JP2014090048A - Power module substrate - Google Patents

Power module substrate Download PDF

Info

Publication number
JP2014090048A
JP2014090048A JP2012238636A JP2012238636A JP2014090048A JP 2014090048 A JP2014090048 A JP 2014090048A JP 2012238636 A JP2012238636 A JP 2012238636A JP 2012238636 A JP2012238636 A JP 2012238636A JP 2014090048 A JP2014090048 A JP 2014090048A
Authority
JP
Japan
Prior art keywords
ceramic substrate
copper plate
substrate
power module
peripheral edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012238636A
Other languages
Japanese (ja)
Other versions
JP6282394B2 (en
Inventor
Takayuki Kamae
隆行 鎌江
Naoyuki Kanehara
尚之 金原
Hideki Matsunaga
秀樹 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Electronics Devices Inc
Original Assignee
Nippon Steel and Sumikin Electronics Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Electronics Devices Inc filed Critical Nippon Steel and Sumikin Electronics Devices Inc
Priority to JP2012238636A priority Critical patent/JP6282394B2/en
Publication of JP2014090048A publication Critical patent/JP2014090048A/en
Application granted granted Critical
Publication of JP6282394B2 publication Critical patent/JP6282394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power module substrate excellent in thermal conductivity between a copper plate and a ceramic substrate, and high in bond strength of a copper plate and a ceramic substrate, thereby having high junction reliability.SOLUTION: A power module substrate 10 includes a plurality of front copper plates 12, 12a having a pattern formed theron, respectively, and a flat-shaped rear copper plate 13, the front copper plates and the rear copper plate being joined on one main face and the other main face of a ceramic substrate 11, respectively, by a direct joining method, or an active metal brazing filler metal joining method. In the power module substrate, one side of at least one front copper plate 12a is joined to the ceramic substrate 11, and the other side has a chamfering bent part 14 at an outer peripheral edge of the ceramic substrate 11 extended from the outer peripheral edge of the ceramic substrate 11 to the outside in a hollow state.

Description

本発明は、セラミック基板の両主面の内の一方の主面に島状のパターンからなる表銅板、他方の主面にベタ状のパターンからなる裏銅板を直接接合法や、活性金属ろう材接合法で接合して設けるパワーモジュール用基板に関する。   The present invention relates to a method of directly joining a front copper plate made of an island-shaped pattern on one main surface of both main surfaces of a ceramic substrate and a back copper plate made of a solid pattern on the other main surface, or an active metal brazing material. The present invention relates to a power module substrate provided by bonding by a bonding method.

従来より、パワーモジュール用基板は、大電力化、高速化、高集積化の進む民生機器用や、自動車、電気自動車等の車載用等に採用されるパワートランジスタ等の半導体素子を搭載して、半導体素子からの発熱を速やかに放熱させて半導体素子の信頼性を維持させることができるために用いられている。このパワーモジュール用基板は、通常、1枚板、あるいは所定の部位に貫通孔を設けるセラミック基板と、このセラミック基板の両主面のそれぞれに様々なパターンからなる表銅板や、大きな面積からなる裏銅板を銅の融点を利用して直接加熱接合する直接接合法、あるいは、活性金属ろうを介して加熱接合する活性金属ろう材接合法で接合することで構成されている。また、最近のパワーモジュール用基板には、表銅板の中に外部の電気的接続用パッドと電気的に接続状態とするためのセラミック基板の表面から水平状態で、あるいは、折り曲げ状態で外部に突出する外部接続リード端子状の表銅板が設けられているものがある。なお、表銅板や、裏銅板とセラミック基板11を直接接合、あるいは活性金属ろう材接合で加熱接合させる場合には、表銅板や、裏銅板とセラミック基板11とが互いを密着して当接させた上で加熱することが重要となっている。   Conventionally, power module substrates are equipped with semiconductor elements such as power transistors that are used for consumer devices, which are increasing in power, speed, and integration, and in vehicles such as automobiles and electric vehicles. It is used because heat generated from the semiconductor element can be quickly dissipated to maintain the reliability of the semiconductor element. This power module substrate is usually a single plate or a ceramic substrate having through holes in a predetermined portion, a front copper plate having various patterns on each of the main surfaces of the ceramic substrate, and a back surface having a large area. It is constituted by joining a copper plate by a direct joining method in which the copper plate is directly heated using the melting point of copper or an active metal brazing material joining method in which a copper plate is heated and joined via an active metal brazing. In addition, recent power module substrates protrude outward from the surface of the ceramic substrate in the surface copper plate for electrical connection with the external electrical connection pads or in a bent state. Some external connection lead terminal-shaped surface copper plates are provided. When the front copper plate or the back copper plate and the ceramic substrate 11 are directly joined or heat joined by active metal brazing material joining, the front copper plate, the back copper plate and the ceramic substrate 11 are brought into close contact with each other. It is important to heat it.

上記のパワーモジュール用基板は、定められた銅板上に接合材で接合される半導体素子と、半導体素子が接合される銅板とは異なる銅板上に外部接続リード端子を垂直状態にして接合材で接合した銅板との間をボンディングワイヤで接続して電気的な導通回路を形成し、外部接続リード端子を介して半導体素子に高電圧且つ高電流が流せるようにしている。あるいは、パワーモジュール用基板は、定められた銅板上に接合材で接合された半導体素子と、半導体素子が接合される銅板とは異なるセラミック基板の表面から水平状態、又は折り曲げ状態で外部に突出する外部接続リード端子状の銅板との間をボンディングワイヤで接続して電気的な導通回路を形成し、外部接続リード端子状の銅板を介して半導体素子に高電圧且つ高電流が流せるようにしている。また、このパワーモジュール用基板は、高電圧且つ高電流が流れることで発生する半導体素子からの発熱を速やかに熱伝導率のよい銅板を介して裏銅板側に伝熱させると共に、通常、裏銅板に接合材等で接合されるヒートシンク板から放熱させている。   The power module substrate described above is bonded to a predetermined copper plate with a bonding material with a bonding material with the external connection lead terminals being vertical on a copper plate different from the copper plate to which the semiconductor element is bonded. The copper plate is connected with a bonding wire to form an electrical conduction circuit so that a high voltage and a high current can flow through the semiconductor element via the external connection lead terminal. Alternatively, the power module substrate protrudes to the outside in a horizontal state or a bent state from the surface of the ceramic substrate different from the copper plate to which the semiconductor element is bonded and the semiconductor element bonded to the predetermined copper plate. An electrical conduction circuit is formed by connecting the external connection lead terminal-shaped copper plate with a bonding wire so that a high voltage and a high current can flow through the semiconductor element through the external connection lead terminal-shaped copper plate. . In addition, this power module substrate quickly transfers heat from the semiconductor element generated by the flow of high voltage and high current to the back copper plate side through the copper plate with good thermal conductivity, and usually the back copper plate The heat is dissipated from the heat sink plate joined with a joining material or the like.

セラミックス回路基板という発明の名称のもとに、従来のパワーモジュール用基板には、セラミック基板と、このセラミック基板表面に所望のパターン形状に設けられた回路構成部と、セラミック基板の外側に突出して設けられたリードとを有するパワーモジュール用基板において、回路構成部とリードとが、セラミック基板表面に直接加熱接合された銅板によって一体に形成されているものが提案されている(例えば、特許文献1参照)。   Under the name of the invention of a ceramic circuit board, a conventional power module substrate includes a ceramic substrate, a circuit component provided in a desired pattern shape on the surface of the ceramic substrate, and a projection protruding outside the ceramic substrate. In a power module substrate having a provided lead, a circuit component and a lead are integrally formed of a copper plate directly heated and bonded to the surface of a ceramic substrate (for example, Patent Document 1). reference).

また、電子部品搭載用基板及びその製造方法、並びに電子部品搭載用基板製造用の金属板材及び接合防止マスクという発明の名称のもとに、従来の電子部品搭載用基板の製造方法には、配線パターン状をなす断片を備えた金属板材(銅板)を基材(セラミック基板)に接合することにより、基材上に所定の配線パターンを形成する方法であって、断片の一部に外部接続リード端子として使用されうる未接合部が設けられるように、共晶法(直接接合法)により金属板を接合するものが提案されている(例えば、特許文献2参照)。   In addition, based on the name of the invention of the electronic component mounting substrate and the manufacturing method thereof, and the metal plate material and the bonding prevention mask for manufacturing the electronic component mounting substrate, the conventional manufacturing method of the electronic component mounting substrate includes wiring. A method of forming a predetermined wiring pattern on a base material by bonding a metal plate material (copper plate) having a pattern-shaped piece to a base material (ceramic substrate), and a part of the external connection lead There has been proposed one in which a metal plate is joined by a eutectic method (direct joining method) so as to provide an unjoined portion that can be used as a terminal (see, for example, Patent Document 2).

特開平2−72696号公報Japanese Patent Laid-Open No. 2-72696 特開平7−321447号公報JP-A-7-32447

しかしながら、前述したような従来のパワーモジュール用基板は、次のような問題がある。
従来のパワーモジュール用基板や、特開平2−72696号公報、特開平7−321447号公報で開示されようなパワーモジュール用基板は、表銅板の少なくとも1つにセラミック基板の縁部に重なって、あるいは、セラミック基板の縁部から外れて外部に延設して接合される場合に、セラミック基板の縁部の部分的な突出や、バリ状の突起によって表銅板がセラミック基板から浮き上がった状態となりセラミック基板との当接部に空隙部であるボイドが発生したり、不着面積が多くなって、セラミック基板と銅板との間の熱伝導性が低下すると共に、銅板のセラミック基板との接着強度が低くなり、接合信頼性の低下となっている。
本発明は、かかる事情に鑑みてなされたものであって、銅板とセラミック基板間の熱伝導性に優れ、銅板とセラミック基板の接着強度が高く接合信頼性の高いパワーモジュール用基板を提供することを目的とする。
However, the conventional power module substrate as described above has the following problems.
Conventional power module substrates, and power module substrates as disclosed in JP-A-2-72696 and JP-A-7-32447, overlap at least one of the front copper plates with the edge of the ceramic substrate, Alternatively, when the ceramic substrate is detached from the edge of the ceramic substrate and extended and joined to the outside, the surface copper plate is lifted from the ceramic substrate by the partial projection of the edge of the ceramic substrate or the burr-like projection. Voids, which are voids, are generated in the contact part with the substrate, the non-bonding area increases, the thermal conductivity between the ceramic substrate and the copper plate decreases, and the adhesive strength of the copper plate to the ceramic substrate is low Therefore, the bonding reliability is lowered.
The present invention has been made in view of such circumstances, and provides a power module substrate that has excellent thermal conductivity between a copper plate and a ceramic substrate, has high adhesive strength between the copper plate and the ceramic substrate, and has high bonding reliability. With the goal.

前記目的に沿う本発明に係るパワーモジュール用基板は、セラミック基板の一方の主面にそれぞれパターンが形成された複数の表銅板、他方の主面にベタ状の裏銅板が直接接合法、又は活性金属ろう材接合法で接合されて有するパワーモジュール用基板において、少なくとも1つの表銅板の一方側がセラミック基板に接合され、他方側がセラミック基板の外周縁部から中空状態で外部に延設されるセラミック基板の外周縁部に面取り状の曲部を有する。   The substrate for a power module according to the present invention that meets the above-mentioned object is a method of directly joining a plurality of front copper plates each having a pattern formed on one main surface of a ceramic substrate, and a solid back copper plate on the other main surface, or an active In a power module substrate bonded by a metal brazing material bonding method, a ceramic substrate in which one side of at least one surface copper plate is bonded to the ceramic substrate and the other side is extended outward from the outer peripheral edge of the ceramic substrate in a hollow state A chamfered curved portion is provided on the outer peripheral edge portion of the.

前記目的に沿う本発明に係る他のパワーモジュール用基板は、セラミック基板の一方の主面にそれぞれパターンが形成された複数の表銅板、他方の主面にベタ状の裏銅板が直接接合法、又は活性金属ろう材接合法で接合されて有するパワーモジュール用基板において、少なくとも1つの表銅板の一方側がセラミック基板に設けられる貫通孔の外周であるセラミック基板の内周縁部に重なって接合されると共に、他方側がセラミック基板の外周縁部から中空状態で外部に延設されるセラミック基板の外周縁部、及び内周縁部に面取り状の曲部を有する。   Other power module substrates according to the present invention that meet the above-mentioned object, a plurality of front copper plates each having a pattern formed on one main surface of a ceramic substrate, a solid back copper plate on the other main surface is a direct bonding method, Alternatively, in the power module substrate that is bonded by the active metal brazing material bonding method, one side of at least one surface copper plate is bonded to the inner peripheral edge of the ceramic substrate, which is the outer periphery of the through hole provided in the ceramic substrate. The other side has an outer peripheral edge portion of the ceramic substrate that extends from the outer peripheral edge portion of the ceramic substrate in a hollow state, and a chamfered curved portion at the inner peripheral edge portion.

上記のパワーモジュール用基板は、少なくとも1つの表銅板の一方側がセラミック基板に接合され、他方側がセラミック基板の外周縁部から中空状態で外部に延設されるセラミック基板の外周縁部に面取り状の曲部を有するので、セラミック基板の外周縁部に部分的な突出や、バリ状の突起がなく、そこに当接される表銅板がセラミック基板に密着して当接でき、当接部のボイドの発生を防止し、接着面積を大きくして接着でき、表銅板とセラミック基板間の熱伝導性に優れ、接着強度が高く接合信頼性の高いパワーモジュール用基板を提供することができる。   In the power module substrate, one side of at least one surface copper plate is bonded to the ceramic substrate, and the other side is chamfered on the outer peripheral edge of the ceramic substrate that extends from the outer peripheral edge of the ceramic substrate in a hollow state. Because it has a curved part, there are no partial protrusions or burr-like protrusions on the outer peripheral edge of the ceramic substrate, and the front copper plate in contact with the ceramic substrate can be in close contact with the ceramic substrate, and the voids in the contact part It is possible to provide a power module substrate that is capable of preventing the occurrence of the occurrence of the failure, increasing the bonding area, having excellent thermal conductivity between the surface copper plate and the ceramic substrate, having high bonding strength, and high bonding reliability.

上記の他のパワーモジュール用基板は、少なくとも1つの表銅板の一方側がセラミック基板に設けられる貫通孔の外周であるセラミック基板の内周縁部に重なって接合されると共に、他方側がセラミック基板の外周縁部から中空状態で外部に延設されるセラミック基板の外周縁部、及び内周縁部に面取り状の曲部を有するので、セラミック基板の外周縁部や、内周縁部に部分的な突出や、バリ状の突起がなく、そこに当接される表銅板がセラミック基板に密着して当接でき、当接部のボイドの発生を防止し、接着面積を大きくして接着でき、表銅板とセラミック基板間の熱伝導性に優れ、接着強度が高く接合信頼性の高いパワーモジュール用基板を提供することができる。   The other power module substrate is joined with one side of at least one surface copper plate overlapping the inner peripheral edge of the ceramic substrate, which is the outer periphery of the through hole provided in the ceramic substrate, and the other side being the outer peripheral edge of the ceramic substrate. Since it has a chamfered curved portion on the outer peripheral edge portion and inner peripheral edge portion of the ceramic substrate that is extended to the outside in a hollow state from the portion, the outer peripheral edge portion of the ceramic substrate, the partial protrusion on the inner peripheral edge portion, There is no burr-like projection, and the copper plate that is in contact with it can be in close contact with the ceramic substrate, preventing the formation of voids in the contact part, and can be bonded with a large bonding area. It is possible to provide a power module substrate having excellent thermal conductivity between substrates, high adhesive strength, and high bonding reliability.

(A)、(B)はそれぞれ本発明の一実施の形態に係るパワーモジュール用基板の斜視説明図、A−A’線拡大縦断面図である。(A), (B) is an explanatory perspective view of a power module substrate according to an embodiment of the present invention, respectively, and is an enlarged longitudinal sectional view taken along line A-A ′. (A)、(B)はそれぞれ本発明の一実施の形態に係る他のパワーモジュール用基板の斜視説明図、B−B’線拡大縦断面図である。(A), (B) is the perspective explanatory drawing of the other board | substrate for power modules which concerns on one embodiment of this invention, respectively, and a B-B 'line enlarged vertical sectional view.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
図1(A)、(B)に示すように、本発明の一実施の形態に係るパワーモジュール用基板10は、焼成済の所定寸法からなる平板状のセラミック基板11の一方の主面である上面側にそれぞれパターンが形成された表銅板12と、セラミック基板11の他方の主面である下面側にベタ状態のパターンからなる裏銅板13を有している。この表銅板12や、裏銅板13は、アルミナ(Al)、ジルコニア系アルミナ、窒化アルミニウム(AlN)等のセラミックからなる焼成済のセラミック基板11に直接接合、又は活性金属ろう材接合で加熱接合されるようになっている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
As shown in FIGS. 1A and 1B, a power module substrate 10 according to an embodiment of the present invention is one main surface of a flat plate-like ceramic substrate 11 having a predetermined size after firing. A front copper plate 12 having a pattern formed on the upper surface side and a back copper plate 13 having a solid pattern on the lower surface side, which is the other main surface of the ceramic substrate 11, are provided. The front copper plate 12 and the back copper plate 13 are directly bonded to the fired ceramic substrate 11 made of ceramic such as alumina (Al 2 O 3 ), zirconia-based alumina, aluminum nitride (AlN), or active metal brazing material bonding. Heat-bonded.

なお、上記の直接接合での接合方法とは、予め表面を酸化させた表銅板12や、裏銅板13用の銅板をセラミック基板11の表面に当接させ、窒素雰囲気中で酸化銅の融点(1083℃)以下、銅と酸化銅の共晶温度(1065℃)以上の温度で加熱して銅と微量の酸素との反応により生成するCu−O共晶液相を結合剤として直接セラミック基板11に接合する方法である。なお、セラミック基板11がAlNからなる場合には、AlN基板の表面にAlからなる酸化膜を形成しておく必要がある。 In addition, the joining method in the above direct joining is a method in which a surface copper plate 12 whose surface has been oxidized in advance or a copper plate for the back copper plate 13 is brought into contact with the surface of the ceramic substrate 11 and the melting point of copper oxide ( 1083 [deg.] C.) and below, the ceramic substrate 11 directly using a Cu-O eutectic liquid phase produced by reaction between copper and a small amount of oxygen by heating at a temperature equal to or higher than the eutectic temperature of copper and copper oxide (1065 [deg.] C.). It is the method of joining to. When the ceramic substrate 11 is made of AlN, it is necessary to form an oxide film made of Al 2 O 3 on the surface of the AlN substrate.

また、活性金属ろう材接合での接合方法とは、チタン、ジルコニウム、ベリリウム等のような極めて反応性の大きい、いわゆる活性な金属をAg−Cu系ろう等に加えた活性金属ろう材を用いてセラミック基板11と、表銅板12や、裏銅板13用の銅板を接合する方法である。この方法での接合は、先ず、それぞれのセラミック基板11の間で最も反応性の高い1又は複数種の活性金属をAg−Cu系ろう等に加えた活性金属ろう材ペーストをセラミック基板11の表面にスクリーン印刷等で塗布し、その上に予め表面を酸化させた表銅板12や、裏銅板13用の銅板を当接させ、約750〜850℃程度で加熱して活性金属の酸素との親和力の強さを利用して、直接セラミック基板11に接合する方法である。   The active metal brazing material joining method uses an active metal brazing material in which a so-called active metal having extremely high reactivity such as titanium, zirconium, beryllium or the like is added to an Ag-Cu brazing filler metal or the like. In this method, the ceramic substrate 11 and the copper plate for the front copper plate 12 and the back copper plate 13 are joined. In this method, first, an active metal brazing material paste in which one or a plurality of active metals having the highest reactivity among the respective ceramic substrates 11 is added to an Ag—Cu-based braze or the like is added to the surface of the ceramic substrate 11. The surface copper plate 12 or the copper plate for the back copper plate 13 whose surface has been oxidized in advance is applied to the surface of the substrate and contacted with it, and heated at about 750 to 850 ° C. for affinity with oxygen of the active metal. This is a method of directly bonding to the ceramic substrate 11 using the strength of the above.

上記のパワーモジュール用基板10は、島状に点在する複数の表銅板12中の少なくとも1つの表銅板12aの一方側がセラミック基板11の表面に接合され、他方側がセラミック基板11の外周縁部から中空状態で外部に延設される外部接続リード端子状の表銅板12aを備えている。そして、パワーモジュール用基板10は、外部接続リード端子状の表銅板12aが接合されるセラミック基板11の外周縁部に面取り状の曲部14を有している。   In the power module substrate 10, one side of at least one surface copper plate 12 a among the plurality of surface copper plates 12 scattered in an island shape is joined to the surface of the ceramic substrate 11, and the other side from the outer peripheral edge of the ceramic substrate 11. An external connection lead terminal-shaped surface copper plate 12a extending outside in a hollow state is provided. The power module substrate 10 has a chamfered curved portion 14 on the outer peripheral edge portion of the ceramic substrate 11 to which the external connection lead terminal-shaped surface copper plate 12a is bonded.

このセラミック基板11の外周縁部に設ける面取り状の曲部14は、特に、その形状を限定するものではないが、通常、断面視して、1又は複数の角部からなるC面形状や、全体がなだらかなR面形状を有するのが好ましい。また、曲部14は、セラミック基板11としての形状を断面視してたときに、セラミック基板11の表面中央部から外周縁部にいくにつれて厚みが薄くなり、外周縁部においてC面形状や、R面形状の曲部14を有する、又は表面中央部では平らで、外周縁部近傍から厚みが薄くなり、外周縁部においてC面形状や、R面形状の曲部14を有するような俵形状であるのが好ましい。   The chamfered curved portion 14 provided on the outer peripheral edge portion of the ceramic substrate 11 is not particularly limited in shape, but usually in a cross-sectional view, a C-surface shape including one or a plurality of corner portions, It is preferable that the whole has a gentle R surface shape. In addition, the curved portion 14 has a thickness that decreases from the center of the surface of the ceramic substrate 11 toward the outer peripheral edge when the shape of the ceramic substrate 11 is viewed in cross section. R-shaped curved portion 14 or flat at the center of the surface, the thickness is reduced from the vicinity of the outer peripheral edge, and has a C-shaped or R-shaped curved portion 14 at the outer peripheral edge. Is preferred.

更に、曲部14は、特に、その形成方法を限定するものではないが、例えば、焼成前のセラミックグリーンシートの両面に切り刃で押圧する分割溝を設け、焼成後に分割溝から分割することで形成することができる。また、例えば、曲部14は、焼成前のセラミックグリーンシートの成形体、又は焼成後のセラミック基板11の外周縁部を研削することで形成することができる。   Further, the bending portion 14 is not particularly limited in its formation method. For example, the curved portion 14 is provided with divided grooves that are pressed with a cutting blade on both surfaces of the ceramic green sheet before firing, and is divided from the divided grooves after firing. Can be formed. Further, for example, the curved portion 14 can be formed by grinding a green body of a ceramic green sheet before firing or an outer peripheral edge portion of the ceramic substrate 11 after firing.

上記のパワーモジュール用基板10は、外周縁部に面取り状の曲部14を有するセラミック基板11の外周縁部から延設して接合される外部接続リード端子状の表銅板12aがセラミック基板11の表面との間に空間部を作ることなく密着して載置できる。そして、外周縁部に面取り状の曲部14を有するセラミック基板11の表面と、全ての表銅板12との間は、ボイドの発生を防止し、接着面積を大きくして接着でき、セラミック基板11との間の熱伝導性に優れ、接着強度が高く接合信頼性の高いパワーモジュール用基板10とすることができる。なお、外部接続リード端子状の表銅板12aは、セラミック基板11の外周縁部から水平に外部に延設しているものや、セラミック基板11の外周縁部から下方にL字状に折り曲げて外部に延設しているもの等がある。   In the power module substrate 10, the outer connection lead terminal-shaped copper plate 12 a that extends and is joined from the outer peripheral edge of the ceramic substrate 11 having the chamfered curved portion 14 on the outer peripheral edge of the ceramic substrate 11. It can be placed in close contact with the surface without creating a space. The surface of the ceramic substrate 11 having the chamfered curved portion 14 on the outer peripheral edge portion and all the front copper plates 12 can be prevented from generating voids and can be bonded with a larger bonding area. The power module substrate 10 is excellent in thermal conductivity between the two and having high adhesive strength and high bonding reliability. The external connection lead terminal-shaped surface copper plate 12a extends horizontally from the outer peripheral edge of the ceramic substrate 11 or is bent outwardly from the outer peripheral edge of the ceramic substrate 11 into an L shape. There are things that are extended to.

上記のパワーモジュール用基板10には、所定位置の表銅板12にパワートランジスタ等の高熱を発する半導体素子15を搭載し、半導体素子15と外部接続リード端子状の表銅板12a間や、表銅板12間同士等をボンディングワイヤ16で連結させることで、電気的導通状態が形成できるようにしている。また、このパワーモジュール用基板10は、所定位置の表銅板12上面に接合される半導体素子15からの発熱を速やかにセラミック基板11及び裏銅板13を介して裏銅板13に接合させたヒートシンク板(図示せず)に伝熱させ、ヒートシンク板から外部に放熱できるようにしている。   The power module substrate 10 is mounted with a semiconductor element 15 that emits high heat, such as a power transistor, on a surface copper plate 12 in a predetermined position, and between the semiconductor element 15 and the external connection lead terminal-shaped surface copper plate 12a, or the surface copper plate 12 By connecting the gaps and the like with bonding wires 16, an electrically conductive state can be formed. In addition, the power module substrate 10 is a heat sink plate in which heat generated from the semiconductor element 15 bonded to the upper surface of the front copper plate 12 at a predetermined position is quickly bonded to the back copper plate 13 via the ceramic substrate 11 and the back copper plate 13. (Not shown) so that heat can be transferred from the heat sink plate to the outside.

次いで、図2(A)、(B)を参照しながら、本発明の一実施の形態に係る他のパワーモジュール用基板10aを説明する。
図2(A)、(B)に示すように、パワーモジュール用基板10aは、焼成済の所定寸法からなる平板のセラミック基板11aの所定位置には、所定寸法からなる貫通孔17が設けられている。そして、パワーモジュール用基板10aには、セラミック基板11aの一方の主面である上面側にそれぞれパターンが形成された表銅板12が貫通孔17の開口を露出するようにして設けられている。また、パワーモジュール用基板10aには、セラミック基板11aの他方の主面である下面側にベタ状態のパターンからなる裏銅板13が貫通孔17の開口を塞ぐようにして設けられている。このパワーモジュール用基板10aは、表銅板12や、裏銅板13がアルミナ(Al)、ジルコニア系アルミナ、窒化アルミニウム(AlN)等のセラミックからなる焼成済のセラミック基板11aに直接接合、又は活性金属ろう材接合で加熱接合されるようになっている。なお、この直接接合での接合方法や、活性金属ろう材接合での接合方法とは、前記のパワーモジュール用基板10の場合と同様な接合方法である。
Next, another power module substrate 10a according to an embodiment of the present invention will be described with reference to FIGS. 2 (A) and 2 (B).
As shown in FIGS. 2A and 2B, the power module substrate 10a is provided with through holes 17 having predetermined dimensions at predetermined positions of a flat ceramic substrate 11a having predetermined dimensions after firing. Yes. The power module substrate 10a is provided with a surface copper plate 12 having a pattern formed on the upper surface side, which is one main surface of the ceramic substrate 11a, so that the opening of the through hole 17 is exposed. Further, on the power module substrate 10 a, a back copper plate 13 made of a solid pattern is provided on the lower surface side which is the other main surface of the ceramic substrate 11 a so as to block the opening of the through hole 17. This power module substrate 10a is directly bonded to a fired ceramic substrate 11a in which the front copper plate 12 and the back copper plate 13 are made of ceramic such as alumina (Al 2 O 3 ), zirconia-based alumina, aluminum nitride (AlN), or Heat joining is performed by active metal brazing material joining. In addition, the joining method by this direct joining and the joining method by active metal brazing material joining are the joining methods similar to the case of the power module substrate 10 described above.

上記の変形例のパワーモジュール用基板10aは、島状に点在する複数の表銅板12中の少なくとも1つの表銅板12bの一方側がセラミック基板11aの設けられた貫通孔17の外周であるセラミック基板11aの内周縁部に重なって表面に接合され、他方側がセラミック基板11aの外周縁部から中空状態で外部に延設される外部接続リード端子状の表銅板12bを備えている。そして、パワーモジュール用基板10aは、外部接続リード端子状の表銅板12bが接合されるセラミック基板11aの外周縁部に面取り状の曲部14と、貫通孔17の外周であるセラミック基板11aの内周縁部に面取り状の曲部14aを有している。なお、変形例のパワーモジュール用基板10aには、島状に点在する複数の表銅板12中の少なくとも1つの表銅板12aの一方側がセラミック基板11の表面に接合され、他方側がセラミック基板11の外周縁部から中空状態で外部に延設される外部接続リード端子状の表銅板12aを備えていてもよい。   The power module substrate 10a of the above modification is a ceramic substrate in which one side of at least one surface copper plate 12b among the plurality of surface copper plates 12 scattered in an island shape is the outer periphery of the through hole 17 provided with the ceramic substrate 11a. 11a, an outer connection lead terminal-like surface copper plate 12b is provided which is bonded to the surface so as to overlap the inner peripheral edge of 11a and the other side is extended from the outer peripheral edge of the ceramic substrate 11a in a hollow state. The power module substrate 10a includes a chamfered curved portion 14 on the outer peripheral edge portion of the ceramic substrate 11a to which the outer connection lead terminal-shaped surface copper plate 12b is joined, and the ceramic substrate 11a that is the outer periphery of the through hole 17. A chamfered curved portion 14a is provided at the peripheral edge. In addition, in the power module substrate 10a of the modified example, one side of at least one surface copper plate 12a among the plurality of surface copper plates 12 scattered in an island shape is bonded to the surface of the ceramic substrate 11, and the other side is the ceramic substrate 11. You may provide the external connection lead terminal-shaped surface copper plate 12a extended in the hollow state from the outer peripheral edge part.

上記のセラミック基板11aの外周縁部に設ける面取り状の曲部14や、貫通孔17の外周であるセラミック基板11aの内周縁部に設ける面取り状の曲部14aは、パワーモジュール用基板10の場合と同様に、特に、その形状を限定するものではないが、通常、断面視して、1又は複数の角部からなるC面形状や、全体がなだらかなR面形状を有するのが好ましい。また、セラミック基板11aとしての形状は、断面視して、セラミック基板11aの表面中央部から外周縁部にいくにつれて厚みが薄くなり、又は表面中央部では平らで、外周縁部近傍から厚みが薄くなり、外周縁部においてC面形状や、R面形状の曲部14を有すると共に、貫通孔17の外周であるセラミック基板11aの内周縁部においてC面形状や、R面形状の曲部14aを有するような俵形状であるのが好ましい。更に、セラミック基板11aの外周縁部に設ける曲部14の形成方法は、パワーモジュール用基板10の場合と同様にして形成することができる。一方、セラミック基板11aの貫通孔17の外周であるセラミック基板11aの内周縁部に設ける曲部14aの形成方法は、例えば、打ち抜き加工機等でセラミックグリーンシートに貫通孔17用の穿設孔を形成した後、焼成前のセラミックグリーンシートの成形体、又は焼成後のセラミック基板11aの外周縁部を研削することで形成することができる。   In the case of the power module substrate 10, the chamfered curved portion 14 provided on the outer peripheral edge of the ceramic substrate 11 a and the chamfered curved portion 14 a provided on the inner peripheral edge of the ceramic substrate 11 a that is the outer periphery of the through hole 17 are provided. Similarly to the above, the shape is not particularly limited, but it is usually preferable to have a C-plane shape composed of one or a plurality of corners or a gentle R-plane shape as a whole in a cross-sectional view. In addition, the shape of the ceramic substrate 11a is reduced in thickness as it goes from the center of the surface of the ceramic substrate 11a to the outer peripheral edge, or is flat at the center of the surface and thin from the vicinity of the outer peripheral edge in a cross-sectional view. The outer peripheral edge has a C-shaped or R-shaped curved portion 14, and the inner peripheral edge of the ceramic substrate 11a, which is the outer periphery of the through-hole 17, has a C-shaped or R-shaped curved portion 14a. It is preferable that it has a bowl shape. Furthermore, the formation method of the curved part 14 provided in the outer periphery part of the ceramic substrate 11a can be formed similarly to the case of the board | substrate 10 for power modules. On the other hand, a method of forming the curved portion 14a provided on the inner peripheral edge of the ceramic substrate 11a, which is the outer periphery of the through hole 17 of the ceramic substrate 11a, is, for example, forming a hole for the through hole 17 in the ceramic green sheet with a punching machine or the like. After forming, it can be formed by grinding the green body molded body before firing or the outer peripheral edge of the fired ceramic substrate 11a.

上記のパワーモジュール用基板10aは、セラミック基板11aの外周縁部に面取り状の曲部14と、貫通孔17の外周であるセラミック基板11aの内周縁部に面取り状の曲部14aを有するセラミック基板11aの内周縁部に重なると共に、外周縁部から延設して接合される外部接続リード端子状の表銅板12bがセラミック基板11aの表面との間に空間部を作ることなく密着して載置できる。そして、内周縁部に面取り状の曲部14aと、外周縁部に面取り状の曲部14を有するセラミック基板11aの表面と、全ての表銅板12、12a、12bとの間は、ボイドの発生を防止し、接着面積を大きくして接着でき、セラミック基板11aとの間の熱伝導性に優れ、接着強度が高く接合信頼性の高いパワーモジュール用基板10aとすることができる。なお、外部接続リード端子状の表銅板12a、12bは、パワーモジュール用基板10の場合と同様に、セラミック基板11aの外周縁部から水平に外部に延設しているものや、セラミック基板11aの外周縁部から下方にL字状に折り曲げて外部に延設しているもの等がある。   The power module substrate 10a has a chamfered curved portion 14 on the outer peripheral edge of the ceramic substrate 11a and a chamfered curved portion 14a on the inner peripheral edge of the ceramic substrate 11a that is the outer periphery of the through hole 17. The outer connection lead terminal-shaped surface copper plate 12b that extends from the outer peripheral edge and is joined to the inner peripheral edge of 11a is placed in close contact with the surface of the ceramic substrate 11a without forming a space. it can. Further, voids are generated between the surface of the ceramic substrate 11a having the chamfered curved portion 14a on the inner peripheral edge portion and the chamfered curved portion 14 on the outer peripheral edge portion, and all the front copper plates 12, 12a, 12b. Thus, the power module substrate 10a can be bonded with a large bonding area, excellent thermal conductivity with the ceramic substrate 11a, high bonding strength, and high bonding reliability. As in the case of the power module substrate 10, the external connection lead terminal-shaped surface copper plates 12 a and 12 b extend horizontally from the outer peripheral edge of the ceramic substrate 11 a, or the ceramic substrate 11 a Some of them are bent outwardly from the outer peripheral edge into an L-shape and extended to the outside.

上記のパワーモジュール用基板10aには、貫通孔17の開口から露出する裏銅板13にパワートランジスタ等の高熱を発する半導体素子15を搭載し、半導体素子15と外部接続リード端子状の表銅板12a、12b間や、他の表銅板12間同士等をボンディングワイヤ16で連結させることで、電気的導通状態が形成できるようにしている。また、このパワーモジュール用基板10aは、貫通孔17の開口から露出する裏銅板13上面に接合される半導体素子15からの発熱を速やかに裏銅板13を介して裏銅板13に接合させたヒートシンク板(図示せず)に伝熱させ、ヒートシンク板から外部に放熱できるようにしている。   On the power module substrate 10a, a semiconductor element 15 that emits high heat, such as a power transistor, is mounted on the back copper plate 13 exposed from the opening of the through hole 17, and the semiconductor element 15 and the external connection lead terminal-shaped surface copper plate 12a, An electrical continuity state can be formed by connecting the bonding wires 16 between 12b or between the other front copper plates 12. The power module substrate 10 a is a heat sink plate in which heat generated from the semiconductor element 15 bonded to the upper surface of the back copper plate 13 exposed from the opening of the through hole 17 is quickly bonded to the back copper plate 13 via the back copper plate 13. (Not shown) is used for heat transfer so that heat can be radiated from the heat sink plate to the outside.

上記のパワーモジュール用基板10、10a用のセラミック基板11、11aには、通常、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、又はジルコニア入り酸化アルミニウム等のセラミックが用いられ、これらのセラミックからなるセラミック基板11、11aが、絶縁性、耐熱性、熱伝導性、基板強度等に優れ、半導体素子15にかかる高電圧、及び半導体素子15からの高熱に対して十分な耐熱性と、高熱伝導性をもって問題なく使用することができる。ここで、セラミックの一例であるAlからなるセラミック基板11、11aの製造方法を簡単に説明する。セラミック基板11、11aは、アルミナ粉末にマグネシア、シリカ、カルシア等の焼結助剤を適当量加えた粉末に、ジオクチルフタレート等の可塑剤と、アクリル樹脂等のバインダー、及び、トルエン、キシレン、アルコール類等の溶剤が加えられ、十分に混練した後、脱泡して粘度2000〜40000cpsのスラリーをドクターブレード法等によって、例えば、厚さ0.64mm程度のロール状のシートに形成され、適当なサイズにカットしてセラミックグリーンシートを作製し、大気中約1550℃程度で焼成して作製している。 Ceramics such as aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), or zirconia-containing aluminum oxide are usually used for the ceramic substrates 11 and 11a for the power module substrates 10 and 10a. Ceramic substrates 11 and 11a made of ceramic are excellent in insulation, heat resistance, thermal conductivity, substrate strength, etc., and have sufficient heat resistance against high voltage applied to the semiconductor element 15 and high heat from the semiconductor element 15; It can be used without problems with high thermal conductivity. Here, a method for manufacturing the ceramic substrates 11 and 11a made of Al 2 O 3 which is an example of ceramic will be briefly described. The ceramic substrates 11 and 11a are made by adding an appropriate amount of a sintering aid such as magnesia, silica, and calcia to alumina powder, a plasticizer such as dioctyl phthalate, a binder such as acrylic resin, and toluene, xylene, and alcohol. A solvent such as a kind is added and kneaded sufficiently, and then defoamed and a slurry having a viscosity of 2000 to 40000 cps is formed into a roll sheet having a thickness of about 0.64 mm by a doctor blade method or the like. A ceramic green sheet is produced by cutting into a size and firing at about 1550 ° C. in the atmosphere.

また、セラミックの一例であるAlNからなるセラミック基板11、11aを作製するには、窒化アルミニウム粉末に焼結助剤を添加し、可塑剤、バインダー、及び溶剤を加えてシート状のセラミックグリーンシートとし、これを適当なサイズにカットし、窒素雰囲気中約1700℃程度の高温で焼成して形成している。   In order to produce ceramic substrates 11 and 11a made of AlN, which is an example of ceramic, a sintering aid is added to aluminum nitride powder, and a plasticizer, a binder, and a solvent are added to form a sheet-like ceramic green sheet. This is cut into an appropriate size and fired at a high temperature of about 1700 ° C. in a nitrogen atmosphere.

更に、セラミックの一例であるジルコニア入り酸化アルミニウムからなるセラミック基板11、11aを作製するには、主成分の酸化アルミニウムを70〜97wt%の範囲にして、これにジルコニア(ZrO)を2〜29.9wt%の範囲で添加し、イットリア、カルシア、マグネシア、セリアのいずれか1種以上の焼結助剤を0.1〜2wt%の範囲で添加し、可塑剤、バインダー、及び溶剤を加えて、例えば、厚さ0.25mmのシート状のセラミックグリーンシートとしている。そして、このセラミックグリーンシートは、適当なサイズにカットし、大気中約1550℃程度で焼成してセラミック基板11、11aを作製している。なお、Alを主成分として、これに上記割合のZrOが添加された焼成体からなるセラミック基板11、11aは、Al単体の基板と熱伝導率を同等程度に保ちながら基板強度、特に曲げ強度を大幅に高めることができる(Al単体では、3.1MPa・m0.5、ジルコニア系アルミナセラミックでは、4.4MPa・m0.5)。また、イットリア、カルシア、マグネシア、セリアのいずれか1種以上を添加することで、基板の焼成温度をAl単体の基板と同等程度に抑えつつ、ZrO結晶粒の靭性を改善することができる。これらによって、セラミック基板11、11aは、AlNの基板より熱伝導率が低下するものの、厚みを薄くすることで熱伝導率の低さを補って、Al単体の基板より優れ、AlNの基板に匹敵する優れた放熱性を有することができる。 Furthermore, in order to manufacture the ceramic substrates 11 and 11a made of zirconia-containing aluminum oxide, which is an example of ceramic, aluminum oxide as a main component is in a range of 70 to 97 wt%, and zirconia (ZrO 2 ) is added in an amount of 2 to 29. Add in the range of .9 wt%, add at least one sintering aid of yttria, calcia, magnesia and ceria in the range of 0.1 to 2 wt%, add the plasticizer, binder and solvent. For example, a sheet-like ceramic green sheet having a thickness of 0.25 mm is used. The ceramic green sheet is cut into an appropriate size and fired at about 1550 ° C. in the atmosphere to produce the ceramic substrates 11 and 11a. The ceramic substrates 11 and 11a made of a fired body in which Al 2 O 3 is the main component and ZrO 2 in the above ratio is added to the Al 2 O 3 single substrate while maintaining the same thermal conductivity as the Al 2 O 3 single substrate. substrate strength can be enhanced greatly, especially bending strength (in Al 2 O 3 alone, 3.1 MPa · m 0.5, the zirconia alumina ceramic, 4.4MPa · m 0.5). In addition, by adding at least one of yttria, calcia, magnesia, and ceria, the toughness of the ZrO 2 crystal grains can be improved while suppressing the firing temperature of the substrate to the same level as that of the substrate of Al 2 O 3 alone. Can do. As a result, although the ceramic substrates 11 and 11a have lower thermal conductivity than the AlN substrate, the thickness is reduced to compensate for the lower thermal conductivity, which is superior to the Al 2 O 3 single substrate. It can have excellent heat dissipation comparable to the substrate.

本発明のパワーモジュール用基板は、高電圧が流れ、大量の熱を発生する半導体素子を実装し、例えば、インバーター用や、自動車部品用等として用いるためのパワーモジュール用基板に利用することができる。   The power module substrate of the present invention is mounted with a semiconductor element that generates a large amount of heat through a high voltage, and can be used as a power module substrate for use in, for example, an inverter or an automobile part. .

10、10a:パワーモジュール用基板、11、11a:セラミック基板、12、12a:表銅板、13:裏銅板、14、14a:曲部、15:半導体素子、16:ボンディングワイヤ、17:貫通孔   10, 10a: Power module substrate, 11, 11a: Ceramic substrate, 12, 12a: Front copper plate, 13: Back copper plate, 14, 14a: Curved portion, 15: Semiconductor element, 16: Bonding wire, 17: Through hole

Claims (2)

セラミック基板の一方の主面にそれぞれパターンが形成された複数の表銅板、他方の主面にベタ状の裏銅板が直接接合法、又は活性金属ろう材接合法で接合されて有するパワーモジュール用基板において、
少なくとも1つの前記表銅板の一方側が前記セラミック基板に接合され、他方側が前記セラミック基板の外周縁部から中空状態で外部に延設される前記セラミック基板の前記外周縁部に面取り状の曲部を有することを特徴とするパワーモジュール用基板。
A substrate for a power module having a plurality of front copper plates each having a pattern formed on one main surface of a ceramic substrate and a solid back copper plate bonded to the other main surface by a direct bonding method or an active metal brazing material bonding method In
At least one of the front copper plates is joined to the ceramic substrate, and the other side is hollowed out from the outer peripheral edge of the ceramic substrate in a hollow state and has a chamfered curved portion on the outer peripheral edge of the ceramic substrate. A power module substrate comprising:
セラミック基板の一方の主面にそれぞれパターンが形成された複数の表銅板、他方の主面にベタ状の裏銅板が直接接合法、又は活性金属ろう材接合法で接合されて有するパワーモジュール用基板において、
少なくとも1つの前記表銅板の一方側が前記セラミック基板に設けられる貫通孔の外周である前記セラミック基板の内周縁部に重なって接合されると共に、他方側が前記セラミック基板の外周縁部から中空状態で外部に延設される前記セラミック基板の前記外周縁部、及び前記内周縁部に面取り状の曲部を有することを特徴とするパワーモジュール用基板。
A substrate for a power module having a plurality of front copper plates each having a pattern formed on one main surface of a ceramic substrate and a solid back copper plate bonded to the other main surface by a direct bonding method or an active metal brazing material bonding method In
At least one of the front copper plates is joined to overlap with the inner peripheral edge of the ceramic substrate, which is the outer periphery of the through hole provided in the ceramic substrate, and the other side is hollow from the outer peripheral edge of the ceramic substrate. A substrate for a power module, comprising a chamfered curved portion at the outer peripheral edge portion and the inner peripheral edge portion of the ceramic substrate that is extended to the surface.
JP2012238636A 2012-10-30 2012-10-30 Power module substrate Active JP6282394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238636A JP6282394B2 (en) 2012-10-30 2012-10-30 Power module substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238636A JP6282394B2 (en) 2012-10-30 2012-10-30 Power module substrate

Publications (2)

Publication Number Publication Date
JP2014090048A true JP2014090048A (en) 2014-05-15
JP6282394B2 JP6282394B2 (en) 2018-02-21

Family

ID=50791734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238636A Active JP6282394B2 (en) 2012-10-30 2012-10-30 Power module substrate

Country Status (1)

Country Link
JP (1) JP6282394B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219751A (en) * 1982-06-15 1983-12-21 Yokogawa Hokushin Electric Corp Manufacture of hybrid integrated circuit
JPH06151637A (en) * 1992-11-13 1994-05-31 Denki Kagaku Kogyo Kk Insulating aluminum nitride heat-radiation plate provided with lead
JPH07321447A (en) * 1994-05-20 1995-12-08 Toyota Autom Loom Works Ltd Substrate for mounting electronic parts and its manufacturing method and metal plate material for manufacturing substrate for mounting electronic parts and joint-prevention mask
JPH09507614A (en) * 1994-01-14 1997-07-29 オリン コーポレイション Chamfered electronic package parts
JP2000052329A (en) * 1998-08-11 2000-02-22 Murata Mfg Co Ltd Deflashing device for ceramic raw unit
JP2001156196A (en) * 1999-09-17 2001-06-08 Toshiba Corp High-frequency package and method for manufacturing the same
JP2003218268A (en) * 2002-01-25 2003-07-31 Denki Kagaku Kogyo Kk Circuit board having terminal and manufacturing method thereof
JP2003318330A (en) * 2002-02-25 2003-11-07 Kyocera Corp Ceramic circuit substrate
JP2004014827A (en) * 2002-06-07 2004-01-15 Sumitomo Metal Electronics Devices Inc Manufacturing method of package for high frequency
JP2004095690A (en) * 2002-08-29 2004-03-25 Kyocera Corp Manufacturing method of ceramic substrate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219751A (en) * 1982-06-15 1983-12-21 Yokogawa Hokushin Electric Corp Manufacture of hybrid integrated circuit
JPH06151637A (en) * 1992-11-13 1994-05-31 Denki Kagaku Kogyo Kk Insulating aluminum nitride heat-radiation plate provided with lead
JPH09507614A (en) * 1994-01-14 1997-07-29 オリン コーポレイション Chamfered electronic package parts
JPH07321447A (en) * 1994-05-20 1995-12-08 Toyota Autom Loom Works Ltd Substrate for mounting electronic parts and its manufacturing method and metal plate material for manufacturing substrate for mounting electronic parts and joint-prevention mask
JP2000052329A (en) * 1998-08-11 2000-02-22 Murata Mfg Co Ltd Deflashing device for ceramic raw unit
JP2001156196A (en) * 1999-09-17 2001-06-08 Toshiba Corp High-frequency package and method for manufacturing the same
JP2003218268A (en) * 2002-01-25 2003-07-31 Denki Kagaku Kogyo Kk Circuit board having terminal and manufacturing method thereof
JP2003318330A (en) * 2002-02-25 2003-11-07 Kyocera Corp Ceramic circuit substrate
JP2004014827A (en) * 2002-06-07 2004-01-15 Sumitomo Metal Electronics Devices Inc Manufacturing method of package for high frequency
JP2004095690A (en) * 2002-08-29 2004-03-25 Kyocera Corp Manufacturing method of ceramic substrate

Also Published As

Publication number Publication date
JP6282394B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP2008010520A (en) Substrate for power module, and its manufacturing method
JP2022000871A (en) Electrical circuit board and power module
US12033915B2 (en) Power module substrate and power module
JP2009170499A (en) Package
JP2008187101A (en) Semiconductor device and mounting structure of semiconductor device
JP4124040B2 (en) Semiconductor device
JP2007019123A (en) Ceramic circuit board assembly
JP2014157949A (en) Wiring board and electronic device
JP2012094679A (en) Substrate manufacturing method
JP6282394B2 (en) Power module substrate
JP2015225948A (en) Power module substrate
JP3993619B2 (en) Ceramic circuit board assembly
JP6124521B2 (en) Power module substrate manufacturing method
JP3934966B2 (en) Ceramic circuit board
JP2014154571A (en) Power module substrate
JP2014090049A (en) Power module substrate
JP2004087927A (en) Ceramic substrate
JP6108734B2 (en) Electronic component element storage package
JP3971554B2 (en) Ceramic circuit board and semiconductor module using the same
WO2019163941A1 (en) Substrate for power modules, and power module
JP4656126B2 (en) Semiconductor device
JP4721929B2 (en) Multilayer circuit board and electronic component module
JP2008124298A (en) Manufacturing method of power module substrate
JP2015164167A (en) Circuit board, manufacturing method of the same and electronic device
JP2009277794A (en) Package for semiconductor element storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180124

R150 Certificate of patent or registration of utility model

Ref document number: 6282394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250