JP2014093372A - Peeling method of aluminum oxide thin film and device - Google Patents

Peeling method of aluminum oxide thin film and device Download PDF

Info

Publication number
JP2014093372A
JP2014093372A JP2012242135A JP2012242135A JP2014093372A JP 2014093372 A JP2014093372 A JP 2014093372A JP 2012242135 A JP2012242135 A JP 2012242135A JP 2012242135 A JP2012242135 A JP 2012242135A JP 2014093372 A JP2014093372 A JP 2014093372A
Authority
JP
Japan
Prior art keywords
thin film
aluminum oxide
aluminum
film
peeling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012242135A
Other languages
Japanese (ja)
Other versions
JP5568758B2 (en
Inventor
Masayuki Ogoshi
昌幸 大越
Shigemi Inoue
成美 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNICAL RES & DEV INST MINISTRY DEFENCE
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
TECHNICAL RES & DEV INST MINISTRY DEFENCE
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNICAL RES & DEV INST MINISTRY DEFENCE, Technical Research and Development Institute of Japan Defence Agency filed Critical TECHNICAL RES & DEV INST MINISTRY DEFENCE
Priority to JP2012242135A priority Critical patent/JP5568758B2/en
Publication of JP2014093372A publication Critical patent/JP2014093372A/en
Application granted granted Critical
Publication of JP5568758B2 publication Critical patent/JP5568758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish the method for reducing the thickness of an optical electronic device represented by a gallium nitride semiconductor.SOLUTION: A surface of an aluminum thin film 2 formed on a substrate 1 is reformed into a crystalline aluminum oxide layer 4 by irradiation of light having a wavelength of 200 nm or less. A device 5 is formed on the crystalline aluminum oxide layer 4 and only an unreformed aluminum thin film is chemically etched, so that the device is formed on an extremely-thin aluminum oxide film single body, thereby achieving a significant reduction in thickness of the device.

Description

本発明は、薄膜の剥離法に係り、とくに酸化アルミニウム薄膜の剥離法及びその剥離法を用いたデバイスに関する。   The present invention relates to a thin film peeling method, and more particularly, to an aluminum oxide thin film peeling method and a device using the peeling method.

光エレクトロニクス分野において、窒化ガリウム系半導体は、青色発光ダイオードとして必要不可欠な材料である。現在、窒化ガリウム系半導体デバイスは、結晶性酸化アルミニウム(サファイア)基板上に形成されている。したがって、デバイスの厚さは、サファイア基板の厚さよりも薄くできず、デバイスの薄膜化を制限していた。   In the field of optoelectronics, a gallium nitride based semiconductor is an indispensable material as a blue light emitting diode. Currently, gallium nitride based semiconductor devices are formed on crystalline aluminum oxide (sapphire) substrates. Therefore, the thickness of the device cannot be made thinner than the thickness of the sapphire substrate, which limits the thinning of the device.

窒化ガリウム系半導体を代表とする光エレクトロニクスデバイスを薄膜化するための手法の確立を課題とする。   The objective is to establish a technique for thinning optoelectronic devices, typically gallium nitride semiconductors.

そこで、本発明は、上記の点に鑑み、極薄い酸化アルミニウム膜を剥離形成する剥離法及びそれを用いたデバイスを提供することを目的とする。   In view of the above, the present invention has an object to provide a peeling method for peeling and forming an extremely thin aluminum oxide film and a device using the peeling method.

本発明の第1の態様は酸化アルミニウム薄膜の剥離法であり、波長200nm以下の光照射により、基体上に形成されたアルミニウム薄膜表面を酸化アルミニウムに改質し、未改質のアルミニウム薄膜のみを化学エッチングすることにより、極薄い酸化アルミニウム膜単体を剥離形成することを特徴とする。   The first aspect of the present invention is an aluminum oxide thin film peeling method, in which the surface of an aluminum thin film formed on a substrate is modified to aluminum oxide by light irradiation with a wavelength of 200 nm or less, and only an unmodified aluminum thin film is removed. It is characterized in that an extremely thin aluminum oxide film is peeled off by chemical etching.

本発明の第2の態様も酸化アルミニウム薄膜の剥離法であり、波長200nm以下の光照射により、基体上に形成されたアルミニウム薄膜表面を酸化アルミニウムに改質し、前記酸化アルミニウムの改質層上に任意のデバイスを形成した後、未改質のアルミニウム薄膜のみを化学エッチングすることにより、前記デバイスを有する極薄い酸化アルミニウム膜を剥離形成することを特徴とする。   The second aspect of the present invention is also a peeling method of an aluminum oxide thin film, wherein the surface of the aluminum thin film formed on the substrate is modified to aluminum oxide by light irradiation with a wavelength of 200 nm or less, and the aluminum oxide thin film is formed on the modified layer of the aluminum oxide. After an arbitrary device is formed, only an unmodified aluminum thin film is chemically etched to peel off and form an extremely thin aluminum oxide film having the device.

前記第1又は第2の態様において、前記アルミニウム薄膜表面を結晶性酸化アルミニウムに改質するとよい。   In the first or second aspect, the surface of the aluminum thin film may be modified to crystalline aluminum oxide.

本発明の第3の態様はデバイスであり、前記第1又は第2の態様に係る剥離法を用いることを特徴する。   A third aspect of the present invention is a device, characterized by using the peeling method according to the first or second aspect.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明によれば、窒化ガリウム系半導体を代表とする光エレクトロニクスデバイスを薄膜化する手法を確立でき、高性能なデバイス形成技術として利用可能であるなど、小型・軽量・多機能化されたマイクロ/ナノスケールのデバイス形成のための必要不可欠な技術となる。   According to the present invention, a technique for thinning an optoelectronic device typified by a gallium nitride semiconductor can be established, and it can be used as a high-performance device forming technology. This is an indispensable technology for forming nanoscale devices.

本発明の実施の形態を示す構成図である。It is a block diagram which shows embodiment of this invention.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

図1で本発明に係る酸化アルミニウム薄膜の剥離法の実施の形態を示す。図1(a)では、任意の基体1上にアルミニウム(Al)薄膜2を形成し、その表面に波長200nm以下の光としてレーザー光3を酸素を含む雰囲気中(例えば大気中乃至減圧空気中あるいは酸素のみの雰囲気中等であり、圧力は大気圧以下とは限らない)にて照射する。図1(b)には、レーザー光照射により形成された、結晶性酸化アルミニウム(Al)の改質層4が示されている。図1(c)では、その形成された結晶性酸化アルミニウムの改質層4の上に、任意のデバイス5、例えば窒化ガリウム系半導体を形成するための薄膜等を形成している。その後、未改質のアルミニウム薄膜2のみを化学エッチングすることにより、図1(d)のように、極薄い結晶性アルミニウム(Al)膜単体上に任意のデバイス5が形成されたものが得られる。 FIG. 1 shows an embodiment of an aluminum oxide thin film peeling method according to the present invention. In FIG. 1 (a), an aluminum (Al) thin film 2 is formed on an arbitrary substrate 1, and laser light 3 is applied as light having a wavelength of 200 nm or less on the surface thereof in an atmosphere containing oxygen (for example, in the atmosphere or in a reduced pressure air or Irradiation is performed in an oxygen-only atmosphere, and the pressure is not necessarily equal to or lower than atmospheric pressure. FIG. 1B shows a modified layer 4 of crystalline aluminum oxide (Al 2 O 3 ) formed by laser light irradiation. In FIG. 1C, an arbitrary device 5, for example, a thin film for forming a gallium nitride-based semiconductor is formed on the formed crystalline aluminum oxide modified layer 4. Thereafter, only the unmodified aluminum thin film 2 is chemically etched to form an arbitrary device 5 on a very thin crystalline aluminum (Al 2 O 3 ) film as shown in FIG. Is obtained.

なお、図1(c)のデバイス形成工程を省略すれば、極薄い結晶性アルミニウム(Al)膜単体のみが得られる。 If the device formation step of FIG. 1C is omitted, only a very thin crystalline aluminum (Al 2 O 3 ) film alone can be obtained.

この剥離法を用いることで、極薄い結晶性アルミニウム(Al)膜上に例えば窒化ガリウム系半導体を形成することで、窒化ガリウム系半導体デバイスを作製することが可能である。 By using this peeling method, a gallium nitride based semiconductor device can be manufactured by forming, for example, a gallium nitride based semiconductor on an extremely thin crystalline aluminum (Al 2 O 3 ) film.

この実施の形態によれば、次の通りの効果を得ることができる。   According to this embodiment, the following effects can be obtained.

(1)極薄い結晶性酸化アルミニウム膜単体が形成できる。 (1) A very thin crystalline aluminum oxide film can be formed.

(2〉極薄い結晶性酸化アルミニウム膜単体上にデバイスが形成できる。 (2) A device can be formed on a very thin crystalline aluminum oxide film.

以下、本発明に係る酸化アルミニウム薄膜の剥離法を実施例で詳述する。   Hereinafter, the peeling method of the aluminum oxide thin film which concerns on this invention is explained in full detail in an Example.

スライドガラス基板上(大きさ8×26mm、厚さ1mm)に、Alワイヤ(純度99.999%、直径1mm)を7.3×10−3Paの真空中で抵抗加熱させることにより、Al薄膜(膜厚10〜60nm)を真空蒸着した。その試料表面に、波長157nmのフッ素(F)レーザー光を照射した。そのときの単一パルス当たりのレーザーフルエンスは1〜13mJ/cm、パルス繰り返し周波数は10Hz、照射時間は15minとした。また、レーザー光のパルス幅は20nsであった。レーザー光照射は室温、大気圧中で行った。 An Al wire (purity 99.999%, diameter 1 mm) is resistance-heated in a vacuum of 7.3 × 10 −3 Pa on a slide glass substrate (size 8 × 26 mm 2 , thickness 1 mm), thereby obtaining Al A thin film (film thickness 10-60 nm) was vacuum deposited. The sample surface was irradiated with fluorine (F 2 ) laser light having a wavelength of 157 nm. The laser fluence per single pulse at that time was 1 to 13 mJ / cm 2 , the pulse repetition frequency was 10 Hz, and the irradiation time was 15 min. The pulse width of the laser light was 20 ns. Laser light irradiation was performed at room temperature and atmospheric pressure.

レーザー光が照射された試料表面の化学結合状態を、光電子分光分析により調べた。Al薄膜の膜厚は20nmとし、単一パルス当たりのレーザーフルエンスは10mJ/cmとした。レーザー光未照射の試料からは、72.8eVと75.8eVにそれぞれピークが認められた。72.8eVのピークは、金属Alによるものである。また、75.8eVは、自然酸化膜形成によるAlのピークである。一方、Fレーザー光照射後、金属Alの存在を示すピークがなくなり、75.8eVの強いピークのみとなった。したがって、Fレーザー光照射により、Al薄膜表面はAlに改質されていることがわかった。 The chemical bonding state of the sample surface irradiated with the F 2 laser beam was examined by photoelectron spectroscopy. The thickness of the Al thin film was 20 nm, and the laser fluence per single pulse was 10 mJ / cm 2 . Peaks were observed at 72.8 eV and 75.8 eV from the sample not irradiated with laser light. The peak at 72.8 eV is due to metal Al. Moreover, 75.8 eV is a peak of Al 2 O 3 due to the formation of a natural oxide film. On the other hand, after F 2 laser light irradiation, the peak indicating the presence of metal Al disappeared and only a strong peak of 75.8 eV was obtained. Therefore, it was found that the surface of the Al thin film was modified to Al 2 O 3 by F 2 laser light irradiation.

光電子分光分析による深さプロファイルを測定した結果、レーザー光未照射試料の場合、Al薄膜の極表面には自然酸化膜が形成しているが、その化学組成はAl:O=1:1であることがわかった。一方、Fレーザー光を照射した場合、Al薄膜の表面から約10nmの深さまでAl層が形成していることが判明した。 As a result of measuring the depth profile by photoelectron spectroscopy, in the case of the sample not irradiated with laser light, a natural oxide film is formed on the extreme surface of the Al thin film, but its chemical composition is Al: O = 1: 1. I understood it. On the other hand, it was found that when irradiated with F 2 laser light, an Al 2 O 3 layer was formed from the surface of the Al thin film to a depth of about 10 nm.

レーザー光の代わりに、波長193nmのArFエキシマレーザー光を用いた場合も、光電子分光分析より、Al(75.8eV)のピークのみが確認できた。したがってAl薄膜表面では、ArFエキシマレーザー光の照射によっても、Fレーザー光の場合と同様に酸化反応が誘起されていることがわかった。しかし、光電子分光分析における深さプロファイルの測定より、ArFエキシマレーザー光を用いた場合、Al薄膜表面に形成された酸化改質層の厚さは約4nmであることがわかった。したがって、Al薄膜表面にAl改質層を効果的に形成するためには、Fレーザー光の使用が好ましいと考えられる。 Even when ArF excimer laser light having a wavelength of 193 nm was used instead of F 2 laser light, only the peak of Al 2 O 3 (75.8 eV) was confirmed by photoelectron spectroscopy. Therefore, it was found that the oxidation reaction was induced on the surface of the Al thin film even by irradiation with ArF excimer laser light as in the case of F 2 laser light. However, from the measurement of the depth profile in photoelectron spectroscopic analysis, it was found that the thickness of the oxidized modified layer formed on the surface of the Al thin film was about 4 nm when ArF excimer laser light was used. Therefore, in order to effectively form the Al 2 O 3 modified layer on the surface of the Al thin film, it is considered preferable to use F 2 laser light.

Al薄膜の膜厚が10nmと20nmの場合において、レーザー光照射時間を15〜90minまで変化させたときの、Al改質層の膜厚変化を調べた。Al薄膜の膜厚が10nmのとき、レーザー光照射時間の増加とともに、Al改質層の膜厚が増加し、90minで10nmとなることがわかった。一方、膜厚20nmのAl薄膜では、照射時間を15から90minまで変化させても、Al改質層の膜厚は10nmのままだった。また、Al薄膜の膜厚を60nmとしたところ、Al改質層の膜厚は同様に10nmとなり、それ以上増加することはなかった。 When the film thickness of the Al thin film was 10 nm and 20 nm, the change in the film thickness of the Al 2 O 3 modified layer when the laser beam irradiation time was changed from 15 to 90 minutes was examined. It was found that when the film thickness of the Al thin film was 10 nm, the film thickness of the Al 2 O 3 modified layer increased with the increase of the laser beam irradiation time and became 10 nm in 90 min. On the other hand, in the Al thin film having a film thickness of 20 nm, the film thickness of the Al 2 O 3 modified layer remained at 10 nm even when the irradiation time was changed from 15 to 90 min. Further, when the thickness of the Al thin film was set to 60 nm, the thickness of the Al 2 O 3 modified layer was similarly 10 nm and did not increase any more.

Al薄膜の膜厚を10、20及び60nmと変化させたときの、Fレーザー光照射後の表面形態を調べた。レーザーフルエンスは10mJ/cm、照射時間は90minとした。Fレーザー光照射後の走査型電子顕微鏡像を観察した結果、Al薄膜の膜厚が10nmのとき、その表面は非常に平滑であった。膜厚が20nmの場合、レーザー光照射部には直径1μmの程度の粒状物質が生成していることがわかった。そして膜厚が60nmとなると、大きさが10〜15μmの島状物質が隣接していることが観察できた。この島状物質は、正六角形に近い形を有しα−Al(αは結晶構造を示す)の形状に類似していた。 When the film thickness of the Al thin film was changed to 10, 20 and 60 nm, the surface morphology after irradiation with F 2 laser light was examined. The laser fluence was 10 mJ / cm 2 and the irradiation time was 90 min. As a result of observing a scanning electron microscope image after irradiation with F 2 laser light, the surface of the Al thin film was very smooth when the film thickness of the Al thin film was 10 nm. When the film thickness was 20 nm, it was found that a granular material having a diameter of about 1 μm was generated in the laser light irradiation part. When the film thickness was 60 nm, it was observed that island-shaped substances having a size of 10 to 15 μm were adjacent. This island-like substance had a shape close to a regular hexagon, and was similar to the shape of α-Al 2 O 3 (α represents a crystal structure).

上記試料を原子間力顕微鏡により観察してみると、それら表面形態の変化がより明瞭に現れた。Al薄膜の膜厚が10nmのとき、原子間力顕微鏡においても、その表面平坦性が確認できた。膜厚20nmでは、粒状物質が20〜40nmの高さを有することがわかった。そして、膜厚60nmの場合は、生成した島状物質の境界部分が、高さ30〜70nm程度隆起していることが判明した。   When the samples were observed with an atomic force microscope, changes in the surface morphology appeared more clearly. When the thickness of the Al thin film was 10 nm, the surface flatness could be confirmed even with an atomic force microscope. It was found that the granular material has a height of 20 to 40 nm at a film thickness of 20 nm. And in the case of a film thickness of 60 nm, it turned out that the boundary part of the produced | generated island-like substance has raised about 30-70 nm in height.

上記のような、Al薄膜表面に結晶性Al層が形成した試料に、窒化ガリウム系薄膜を形成し、その試料を0.5wt%の水酸化カリウム水溶液中に浸漬した結果、窒化ガリウム系薄膜が形成した膜厚10nmの結晶性Al薄膜を剥離させることができた。 As a result of forming a gallium nitride-based thin film on the sample having the crystalline Al 2 O 3 layer formed on the surface of the Al thin film as described above, and immersing the sample in a 0.5 wt% aqueous potassium hydroxide solution, gallium nitride was obtained. The crystalline Al 2 O 3 thin film having a thickness of 10 nm formed by the system thin film could be peeled off.

上記実施例で述べたように、本発明によれば、極薄いAl膜単体が形成できるようになり、窒化ガリウム系半導体を代表とする光エレクトロニクスデバイスの薄膜化に繋がる。この結果は、電気電子工学での材料開発ならびにデバイス形成に適用可能になるなど、その用途はあらゆる分野で有用である。 As described in the above embodiments, according to the present invention, an ultrathin Al 2 O 3 film can be formed, which leads to thinning of an optoelectronic device typified by a gallium nitride semiconductor. The results are useful in all fields, such as being applicable to material development in electrical and electronic engineering and device formation.

以上、実施の形態及び実施例を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。   Although the present invention has been described above by way of embodiments and examples, it will be understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiments within the scope of the claims. It is understood. Hereinafter, modifications will be described.

実施例では、レーザー光を照射する場合で説明したが、Oを分解できる波長200nm以下(とくに好ましくは波長157nm以下)の光照射であれば、レーザー光以外の光であってもよい。 In the embodiment, the case of irradiating with laser light has been described, but light other than laser light may be used as long as light irradiation with a wavelength of 200 nm or less (particularly preferably, wavelength of 157 nm or less) capable of decomposing O 2 is performed.

1 基体
2 アルミニウム薄膜
3 レーザー光
4 結晶性酸化アルミニウムの改質層
5 デバイス
1 Base 2 Aluminum thin film
3 Laser light 4 Crystalline aluminum oxide modified layer 5 Device

Claims (4)

波長200nm以下の光照射により、基体上に形成されたアルミニウム薄膜表面を酸化アルミニウムに改質し、未改質のアルミニウム薄膜のみを化学エッチングすることにより、極薄い酸化アルミニウム膜単体を剥離形成することを特徴とする酸化アルミニウム薄膜の剥離法。   The surface of the aluminum thin film formed on the substrate is modified to aluminum oxide by light irradiation with a wavelength of 200 nm or less, and only the unmodified aluminum thin film is chemically etched to form a very thin aluminum oxide film alone. An aluminum oxide thin film peeling method characterized by the above. 波長200nm以下の光照射により、基体上に形成されたアルミニウム薄膜表面を酸化アルミニウムに改質し、前記酸化アルミニウムの改質層上に任意のデバイスを形成した後、未改質のアルミニウム薄膜のみを化学エッチングすることにより、前記デバイスを有する極薄い酸化アルミニウム膜を剥離形成することを特徴とする酸化アルミニウム薄膜の剥離法。   The surface of the aluminum thin film formed on the substrate is modified to aluminum oxide by light irradiation with a wavelength of 200 nm or less, and an arbitrary device is formed on the modified layer of aluminum oxide, and then only the unmodified aluminum thin film is formed. A method for peeling an aluminum oxide thin film, characterized in that an ultrathin aluminum oxide film having the device is peeled off by chemical etching. 前記アルミニウム薄膜表面を結晶性酸化アルミニウムに改質する、請求項1又は2に記載の酸化アルミニウム薄膜の剥離法。   The peeling method of the aluminum oxide thin film of Claim 1 or 2 which modifies the said aluminum thin film surface to crystalline aluminum oxide. 請求項1乃至3のいずれか一項に記載の剥離法を用いることを特徴とするデバイス。   A device using the peeling method according to any one of claims 1 to 3.
JP2012242135A 2012-11-01 2012-11-01 Stripping method and device for aluminum oxide thin film Active JP5568758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242135A JP5568758B2 (en) 2012-11-01 2012-11-01 Stripping method and device for aluminum oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242135A JP5568758B2 (en) 2012-11-01 2012-11-01 Stripping method and device for aluminum oxide thin film

Publications (2)

Publication Number Publication Date
JP2014093372A true JP2014093372A (en) 2014-05-19
JP5568758B2 JP5568758B2 (en) 2014-08-13

Family

ID=50937264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242135A Active JP5568758B2 (en) 2012-11-01 2012-11-01 Stripping method and device for aluminum oxide thin film

Country Status (1)

Country Link
JP (1) JP5568758B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211260A (en) * 2008-06-09 2008-09-11 Hitachi Ltd Semiconductor laser and its production process
JP2010132525A (en) * 2008-03-25 2010-06-17 Panasonic Electric Works Co Ltd Aluminum nitride substrate with oxide layer, aluminum nitride sintered compact, processes for producing them, circuit board, and led module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132525A (en) * 2008-03-25 2010-06-17 Panasonic Electric Works Co Ltd Aluminum nitride substrate with oxide layer, aluminum nitride sintered compact, processes for producing them, circuit board, and led module
JP2008211260A (en) * 2008-06-09 2008-09-11 Hitachi Ltd Semiconductor laser and its production process

Also Published As

Publication number Publication date
JP5568758B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5574586B2 (en) Substrate structure and method for forming the same
US9640391B2 (en) Direct and pre-patterned synthesis of two-dimensional heterostructures
JP2006352075A (en) Cleaning method and manufacturing method for nitride compound semiconductor, and compound semiconductor, and board
JP2014502061A5 (en)
WO2008069057A2 (en) Etching amorphous semiconductor oxides with alkaline etchant solution
JP2020531406A5 (en)
US7902001B2 (en) Method of fabricating thin film device
JP6814633B2 (en) Thin substrate, its manufacturing method, and substrate transport method
TW200912053A (en) Method of fabricating semiconductor substrate by use of heterogeneous substrate and recycling heterogeneous substrate during fabrication thereof
JP5568758B2 (en) Stripping method and device for aluminum oxide thin film
TW201251106A (en) Method for manufacturing light-emitting element, and light-emitting element
CN107978662B (en) Preparation method of gallium nitride nanometer hole
KR101168685B1 (en) The methode of desquamation for device or pattern
JP2009129943A (en) Nitride semiconductor device and method of manufacturing the same
Lee et al. Dry Etching of GaN/InGaN Multiquantum Wells Using Inductively Coupled Cl2/CH 4/H 2/Ar Plasma
JP2006228963A (en) Method of manufacturing semiconductor wafer
JP7490960B2 (en) Production method
JP2023117041A (en) Method for manufacturing semiconductor element
JP4783900B2 (en) Method of forming film on substrate and device manufacturing method
TWI843227B (en) SEMICONDUCTOR PROCESSING METHOD AND SEMICONDUCTOR STRUCTURE FOR GaN GROWTH
JP2016515991A (en) Defect-free single crystal thin layer
KR101818592B1 (en) Method for forming nano scale ceramic pattern on substrate
JP2806136B2 (en) Manufacturing method of microstructure light emitting device
JP2005311342A5 (en)
RU2613487C1 (en) METHOD FOR PREPARATION OF InSb SUBSTRATE SURFACE FOR HETEROSTRUCTURE GROWING USING MBE

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140521

R150 Certificate of patent or registration of utility model

Ref document number: 5568758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350