(Thermal polymerization initiator)
・ Organic peroxide, cumene hydroxy peroxide, NOF "PARKMILL (registered trademark) H"
Organic peroxide, tertiary butyl isopropyl monocarbonate, NOF Corporation "Perbutyl (registered trademark) I"
・ Organic peroxide, tertiary butyl peroxybenzoate, NOF Corporation "Perbutyl (registered trademark) Z"
(Inorganic filler)
・ Synthetic silica, MCR Unitech "QS-3"
(Silane coupling agent)
・ Epoxysilane coupling agent, 3-glycidoxypropyltrimethoxysilane, Momentive Performance Materials “A187”
Each component was mix | blended with the compounding quantity shown in Table 1 and Table 2, and the liquid epoxy resin composition for semiconductor sealing was prepared by stirring, melt | dissolving, mixing, and disperse | distributing according to a conventional method.

このようにして調製した実施例および比較例の半導体封止用液状エポキシ樹脂組成物について次の評価を行った。
[ボイド]
半導体チップ(0.3mm厚、15mm角)を回路基板(FR−4)上に実装した後、表1および表2に示した各エポキシ樹脂組成物を半導体チップと回路基板との隙間に注入充填し、150℃3分で硬化させることにより半導体装置を作製した。
The following evaluation was performed about the liquid epoxy resin composition for semiconductor sealing of the Example and comparative example which were prepared in this way.
[void]
After mounting a semiconductor chip (0.3 mm thick, 15 mm square) on a circuit board (FR-4), each epoxy resin composition shown in Table 1 and Table 2 is injected and filled in the gap between the semiconductor chip and the circuit board. Then, a semiconductor device was manufactured by curing at 150 ° C. for 3 minutes.

この半導体装置の封止樹脂の部分を超音波探傷装置(SAT:日立エンジニアリング社製)の画像で観察し、次の基準により評価した。
○:ボイドがゼロ
△:チップ下にボイドがゼロ、ペリフェラル外にボイド1〜5個
×:チップ下にボイドが1個以上
[信頼性(温度サイクル試験)]
半導体チップ(0.3mm厚、15mm角)を回路基板(FR−4)上に実装した後、表1および表2に示した各エポキシ樹脂組成物を半導体チップと回路基板との隙間に注入充填し、150℃3分で硬化させることにより半導体装置を作製した。
The portion of the sealing resin of this semiconductor device was observed with an image of an ultrasonic flaw detector (SAT: manufactured by Hitachi Engineering Co., Ltd.) and evaluated according to the following criteria.
○: Zero voids △: Zero voids under the chip, 1 to 5 voids outside the peripheral ×: One or more voids under the chip [Reliability (temperature cycle test)]
After mounting a semiconductor chip (0.3 mm thick, 15 mm square) on a circuit board (FR-4), each epoxy resin composition shown in Table 1 and Table 2 is injected and filled in the gap between the semiconductor chip and the circuit board. Then, a semiconductor device was manufactured by curing at 150 ° C. for 3 minutes.

硬化後の半導体装置について電気的動作を行い、良品であったものについて−55℃で30分、125℃で30分を1サイクルとする液相のヒートサイクル試験を行い、所定回数のサイクル後に半導体装置の動作を行い下記基準に従って評価した。
○:1000cycle以上で抵抗値上昇が1割未満
△:500cycle以上で抵抗値上昇が1割未満
×:100cycle以上で抵抗値上昇が1割以上
評価結果を表1および表2に示す。
The hardened semiconductor device is electrically operated, and a non-defective product is subjected to a liquid phase heat cycle test in which one cycle is −55 ° C. for 30 minutes and 125 ° C. for 30 minutes. The apparatus was operated and evaluated according to the following criteria.
○: Resistance increase is less than 10% at 1000 cycles or more. Δ: Resistance increase is less than 10% at 500 cycles or more. X: Resistance increase is 10% or more at 100 cycles or more The evaluation results are shown in Tables 1 and 2.

Figure 2014094981
Figure 2014094981

Figure 2014094981
Figure 2014094981

表1および表2より、常温で液状のエポキシ樹脂、アミン硬化剤、熱硬化性アクリル樹脂、熱硬化性アクリル樹脂の熱重合開始剤、および無機充填剤を配合した実施例1〜11の半導体封止用液状エポキシ樹脂組成物は、ボイドが抑制され、温度サイクルにおける信頼性も有していた。   From Table 1 and Table 2, the semiconductor seals of Examples 1 to 11 were blended with an epoxy resin that was liquid at room temperature, an amine curing agent, a thermosetting acrylic resin, a thermosetting initiator for the thermosetting acrylic resin, and an inorganic filler. The liquid epoxy resin composition for stopping has suppressed voids and has reliability in a temperature cycle.

例えば実施例6〜9などにも示すように、熱硬化性アクリル樹脂の含有量が、半導体封止用液状エポキシ樹脂組成物の全量に対して1.0〜15質量%の範囲内では、ボイドが抑制され、信頼性も有していた。実施例10、11などにも示すように、エポキシ樹脂とアミン硬化剤との化学量論上の当量比が0.5〜1.5の範囲内では、ボイドが抑制され、温度サイクルにおける信頼性も有していた。無機充填剤の含有量が40〜70質量%の範囲内では、ボイドが抑制され、温度サイクルにおける信頼性も有していた。   For example, as shown also in Examples 6 to 9 and the like, voids are within the range of 1.0 to 15% by mass with respect to the total amount of the liquid epoxy resin composition for semiconductor encapsulation, as the content of the thermosetting acrylic resin. Was suppressed and it had reliability. As shown in Examples 10 and 11, etc., when the stoichiometric equivalent ratio between the epoxy resin and the amine curing agent is in the range of 0.5 to 1.5, voids are suppressed and reliability in the temperature cycle is ensured. Also had. When the content of the inorganic filler was in the range of 40 to 70% by mass, voids were suppressed and the temperature cycle was reliable.

一方、熱硬化性アクリル樹脂と熱重合開始剤を配合しなかった比較例1、熱硬化性アクリル樹脂のみ配合し熱重合開始剤を配合しなかった比較例2、熱重合開始剤のみ配合し熱硬化性アクリル樹脂を配合しなかった比較例3はいずれも相当量のボイドが発生した。   On the other hand, Comparative Example 1 in which the thermosetting acrylic resin and the thermal polymerization initiator were not blended, Comparative Example 2 in which only the thermosetting acrylic resin was blended and no thermal polymerization initiator was blended, only the thermal polymerization initiator was blended and heat In Comparative Example 3 in which no curable acrylic resin was blended, a considerable amount of voids occurred.

Claims (5)

半導体デバイスと回路基板とのそれぞれに形成されたパッド同士が導電性バンプを介して接続された前記半導体デバイスと前記回路基板との隙間に供給し加熱硬化する封止樹脂として使用される半導体封止用液状エポキシ樹脂組成物において、常温で液状のエポキシ樹脂、アミン硬化剤、熱硬化性アクリル樹脂、前記熱硬化性アクリル樹脂の熱重合開始剤、および無機充填剤を含有することを特徴とする半導体封止用液状エポキシ樹脂組成物。   Semiconductor sealing used as a sealing resin for supplying heat to a gap between the semiconductor device and the circuit board, in which pads formed on the semiconductor device and the circuit board are connected via conductive bumps A liquid epoxy resin composition for use in a semiconductor, comprising a liquid epoxy resin at room temperature, an amine curing agent, a thermosetting acrylic resin, a thermal polymerization initiator for the thermosetting acrylic resin, and an inorganic filler. Liquid epoxy resin composition for sealing. 前記熱硬化性アクリル樹脂の含有量が、前記半導体封止用液状エポキシ樹脂組成物の全量に対して1.0〜15質量%の範囲内であることを特徴とする請求項1に記載の半導体封止用液状エポキシ樹脂組成物。   2. The semiconductor according to claim 1, wherein a content of the thermosetting acrylic resin is in a range of 1.0 to 15 mass% with respect to a total amount of the liquid epoxy resin composition for semiconductor encapsulation. Liquid epoxy resin composition for sealing. 前記常温で液状のエポキシ樹脂を含む全エポキシ樹脂と、前記アミン硬化剤との化学量論上の当量比が0.5〜1.5の範囲内であることを特徴とする請求項1または2に記載の半導体封止用液状エポキシ樹脂組成物。   The stoichiometric equivalent ratio of all epoxy resins including the epoxy resin that is liquid at normal temperature and the amine curing agent is in the range of 0.5 to 1.5. Liquid epoxy resin composition for semiconductor encapsulation as described in 1. 前記無機充填剤の含有量が、前記半導体封止用液状エポキシ樹脂組成物の全量に対して40〜70質量%の範囲内であることを特徴とする請求項1から3のいずれか一項に記載の半導体封止用液状エポキシ樹脂組成物。   The content of the inorganic filler is within a range of 40 to 70 mass% with respect to the total amount of the liquid epoxy resin composition for semiconductor encapsulation, according to any one of claims 1 to 3. The liquid epoxy resin composition for semiconductor sealing of description. 半導体デバイスと、この半導体デバイスが実装される回路基板とを備え、前記半導体デバイスと前記回路基板とのそれぞれに形成されたパッド同士が導電性バンプを介して接続され、前記半導体デバイスと前記回路基板との隙間が請求項1から4のいずれか一項に記載の半導体封止用液状エポキシ樹脂組成物の硬化物により封止されていることを特徴とする半導体装置。   A semiconductor device and a circuit board on which the semiconductor device is mounted, and pads formed on the semiconductor device and the circuit board are connected to each other via conductive bumps, and the semiconductor device and the circuit board A semiconductor device, wherein the gap is sealed with a cured product of the liquid epoxy resin composition for semiconductor sealing according to any one of claims 1 to 4.
JP2012245422A 2012-11-07 2012-11-07 Liquid epoxy resin composition for encapsulating semiconductor and semiconductor device using the same Pending JP2014094981A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012245422A JP2014094981A (en) 2012-11-07 2012-11-07 Liquid epoxy resin composition for encapsulating semiconductor and semiconductor device using the same
PCT/JP2013/050229 WO2014073220A1 (en) 2012-11-07 2013-01-09 Liquid epoxy resin composition for semiconductor sealing and semiconductor device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012245422A JP2014094981A (en) 2012-11-07 2012-11-07 Liquid epoxy resin composition for encapsulating semiconductor and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2014094981A true JP2014094981A (en) 2014-05-22

Family

ID=50684344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012245422A Pending JP2014094981A (en) 2012-11-07 2012-11-07 Liquid epoxy resin composition for encapsulating semiconductor and semiconductor device using the same

Country Status (2)

Country Link
JP (1) JP2014094981A (en)
WO (1) WO2014073220A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157056A (en) * 2018-03-16 2019-09-19 三菱ケミカル株式会社 Curable resin composition, and film, molding, prepreg and fiber-reinforced plastic including the same
WO2019193959A1 (en) * 2018-04-02 2019-10-10 パナソニックIpマネジメント株式会社 Resin powder, sealing material, electronic component, and resin powder manufacturing method
JP2020065063A (en) * 2019-12-12 2020-04-23 日立化成株式会社 Pre-supply type underfill material, cured product of pre-supply type underfill material, electronic component device, and manufacturing method of electronic component device
KR20210154750A (en) 2020-06-12 2021-12-21 아지노모토 가부시키가이샤 Resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021117582A1 (en) * 2019-12-12 2021-06-17

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116979A (en) * 2010-12-02 2012-06-21 Hitachi Chemical Co Ltd Epoxy resin composition, resin composition for seal-filling semiconductor, and semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157056A (en) * 2018-03-16 2019-09-19 三菱ケミカル株式会社 Curable resin composition, and film, molding, prepreg and fiber-reinforced plastic including the same
JP2022125122A (en) * 2018-03-16 2022-08-26 三菱ケミカル株式会社 Prepreg and fiber-reinforced plastic
JP7238259B2 (en) 2018-03-16 2023-03-14 三菱ケミカル株式会社 Prepreg
WO2019193959A1 (en) * 2018-04-02 2019-10-10 パナソニックIpマネジメント株式会社 Resin powder, sealing material, electronic component, and resin powder manufacturing method
JPWO2019193959A1 (en) * 2018-04-02 2021-04-01 パナソニックIpマネジメント株式会社 Manufacturing method of resin powder, encapsulant, electronic parts, and resin powder
JP7390590B2 (en) 2018-04-02 2023-12-04 パナソニックIpマネジメント株式会社 Resin powder, encapsulant, electronic components, and method for producing resin powder
JP2020065063A (en) * 2019-12-12 2020-04-23 日立化成株式会社 Pre-supply type underfill material, cured product of pre-supply type underfill material, electronic component device, and manufacturing method of electronic component device
KR20210154750A (en) 2020-06-12 2021-12-21 아지노모토 가부시키가이샤 Resin composition

Also Published As

Publication number Publication date
WO2014073220A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
US10870756B2 (en) Acrylic composition for encapsulation, sheet material, laminated sheet, cured object, semiconductor device, and process for producing semiconductor device
JP6094884B2 (en) Manufacturing method of semiconductor device and acrylic resin composition for semiconductor sealing used therefor
JP4786964B2 (en) Thermosetting epoxy resin composition and semiconductor device using the same
WO2010029726A1 (en) Semiconductor device and resin composition used in semiconductor device
WO2011013326A1 (en) Liquid resin composition and semiconductor device formed using same
JP2014094981A (en) Liquid epoxy resin composition for encapsulating semiconductor and semiconductor device using the same
JP2007189210A (en) Method of assembling flip-chip-type semiconductor device and semiconductor device produced by method
JPWO2019163861A1 (en) Manufacturing method of sealing resin composition, laminated sheet, cured product, semiconductor device and semiconductor device
JP6094886B2 (en) Manufacturing method of semiconductor device and acrylic resin composition for semiconductor sealing used therefor
JP2012136577A (en) Semiconductor-sealing material and semiconductor device
TWI827512B (en) Film adhesive for semiconductors, manufacturing method of semiconductor device, and semiconductor device
JP7126129B2 (en) Thermosetting composition for underfill and semiconductor device
JP6094885B2 (en) Manufacturing method of semiconductor device and acrylic resin composition for semiconductor sealing used therefor
JP4176619B2 (en) Flip chip mounting side fill material and semiconductor device
JP3925803B2 (en) Flip chip mounting side fill material and semiconductor device
JP2015032637A (en) Manufacturing method of electronic component device, and electronic component device
JP7144160B2 (en) UNDERFILL MATERIAL AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING SAME
JP2008085264A (en) Semiconductor device
JP2017122193A (en) Semiconductor adhesive and method for producing semiconductor device
JP2012012431A (en) Fluid resin composition and semiconductor apparatus
JP6857837B2 (en) Thermosetting resin composition for encapsulation, manufacturing method of semiconductor device and semiconductor device
JP6388228B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2005026447A (en) Semiconductor device and method of manufacturing the same
JP2012044155A (en) Semiconductor chip mount substrate manufacturing method and encapsulation resin
JP2010209266A (en) Liquid epoxy resin composition for sealing semiconductor, and flip-chip semiconductor device sealed with the same as underfill material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141113