JP2014094865A - Method of producing silica particle having internal cavity, silica particle having internal cavity and coating liquid for film formation and film-provided substrate containing the silica particle - Google Patents

Method of producing silica particle having internal cavity, silica particle having internal cavity and coating liquid for film formation and film-provided substrate containing the silica particle Download PDF

Info

Publication number
JP2014094865A
JP2014094865A JP2012247969A JP2012247969A JP2014094865A JP 2014094865 A JP2014094865 A JP 2014094865A JP 2012247969 A JP2012247969 A JP 2012247969A JP 2012247969 A JP2012247969 A JP 2012247969A JP 2014094865 A JP2014094865 A JP 2014094865A
Authority
JP
Japan
Prior art keywords
silica
zeolite
range
silica particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012247969A
Other languages
Japanese (ja)
Other versions
JP6029424B2 (en
JP2014094865A5 (en
Inventor
Wataru Futagami
渉 二神
Kazutaka Egami
和孝 江上
Makoto Muraguchi
良 村口
Tsuguo Koyanagi
嗣雄 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2012247969A priority Critical patent/JP6029424B2/en
Publication of JP2014094865A publication Critical patent/JP2014094865A/en
Publication of JP2014094865A5 publication Critical patent/JP2014094865A5/ja
Application granted granted Critical
Publication of JP6029424B2 publication Critical patent/JP6029424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silica particle which is useful as e.g. a low-refractive-index material, a low-dielectric-constant material, a heat insulation material, an adsorbent, a separation material and a sustained release material and has a cavity inside a polygonal shape having a relatively large particle size and its production method.SOLUTION: A method of producing a silica particle having an internal cavity includes: a step (a) of adding an aqueous solution of a silicate and/or an acidic silicate solution and an aqueous solution of an alkali-soluble inorganic compound other than silica simultaneously to a zeolite particle fluid dispersion in such a manner as to form a complex oxide (hydrate) layer of silica and the inorganic compound on the surface of the zeolite particles having a weight ratio (W)/(W) of the amount (W), by solid contents, of zeolite particles and the amount (W), by solid contents, of the complex oxide (hydrate) layer formed on the surface of the zeolite particles in a range of 0.1 to 5.0 in order to prepare a zeolite-complex oxide particle fluid dispersion; and a step (b) of adding an acid to the zeolite-complex oxide particle fluid dispersion to remove at least a part of the elements constituting the zeolite-complex oxide particles other than silicon.

Description

本発明は、内部に空洞を有するシリカ粒子の製造方法および内部に空洞を有するシリカ粒子に関するものである。   The present invention relates to a method for producing silica particles having a cavity inside and a silica particle having a cavity inside.

従来、粒径が0.1〜300μm程度の中空シリカ粒子は公知である(特許文献1、特許文献2など参照)。また、珪酸アルカリ金属水溶液から活性シリカをシリカ以外の材料からなるコア上に沈殿させ、該材料をシリカシェルを破壊させることなく除去することによって、稠密なシリカシェルからなる中空粒子を製造する方法が公知である(特許文献3 など参照)。
さらに、外周部が殻、中心部が中空で、殻は外側が緻密で内側ほど粗な濃度傾斜構造をもったコア・シェル構造であるミクロンサイズの球状シリカ粒子が公知である( 特許文献4など参照)。
Conventionally, hollow silica particles having a particle size of about 0.1 to 300 μm are known (see Patent Document 1, Patent Document 2, etc.). Also, there is a method for producing hollow particles made of a dense silica shell by precipitating active silica from an alkali metal silicate aqueous solution on a core made of a material other than silica and removing the material without destroying the silica shell. It is publicly known (see Patent Document 3).
Furthermore, micron-sized spherical silica particles having a core-shell structure in which the outer peripheral portion is a shell and the central portion is hollow, the outer shell is denser on the outer side, and has a coarser concentration gradient structure on the inner side are known (Patent Document 4, etc.) reference).

また、本願出願人は先に、多孔性の無機酸化物微粒子の表面をシリカ等で完全に被覆することにより、低屈折率のナノメーターサイズの複合酸化物微粒子が得られることを提案すると共に(特許文献5参照)、さらに、シリカとシリカ以外の無機酸化物からなる複合酸化物の核粒子にシリカ被覆層を形成し、ついでシリカ以外の無機酸化物を除去し、必要に応じてシリカを被覆することによって、内部に空洞を有する低屈折率のナノメーターサイズのシリカ系微粒子が得られることを提案している(特許文献6参照)。
さらに、電解質の存在下でシリカとシリカ以外の無機酸化物からなる複合酸化物を調製し、ついでシリカ以外の無機酸化物を除去することによっても内部に空洞を有する低屈折率のナノメーターサイズのシリカ系微粒子が得られることを提案している(特許文献7参照)。
In addition, the applicant of the present application previously proposed that nanometer-sized composite oxide particles having a low refractive index can be obtained by completely covering the surface of porous inorganic oxide particles with silica or the like ( Furthermore, a silica coating layer is formed on the core particles of a composite oxide composed of silica and an inorganic oxide other than silica, and then the inorganic oxide other than silica is removed, and silica is coated as necessary. By doing so, it has been proposed that nanometer-sized silica-based fine particles with a low refractive index having cavities inside can be obtained (see Patent Document 6).
Furthermore, by preparing a composite oxide composed of silica and an inorganic oxide other than silica in the presence of an electrolyte, and then removing the inorganic oxide other than silica, a nanometer-sized low refractive index having a cavity inside It has been proposed that silica-based fine particles can be obtained (see Patent Document 7).

ここで、特許文献6、特許文献7に開示した方法ではナノメーターサイズのシリカ系微粒子は比較的短時間で調製することができるが、サブミクロンサイズのシリカ系粒子を調製するには長時間を要し、経済性の点から改良の余地があった。   Here, in the methods disclosed in Patent Documents 6 and 7, nanometer-sized silica-based fine particles can be prepared in a relatively short time, but it takes a long time to prepare submicron-sized silica-based particles. In short, there was room for improvement in terms of economy.

また、炭酸カルシウム粒子を調製し、これにシリカをコーティングし、ついで炭酸カルシウムを溶解させることによって中空のシリカナノ粒子が得られることが開示されている。このとき、シリカナノ粒子は細孔を有することが記載されている(特許文献8参照)。
また、同様の方法で立方体状(多面体構造)の中空シリカ粒子が得られることが記載されている(特許文献9参照)。
Further, it is disclosed that hollow silica nanoparticles can be obtained by preparing calcium carbonate particles, coating silica on the particles, and then dissolving calcium carbonate. At this time, it is described that the silica nanoparticles have pores (see Patent Document 8).
Further, it is described that cubic silica (polyhedral structure) hollow silica particles can be obtained by the same method (see Patent Document 9).

しかしながら、特許文献8、特許文献9に記載のシリカ粒子は一次粒子が凝集した二次粒子であり、しかも細孔を有していることから反射防止コーティング材として用いた場合、同時に用いるマトリックス成分あるいはバインダー成分の種類によっては反射防止性能が不十分となる他、基材との密着性、塗膜の強度、透明性等が不充分となる場合があり、用途、用法に制限があった。
However, the silica particles described in Patent Document 8 and Patent Document 9 are secondary particles in which primary particles are aggregated and have pores, and therefore, when used as an antireflection coating material, Depending on the type of the binder component, the antireflection performance may be insufficient, and the adhesion to the base material, the strength of the coating film, the transparency, and the like may be insufficient.

特開平6−330606号公報JP-A-6-330606 特開平7−013137号公報Japanese Patent Laid-Open No. 7-013137 特表2000−500113号公報Special Table 2000-500113 特開平11−029318号公報JP-A-11-029318 特開平7−133105号公報JP 7-133105 A 特開2001−233611号公報JP 2001-233611 A 特開2004−203683号公報JP 2004-203683 A 特開2005−263550号公報JP 2005-263550 A 特開2007−308584号公報JP 2007-305884 A

本発明者らは、多面体形状を有する中空シリカ粒子を調製すべく鋭意検討した結果、ゼオライト粒子分散液に水硝子水溶液とアルミン酸ナトリウム水溶液を同時に添加してゼオライト粒子表面にシリカアルミナ層を形成し、ついで塩酸によりアルミナ成分を溶解除去することによって多面体形状で、内部に空洞を有するシリカ粒子が得られ、しかも、この粒子が非凝集(単分散、一次粒子)粒子であることを見出して本発明を完成するに至った。
本発明は、多面体形状を有し、内部に空洞を有するシリカ粒子とその製造方法を提供することを目的とするものである。
As a result of diligent investigations to prepare hollow silica particles having a polyhedral shape, the present inventors simultaneously added a water glass aqueous solution and a sodium aluminate aqueous solution to a zeolite particle dispersion to form a silica alumina layer on the surface of the zeolite particles. Then, by dissolving and removing the alumina component with hydrochloric acid, silica particles having a polyhedral shape and having cavities inside are obtained, and it is found that these particles are non-aggregated (monodispersed, primary particles) particles. It came to complete.
An object of this invention is to provide the silica particle which has a polyhedron shape, and has a cavity inside, and its manufacturing method.

本発明に係る内部に空洞を有するシリカ粒子の製造方法は、下記の工程(a)および(b)を含んでなることを特徴としている。
(a)ゼオライト粒子分散液に珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶のシリカ以外の無機化合物水溶液とを、ゼオライト粒子の固形分としての量(W)と、ゼオライト粒子表面に形成される複合酸化物(水和物)層の固形分としての量(W)との重量比(W)/(W)が0.1〜5.0の範囲となるように同時に添加してゼオライト粒子の表面にシリカと無機酸化物との複合酸化物(水和物)層を形成してゼオライト・複合酸化物粒子分散液を調製する工程
(b)該ゼオライト・複合酸化物粒子分散液に、酸を加えてゼオライト・複合酸化物粒子を構成する珪素以外の元素の少なくとも一部を除去する工程
The method for producing silica particles having cavities inside according to the present invention is characterized by comprising the following steps (a) and (b).
(A) An amount of silicate aqueous solution and / or acidic silicic acid solution and an aqueous solution of an inorganic compound other than alkali-soluble silica as a solid content of zeolite particles (W Z ), and the zeolite particle surface The weight ratio (W M ) / (W Z ) with the amount (W M ) as the solid content of the composite oxide (hydrate) layer formed in the range of 0.1 to 5.0 A step of simultaneously adding and forming a composite oxide (hydrate) layer of silica and inorganic oxide on the surface of the zeolite particles to prepare a zeolite / composite oxide particle dispersion (b) the zeolite / composite oxide; A step of adding an acid to the particle dispersion to remove at least a part of elements other than silicon constituting the zeolite / composite oxide particles.

前記工程(a)における珪酸塩の水溶液および/または酸性珪酸液のシリカをSiOで表し、シリカ以外の無機酸化物をMOで表したときのモル比MO/SiOが0.01〜0.18の範囲にあることが好ましい。
前記工程(b)についで下記の工程(c)を行うことが好ましい。
(c)50〜350℃で熟成する工程
前記工程(a)におけるpHが8〜14の範囲にあることが好ましい。
前記ゼオライトが結晶性アルミノシリケートであり、該ゼオライトのSiO/Alモル比が2〜20の範囲にあることが好ましい。
The molar ratio MO X / SiO 2 when the aqueous solution of silicate and / or the silica of the acidic silicate solution in the step (a) is represented by SiO 2 and the inorganic oxide other than silica is represented by MO X is 0.01 to It is preferable to be in the range of 0.18.
Following the step (b), the following step (c) is preferably performed.
(C) Step of aging at 50 to 350 ° C. The pH in the step (a) is preferably in the range of 8 to 14.
The zeolite is preferably a crystalline aluminosilicate, and the SiO 2 / Al 2 O 3 molar ratio of the zeolite is preferably in the range of 2-20.

前記ゼオライトの第1の態様は、サイコロ状構造を有し、該ゼオライトの平均粒子径(P)が0.03〜50μmの範囲にあることが好ましい。
前記ゼオライトの第2の態様は、平板状構造を有し、該ゼオライトの平均厚み(T)が0.01〜10μmの範囲にあり、該ゼオライトの平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20の範囲にあることが好ましい。
The first aspect of the zeolite preferably has a dice structure, and the average particle diameter (P Z ) of the zeolite is preferably in the range of 0.03 to 50 μm.
The second aspect of the zeolite has a flat plate structure, the average thickness (T Z ) of the zeolite is in the range of 0.01 to 10 μm, the average particle diameter (P Z ) and the average thickness ( T Z) and the ratio of (P Z) / (T Z ) is preferably in the range of 2-20.

本発明に係る内部に空洞を有するシリカ粒子の第1の態様は、外殻の内部が空洞であるシリカ粒子であって、該シリカ粒子がサイコロ状構造を有し、該シリカ粒子の平均粒子径(P)が0.04〜55μmの範囲にあることを特徴としている。
本発明に係る内部に空洞を有するシリカ粒子の第2の態様は、外殻の内部が空洞であるシリカ粒子であって、該シリカ粒子が平板状構造を有し、該シリカ粒子の平均厚み(T)が0.02〜11μmの範囲にあり、該シリカ粒子の平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20の範囲にあることを特徴としている。
The first aspect of the silica particles having a cavity inside according to the present invention is a silica particle having a hollow inside of the outer shell, the silica particle has a dice-like structure, and the average particle diameter of the silica particle It is characterized in that (P S ) is in the range of 0.04 to 55 μm.
A second aspect of the silica particle having a cavity inside according to the present invention is a silica particle having a hollow inside of the outer shell, the silica particle has a plate-like structure, and the average thickness of the silica particle ( T S ) is in the range of 0.02 to 11 μm, and the ratio (P S ) / (T S ) of the average particle diameter (P S ) to the average thickness (T S ) of the silica particles is in the range of 2 to 20. It is characterized by that.

前記外殻が非孔質であることが好ましい。
標準屈折率液法で測定される屈折率が1.10〜1.44の範囲にあることが好ましい。
前記外殻が多孔質であることが好ましい。
標準屈折率液法で測定される屈折率が1.40〜1.46の範囲にあることが好ましい。
前記外殻の内部の空洞の空隙率が5〜90体積%の範囲にあることが好ましい。
前記内部に空洞を有するシリカ粒子は請求項1〜7のいずれかに記載の内部に空洞を有するシリカ粒子の製造方法によって得られたシリカ粒子であることが好ましい。
The outer shell is preferably non-porous.
The refractive index measured by the standard refractive index liquid method is preferably in the range of 1.10 to 1.44.
The outer shell is preferably porous.
The refractive index measured by the standard refractive index liquid method is preferably in the range of 1.40 to 1.46.
It is preferable that the void ratio of the inside of the outer shell is in the range of 5 to 90% by volume.
It is preferable that the silica particle which has a cavity inside is the silica particle obtained by the manufacturing method of the silica particle which has a cavity inside in any one of Claims 1-7.

本発明に係る被膜形成用塗布液は、内部に空洞を有するシリカ粒子とマトリックス形成成分と分散媒とを含んでなり、前記内部に空洞を有するシリカ粒子の濃度(C)が固形分として0.005〜48重量%の範囲にあり、前記マトリックス形成成分の濃度(C)が固形分として0.2〜59.7重量%の範囲にあり、全固形分濃度が1〜60重量%の範囲にあることを特徴としている。
前記内部に空洞を有するシリカ粒子が請求項15に記載の内部に空洞を有するシリカ粒子であることが好ましい。
前記内部に空洞を有するシリカ粒子が平板状構造を有し、該シリカ粒子の平均厚み(T)が0.02〜0.15μmの範囲にあり、平均粒子径(P)が0.04〜1μmの範囲にあり、前記平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20の範囲にあることが好ましい。
The coating liquid for forming a film according to the present invention comprises silica particles having cavities therein, a matrix-forming component, and a dispersion medium, and the concentration (C S ) of the silica particles having cavities therein is 0 as a solid content. 0.005 to 48% by weight, the concentration (C M ) of the matrix-forming component is in the range of 0.2 to 59.7% by weight as the solid content, and the total solid content concentration is 1 to 60% by weight. It is characterized by being in range.
The silica particles having cavities in the interior are preferably silica particles having cavities in the interior according to claim 15.
The silica particles having cavities in the interior have a plate-like structure, the average thickness (T S ) of the silica particles is in the range of 0.02 to 0.15 μm, and the average particle diameter (P S ) is 0.04. It is preferable that the ratio (P S ) / (T S ) between the average particle diameter (P S ) and the average thickness (T S ) is in the range of 2-20.

本発明に係る被膜付基材は、基材と、基材上に形成された被膜とからなり、該被膜が内部に空洞を有するシリカ粒子とマトリックス成分とを含んでなり、被膜中の内部に空洞を有するシリカ粒子の含有量(W)が固形分として0.5〜80重量%の範囲にあり、マトリックス成分の含有量(W)が20〜99.5重量%の範囲にあることを特徴としている。
前記内部に空洞を有するシリカ粒子が請求項15に記載の内部に空洞を有するシリカ粒子であることが好ましい。
前記内部に空洞を有するシリカ粒子が平板状構造を有し、該シリカ粒子の平均厚み(T)が0.02〜0.15μmの範囲にあり、平均粒子径(P)が0.04〜1μmの範囲にあり、前記平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20の範囲にあることが好ましい。
The substrate with a coating according to the present invention comprises a substrate and a coating formed on the substrate, and the coating contains silica particles having a cavity inside and a matrix component, and is formed in the coating. The content (W S ) of the silica particles having cavities is in the range of 0.5 to 80% by weight as the solid content, and the content (W M ) of the matrix component is in the range of 20 to 99.5% by weight. It is characterized by.
The silica particles having cavities in the interior are preferably silica particles having cavities in the interior according to claim 15.
The silica particles having cavities in the interior have a plate-like structure, the average thickness (T S ) of the silica particles is in the range of 0.02 to 0.15 μm, and the average particle diameter (P S ) is 0.04. It is preferable that the ratio (P S ) / (T S ) between the average particle diameter (P S ) and the average thickness (T S ) is in the range of 2-20.

本発明によれば、低屈折率材料、低誘電率材、断熱材、吸着剤、分離材、徐放剤等として有用な、比較的大きな粒子径を有する多面体形状の内部に空洞を有するシリカ粒子とその製造方法を提供することができる。
According to the present invention, a silica particle having a cavity inside a polyhedral shape having a relatively large particle diameter, which is useful as a low refractive index material, a low dielectric constant material, a heat insulating material, an adsorbent, a separating material, a sustained release agent, etc. And a manufacturing method thereof.

以下、まず、本発明に係る内部に空洞を有するシリカ粒子の製造方法について説明する。
内部に空洞を有するシリカ粒子の製造方法
本発明に係る内部に空洞を有するシリカ粒子の製造方法を工程(a)から順次説明する。
Hereinafter, first, a method for producing silica particles having a cavity inside according to the present invention will be described.
Sequentially illustrating a manufacturing method of silica particles having a cavity therein in accordance with the production method the present invention silica particles having voids therein from step (a).

工程(a)
ゼオライト粒子分散液に珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶のシリカ以外の無機化合物水溶液とを、ゼオライト粒子の固形分としての量(W)と、ゼオライト粒子表面に形成される複合酸化物(水和物)層の固形分としての量(W)との重量比(W)/(W)が0.1〜5.0の範囲となるように同時に添加してゼオライト粒子の表面にシリカと無機酸化物との複合酸化物(水和物)層を形成してゼオライト・複合酸化物粒子分散液を調製する。
Step (a)
A silicate aqueous solution and / or an acidic silicate solution and an aqueous solution of an inorganic compound other than alkali-soluble silica in the zeolite particle dispersion are formed on the zeolite particle surface in an amount (W Z ) as a solid content of the zeolite particles. Simultaneously added so that the weight ratio (W M ) / (W Z ) to the amount (W M ) as the solid content of the composite oxide (hydrate) layer is in the range of 0.1 to 5.0. A composite oxide (hydrate) layer of silica and inorganic oxide is formed on the surface of the zeolite particles to prepare a zeolite / composite oxide particle dispersion.

ゼオライト
本発明に用いるゼオライトとしては、結晶性アルミノシリケートであるゼオライトが用いられる。例えば、フオージャサイト(FAU)、チャバサイト(CHA)、ベータ(BEA)、ZSM−5(MFI)、A型ゼオライト(LTA)、モルデナイト(MOR)等が挙げられる。
このようなゼオライトは、二次元あるいは三次元の細孔有し、骨格はシリカとアルミナからなっているが、得られる内部に空洞を有するシリカ粒子に必要な形状、大きさ、空洞の空隙の割合、屈折率等によって適宜選択して用いることができる。
例えば、アルミナ含有量が比較的多く、細孔容積の大きいフオージャサイト(FAU)は空隙率の高いシリカ粒子を得るためには好適に用いることができる。
Zeolite As the zeolite used in the present invention, zeolite which is crystalline aluminosilicate is used. For example, forgerite (FAU), chabasite (CHA), beta (BEA), ZSM-5 (MFI), A-type zeolite (LTA), mordenite (MOR) and the like can be mentioned.
Such zeolite has two-dimensional or three-dimensional pores, and the skeleton is made of silica and alumina, but the shape, size, and void ratio required for the resulting silica particles with voids inside. , And can be appropriately selected depending on the refractive index and the like.
For example, faujasite (FAU) having a relatively high alumina content and a large pore volume can be suitably used to obtain silica particles having a high porosity.

ゼオライトのSiO/Alモル比は2〜15、さらには2〜11の範囲にあることが好ましい。
ゼオライトのSiO/Alモル比が2未満のゼオライトは存在せず、SiO/Alモル比が11を超えると、酸によるAlの除去が困難となり、得られるシリカ粒子の空隙率が小さすぎて、低屈折率材、断熱材等に用いても充分な効果が得られない場合がある。
The SiO 2 / Al 2 O 3 molar ratio of zeolite is preferably in the range of 2 to 15, more preferably 2 to 11.
There is no zeolite having a SiO 2 / Al 2 O 3 molar ratio of less than 2 in the zeolite, and when the SiO 2 / Al 2 O 3 molar ratio exceeds 11, removal of Al 2 O 3 with an acid becomes difficult and obtained. In some cases, the porosity of the silica particles is too small, and a sufficient effect cannot be obtained even when used for a low refractive index material, a heat insulating material or the like.

ゼオライト粒子の多くはサイコロ状の粒子形状を有しており、用いるゼオライトの平均粒子径(P)は0.03〜50μm、さらには0.1〜20μmの範囲にあることが好ましい。
平均粒子径(P)が0.03μm未満のゼオライトは得ることが困難であり、平均粒子径(P)が50μmを超えるものも得ることが困難であり、得られたとしても本発明の方法では空隙率の高いシリカ粒子を得ることが困難である。
なお、ゼオライトは、そのまま用いることもできるが、必要に応じて粉砕等によって所望の粒子径に微細化して用いることもできる。
Most of the zeolite particles have a dice-like particle shape, and the average particle diameter (P Z ) of the zeolite used is preferably in the range of 0.03 to 50 μm, more preferably 0.1 to 20 μm.
It is difficult to obtain a zeolite having an average particle diameter (P Z ) of less than 0.03 μm, and it is difficult to obtain a zeolite having an average particle diameter (P Z ) exceeding 50 μm. In the method, it is difficult to obtain silica particles having a high porosity.
Zeolite can be used as it is, but it can also be refined to a desired particle size by pulverization or the like, if necessary.

また、本発明では、平板状構造を有するゼオライト粒子も好適に用いることができる。
平板状構造を有するゼオライト粒子を用いると、得られる内部に空洞を有するシリカ粒子も平板状構造となり、このような平板状のシリカ粒子は緻密に積層させて膜状とすることができ、膜状の低反射材、断熱材、分離材、徐放剤、低誘電率剤等として好適に用いることができる。
このとき用いる平板状構造を有するゼオライト粒子は平均厚み(T)が0.01〜10μm、さらには0.03〜5.0μmの範囲にあることが好ましい。
平均厚み(T)が前記範囲を外れるものは得ることが困難である。
なお、この場合もゼオライトはそのまま用いることもできるが、必要に応じて粉砕等によって所望の粒子径に微細化して用いることもできる。
In the present invention, zeolite particles having a plate-like structure can also be suitably used.
When zeolite particles having a flat structure are used, the resulting silica particles having cavities also have a flat structure, and such flat silica particles can be densely laminated to form a film. It can be suitably used as a low reflective material, a heat insulating material, a separating material, a sustained release agent, a low dielectric constant agent, and the like.
The zeolite particles having a flat structure used at this time preferably have an average thickness (T Z ) in the range of 0.01 to 10 μm, and more preferably in the range of 0.03 to 5.0 μm.
It is difficult to obtain one having an average thickness (T Z ) outside the above range.
In this case as well, the zeolite can be used as it is, but if necessary, it can be used after being refined to a desired particle diameter by pulverization or the like.

また、前記平均粒子径(P)と平均厚み(T)との比(P)/(T)(アスペクト比ということがある)は2〜20、さらには3〜10の範囲にあることが好ましい。
(P)/(T)が2未満の場合は、得られるシリカ粒子が前記サイコロ状構造のゼオライト粒子と変わるところがなく、(P)/(T)が20を超えるものは得ることが困難である。
このような、平板状構造を有するゼオライト粒子としては、本出願人の出願による特開2008−230886号公報、特開2004−315338号公報等に開示したゼオライトは好適に用いることができる。
Further, the ratio (P Z ) / (T Z ) (sometimes referred to as aspect ratio) of the average particle diameter (P Z ) to the average thickness (T Z ) is in the range of 2 to 20, more preferably 3 to 10. Preferably there is.
When (P Z ) / (T Z ) is less than 2, the silica particles obtained are not different from the zeolite particles having the above-mentioned dice-like structure, and those having (P Z ) / (T Z ) exceeding 20 can be obtained. Is difficult.
As such zeolite particles having a flat plate structure, the zeolites disclosed in Japanese Patent Application Laid-Open Nos. 2008-230886 and 2004-315338, which are filed by the present applicant, can be suitably used.

本発明では、平均粒子径(P)、平均厚み(T)は走査型電子顕微鏡写真(SEM)を撮影し、サイコロ状構造のゼオライト粒子の場合は100個の粒子について粒子径を測定し、平板状ゼオライトの場合は100個の粒子について粒子径および厚みを測定し、その平均値として求めた。なお、上記において、粒子径は、粒子の長径および粒子の短径を測定し、その平均値とした。
後述する内部に空洞を有するシリカ粒子についても同様である。
In the present invention, the average particle diameter (P Z ) and the average thickness (T Z ) are obtained by taking a scanning electron micrograph (SEM), and in the case of a zeolite particle having a dice structure, the particle diameter is measured for 100 particles. In the case of flat zeolite, the particle diameter and thickness were measured for 100 particles, and the average value was obtained. In the above, the particle diameter was determined by measuring the long diameter of the particle and the short diameter of the particle, and taking the average value thereof.
The same applies to silica particles having cavities inside as described later.

珪酸塩水溶液、酸性珪酸液
珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1種または2種以上の珪酸塩が好ましく用いられる。アルカリ金属珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムが、有機塩基としては、テトラエチルアンモニウム塩などの第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
酸性珪酸液としては、珪酸アルカリ水溶液を陽イオン交換樹脂で処理すること等によって、アルカリを除去して得られる珪酸液を用いることができ、特に、pH2〜pH4、SiO濃度が約7重量%以下の酸性珪酸液が好ましい。
As the silicate aqueous solution and acidic silicate liquid silicate, one or more silicates selected from alkali metal silicates, ammonium silicates and silicates of organic bases are preferably used. Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate, and examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, amines such as monoethanolamine, diethanolamine, and triethanolamine. The ammonium silicate or organic base silicate includes an alkaline solution in which ammonia, quaternary ammonium hydroxide, an amine compound, or the like is added to the silicic acid solution.
As the acidic silicic acid solution, a silicic acid solution obtained by removing an alkali by treating an alkali silicate aqueous solution with a cation exchange resin or the like can be used. In particular, pH 2 to pH 4 and SiO 2 concentration is about 7% by weight. The following acidic silicic acid solutions are preferred.

アルカリ可溶のシリカ以外の無機化合物
アルカリ可溶の無機化合物としては、金属または非金属のオキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4 級アンモニウム塩を挙げることができ、より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノ珪酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウム等が挙げられる。
Inorganic compounds other than alkali-soluble silica Examples of the alkali-soluble inorganic compound include alkali metal salts or alkaline earth metal salts, ammonium salts, and quaternary ammonium salts of metal or non-metal oxo acids. More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, sodium phosphate and the like can be mentioned.

工程(a)では、ゼオライト粒子分散液に前記珪酸塩の水溶液および/または酸性珪酸液と、前記アルカリ可溶のシリカ以外の無機化合物水溶液とを同時に添加する。
このとき、ゼオライト粒子分散液の濃度は0.001〜20.0重量%、さらには0.03〜5.0重量の範囲にあることが好ましい。
ゼオライト分散液の濃度が0.001重量%未満の場合は、ゼオライト粒子の表面にシリカと無機酸化物との複合酸化物(水和物)層を効率的に形成できない場合があり、新たに微小粒子を形成し、所望の低屈折率、断熱性等を有する内部に空洞を有するシリカ粒子が得られない場合がある。
ゼオライト分散液の濃度が20重量%を超えると、複合酸化物(水和物)層を形成したゼオライト粒子が凝集粒子となり、最終的に内部に空洞を有するシリカ粒子が凝集粒子となり、用途が制限される場合がある。
In the step (a), the silicate aqueous solution and / or the acidic silicate liquid and the inorganic compound aqueous solution other than the alkali-soluble silica are simultaneously added to the zeolite particle dispersion.
At this time, the concentration of the zeolite particle dispersion is preferably in the range of 0.001 to 20.0% by weight, more preferably 0.03 to 5.0% by weight.
If the concentration of the zeolite dispersion is less than 0.001% by weight, a composite oxide (hydrate) layer of silica and inorganic oxide may not be efficiently formed on the surface of the zeolite particles. In some cases, silica particles that form particles and have cavities inside that have a desired low refractive index, heat insulation, and the like cannot be obtained.
When the concentration of the zeolite dispersion exceeds 20% by weight, the zeolite particles forming the composite oxide (hydrate) layer become aggregated particles, and finally the silica particles having cavities inside become aggregated particles, limiting the application. May be.

珪酸塩の水溶液および/または酸性珪酸液とシリカ以外の無機化合物水溶液の添加割合は、シリカ成分をSiOで表し、シリカ以外の無機化合物をMOで表したときのモル比MO/SiOが0.01〜0.18、さらには0.1〜0.15の範囲にあることが好ましい。
前記モル比MO/SiOが0.01未満の場合は、酸によるMO成分の除去が困難となり、内部のゼオライトの溶解ができず、空洞の形成ができないことがある。
The addition ratio of the silicate aqueous solution and / or the acidic silicate solution and the aqueous inorganic compound solution other than silica is the molar ratio MO X / SiO 2 when the silica component is represented by SiO 2 and the inorganic compound other than silica is represented by MO X. Is preferably in the range of 0.01 to 0.18, more preferably 0.1 to 0.15.
When the molar ratio MO X / SiO 2 is less than 0.01, it is difficult to remove the MO X component with an acid, the inner zeolite cannot be dissolved, and cavities may not be formed.

前記モル比MO/SiOが0.18を超えると、外殻の複合酸化物(水酸化物)層のMO成分の脱離とともにSiO成分の溶解、脱離が顕著となり、内部に空洞を有するシリカ粒子が得られない場合がある。
モル比MO/SiOが前記範囲にあれば、外殻にシリカ層を残したまま、ゼオライト粒子内部のAl成分の脱離が可能であり、内部に空洞を有したシリカ粒子を得ることができる。
When the molar ratio MO X / SiO 2 exceeds 0.18, the dissolution and desorption of the SiO 2 component become significant along with the desorption of the MO X component of the outer complex oxide (hydroxide) layer, Silica particles having cavities may not be obtained.
If the molar ratio MO X / SiO 2 is in the above range, the Al 2 O 3 component inside the zeolite particles can be removed while leaving the silica layer in the outer shell, and the silica particles having cavities inside can be removed. Can be obtained.

添加する珪酸塩の水溶液および/または酸性珪酸液とシリカ以外の無機化合物水溶液の量は、ゼオライト粒子の固形分としての量(W)と、ゼオライト粒子表面に形成される複合酸化物(水和物)層の固形分としての量(W)との重量比(W)/(W)が0.1〜5.0、さらには0.25〜3.0の範囲となるようにすることが好ましい。
前記(W)/(W)が0.1未満の場合は、用いるゼオライト粒子の粒子径によっても異なるが、外殻層の厚みが薄すぎて中空形状を保つことができず、内部に空洞を有するシリカ粒子が得られない場合がある。
前記(W)/(W)が5.0を超えると、外殻層が厚くなりすぎてしまい、ゼオライト粒子内部のAl成分の除去が困難となり、所望の内部に空洞を有するシリカ粒子が得られない場合がある。
The amount of the aqueous solution of the silicate and / or the aqueous solution of the inorganic compound other than the acidic silicate solution and silica is the amount (W Z ) as the solid content of the zeolite particles and the complex oxide (hydration) formed on the surface of the zeolite particles. The weight ratio (W M ) / (W Z ) to the amount (W M ) as the solid content of the product) layer is in the range of 0.1 to 5.0, more preferably 0.25 to 3.0. It is preferable to do.
When the (W M ) / (W Z ) is less than 0.1, it varies depending on the particle diameter of the zeolite particles used, but the outer shell layer is too thin to maintain a hollow shape, Silica particles having cavities may not be obtained.
When the (W M ) / (W Z ) exceeds 5.0, the outer shell layer becomes too thick, and it becomes difficult to remove the Al 2 O 3 component inside the zeolite particles, and there is a cavity inside the desired interior. Silica particles may not be obtained.

複合酸化物(水和物)層を形成するときのゼオライト粒子分散液のpHは8〜14、さらには10〜13の範囲にあることが好ましい。
ゼオライト粒子分散液のpHが前記範囲にあれば、ゼオライトの形状・サイズを維持したまま所望の複合酸化物(水和物)層を形成することができる。
また、複合酸化物(水和物)層を形成するときのゼオライト粒子分散液の温度は概ね30〜100℃、好ましくは50〜98℃である。
The pH of the zeolite particle dispersion when forming the composite oxide (hydrate) layer is preferably in the range of 8 to 14, more preferably 10 to 13.
If the pH of the zeolite particle dispersion is in the above range, a desired composite oxide (hydrate) layer can be formed while maintaining the shape and size of the zeolite.
Further, the temperature of the zeolite particle dispersion when forming the composite oxide (hydrate) layer is generally 30 to 100 ° C, preferably 50 to 98 ° C.

工程(b)
複合酸化物(水和物)層を形成したゼオライト粒子分散液に、酸を加えてゼオライト・複合酸化物(水和物)層を構成する珪素以外の元素の少なくとも一部を除去する。
複合酸化物(水和物)層を形成したゼオライト粒子分散液の濃度は処理温度によっても異なるが、固形分として0.1〜50重量%、特に0.5〜25重量%の範囲にあることが好ましい。
複合酸化物(水和物)層を形成したゼオライト粒子分散液の濃度が0.1重量%未満では、シリカの溶解量が多く処理効率が低下する。また、複合酸化物(水和物)層を形成したゼオライト粒子分散液の濃度が50重量%を越えると、粒子の分散性が不充分となり、珪素以外の元素の含有量が多い複合酸化物微粒子では均一に、あるいは効率的に少ない回数で除去できないことがある。
Step (b)
An acid is added to the zeolite particle dispersion formed with the composite oxide (hydrate) layer to remove at least a part of elements other than silicon constituting the zeolite / composite oxide (hydrate) layer.
The concentration of the zeolite particle dispersion in which the complex oxide (hydrate) layer is formed varies depending on the treatment temperature, but is 0.1 to 50% by weight, particularly 0.5 to 25% by weight as a solid content. Is preferred.
When the concentration of the zeolite particle dispersion having the composite oxide (hydrate) layer is less than 0.1% by weight, the amount of silica dissolved is large and the treatment efficiency is lowered. Also, if the concentration of the zeolite particle dispersion in which the composite oxide (hydrate) layer is formed exceeds 50% by weight, the dispersibility of the particles becomes insufficient, and the composite oxide fine particles having a high content of elements other than silicon However, it may not be able to be removed uniformly or efficiently with a small number of times.

酸としては塩酸、硝酸、硫酸等の鉱酸が好ましいが、有機酸あるいは有機酸と混合して用いることもできる。また、酸に代えてH型イオン交換樹脂を用いることもできる。
珪素以外の元素の除去は、得られる内部に空洞を有するシリカ粒子のシリカをSiOで表し、残存する珪素以外の元素の酸化物をMOで表したときに、モル比MO/SiOが、0.0001〜0.2、特に、0.0001〜0.1となるまで行うことが好ましい。
As the acid, mineral acids such as hydrochloric acid, nitric acid and sulfuric acid are preferable, but organic acids or a mixture with organic acids can also be used. In addition, an H-type ion exchange resin can be used in place of the acid.
For removal of elements other than silicon, the resulting silica particles having cavities in the silica are represented by SiO 2 , and the remaining oxides of elements other than silicon are represented by MO X , the molar ratio MO X / SiO 2. Is preferably 0.0001 to 0.2, more preferably 0.0001 to 0.1.

前記モル比MO/SiOが0.0001未満のものは得ることが困難であり、0.2を超えると、珪素以外の元素の除去が不充分であることを意味し、所望の屈折率や断熱性等の特性を得ることができないことがある。
珪素以外の元素の少なくとも一部を除去する際の分散液の温度は概ね5〜50℃の範囲が好ましい。
When the molar ratio MO X / SiO 2 is less than 0.0001, it is difficult to obtain, and when it exceeds 0.2, it means that removal of elements other than silicon is insufficient, and the desired refractive index And properties such as heat insulation may not be obtained.
The temperature of the dispersion when removing at least a part of elements other than silicon is preferably in the range of approximately 5 to 50 ° C.

本発明では、前記工程(b)についで、洗浄することが好ましい。
洗浄方法としては、溶存成分、電解質成分を除去できれば特に制限はないが、シリカ粒子の粒子径が比較的大きい場合は濾過分離法を採用することができ、粒子径が小さい場合は限外濾過、イオン交換樹脂法等の公知の洗浄方法により洗浄することができる。
洗浄する程度は、用途によっても異なるが、基本的にシリカ粒子の主成分であるSiO、原料ゼオライトに由来して残存するAl以外の成分が少ないことが好ましい。
このようにして本発明に係る内部に空洞を有するシリカ粒子を得ることができる。
In this invention, it is preferable to wash | clean after the said process (b).
The washing method is not particularly limited as long as the dissolved component and the electrolyte component can be removed, but a filtration separation method can be adopted when the particle size of the silica particles is relatively large, and ultrafiltration when the particle size is small, It can be washed by a known washing method such as an ion exchange resin method.
The degree of washing varies depending on the application, but it is preferable that the amount of components other than SiO 2 which is the main component of silica particles and Al 2 O 3 remaining due to the raw material zeolite is small.
Thus, the silica particle which has a cavity inside according to the present invention can be obtained.

この段階で得られる内部に空洞を有するシリカ粒子は、外殻が微細孔を有する多孔質のシリカ粒子である。多孔質のシリカ粒子は吸着剤、分離材、徐放剤等と有用なシリカ微粒子である。なお、多孔質のシリカ粒子も、細孔を閉塞するような材料を併用することにより、低屈折率材、断熱材等として用いることもできる。   The silica particles having cavities inside obtained at this stage are porous silica particles whose outer shells have fine pores. The porous silica particles are useful silica fine particles such as an adsorbent, a separating material, a sustained release agent and the like. The porous silica particles can also be used as a low refractive index material, a heat insulating material, or the like by using a material that closes the pores.

工程(c)
ついで、50〜350℃、さらには80〜250℃で熟成することができる。
このような温度範囲で熟成することによって微細孔が閉塞し、低屈折率材、断熱材等として有用なシリカ粒子を得ることができる。
熟成温度が50℃未満の場合は、熟成時間によっても異なるが、外殻の微細孔の閉塞が不充分となり、低屈折率材、断熱材としての有用性が不充分となる場合がある。
熟成温度が350℃を超えると、凝集したシリカ粒子となる場合があり、用途が制限される場合がある。
さらに、熟成した後、前記と同様にして洗浄することもできる。熟成後洗浄することによって、不純物が少なく、分散安定性に優れたシリカ粒子を得ることができる。
Step (c)
Then, it can be aged at 50 to 350 ° C, more preferably 80 to 250 ° C.
By aging in such a temperature range, the fine pores are closed, and silica particles useful as a low refractive index material, a heat insulating material and the like can be obtained.
When the aging temperature is less than 50 ° C., although it varies depending on the aging time, clogging of fine holes in the outer shell becomes insufficient, and the usefulness as a low refractive index material and a heat insulating material may be insufficient.
When the aging temperature exceeds 350 ° C., aggregated silica particles may be formed, and the use may be limited.
Furthermore, after aging, it can be washed in the same manner as described above. By washing after aging, silica particles with few impurities and excellent dispersion stability can be obtained.

また、前記において、工程(b)後のシリカ粒子の外殻のシリカ層および前記工程(c)での熟成温度が低い場合のシリカ粒子の外殻のシリカ層は多孔質であり、一方、前記工程(c)での温度が高い場合のシリカ粒子の外殻のシリカ層は非孔質となる傾向がある。
ここで、多孔質および非孔質とは、前記した、得られる内部に空洞を有する多面体形状、平板形状のシリカ粒子の平均粒子径(P)を用い、シリカ粒子を球状粒子とみなして外部表面の比表面積(SCAL)を計算し、別途、BET法で測定した比表面積(S)とが下記の関係にある場合を多孔質とする。
2×(SCAL)≦(S
Moreover, in the above, the silica layer of the outer shell of the silica particles after the step (b) and the silica layer of the outer shell of the silica particles when the aging temperature in the step (c) is low are porous, When the temperature in the step (c) is high, the silica layer of the outer shell of the silica particles tends to be nonporous.
Here, the term “porous” and “nonporous” refers to the average particle diameter (P S ) of the above-described polyhedral and flat silica particles having cavities inside, and the silica particles are regarded as spherical particles. The surface specific surface area (S CAL ) is calculated, and the case where the specific surface area (S M ) separately measured by the BET method has the following relationship is defined as porous.
2 × (S CAL ) ≦ (S M )

このとき、前記工程(c)において、多孔質と非孔質とを分ける温度は必ずしも一定ではなく、原料ゼオライトの種類、組成、複合酸化物(水和層)の組成、形成量および前記工程(b)での珪素以外の元素を除去する際の条件、また、処理時のpH等によっても異なる。
この様にして得られるシリカ粒子は外殻シリカ層の内部に空洞を有し、空洞の空隙率が5〜90体積%、さらには20〜90体積%の範囲にあることが好ましい。
At this time, in the step (c), the temperature at which the porous material and the nonporous material are separated is not necessarily constant, and the type and composition of the raw material zeolite, the composition of the composite oxide (hydration layer), the amount formed, and the step ( It also depends on the conditions for removing elements other than silicon in b) and the pH at the time of treatment.
The silica particles thus obtained preferably have cavities inside the outer shell silica layer, and the void ratio is preferably in the range of 5 to 90% by volume, more preferably 20 to 90% by volume.

また、このようにして得られる内部に空洞を有するシリカ粒子は、用いるゼオライト粒子が前記した多面体形状を有している場合は、得られるシリカ粒子も多面体形状を有し、平均粒子径(P)が0.04〜55μm、好ましくは0.12〜25μmの範囲にある。
また、用いるゼオライト粒子が前記した平板状である場合は、得られるシリカ粒子も平板状で、シリカ粒子の平均厚み(T)が0.02〜11μm、好ましくは0.03〜5μmの範囲にある。また、均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20、好ましくは3〜10の範囲にある。
Also, silica particles having a cavity therein which is obtained in this way, when the zeolite particles to be used have a polyhedral shape mentioned above, the obtained silica particles also have a polyhedral shape, average particle size (P S ) Is in the range of 0.04 to 55 μm, preferably 0.12 to 25 μm.
Moreover, when the zeolite particle to be used is a flat plate as described above, the obtained silica particles are also flat and the average thickness (T S ) of the silica particles is in the range of 0.02 to 11 μm, preferably 0.03 to 5 μm. is there. Further, the ratio (P S ) / (T S ) between the average particle size (P S ) and the average thickness (T S ) is in the range of 2 to 20, preferably 3 to 10.

つぎに、本発明に係る内部に空洞を有するシリカ粒子について説明する。
内部に空洞を有するシリカ粒子
本発明に係る内部に空洞を有するシリカ粒子の第1の態様は、外殻の内部が空洞であるシリカ粒子であって、該シリカ粒子がサイコロ状構造を有し、該シリカ粒子の平均粒子径(P)が0.04〜55μmの範囲にあることを特徴としている。
ここで、サイコロ状構造とは、後述する平板状構造を除く、立方体(サイコロ状)、四角柱、六角柱、八面体等の多面体を基本形状とする形状を意味している。
Next, silica particles having a cavity inside according to the present invention will be described.
Silica particles having a cavity inside The first aspect of the silica particles having a cavity inside according to the present invention is a silica particle having a hollow inside the outer shell, the silica particle having a dice-like structure, the average particle diameter of the silica particles (P S) is being in the range of 0.04~55Myuemu.
Here, the dice-like structure means a shape having a basic shape of a polyhedron such as a cube (dice-like), a quadrangular column, a hexagonal column, and an octahedron, excluding a flat plate structure to be described later.

内部が空洞であるか否かは、シリカ粒子を破砕し、透過型電子顕微鏡写真による観察で、内部において、シリカの存在しない空間の有無によって確認することができる。あるいは、後述する外殻が非孔質であるシリカ粒子では、標準屈折率液法で屈折率を測定し、シリカの屈折率(1.46)よりも低いことによって確認することができる。   Whether or not the inside is a cavity can be confirmed by crushing silica particles and observing with a transmission electron micrograph based on the presence or absence of a space where silica is not present. Alternatively, in the case of silica particles whose outer shell, which will be described later, is nonporous, the refractive index can be measured by a standard refractive index liquid method and confirmed by being lower than the refractive index of silica (1.46).

このような内部に空洞を有するシリカ粒子の平均粒子径(P)は0.04〜55μm、さらには0.05〜25μmの範囲にあることが好ましい。
内部に空洞を有するシリカ粒子の平均粒子径(P)が前記範囲を外れるものは、原料となるゼオライト粒子を得ることが困難であり、得られたとしても本発明の方法では空隙率の高いシリカ粒子を得ることが困難である。
なお、ゼオライトは、そのまま用いることもできるが、必要に応じて粉砕等によって所望の粒子径に微細化して用いることもできる。
The average particle diameter (P S ) of such silica particles having cavities therein is preferably in the range of 0.04 to 55 μm, more preferably 0.05 to 25 μm.
When the average particle diameter (P S ) of silica particles having cavities is out of the above range, it is difficult to obtain zeolite particles as a raw material, and even if obtained, the method of the present invention has a high porosity. It is difficult to obtain silica particles.
Zeolite can be used as it is, but it can also be refined to a desired particle size by pulverization or the like, if necessary.

本発明に係る内部に空洞を有するシリカ粒子の第2の態様は、外殻の内部が空洞であるシリカ粒子であって、該シリカ粒子が平板状構造を有し、該シリカ粒子の平均厚み(T)が0.02〜11μmの範囲にあり、該シリカ粒子の平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20の範囲にあることが好ましい。
前記平均厚み(T)は0.02〜11μm、さらには0.03〜5μmの範囲にあることが好ましい。
平均厚み(T)が前記範囲を外れるものは、原料となるゼオライト粒子を得ることが困難であり、得られたとしても本発明の方法では空隙を有するシリカ粒子を得ることが困難な場合がある。
また、前記平均粒子径(P)と平均厚み(T)との比(P)/(T)は2〜20、さらには3〜10の範囲にあることが好ましい。
A second aspect of the silica particle having a cavity inside according to the present invention is a silica particle having a hollow inside of the outer shell, the silica particle has a plate-like structure, and the average thickness of the silica particle ( T S ) is in the range of 0.02 to 11 μm, and the ratio (P S ) / (T S ) of the average particle diameter (P S ) to the average thickness (T S ) of the silica particles is in the range of 2 to 20. It is preferable that it exists in.
The average thickness (T S ) is preferably in the range of 0.02 to 11 μm, more preferably 0.03 to 5 μm.
When the average thickness (T S ) is out of the above range, it is difficult to obtain zeolite particles as a raw material, and even if obtained, it may be difficult to obtain silica particles having voids by the method of the present invention. is there.
The ratio (P S ) / (T S ) between the average particle diameter (P S ) and the average thickness (T S ) is preferably in the range of 2 to 20, more preferably 3 to 10.

このような平板状のシリカ粒子を用いると、緻密に積層させて膜状とすることができ、膜状の低反射材、断熱材、分離材等として好適に用いることができる。特に、耐擦傷性に優れた被膜付基材を得ることができる。   When such flat silica particles are used, they can be densely laminated to form a film, which can be suitably used as a film-like low-reflecting material, heat insulating material, separating material, and the like. In particular, a coated substrate having excellent scratch resistance can be obtained.

被膜付基材に用いる場合の内部に空洞を有する平板状シリカ粒子は、シリカ粒子の平均厚み(T)が0.02〜0.15μm、さらには0.03〜0.12μmの範囲にあることが好ましく、平均粒子径(P)が0.04〜1μm、さらには0.05〜0.3μmの範囲にあることが好ましい。
また、前記平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20、さらには3〜10の範囲にあることが好ましい。
平均厚み(T)および平均粒子径(P)と平均厚み(T)との比(P)/(T)が前記範囲にあれば、緻密に積層させて膜状とすることができ、耐擦傷性に優れ、透明性を有し反射防止性能に優れた被膜付基材を得ることができる。
The flat silica particles having cavities inside when used as a coated substrate have an average thickness (T S ) of the silica particles in the range of 0.02 to 0.15 μm, more preferably 0.03 to 0.12 μm. The average particle size (P S ) is preferably in the range of 0.04 to 1 μm, more preferably 0.05 to 0.3 μm.
Further, the ratio (P S ) / (T S ) between the average particle diameter (P S ) and the average thickness (T S ) is preferably in the range of 2 to 20, more preferably 3 to 10.
If the ratio (P S ) / (T S ) of the average thickness (T S ) and the average particle diameter (P S ) to the average thickness (T S ) is within the above range, the layers are densely laminated to form a film. Thus, a coated substrate with excellent scratch resistance, transparency and excellent antireflection performance can be obtained.

前記した外殻の内部が空洞であるシリカ粒子は、外殻が非孔質であってもよく、多孔質であってもよい。
外殻が非孔質のシリカ粒子は標準屈折率液法で測定される屈折率が1.10〜1.44、さらには1.10〜1.39の範囲にあることが好ましい。
また、外殻が多孔質のシリカ粒子は標準屈折率液法で測定される屈折率が概ね1.40〜1.46の範囲である。
外殻が非孔質のシリカ粒子は低反射材、断熱材、低誘電率材等として好適に用いることができ、外殻が多孔質のシリカ粒子は吸着剤、乾燥材、分離材、徐放剤等として好適に用いることができる。
The silica particles in which the inside of the outer shell is hollow may be non-porous or porous.
Silica particles having a non-porous outer shell preferably have a refractive index measured by a standard refractive index liquid method of 1.10 to 1.44, more preferably 1.10 to 1.39.
The silica particles having a porous outer shell have a refractive index measured by a standard refractive index liquid method in a range of approximately 1.40 to 1.46.
Silica particles having a non-porous outer shell can be suitably used as a low reflection material, a heat insulating material, a low dielectric constant material, etc., and silica particles having a porous outer shell can be used as an adsorbent, a desiccant, a separating material, a sustained release material. It can be suitably used as an agent or the like.

前記シリカ粒子は外殻の内部の空洞の空隙率が5〜90体積%、さらには15〜80%囲にあることが好ましい。
空隙率が5体積%未満のものは、低反射材、断熱材、低誘電率材等として用いた場合に充分な効果が得られない場合があり、空隙率が90体積%を超えるものは得ることが困難であり、得られたとしても粒子の強度が充分となる場合があり、用途、用法に制限がある。
ここで、空隙率は、以下のように屈折率を測定し、以下の式により計算で算出した。
空隙率(%)=(1.46−屈折率測定値)/(0.46×100)(%)
但し、1.46はシリカの屈折率であり、0.46はシリカと空気の屈折率差である。
The silica particles preferably have a void ratio of 5 to 90% by volume, more preferably 15 to 80% surrounded by a cavity inside the outer shell.
When the porosity is less than 5% by volume, a sufficient effect may not be obtained when used as a low reflective material, a heat insulating material, a low dielectric constant material or the like, and a product with a porosity exceeding 90% by volume is obtained. Even if it is obtained, the strength of the particles may be sufficient, and there are restrictions on the use and usage.
Here, the void ratio was calculated by measuring the refractive index as follows and calculating by the following formula.
Void ratio (%) = (1.46-measured refractive index) / (0.46 × 100) (%)
However, 1.46 is the refractive index of silica, and 0.46 is the refractive index difference between silica and air.

屈折率の測定
(1) シリカ粒子分散液をエバポレーターに採り、分散媒を蒸発させる。
(2) これを120℃で乾燥し、粉末とする。
(3) 屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4) 上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率をシリカ粒子の屈折率とする。
前記内部に空洞を有するシリカ粒子は前記した本発明に係るシリカ粒子の製造方法によって得られた内部に空洞を有するシリカ粒子であることが好ましい。
Measurement of Refractive Index (1) The silica particle dispersion is taken in an evaporator and the dispersion medium is evaporated.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refracting liquid having a known refractive index is dropped on a glass plate of a few drops, and the powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is the refractive index of the silica particles.
The silica particles having cavities in the interior are preferably silica particles having cavities in the interior obtained by the method for producing silica particles according to the present invention.

つぎに、本発明に係る被膜形成用塗布液について説明する。
被膜形成用塗布液
本発明に係る被膜形成用塗布液は、内部に空洞を有するシリカ粒子とマトリックス形成成分と分散媒とを含んでなり、前記内部に空洞を有するシリカ粒子の濃度(C)が固形分として0.005〜48重量%の範囲にあり、前記マトリックス形成成分の濃度(C)が固形分として0.2〜59.7重量%の範囲にあり、全固形分濃度が1〜60重量%の範囲にあることを特徴としている。
Next, the coating liquid for forming a film according to the present invention will be described.
Coating Film-Forming Coating Liquid The coating film-forming coating liquid according to the present invention comprises silica particles having cavities therein, a matrix-forming component, and a dispersion medium, and the concentration of silica particles having cavities therein (C S ). Is in the range of 0.005 to 48% by weight as the solid content, the concentration (C M ) of the matrix-forming component is in the range of 0.2 to 59.7% by weight as the solid content, and the total solid content concentration is 1 It is characterized by being in the range of ˜60% by weight.

内部に空洞を有するシリカ粒子
内部に空洞を有するシリカ粒子としては前記した内部に空洞を有するシリカ粒子が好適に用いられる。
本発明では、平板状構造を有する内部に空洞を有するシリカ粒子を用いることが好ましい。
このとき、平板状構造を有する内部に空洞を有するシリカ粒子の平均厚み(T)は0.02〜0.15μm、さらには0.03〜0.12μmの範囲にあることが好ましい。
平均厚み(T)が前記範囲にあれば、基材との密着性に優れるとともに、耐擦傷性、透明性に優れた被膜を形成することができる。
As the silica particles having cavities inside the silica particles having cavities inside, the silica particles having cavities inside are preferably used.
In the present invention, it is preferable to use silica particles having cavities inside having a flat structure.
At this time, it is preferable that the average thickness (T S ) of the silica particles having a flat structure and having cavities therein is in the range of 0.02 to 0.15 μm, more preferably 0.03 to 0.12 μm.
When the average thickness (T S ) is within the above range, it is possible to form a film having excellent adhesion to the substrate and excellent scratch resistance and transparency.

平均粒子径(P)は0.04〜1μm、さらには0.05〜0.3μmの範囲にあることが好ましい。
平均粒子径(P)が前記範囲にあれば、基材との密着性に優れるとともに、耐擦傷性、透明性、反射防止性能に優れた被膜を形成することができる。
また、平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20、好ましくは3〜10の範囲にあることが好ましい。
The average particle diameter (P S ) is preferably in the range of 0.04 to 1 μm, more preferably 0.05 to 0.3 μm.
When the average particle diameter (P S ) is within the above range, a film having excellent adhesion to the substrate and excellent scratch resistance, transparency, and antireflection performance can be formed.
The ratio (P S ) / (T S ) of the average particle diameter (P S ) and the average thickness (T S ) is in the range of 2 to 20, preferably 3 to 10.

また、被膜形成用塗布液に用いる場合、必要に応じて表面処理して用いることができる。表面処理方法としては、従来公知のシランカップリング剤、界面活性剤あるいは樹脂で被覆して用いることもできる。   Moreover, when using for the coating liquid for film formation, it can be used after surface-treating as needed. As the surface treatment method, a conventionally known silane coupling agent, surfactant or resin can be used.

マトリックス形成成分
マトリックス形成成分としては、従来公知のマトリックス形成成分を用いることができ、例えば、有機珪素化合物の加水分解物であるゾル・ゲル系のマトリックス形成成分、有機樹脂系のマトリックス形成成分を用いることができる。
有機樹脂系マトリックス形成成分として、具体的には塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂、紫外線硬化性樹脂等のいずれも採用することができる。たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アクリル樹脂などの熱硬化性樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。
これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。
Matrix-forming component As the matrix-forming component, a conventionally known matrix-forming component can be used. For example, a sol-gel matrix-forming component that is a hydrolyzate of an organosilicon compound, or an organic resin-based matrix-forming component is used. be able to.
As the organic resin matrix forming component, specifically, any of thermosetting resins, thermoplastic resins, ultraviolet curable resins and the like known as coating resins can be employed. For example, conventionally used polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, silicone rubber and other thermoplastic resins, urethane resins, melamine resins And thermosetting resins such as silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, and acrylic resin. Further, it may be a copolymer or modified body of two or more of these resins.
These resins may be emulsion resins, water-soluble resins, and hydrophilic resins.

分散媒
本発明に用いる分散媒としては前記シリカ粒子、前記マトリックス形成成分を溶解あるいは分散できれば特に制限はなく、従来公知の溶媒を用いることができる。
例えば、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プルピレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン、イソホロン、アセチルアセトン、アセト酢酸エステルなどのケトン類、トルエン、キシレン等が挙げられる。これらは単独で使用してもよく、また2種以上混合して使用することもできる。
Dispersion medium The dispersion medium used in the present invention is not particularly limited as long as it can dissolve or disperse the silica particles and the matrix-forming component, and a conventionally known solvent can be used.
For example, alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; acetic acid methyl ester, ethyl acetate Esters such as esters and butyl acetate; diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, pull Ethers such as pyrene glycol monoethyl ether; Emissions, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, diisobutyl ketone, isophorone, acetylacetone, ketones such as acetoacetate, toluene, xylene and the like. These may be used alone or in combination of two or more.

被膜形成用塗布液中の前記内部に空洞を有するシリカ粒子の濃度(C)は固形分として0.005〜48重量%、さらには0.01〜42重量%の範囲にあることが好ましい。
被膜形成用塗布液中の前記内部に空洞を有するシリカ粒子の濃度(C)が前記範囲にあれば、塗布液の安定性が良く、塗工性に優れ、密着性、透明性、耐擦傷性に優れた被膜を形成することができる。
The concentration (C S ) of the silica particles having cavities in the coating liquid for forming a film is preferably in the range of 0.005 to 48% by weight, more preferably 0.01 to 42% by weight as the solid content.
If the concentration (C S ) of the silica particles having cavities in the coating liquid for forming a film is within the above range, the coating liquid has good stability, excellent coating properties, adhesion, transparency, and scratch resistance. A film having excellent properties can be formed.

また、マトリックス形成成分の濃度(C)は固形分として0.2〜59.7重量%、さらには0.3〜59.4重量%の範囲にあることが好ましい。
マトリックス形成成分の濃度(C)が前記範囲にあると、同様に塗布液の安定性が良く、塗工性に優れ、密着性、透明性、耐擦傷性に優れた被膜を形成することができる。
被膜形成用塗布液の全固形分濃度は1〜60重量%、さらには2〜50重量%の範囲にあることが好ましい。
The concentration (C M ) of the matrix-forming component is preferably in the range of 0.2 to 59.7% by weight, more preferably 0.3 to 59.4% by weight as the solid content.
When the concentration (C M ) of the matrix-forming component is in the above range, the coating solution is also excellent in stability, excellent in coatability, and can form a film excellent in adhesion, transparency, and scratch resistance. it can.
The total solid concentration of the coating liquid for forming a film is preferably in the range of 1 to 60% by weight, more preferably 2 to 50% by weight.

つぎに、本発明に係る被膜付基材について説明する。
被膜付基材
本発明に係る被膜付基材は、基材と、基材上に形成された被膜とからなり、該被膜が内部に空洞を有するシリカ粒子とマトリックス成分とを含んでなり、被膜中の内部に空洞を有するシリカ粒子の含有量(W)が固形分として0.5〜80重量%の範囲にあり、マトリックス成分の含有量(W)が20〜99.5重量%の範囲にあることを特徴としている。
Next, the coated substrate according to the present invention will be described.
The coated substrate according to the present invention comprises a substrate and a coating formed on the substrate, the coating comprising silica particles having a cavity inside and a matrix component, The content (W S ) of silica particles having cavities therein is in the range of 0.5 to 80% by weight as the solid content, and the content (W M ) of the matrix component is 20 to 99.5% by weight. It is characterized by being in range.

内部に空洞を有するシリカ粒子
内部に空洞を有するシリカ粒子としては前記した内部に空洞を有するシリカ粒子が好適に用いられる。
本発明では、前記した平板状構造を有する内部に空洞を有するシリカ粒子を用いることが好ましい。
As the silica particles having cavities inside the silica particles having cavities inside, the silica particles having cavities inside are preferably used.
In the present invention, it is preferable to use silica particles having cavities inside having the above-described flat structure.

マトリックス成分
マトリックス成分としては、従来公知のマトリックス成分を用いることができ、前記した被膜形成用塗布液に用いたマトリックス形成成分の硬化物が用いられる。
被膜中の内部に空洞を有するシリカ粒子の含有量(W)は固形分として0.5〜80重量%、さらには1〜70重量%の範囲にあることが好ましい。
被膜中の内部に空洞を有するシリカ粒子の含有量(W)が前記範囲にあれば、密着性、透明性、耐擦傷性、反射防止性能に優れた被膜を形成することができる。
As the matrix component , a conventionally known matrix component can be used, and a cured product of the matrix forming component used in the coating liquid for film formation described above is used.
The content (W S ) of silica particles having cavities inside the coating is preferably in the range of 0.5 to 80% by weight, more preferably 1 to 70% by weight, as the solid content.
When the content (W S ) of silica particles having cavities in the coating is in the above range, a coating excellent in adhesion, transparency, scratch resistance, and antireflection performance can be formed.

また、被膜中のマトリックス成分の含有量(W)は固形分として20〜99.5重量%、さらには30〜99重量%の範囲にあることが好ましい。。
被膜中のマトリックス成分の含有量(W)が前記範囲にあれば、密着性、透明性、耐擦傷性に優れた被膜を形成することができる。
The content of matrix components in the coating (W M) is 20 to 99.5% by weight solids, more preferably in the range of 30 to 99 wt%. .
When the content (W M ) of the matrix component in the coating is in the above range, a coating excellent in adhesion, transparency and scratch resistance can be formed.

以下に示す実施例により、本発明を更に具体的に説明する。
[実施例1]
NaY型ゼオライト(1)の合成
シード溶液(1)の調製
アルミン酸ナトリウム水溶液(Al:22重量%、NaO:17重量%)57.0gに濃度37.2重量%の水酸化ナトリウム水溶液187.4gを撹拌しながら添加して、その後SiO濃度17.5重量%の3号珪酸ナトリウム水溶液755.6gをゆっくり添加した。このとき、温度は20℃に維持した。
ついで、1時間撹拌した後、20℃で16時間静置し、この溶液を20℃で600時間熟成を行いシード溶液(1)を得た。
The following examples further illustrate the present invention.
[Example 1]
Synthesis of NaY-type zeolite (1)
Preparation of Seed Solution (1) A sodium hydroxide aqueous solution (Al 2 O 3 : 22 wt%, Na 2 O: 17 wt%) was stirred in 187.0 g of a 37.2 wt% sodium hydroxide aqueous solution in 57.0 g. Then, 755.6 g of No. 3 sodium silicate aqueous solution having a SiO 2 concentration of 17.5 wt% was slowly added. At this time, the temperature was maintained at 20 ° C.
Next, after stirring for 1 hour, the mixture was allowed to stand at 20 ° C. for 16 hours, and this solution was aged at 20 ° C. for 600 hours to obtain a seed solution (1).

マトリックスヒドロゲルスラリーの調製
平均粒子径5nm、SiO濃度20重量%のシリカゾル(日揮触媒化成(株):カタロイドSI−550)40.4gを純水2864.0gで希釈したものを80℃に加熱し、SiO濃度1.8重量%の3号水硝子3635.9gとAl濃度0.4重量%のアルミン酸ナトリウム水溶液6692.5gを4時間かけて同時に添加した。さらに、濃度3重量%の水酸化ナトリウム水溶液111.0gを1時間かけて添加した。
Preparation of matrix hydrogel slurry 40.4 g of silica sol (JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-550) having an average particle size of 5 nm and SiO 2 concentration of 20% by weight diluted with 2864.0 g of pure water was heated to 80 ° C. Then, 3635.9 g of No. 3 water glass having a SiO 2 concentration of 1.8 wt% and 6692.5 g of an aqueous sodium aluminate solution having an Al 2 O 3 concentration of 0.4 wt% were simultaneously added over 4 hours. Further, 111.0 g of a 3% by weight aqueous sodium hydroxide solution was added over 1 hour.

ついで、マトリックスヒドロゲルスラリー9000gを撹拌しながら、シード溶液(1)1000gを加え30分間室温で混合した。その後95℃で48時間水熱処理を行い、洗浄してNaY型ゼオライト(1)を合成した。
NaY型ゼオライト(1)について、形状特性測定、組成分析(SiO/Al)を行い、結果を表に示す。
形状特性については、走査型電子顕微鏡写真(SEM)を撮影し、50個の粒子について形状観察を行い、厚み(Tz)、粒子径(Pz)を測定し、その平均値とした。
Next, while stirring 9000 g of the matrix hydrogel slurry, 1000 g of the seed solution (1) was added and mixed at room temperature for 30 minutes. Thereafter, hydrothermal treatment was performed at 95 ° C. for 48 hours, followed by washing to synthesize NaY-type zeolite (1).
The NaY-type zeolite (1) was subjected to shape characteristic measurement and composition analysis (SiO 2 / Al 2 O 3 ), and the results are shown in the table.
Regarding the shape characteristics, a scanning electron micrograph (SEM) was taken, the shape of 50 particles was observed, the thickness (Tz) and the particle diameter (Pz) were measured, and the average value was obtained.

シリカ粒子(1)の調製
NaY型ゼオライト(1)100gに純水3900gを加えた後、濃度10重量のNaOH水溶液を加えてpH12.0に調整して98℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液190gとAl2O3としての濃度1.0重量%のアルミン酸ナトリウム水溶液60gを1時間で添加して、ゼオライト粒子の表面にシリカ・アルミナの複合酸化物層を形成したゼオライト・複合酸化物粒子分散液を調製した。このとき、(W)/(W)は1.6、分散液のpHは11.8であった。[工程(a)]
Preparation of silica particles (1) After adding 3900 g of pure water to 100 g of NaY-type zeolite (1), adjust the pH to 12.0 by adding NaOH aqueous solution with a concentration of 10 wt. Meanwhile, 190 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO2 and 60g of a sodium aluminate solution having a concentration of 1.0% by weight as Al2O3 were added in one hour, and a composite of silica and alumina was added to the surface of the zeolite particles. A zeolite / composite oxide particle dispersion in which an oxide layer was formed was prepared. At this time, (W M ) / (W Z ) was 1.6, and the pH of the dispersion was 11.8. [Step (a)]

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過し、固形分濃度13重量%のゼオライト・複合酸化物粒子(1)分散液を得た。
ゼオライト・複合酸化物粒子(1)分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜法で溶解・脱離したアルミニウムを分離し、洗浄して固形分濃度20重量%のシリカ粒子(1)分散液を調製した。[工程(b)]
Next, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, filtration through a capsule filter having an opening of 1 μm, a zeolite / composite oxide particle (1) dispersion having a solid content concentration of 13% by weight is obtained. It was.
To 500 g of the zeolite / composite oxide particle (1) dispersion, 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, 10 mL of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water are added, and the dissolved / desorbed aluminum is separated by an ultrafiltration membrane method and washed to prepare a silica particle (1 b ) dispersion with a solid content concentration of 20% by weight. did. [Step (b)]

つぎに、シリカ粒子(1)分散液にアンモニア水を添加して分散液のpHを12.0に調整し、ついで200℃にて3時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ粒子(1)分散液を得た。[工程(c)] Next, aqueous ammonia is added to the silica particle (1 b ) dispersion to adjust the pH of the dispersion to 12.0, and after aging at 200 ° C. for 3 hours, the mixture is cooled to room temperature, and cation exchange resin is obtained. (Mitsubishi Chemical Corporation: Diaion SK1B) ion exchange for 3 hours using 400 g, then ion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A) 200 g ion exchange for 3 hours, Further, 200 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and a silica particle (1 c ) dispersion with a solid content concentration of 20% by weight was washed. Obtained. [Step (c)]

ついで、シリカ粒子(1)分散液を乾燥してシリカ粒子(1)を得た。
得られたシリカ粒子(1)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
形状特性については、走査型電子顕微鏡写真(SEM)を撮影し、50個の粒子について形状観察を行い、厚み(Ts)、粒子径(Ps)を測定し、その平均値とした。
Then, the silica particle (1 c ) dispersion was dried to obtain silica particles (1).
With respect to the obtained silica particles (1), shape characteristic measurement, composition analysis, specific surface area and refractive index (porosity) were measured, and the results are shown in the table.
Regarding the shape characteristics, a scanning electron micrograph (SEM) was taken, the shape of 50 particles was observed, the thickness (Ts) and the particle diameter (Ps) were measured, and the average value was obtained.

[実施例2]
NaY型ゼオライト(2)の合成
実施例1において、マトリックスヒドロゲルスラリー4500gを用い、シード溶液2000gを用いた以外は同様にしてNaY型ゼオライト(2)を合成した。
NaY型ゼオライト(2)について、形状特性測定、組成分析を行い、結果を表に示す。
[Example 2]
Synthesis of NaY-type zeolite (2) In Example 1, NaY-type zeolite (2) was synthesized in the same manner except that 4500 g of matrix hydrogel slurry was used and 2000 g of seed solution was used.
The NaY-type zeolite (2) was subjected to shape characteristic measurement and composition analysis, and the results are shown in the table.

シリカ粒子(2)の調製
実施例1において、NaY型ゼオライト(2)100gを用いた以外は同様にしてシリカ粒子(2)を得た。
得られたシリカ粒子(2)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
Preparation of silica particles (2) Silica particles (2) were obtained in the same manner as in Example 1, except that 100 g of NaY zeolite (2) was used.
The obtained silica particles (2) were measured for shape characteristic measurement, composition analysis, specific surface area and refractive index (porosity), and the results are shown in the table.

透明被膜形成用塗料(2)の調製
固形分濃度5重量%のシリカ粒子(2)のエタノール分散液を調製し、この分散液60gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)2.5gおよびイソプロパノールとn−ブタノールの1/1(重量比)混合溶媒37.5gとを充分に混合して固形分濃度5.5重量%の透明被膜形成用塗料(2)を調製した。
Preparation of paint for forming transparent film (2) An ethanol dispersion of silica particles (2) having a solid content concentration of 5% by weight was prepared. 60 g of this dispersion and acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) 2 0.5 g and 37.5 g of a 1/1 (weight ratio) mixed solvent of isopropanol and n-butanol were sufficiently mixed to prepare a coating material (2) for forming a transparent film having a solid content concentration of 5.5% by weight.

ハードコート膜形成用塗布液(2)の調製
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI−30;平均粒子径12nm、SiO濃度40.5重量%、分散媒:イソプロパノ−ル、粒子屈折率1.46)100gにγ-メタアクリロオキシプロピルトリメトキシシラン1.88g(信越シリコ−ン(株)製:KBM−503、SiO2成分81.2%)を混合し超純水を3.1g添加し50℃で20時間攪拌して表面処理した12nmのシリカゾル分散液を得た(固形分濃度40.5重量%)。
その後、ロータリーエバポレーターでプロピレングリコールモノプロピルエーテル(PGME)に溶剤置換した(固形分40.5%)。
Preparation of coating liquid for hard coat film formation (2) Silica sol dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5 wt%, dispersion medium: isopropanol, particle refractive index 1.46) 100 g .gamma.-methacryloxypropyltrimethoxysilane trimethoxysilane 1.88 g (Shin-Etsu silicone - emissions Co.: KBM-503, SiO 2 component 81.2%) were mixed ultrapure water 3.1 g of the mixture was added and stirred at 50 ° C. for 20 hours to obtain a surface-treated 12 nm silica sol dispersion (solid content concentration: 40.5 wt%).
Thereafter, the solvent was replaced with propylene glycol monopropyl ether (PGME) by a rotary evaporator (solid content: 40.5%).

ついで、固形分濃度40.5重量%のシリカゾルのプロピレングリコールモノプロピルエーテル分散液51.85gと、ジヘキサエリスリトールトリアセテート(共栄社化学(株)製:DPE−6A)18.90gと、1.6−ヘキサンジオールジアクリレート(共栄社化学(株)製;ライトアクリレートSR−238F)2.10gと、シリコーン系レベリング剤(楠本化成(株)製;ディスパロン1610)0.01gと、光重合開始剤(チバジャパン(株))製:イルガキュア184、PGMEで固形分濃度10%に溶解)12.60gと、PGME14.54gと、を充分に混合して固形分濃度42.0重量%のハードコート膜形成用塗布液(2)を調製した。   Subsequently, 51.85 g of a propylene glycol monopropyl ether dispersion of silica sol having a solid content concentration of 40.5% by weight, 18.90 g of dihexaerythritol triacetate (manufactured by Kyoeisha Chemical Co., Ltd .: DPE-6A), 1.6- 2.10 g of hexanediol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; Light Acrylate SR-238F), 0.01 g of a silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon 1610), and a photopolymerization initiator (Ciba Japan) Co., Ltd .: Irgacure 184, dissolved in PGME to a solid content concentration of 10%) 12.60 g and PGME 14.54 g were mixed well to form a hard coat film-forming coating with a solid content concentration of 42.0% by weight. Liquid (2) was prepared.

反射防止用透明被膜付基材(2)の製造
ハードコート膜形成用塗布液(2)を、TACフィルム(パナック(株)製:FT−PB80UL−M、厚さ:80μm、屈折率:1.51)にバーコーター法(#14)で塗布し、80℃で120秒間乾燥した後、300mJ/cmの紫外線を照射して硬化させてハードコート膜を形成した。ハードコート膜の膜厚は5μmであった。
ついで、反射防止用透明被膜形成用塗布液(2)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N雰囲気下で600mJ/cmの紫外線を照射して硬化させて反射防止用透明被膜付基材(2)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。
Manufacture of substrate (2) with transparent coating for antireflection A coating liquid (2) for forming a hard coat film was prepared by using a TAC film (manufactured by Panac Corporation: FT-PB80UL-M, thickness: 80 μm, refractive index: 1. 51) was coated by the bar coater method (# 14), dried at 80 ° C. for 120 seconds, and then cured by irradiating with 300 mJ / cm 2 of ultraviolet rays to form a hard coat film. The film thickness of the hard coat film was 5 μm.
Next, a coating solution (2) for forming an antireflection transparent coating was applied by the bar coater method (bar # 4), dried at 80 ° C. for 120 seconds, and then irradiated with 600 mJ / cm 2 of ultraviolet light in an N 2 atmosphere. And cured to produce a substrate (2) with a transparent coating for antireflection. At this time, the film thickness of the antireflection transparent coating was 100 nm.

この反射防止用透明被膜付基材(2)の全光線透過率、ヘイズ、波長550nmの光線の反射率、被膜の屈折率、密着性および鉛筆硬度、耐擦傷性を測定した。
全光線透過率およびヘイズは、ヘーズメーター(スガ試験機(株)製)により、反射率は分光光度計(日本分光社、Ubest-55)により夫々測定した。また、被膜の屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定したところ、ヘイズは0.1%、全光線透過率は93%、反射率は0.6%、被膜の屈折率は1.38であった。なお、未塗布のPETフィルムは全光線透過率が90. 7%、ヘイズが2. 0%、波長550nmの光線の反射率が6. 0%であった。
The substrate (2) with a transparent coating for antireflection was measured for total light transmittance, haze, reflectance of light having a wavelength of 550 nm, coating refractive index, adhesion, pencil hardness, and scratch resistance.
The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55). Further, the refractive index of the film was measured with an ellipsometer (EMS-1, manufactured by ULVAC). The haze was 0.1%, the total light transmittance was 93%, the reflectance was 0.6%, and the refractive index of the film. The rate was 1.38. The uncoated PET film had a total light transmittance of 90.7%, a haze of 2.0%, and a reflectance of light having a wavelength of 550 nm of 6.0%.

鉛筆硬度
鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、透明被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。
4Hの鉛筆を使用した場合、傷は発生しなかったが、5Hの鉛筆を使用した場合、傷が発生した。
Pencil hardness Pencil hardness was measured with a pencil hardness tester in accordance with JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the transparent coating surface, and a predetermined load was applied and pulled at a constant speed, and the presence or absence of scratches was observed.
When a 4H pencil was used, no scratch was generated, but when a 5H pencil was used, a scratch was generated.

密着性
透明被膜付基材の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。結果は◎であった。
残存升目の数90個以上:◎
残存升目の数85〜89個:○
残存升目の数84個以下:△
The surface of the substrate with adhesive transparent coating is made of 11 parallel scratches with a knife at intervals of 1 mm in length and width to make 100 squares, cellophane tape is adhered to this, and then the cellophane tape is peeled off when the cellophane tape is peeled off. The adhesion was evaluated by classifying the number of cells remaining without peeling into the following three stages. The result was ◎.
More than 90 remaining squares: ◎
Number of remaining squares: 85 to 89: ○
Number of remaining squares: 84 or less: △

耐擦傷性の測定
#0000スチールウールを用い、荷重500g/cmで50回摺動し、膜の表面を目視観察し、以下の基準で評価した。結果は◎であった。
筋条の傷が認められない:◎
筋条の傷が僅かに認められる:○
筋条の傷が多数認められる:△
面が全体的に削られている:×
Measurement of scratch resistance Using # 0000 steel wool, sliding 50 times with a load of 500 g / cm 2 , visually observing the surface of the film, and evaluating according to the following criteria. The result was ◎.
No streak injury is observed: ◎
Slight streak scars: ○
Many streak wounds are found:
The surface has been scraped as a whole: ×

本発明の内部に空洞を有する平板状シリカ粒子は、後述する比較例5との対比により、透明性に優れ、反射率が低く、鉛筆硬度、密着性および耐擦傷性に優れている。   The flat silica particles having cavities in the present invention are excellent in transparency, low in reflectance, excellent in pencil hardness, adhesion and scratch resistance, as compared with Comparative Example 5 described later.

[実施例3]
NaY型ゼオライト(3)の合成
実施例1において、シード溶液(1)250gを用いた以外は同様にしてNaY型ゼオライト(3)を合成した。
NaY型ゼオライト(3)について、形状特性測定、組成分析を行い、結果を表に示す。
[Example 3]
Synthesis of NaY-type zeolite (3) In Example 1, NaY-type zeolite (3) was synthesized in the same manner except that 250 g of the seed solution (1) was used.
The NaY zeolite (3) was subjected to shape characteristic measurement and composition analysis, and the results are shown in the table.

シリカ粒子(3)の調製
実施例1において、NaY型ゼオライト(3)100gを用いた以外は同様にしてシリカ粒子(3)を得た。
得られたシリカ粒子(3)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
Preparation of silica particles (3) In Example 1, silica particles (3) were obtained in the same manner except that 100 g of NaY-type zeolite (3) was used.
The obtained silica particles (3) were measured for shape characteristic measurement, composition analysis, specific surface area and refractive index (porosity), and the results are shown in the table.

[実施例4]
シード溶液(4)の調製
水硝子溶液(SiO濃度24重量%)849gに水200gを混合し、これに濃度48重量%の水酸化ナトリウム388gを混合してA液を調製した。
別途、アルミン酸ナトリウム水溶液(Al濃度22重量%)107gに水284gを混合してB液を調製した。
ついで、A液とB液とを混合し、1時間撹拌した後、30℃で10時間静置してシード溶液(4)を調製した。
このときの組成は酸化物モル比で15.9NaO・Al・14.7SiO・330HOである。
[Example 4]
Preparation of seed solution (4) 200 g of water was mixed with 849 g of a water glass solution (SiO 2 concentration: 24 wt%), and 388 g of sodium hydroxide with a concentration of 48 wt% was mixed with this to prepare a solution A.
Separately, 284 g of water was mixed with 107 g of an aqueous sodium aluminate solution (Al 2 O 3 concentration: 22% by weight) to prepare solution B.
Next, liquid A and liquid B were mixed and stirred for 1 hour, and then allowed to stand at 30 ° C. for 10 hours to prepare a seed solution (4).
The composition of this time is 15.9Na 2 O · Al 2 O 3 · 14.7SiO 2 · 330H 2 O in oxide molar ratio.

NaY型ゼオライト(4)の合成
水325gにシリカ微粉末825gを分散させ、これに水硝子溶液(SiO濃度24重量%)975gを混合し、ついで、上記で調製したシード溶液(4)130.5gを添加し、ついで、アルミン酸ナトリウム水溶液(Al濃度22重量%)456gを混合した後、3時間撹拌してNaY合成用スラリー(4)を調製した。
このときの組成は酸化物モル比で2.8NaO・Al・8.5SiO・108HOである。
ついで、NaY合成用スラリー(4)を95℃で48時間水熱処理を行い、洗浄してNaY型ゼオライト(4)を合成した。
NaY型ゼオライト(4)について、形状特性測定、組成分析を行い、結果を表に示す。
825 g of silica fine powder is dispersed in 325 g of synthetic water of NaY-type zeolite (4), 975 g of a water glass solution (SiO 2 concentration: 24% by weight) is mixed with this, and then the seed solution (4) 130. 5 g was added, and then 456 g of an aqueous sodium aluminate solution (Al 2 O 3 concentration 22 wt%) was mixed, followed by stirring for 3 hours to prepare NaY synthesis slurry (4).
The composition of this time is 2.8Na 2 O · Al 2 O 3 · 8.5SiO 2 · 108H 2 O in oxide molar ratio.
Subsequently, the NaY synthesis slurry (4) was hydrothermally treated at 95 ° C. for 48 hours and washed to synthesize NaY-type zeolite (4).
The NaY-type zeolite (4) was subjected to shape characteristic measurement and composition analysis, and the results are shown in the table.

シリカ粒子(4)の調製
実施例1において、NaY型ゼオライト(4)100gを用いた以外は同様にしてシリカ粒子(4)を得た。
得られたシリカ粒子(4)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
Preparation of silica particles (4) In Example 1, silica particles (4) were obtained in the same manner except that 100 g of NaY-type zeolite (4) was used.
With respect to the obtained silica particles (4), shape characteristic measurement, composition analysis, specific surface area and refractive index (porosity) were measured, and the results are shown in the table.

[実施例5]
NaY型ゼオライト(5)の合成
実施例4において、実施例4と同様にして調製したシード(4)522gを添加した以外は同様にして、NaY型ゼオライト(5)を合成した。
NaY型ゼオライト(5)について、形状特性測定、組成分析を行い、結果を表に示す。
[Example 5]
Synthesis of NaY-type zeolite (5) In Example 4, NaY-type zeolite (5) was synthesized in the same manner except that 522 g of seed (4) prepared in the same manner as in Example 4 was added.
The NaY-type zeolite (5) was subjected to shape characteristic measurement and composition analysis, and the results are shown in the table.

シリカ粒子(5)の調製
実施例1において、NaY型ゼオライト(5)100gを用いた以外は同様にしてシリカ粒子(5)を得た。
得られたシリカ粒子(5)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
Preparation of silica particles (5) In Example 1, silica particles (5) were obtained in the same manner except that 100 g of NaY-type zeolite (5) was used.
For the obtained silica particles (5), shape characteristic measurement, composition analysis, specific surface area and refractive index (porosity) were measured, and the results are shown in the table.

[実施例6]
NaY型ゼオライト(6)の合成
実施例4において、シード溶液(4)32.5gを添加した以外は同様にしてNaY型ゼオライト(6)を得た。
NaY型ゼオライト(6)について、形状特性測定、組成分析を行い、結果を表に示す。
[Example 6]
Synthesis of NaY-type zeolite (6) NaY-type zeolite (6) was obtained in the same manner as in Example 4 except that 32.5 g of the seed solution (4) was added.
The NaY-type zeolite (6) was subjected to shape characteristic measurement and composition analysis, and the results are shown in the table.

シリカ粒子(6)の調製
実施例1において、NaY型ゼオライト(6)100gを用いた以外は同様にしてシリカ粒子(6)を得た。
得られたシリカ粒子(6)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
Preparation of silica particles (6) In Example 1, silica particles (6) were obtained in the same manner except that 100 g of NaY-type zeolite (6) was used.
With respect to the obtained silica particles (6), shape characteristic measurement, composition analysis, specific surface area, and refractive index (porosity) were measured, and the results are shown in the table.

[実施例7]
シリカ粒子(7)の調製
実施例4と同様にして調製したNaY型ゼオライト(4)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液380gとAl2O3としての濃度1.0重量%のアルミン酸ナトリウム水溶液120gを2時間で添加して、ゼオライト粒子の表面にシリカ・アルミナの複合酸化物層を形成したゼオライト・複合酸化物粒子分散液を調製した。このとき、(W)/(W)は3.2、分散液のpHは12.0であった。[工程(a)]
[Example 7]
Preparation of silica particles (7) 3900 g of pure water was added to 100 g of NaY-type zeolite (4) prepared in the same manner as in Example 4 and heated to 98 ° C. While maintaining this temperature, a concentration of 3.0 as SiO 2 was obtained. A zeolite / composite in which 380 g of a weight percent sodium silicate aqueous solution and 120 g of a sodium aluminate solution having a concentration of 1.0 wt% as Al2O3 were added in 2 hours to form a composite oxide layer of silica / alumina on the surface of the zeolite particles. An oxide particle dispersion was prepared. At this time, (W M ) / (W Z ) was 3.2, and the pH of the dispersion was 12.0. [Step (a)]

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過し、固形分濃度13重量%のゼオライト・複合酸化物粒子(7)分散液を得た。
ゼオライト・複合酸化物粒子(7)分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜法で溶解・脱離したアルミニウムを分離し、洗浄して固形分濃度20重量%のシリカ粒子(7)分散液を調製した。[工程(b)]
Next, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, filtration through a capsule filter with an opening of 1 μm, a zeolite / composite oxide particle (7) dispersion having a solid content concentration of 13% by weight is obtained. It was.
To 125 g of the zeolite / composite oxide particle (7) dispersion, 1,125 g of pure water was added, and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, 10 mL of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water are added, and the dissolved / desorbed aluminum is separated by an ultrafiltration membrane method and washed to prepare a silica particle (7 b ) dispersion with a solid content concentration of 20% by weight. did. [Step (b)]

つぎに、シリカ粒子(7) 分散液にアンモニア水を添加して分散液のpHを12.0に調整し、ついで200℃にて3時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ粒子(7)分散液を得た。[工程(c)] Next, aqueous ammonia is added to the dispersion of silica particles (7 b ) to adjust the pH of the dispersion to 12.0, then aging at 200 ° C. for 3 hours, cooling to room temperature, and cation exchange resin. (Mitsubishi Chemical Corporation: Diaion SK1B) ion exchange for 3 hours using 400 g, then ion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A) 200 g ion exchange for 3 hours, Furthermore, 200g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C for 3 hours for cleaning, and a silica particle (7 c ) dispersion with a solid content concentration of 20 wt% was obtained. Obtained. [Step (c)]

ついで、シリカ粒子(7)分散液を乾燥してシリカ粒子(7)を得た。
得られたシリカ粒子(7)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
The silica particle (7 c ) dispersion was then dried to obtain silica particles (7).
With respect to the obtained silica particles (7), shape characteristic measurement, composition analysis, specific surface area, and refractive index (porosity) were measured, and the results are shown in the table.

[実施例8]
シリカ粒子(8)の調製
実施例4と同様にして調製したNaY型ゼオライト(4)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液190gとAl2O3としての濃度1.0重量%のアルミン酸ナトリウム水溶液120gを1時間で添加して、ゼオライト粒子の表面にシリカ・アルミナの複合酸化物層を形成したゼオライト・複合酸化物粒子分散液を調製した。
このとき、(W)/(W)は1.8、分散液のpHは11.9であった。[工程(a)]
[Example 8]
Preparation of silica particles (8) 3900 g of pure water was added to 100 g of NaY-type zeolite (4) prepared in the same manner as in Example 4 and heated to 98 ° C. While maintaining this temperature, a concentration of 3.0 as SiO 2 was obtained. A zeolite / composite in which 190 g of a weight percent sodium silicate aqueous solution and 120 g of a sodium aluminate solution having a concentration of 1.0 wt% as Al2O3 were added in one hour to form a silica-alumina composite oxide layer on the surface of the zeolite particles. An oxide particle dispersion was prepared.
At this time, (W M ) / (W Z ) was 1.8, and the pH of the dispersion was 11.9. [Step (a)]

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過し、固形分濃度13重量%のゼオライト・複合酸化物粒子(8)分散液を得た。
オライト・複合酸化物粒子(8)分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜法で溶解・脱離したアルミニウムを分離し、洗浄して固形分濃度20重量%のシリカ粒子(8)分散液を調製した。[工程(b)]
Next, after washing with an ultrafiltration membrane to obtain a solid content concentration of 13% by weight, it is filtered through a capsule filter having an aperture of 1 μm to obtain a zeolite / composite oxide particle (8) dispersion having a solid content concentration of 13% by weight. It was.
To 1,500 g of pure water was added to 500 g of the oleite / complex oxide particle (8) dispersion, and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination. Next, 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water are added, and the dissolved and desorbed aluminum is separated by an ultrafiltration membrane method and washed to prepare a silica particle (8 b ) dispersion with a solid content concentration of 20% by weight. did. [Step (b)]

つぎに、シリカ粒子(8) 分散液にアンモニア水を添加して分散液のpHを12.0に調整し、ついで200℃にて3時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ粒子(8)分散液を得た。[工程(c)] Next, aqueous ammonia is added to the dispersion of silica particles (8 b ) to adjust the pH of the dispersion to 12.0, and after aging at 200 ° C. for 3 hours, the solution is cooled to room temperature, and cation exchange resin is obtained. (Mitsubishi Chemical Corporation: Diaion SK1B) ion exchange for 3 hours using 400 g, then ion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A) 200 g ion exchange for 3 hours, Further, 200 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for cleaning, and a silica particle (8 c ) dispersion with a solid content concentration of 20% by weight was washed. Obtained. [Step (c)]

ついで、シリカ粒子(8)分散液を乾燥してシリカ粒子(8)を得た。
得られたシリカ粒子(8)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
Then, the silica particle (8 c ) dispersion was dried to obtain silica particles (8).
With respect to the obtained silica particles (8), shape characteristic measurement, composition analysis, specific surface area, and refractive index (porosity) were measured, and the results are shown in the table.

[実施例9]
シリカ粒子(9)の調製
実施例4の工程(c)において、シリカ粒子(4)分散液に、アンモニア水を添加することなく、また、200℃にて3時間熟成することなく、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ粒子(9)分散液を得た。
ついで、シリカ粒子(9)分散液を乾燥してシリカ粒子(9)を得た。
得られたシリカ粒子(9)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
[Example 9]
Preparation of silica particles (9) In step (c) of Example 4, a cation was added to the silica particle (4 b ) dispersion without adding aqueous ammonia and without aging at 200 ° C. for 3 hours. Ion exchange using 400 g of exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) for 3 hours, followed by ion exchange for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A) Further, 200 g of a cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and a silica particle (9) dispersion having a solid content concentration of 20% by weight. Got.
Next, the silica particle (9) dispersion was dried to obtain silica particles (9).
With respect to the obtained silica particles (9), shape characteristic measurement, composition analysis, specific surface area and refractive index (porosity) were measured, and the results are shown in the table.

[比較例1]
シリカ粒子(R1)の調製
実施例4と同様にして調製したNaY型ゼオライト(4)分散液に、濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。
次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解脱離したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ粒子(R1)水分散液を得た。
得られたシリカ粒子(R1)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
[Comparative Example 1]
Preparation of silica particles (R1) Concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to a NaY-type zeolite (4) dispersion prepared in the same manner as in Example 4 to adjust the pH to 1.0, followed by dealumination. It was.
Next, the aluminum salt dissolved and desorbed by the ultrafiltration membrane was added while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water to obtain a silica particle (R1) aqueous dispersion having a solid content concentration of 20% by weight.
The obtained silica particles (R1) were measured for shape characteristic measurement, composition analysis, specific surface area and refractive index (porosity), and the results are shown in the table.

[比較例2]
シリカ粒子(R2)の調製
実施例4と同様にして調製したNaY型ゼオライト(4)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液10.0gとAl2O3としての濃度1.0重量%のアルミン酸ナトリウム水溶液3.2gを1分間で添加して、ゼオライト・SiO2・Al2O3複合酸化物層を形成した微粒子分散液を得た。このとき、(W)/(W)は0.09、分散液のpHは11.9であった。[工程(a)]
[Comparative Example 2]
Preparation of silica particles (R2) 3900 g of pure water was added to 100 g of NaY-type zeolite (4) prepared in the same manner as in Example 4 and heated to 98 ° C. While maintaining this temperature, a concentration of 3.0 as SiO 2 was obtained. A fine particle dispersion in which 10.0 g of a weight% sodium silicate aqueous solution and 3.2 g of a sodium aluminate aqueous solution having a concentration of 1.0 wt% as Al 2 O 3 are added over 1 minute to form a zeolite / SiO 2 / Al 2 O 3 composite oxide layer. Got. At this time, (W M ) / (W Z ) was 0.09, and the pH of the dispersion was 11.9. [Step (a)]

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過しゼオライト・複合酸化物微粒子分散液を得た。
このゼオライト・複合酸化物微粒子分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。
次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解脱離したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ粒子(R2)水分散液を得た。
Next, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a zeolite / composite oxide fine particle dispersion.
1,500 g of pure water was added to 500 g of this zeolite / composite oxide fine particle dispersion, and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination.
Next, while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the aluminum salt dissolved and desorbed by the ultrafiltration membrane was separated and washed to obtain an aqueous dispersion of silica particles (R2) having a solid content concentration of 20% by weight.

つぎに、シリカ粒子(R2)水分散液にアンモニア水を添加して分散液のpHを12.0に調整し、ついで200℃にて3時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ粒子(R2)水分散液を得た。
得られたシリカ微粒子(R2)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
Next, ammonia water is added to the silica particle (R2) aqueous dispersion to adjust the pH of the dispersion to 12.0, and then aged at 200 ° C. for 3 hours, then cooled to room temperature, and cation exchange resin. (Mitsubishi Chemical Corporation: Diaion SK1B) ion exchange for 3 hours using 400 g, then ion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A) 200 g ion exchange for 3 hours, Furthermore, 200g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C for 3 hours for cleaning, and a silica particle (R2) aqueous dispersion with a solid content concentration of 20 wt% was obtained. Obtained.
The obtained silica fine particles (R2) were measured for shape characteristic measurement, composition analysis, specific surface area and refractive index (porosity), and the results are shown in the table.

[比較例3]
シリカ粒子(R3)の調製
実施例4と同様にして調製したNaY型ゼオライト(4)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液5933gとAl2O3としての濃度1.0重量%のアルミン酸ナトリウム水溶液1870gを1時間で添加して、ゼオライト・SiO2・Al2O3複合酸化物層を形成した微粒子分散液を得た。。このとき、(W)/(W)は50、分散液のpHは12.1であった。[工程(a)]
[Comparative Example 3]
Preparation of silica particles (R3) 3900 g of pure water was added to 100 g of NaY-type zeolite (4) prepared in the same manner as in Example 4 and heated to 98 ° C. While maintaining this temperature, a concentration of 3.0 as SiO 2 was obtained. 5933 g of a weight% sodium silicate aqueous solution and 1870 g of a sodium aluminate aqueous solution having a concentration of 1.0 wt% as Al 2 O 3 were added over 1 hour to obtain a fine particle dispersion in which a zeolite / SiO 2 / Al 2 O 3 composite oxide layer was formed. . At this time, (W M ) / (W Z ) was 50, and the pH of the dispersion was 12.1. [Step (a)]

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過しゼオライト・複合酸化物微粒子分散液を得た。
このゼオライト・複合酸化物微粒子分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。
次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解脱離したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ粒子(R3)水分散液を得た。
Next, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a zeolite / composite oxide fine particle dispersion.
1,500 g of pure water was added to 500 g of this zeolite / composite oxide fine particle dispersion, and concentrated hydrochloric acid (concentration 35.5 wt%) was added dropwise to adjust the pH to 1.0, followed by dealumination.
Next, the aluminum salt dissolved and desorbed by the ultrafiltration membrane was separated and washed while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water to obtain an aqueous dispersion of silica particles (R3) having a solid content concentration of 20% by weight.

つぎに、シリカ粒子(R3)水分散液にアンモニア水を添加して分散液のpHを12.0に調整し、ついで200℃にて3時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ粒子(R3)水分散液を得た。
得られたシリカ粒子(R3)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
Next, ammonia water is added to the silica particle (R3) aqueous dispersion to adjust the pH of the dispersion to 12.0, and after aging at 200 ° C. for 3 hours, the mixture is cooled to room temperature and cation exchange resin is obtained. (Mitsubishi Chemical Corporation: Diaion SK1B) ion exchange for 3 hours using 400 g, then ion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A) 200 g ion exchange for 3 hours, Furthermore, 200 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and a silica particle (R3) aqueous dispersion having a solid content concentration of 20 wt% was obtained. Obtained.
The obtained silica particles (R3) were measured for shape characteristic measurement, composition analysis, specific surface area and refractive index (porosity), and the results are shown in the table.

[比較例4]
シリカ粒子(R4)の調製
実施例4と同様にして調製したNaY型ゼオライト(4)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液190gとAl2O3としての濃度1.0重量%のアルミン酸ナトリウム水溶液60gを1時間で添加して、ゼオライト・SiO2・Al2O3複合酸化物層を形成した微粒子分散液を得た。このときの分散液のpHは11.8であった。[工程(a)]
[Comparative Example 4]
Preparation of silica particles (R4) 3900 g of pure water was added to 100 g of NaY-type zeolite (4) prepared in the same manner as in Example 4 and heated to 98 ° C. While maintaining this temperature, a concentration of 3.0 as SiO 2 was maintained. 190 g of a weight% sodium silicate aqueous solution and 60 g of a sodium aluminate aqueous solution having a concentration of 1.0 wt% as Al2O3 were added over 1 hour to obtain a fine particle dispersion in which a zeolite / SiO2 / Al2O3 composite oxide layer was formed. The pH of the dispersion at this time was 11.8. [Step (a)]

ついで、限外濾過膜で洗浄して固形分濃度13重量%にした後、目開き1μmのカプセルフィルターで濾過しゼオライト・複合酸化物微粒子分散液を得た。
ついで、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ粒子(R4)水分散液を得た。
つぎに、シリカ粒子(R4)水分散液にアンモニア水を添加して分散液のpHを12.0に調整し、ついで200℃にて3時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ粒子(R4)水分散液を得た。
得られたシリカ微粒子(R4)について、形状特性測定、組成分析、比表面積および屈折率(空隙率)を測定し、結果を表に示す。
Next, after washing with an ultrafiltration membrane to a solid content concentration of 13% by weight, the mixture was filtered through a capsule filter having an opening of 1 μm to obtain a zeolite / composite oxide fine particle dispersion.
Subsequently, it was washed with an ultrafiltration membrane while adding 5 L of pure water to obtain an aqueous dispersion of silica particles (R4) having a solid concentration of 20% by weight.
Next, ammonia water is added to the silica particle (R4) aqueous dispersion to adjust the pH of the dispersion to 12.0, and then aged at 200 ° C. for 3 hours, then cooled to room temperature, and cation exchange resin. (Mitsubishi Chemical Corporation: Diaion SK1B) ion exchange for 3 hours using 400 g, then ion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A) 200 g ion exchange for 3 hours, Furthermore, 200 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and a silica particle (R4) aqueous dispersion having a solid content concentration of 20 wt% was obtained. Obtained.
The obtained silica fine particles (R4) were measured for shape characteristic measurement, composition analysis, specific surface area and refractive index (porosity), and the results are shown in the table.

[比較例5]
透明被膜形成用塗料(R5)の調製
実施例2において、シリカ粒子(2)の代わりにシリカゾル(日揮触媒化成製:SI−80P、平均粒子径80nm、屈折率1.46、SiO2濃度40重量%)をメタノール置換し、固形分濃度5重量%に希釈して用いた以外は同様にして固形分濃度5.5重量%の透明被膜形成用塗料(R5)を調製した。
[Comparative Example 5]
Preparation of paint for forming transparent film (R5) In Example 2, instead of silica particles (2), silica sol (manufactured by JGC Catalysts & Chemicals: SI-80P, average particle diameter 80 nm, refractive index 1.46, SiO2 concentration 40% by weight) ) Was replaced with methanol, and a transparent film-forming coating material (R5) having a solid content concentration of 5.5% by weight was prepared in the same manner except that it was diluted to a solid content concentration of 5% by weight.

反射防止用透明被膜付基材(R5)の製造
実施例2と同様にしてTACフィルム上にハードコート膜を形成し、ついで、透明被膜形成用塗料(R5)をバーコーター法(バー#4)で塗布し、硬化させて反射防止用透明被膜付基材(R5)を作製した。このときの反射防止用透明被膜の膜厚は100nmであった。この反射防止用透明被膜付基材(R5)のヘイズは0.2%、全光線透過率は92%、反射率は0.8%、被膜の屈折率は1.48であった。
また、鉛筆硬度を測定したところ、4Hの鉛筆を使用した場合、傷が発生した。
密着性の評価、耐擦傷性の評価いずれもは△であった。
Production of base material with antireflection transparent coating (R5) In the same manner as in Example 2, a hard coat film was formed on the TAC film, and then the coating for transparent coating formation (R5) was applied by the bar coater method (bar # 4). The base material with an antireflection transparent coating (R5) was prepared by applying and curing. At this time, the film thickness of the antireflection transparent coating was 100 nm. This base material with an antireflection transparent coating (R5) had a haze of 0.2%, a total light transmittance of 92%, a reflectance of 0.8%, and a refractive index of the coating of 1.48.
Moreover, when the pencil hardness was measured, when a 4H pencil was used, scratches were generated.
Both the evaluation of adhesion and the evaluation of scratch resistance were Δ.

Figure 2014094865
Figure 2014094865

Figure 2014094865
Figure 2014094865

Claims (21)

下記の工程(a)および(b)を含んでなることを特徴とする内部に空洞を有するシリカ粒子の製造方法。
(a)ゼオライト粒子分散液に珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶のシリカ以外の無機化合物水溶液とを、ゼオライト粒子の固形分としての量(W)と、ゼオライト粒子表面に形成される複合酸化物(水和物)層の固形分としての量(W)との重量比(W)/(W)が0.1〜5.0の範囲となるように同時に添加してゼオライト粒子の表面にシリカと無機酸化物との複合酸化物(水和物)層を形成してゼオライト・複合酸化物粒子分散液を調製する工程
(b)該ゼオライト・複合酸化物粒子分散液に、酸を加えてゼオライト・複合酸化物粒子を構成する珪素以外の元素の少なくとも一部を除去する工程
The manufacturing method of the silica particle which has a cavity inside characterized by including the following process (a) and (b).
(A) An amount of silicate aqueous solution and / or acidic silicic acid solution and an aqueous solution of an inorganic compound other than alkali-soluble silica as a solid content of zeolite particles (W Z ), and the zeolite particle surface The weight ratio (W M ) / (W Z ) with the amount (W M ) as the solid content of the composite oxide (hydrate) layer formed in the range of 0.1 to 5.0 A step of simultaneously adding and forming a composite oxide (hydrate) layer of silica and inorganic oxide on the surface of the zeolite particles to prepare a zeolite / composite oxide particle dispersion (b) the zeolite / composite oxide; A step of adding an acid to the particle dispersion to remove at least a part of elements other than silicon constituting the zeolite / composite oxide particles
前記工程(a)における珪酸塩の水溶液および/または酸性珪酸液のシリカをSiOで表し、シリカ以外の無機酸化物をMOで表したときのモル比MO/SiOが0.01〜0.18の範囲にあることを特徴とする請求項1に記載の内部に空洞を有するシリカ粒子の製造方法。 The molar ratio MO X / SiO 2 when the aqueous solution of silicate and / or the silica of the acidic silicate solution in the step (a) is represented by SiO 2 and the inorganic oxide other than silica is represented by MO X is 0.01 to The method for producing silica particles having cavities inside according to claim 1, which is in a range of 0.18. 前記工程(b)についで下記の工程(c)を行うことを特徴とする請求項1または2に記載の内部に空洞を有するシリカ粒子の製造方法。
(c)50〜350℃で熟成する工程
The method for producing silica particles having a cavity inside according to claim 1 or 2, wherein the following step (c) is performed after the step (b).
(C) Step of aging at 50 to 350 ° C
前記工程(a)におけるpHが8〜14の範囲にあることを特徴とする請求項1〜3のいずれかに記載の内部に空洞を有するシリカ粒子の製造方法。   The method for producing silica particles having a cavity inside according to any one of claims 1 to 3, wherein the pH in the step (a) is in the range of 8 to 14. 前記ゼオライトが結晶性アルミノシリケートであり、該ゼオライトのSiO/Alモル比が2〜20の範囲にあることを特徴とする請求項1〜4のいずれかに記載の内部に空洞を有するシリカ粒子の製造方法。 5. The cavity according to claim 1, wherein the zeolite is crystalline aluminosilicate, and the zeolite has a SiO 2 / Al 2 O 3 molar ratio in the range of 2 to 20. 5. A method for producing silica particles. 前記ゼオライトがサイコロ状構造を有し、該ゼオライトの平均粒子径(P)が0.03〜50μmの範囲にあることを特徴とする請求項1〜5のいずれかに記載の内部に空洞を有するシリカ粒子の製造方法。 Said zeolite has a dice-like structure, a cavity inside according to claim 1, average particle diameter of the zeolite (P Z) is equal to or is in the range of 0.03~50μm A method for producing silica particles. 前記ゼオライトが平板状構造を有し、該ゼオライトの平均厚み(T)が0.01〜10μmの範囲にあり、該ゼオライトの平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20の範囲にあることを特徴とする請求項1〜5のいずれかに記載の内部に空洞を有するシリカ粒子の製造方法。
The zeolite has a plate-like structure, the average thickness (T Z ) of the zeolite is in the range of 0.01 to 10 μm, and the ratio between the average particle diameter (P Z ) and the average thickness (T Z ) of the zeolite (P Z) / (T Z ) the method for producing a silica particle having a cavity therein according to any one of claims 1 to 5, characterized in that the range of 2-20.
外殻の内部が空洞であるシリカ粒子であって、該シリカ粒子がサイコロ状構造を有し、該シリカ粒子の平均粒子径(P)が0.04〜55μmの範囲にあることを特徴とする内部に空洞を有するシリカ粒子。 A silica particles inside of the outer shell is hollow, and characterized in that the silica particles have a dice-like structure, an average particle diameter of the silica particles (P S) is in the range of 0.04~55μm Silica particles having cavities inside. 外殻の内部が空洞であるシリカ粒子であって、該シリカ粒子が平板状構造を有し、該シリカ粒子の平均厚み(T)が0.02〜11μmの範囲にあり、該シリカ粒子の平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20の範囲にあることを特徴とする内部に空洞を有するシリカ粒子。 A silica particle having a hollow inside of the outer shell, the silica particle having a flat plate structure, and an average thickness (T S ) of the silica particle is in a range of 0.02 to 11 μm. A silica particle having a cavity inside, wherein a ratio (P S ) / (T S ) of an average particle diameter (P S ) and an average thickness (T S ) is in a range of 2 to 20. 前記外殻が非孔質であることを特徴とする請求項8または9に記載の内部に空洞を有するシリカ粒子。   The silica particles having cavities inside according to claim 8 or 9, wherein the outer shell is non-porous. 標準屈折率液法で測定される屈折率が1.10〜1.44の範囲にあることを特徴とする請求項10に記載の内部に空洞を有するシリカ粒子。   11. The silica particle having a cavity inside according to claim 10, wherein a refractive index measured by a standard refractive index liquid method is in a range of 1.10 to 1.44. 前記外殻が多孔質であることを特徴とする請求項8または9に記載の内部に空洞を有するシリカ粒子。   The silica particle having a cavity inside according to claim 8 or 9, wherein the outer shell is porous. 標準屈折率液法で測定される屈折率が1.40〜1.46の範囲にあることを特徴とする請求項12に記載の内部に空洞を有するシリカ粒子。   The silica particle having a cavity inside according to claim 12, wherein the refractive index measured by a standard refractive index liquid method is in a range of 1.40 to 1.46. 前記外殻の内部の空洞の空隙率が5〜90体積%の範囲にあることを特徴とする請求項8〜13のいずれかに記載の内部に空洞を有するシリカ粒子。   14. The silica particle having a cavity inside according to claim 8, wherein a void ratio of the cavity inside the outer shell is in the range of 5 to 90% by volume. 請求項1〜7のいずれかに記載の内部に空洞を有するシリカ粒子の製造方法によって得られたことを特徴とする請求項8〜14のいずれかに記載の内部に空洞を有するシリカ粒子。
The silica particle having a cavity inside according to any one of claims 8 to 14, obtained by the method for producing a silica particle having a cavity inside according to any one of claims 1 to 7.
内部に空洞を有するシリカ粒子とマトリックス形成成分と分散媒とを含んでなり、前記内部に空洞を有するシリカ粒子の濃度(C)が固形分として0.005〜48重量%の範囲にあり、前記マトリックス形成成分の濃度(C)が固形分として0.2〜59.7重量%の範囲にあり、全固形分濃度が1〜60重量%の範囲にあることを特徴とする被膜形成用塗布液。 It comprises silica particles having cavities inside, a matrix-forming component, and a dispersion medium, and the concentration (C S ) of the silica particles having cavities inside is in the range of 0.005 to 48% by weight as a solid content, The matrix-forming component concentration (C M ) is in the range of 0.2 to 59.7% by weight as the solid content, and the total solid content concentration is in the range of 1 to 60% by weight. Coating liquid. 前記内部に空洞を有するシリカ粒子が請求項15に記載の内部に空洞を有するシリカ粒子であることを特徴とする請求項16に記載の被膜形成用塗布液。   The coating liquid for forming a film according to claim 16, wherein the silica particles having a cavity in the interior are silica particles having a cavity in the interior according to claim 15. 前記内部に空洞を有するシリカ粒子が平板状構造を有し、該シリカ粒子の平均厚み(T)が0.02〜0.15μmの範囲にあり、平均粒子径(P)が0.04〜1μmの範囲にあり、前記平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20の範囲にあることを特徴とする請求項17に記載の被膜形成用塗布液。 The silica particles having cavities in the interior have a plate-like structure, the average thickness (T S ) of the silica particles is in the range of 0.02 to 0.15 μm, and the average particle diameter (P S ) is 0.04. The ratio (P S ) / (T S ) between the average particle diameter (P S ) and the average thickness (T S ) is in the range of 2 to 20 in the range of ˜1 μm. The coating liquid for film formation as described in 2. 基材と、基材上に形成された被膜とからなり、該被膜が内部に空洞を有するシリカ粒子とマトリックス成分とを含んでなり、被膜中の内部に空洞を有するシリカ粒子の含有量(W)が固形分として0.5〜80重量%の範囲にあり、マトリックス成分の含有量(W)が20〜99.5重量%の範囲にあることを特徴とする被膜付基材。 A content of silica particles having a base and a coating formed on the base, the coating comprising silica particles having cavities therein and a matrix component, and having cavities in the coating (W A coated substrate, wherein S ) is in the range of 0.5 to 80% by weight as a solid content, and the content of the matrix component (W M ) is in the range of 20 to 99.5% by weight. 前記内部に空洞を有するシリカ粒子が請求項15に記載の内部に空洞を有するシリカ粒子であることを特徴とする請求項19に記載の被膜付基材。   The coated substrate according to claim 19, wherein the silica particles having a cavity in the interior are silica particles having a cavity in the interior according to claim 15. 前記内部に空洞を有するシリカ粒子が平板状構造を有し、該シリカ粒子の平均厚み(T)が0.02〜0.15μmの範囲にあり、平均粒子径(P)が0.04〜1μmの範囲にあり、前記平均粒子径(P)と平均厚み(T)との比(P)/(T)が2〜20の範囲にあることを特徴とする請求項20に記載の被膜付基材。 The silica particles having cavities in the interior have a plate-like structure, the average thickness (T S ) of the silica particles is in the range of 0.02 to 0.15 μm, and the average particle diameter (P S ) is 0.04. The ratio (P S ) / (T S ) between the average particle diameter (P S ) and the average thickness (T S ) is in the range of 2 to 20 in the range of ˜1 μm. A substrate with a coating according to 1.
JP2012247969A 2012-11-12 2012-11-12 Method for producing silica particles having cavities inside, silica particles having cavities inside, coating liquid for film formation containing the silica particles, and coated substrate Active JP6029424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247969A JP6029424B2 (en) 2012-11-12 2012-11-12 Method for producing silica particles having cavities inside, silica particles having cavities inside, coating liquid for film formation containing the silica particles, and coated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012247969A JP6029424B2 (en) 2012-11-12 2012-11-12 Method for producing silica particles having cavities inside, silica particles having cavities inside, coating liquid for film formation containing the silica particles, and coated substrate

Publications (3)

Publication Number Publication Date
JP2014094865A true JP2014094865A (en) 2014-05-22
JP2014094865A5 JP2014094865A5 (en) 2015-12-24
JP6029424B2 JP6029424B2 (en) 2016-11-24

Family

ID=50938267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247969A Active JP6029424B2 (en) 2012-11-12 2012-11-12 Method for producing silica particles having cavities inside, silica particles having cavities inside, coating liquid for film formation containing the silica particles, and coated substrate

Country Status (1)

Country Link
JP (1) JP6029424B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017140614A (en) * 2016-02-12 2017-08-17 現代自動車株式会社Hyundai Motor Company Catalyst and method for producing catalyst
US20180022641A1 (en) * 2016-07-22 2018-01-25 Alliance For Sustainable Energy, Llc Transparent and Insulating Materials Having Evacuated Capsules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200922A (en) * 2007-02-19 2008-09-04 Grandex Co Ltd Coating film and coating
JP2009269788A (en) * 2008-05-07 2009-11-19 Tokyo Institute Of Technology Method of synthesizing hollow zeolite, hollow zeolite and drug support comprising hollow zeolite
JP2010131593A (en) * 2008-10-31 2010-06-17 Hitachi Chem Co Ltd Precursor of inorganic hollow particles, inorganic hollow particles, method for producing the same, and optical member and optical member produced using inorganic hollow particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200922A (en) * 2007-02-19 2008-09-04 Grandex Co Ltd Coating film and coating
JP2009269788A (en) * 2008-05-07 2009-11-19 Tokyo Institute Of Technology Method of synthesizing hollow zeolite, hollow zeolite and drug support comprising hollow zeolite
JP2010131593A (en) * 2008-10-31 2010-06-17 Hitachi Chem Co Ltd Precursor of inorganic hollow particles, inorganic hollow particles, method for producing the same, and optical member and optical member produced using inorganic hollow particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017140614A (en) * 2016-02-12 2017-08-17 現代自動車株式会社Hyundai Motor Company Catalyst and method for producing catalyst
US20180022641A1 (en) * 2016-07-22 2018-01-25 Alliance For Sustainable Energy, Llc Transparent and Insulating Materials Having Evacuated Capsules
US10865136B2 (en) * 2016-07-22 2020-12-15 Alliance For Sustainable Energy, Llc Transparent and insulating materials having evacuated capsules

Also Published As

Publication number Publication date
JP6029424B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
TWI510434B (en) A chain-like silica-based hollow fine particles and a method for producing the same, a coating liquid for forming a transparent film containing the fine particles, and a substrate coated with a transparent film
JP3761189B2 (en) Composite oxide sol, method for producing the same, and substrate
CN101184695B (en) Process for producing dispersion of hollow fine SiO2 particles, coating composition, and substrate with antireflection coating film
KR101186732B1 (en) Silica-based fine particles, method for production thereof, coating for forming coating film and base material having coating film formed thereon
KR101594025B1 (en) coating composition containing high-refractive-index metal oxide fine particles, and curable coating film obtained by applying the coating composition onto base
JP5854584B2 (en) Method for preparing water-dispersed sol containing fine metal oxide fine particles, water-dispersed sol obtained from the method, organic solvent-dispersed sol containing the fine particles, and coating composition
JP7360294B2 (en) Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
KR101102115B1 (en) Process for producing fine silica-based particle, coating composition for coating film formation, and base with coating film
JP6895760B2 (en) Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film
WO2015125929A1 (en) Article with anti-glare film, manufacturing method therefor, and image display device
JP6237322B2 (en) Method for producing article with antiglare film
JP6029424B2 (en) Method for producing silica particles having cavities inside, silica particles having cavities inside, coating liquid for film formation containing the silica particles, and coated substrate
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP4540979B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP6206418B2 (en) Coating liquid and article for alkali barrier layer formation
JP5680372B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP2011136850A (en) Method for preparing organic solvent-dispersed sol including high refractive index metal oxide fine particle, such organic solvent-dispersed sol, and coating composition obtained using the organic solvent-dispersed sol
JP2009209089A (en) Antibacterial deodorant
JP2022089560A (en) Modified hollow particle and method for producing the same
KR102087011B1 (en) Method for producing Hollow silica particles with TiO2 shell
JP4225999B2 (en) Composite oxide sol and coated substrate
KR101538271B1 (en) Method for preparing plate-shaped material with hollowness and plate-shaped material with hollowness
JP6278902B2 (en) Water and / or organic solvent dispersion containing linked crystalline inorganic oxide fine particle group, method for producing the same, and coating solution for optical substrate containing linked crystalline inorganic oxide fine particle group
JP2013043791A (en) Modified hollow silica microparticle
WO2023090135A1 (en) Liquid dispersion of particles each having shell containing functional group and silicon and void in said shell, and method for producing said liquid dispersion

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161018

R150 Certificate of patent or registration of utility model

Ref document number: 6029424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250