JP2014080502A - Cocondensate and rubber composition containing the same - Google Patents

Cocondensate and rubber composition containing the same Download PDF

Info

Publication number
JP2014080502A
JP2014080502A JP2012229133A JP2012229133A JP2014080502A JP 2014080502 A JP2014080502 A JP 2014080502A JP 2012229133 A JP2012229133 A JP 2012229133A JP 2012229133 A JP2012229133 A JP 2012229133A JP 2014080502 A JP2014080502 A JP 2014080502A
Authority
JP
Japan
Prior art keywords
cocondensate
rubber
tert
butylphenol
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012229133A
Other languages
Japanese (ja)
Other versions
JP6016297B2 (en
Inventor
Kazuhiro Matsui
一祐 松井
Nobuyuki Sato
伸行 佐藤
Yoshiteru Ota
義輝 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Original Assignee
Taoka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoka Chemical Co Ltd filed Critical Taoka Chemical Co Ltd
Priority to JP2012229133A priority Critical patent/JP6016297B2/en
Publication of JP2014080502A publication Critical patent/JP2014080502A/en
Application granted granted Critical
Publication of JP6016297B2 publication Critical patent/JP6016297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel cocondensate which is useful as an adhesive between a reinforcement material and rubber, and a method for producing the same.SOLUTION: Provided is a novel cocondensate useful as an adhesive between a reinforcement material and rubber, which disperses efficiently in rubber when kneading and can strengthen adhesion between rubber obtained by vulcanizing the kneaded rubber and the reinforcement material, the cocondensate being obtained by reacting a resol type condensate, which is obtained by reacting p-tert-butylphenol, an alkylphenol substituted by a 1-3C alkyl group at a para position and formaldehyde in presence of an alkali catalyst, further with resorcinol, wherein a ratio of an amount of p-tert-butylphenol component (unit) to a total amount of the p-tert-butylphenol component (unit) and the substituted phenol component (unit) represented by formula (1) constituting the cocondensate is set between 10 to 50% in terms of amount of substance (mol).

Description

本発明は、アルキルフェノール等から得られる共縮合物、当該共縮合物を用いたゴム組成物および当該共縮合物の製造方法に関する。 The present invention relates to a cocondensate obtained from an alkylphenol or the like, a rubber composition using the cocondensate, and a method for producing the cocondensate.

タイヤ、ベルト、ホースなどのように、スチールコード類や有機繊維類等の補強材で補強する必要のあるゴム製品においては、ゴムと補強材との強固な接着が求められている。ゴムとの接着を行うため、補強材を種々の接着剤で処理する方法や、ゴムの加工工程において接着剤を他の各種配合剤とともに配合する方法が知られている。これらの中でも、ゴムの加工工程において接着剤を配合する方法は、補強材の接着剤処理の有無に関わらず、強固に加硫接着することが可能であるため広く採用されている。このようなゴムの加工工程において使用される接着剤として、p−tert−オクチルフェノールやp−ノニルフェノール等のアルキルフェノールとホルマリン類を反応させ共縮合物を得、その共縮合物にレゾルシンを反応させた共縮合物が知られている。(例えば特許文献1)。 In rubber products such as tires, belts, hoses, and the like that need to be reinforced with reinforcing materials such as steel cords and organic fibers, strong adhesion between the rubber and the reinforcing material is required. In order to bond with rubber, a method of treating a reinforcing material with various adhesives and a method of blending an adhesive together with other various compounding agents in a rubber processing step are known. Among these, a method of blending an adhesive in the rubber processing step is widely adopted because it can be firmly vulcanized and bonded regardless of whether or not the reinforcing material is treated with an adhesive. As an adhesive used in such a rubber processing step, a cocondensate is obtained by reacting alkylphenols such as p-tert-octylphenol and p-nonylphenol with formalins, and the cocondensate is reacted with resorcin. Condensates are known. (For example, patent document 1).

特開平6−234824号公報JP-A-6-234824

ゴムの混練は通常150〜190℃程度で実施されるため、このような接着剤として用いられる共縮合物は、この温度で効率よく分散することが求められ、共縮合物の軟化点がこの温度より高い場合分散性不良の原因となる。また、これら共縮合物は原料であるアルキルフェノール類等揮発成分由来の独特の臭気を有しており、作業環境の観点から揮発成分による臭気が少ないことが好ましい。 Since rubber kneading is usually carried out at about 150 to 190 ° C., the cocondensate used as such an adhesive is required to be efficiently dispersed at this temperature, and the softening point of the cocondensate is at this temperature. If it is higher, it causes a dispersibility failure. These cocondensates have a unique odor derived from volatile components such as alkylphenols as raw materials, and it is preferable that the odor due to the volatile components is small from the viewpoint of the working environment.

一方、本願発明者らは新規な、ゴムの加工工程において使用される接着剤を探索する過程において、共縮合物の原料として良く使用されている、p−tert−オクチルフェノールやp−ノニルフェノールといった炭素数の多いアルキルフェノール類に代え、炭素数の少ないp−tert−ブチルフェノールを原料として使用し共縮合物を合成したところ、得られた樹脂の軟化点が非常に高く、接着剤として好ましくないことが判明した。 On the other hand, in the process of searching for a new adhesive for use in rubber processing, the inventors of the present application often have carbon numbers such as p-tert-octylphenol and p-nonylphenol, which are often used as raw materials for cocondensates. When a cocondensate was synthesized by using p-tert-butylphenol having a small number of carbons as a raw material instead of alkylphenols having a large amount of carbon, it was found that the obtained resin had a very high softening point and was not preferable as an adhesive. .

本発明は、補強材で補強するゴム製品の分野に用いられる接着剤用の共縮合物であり、原料のアルキルフェノール類としてp−tert−ブチルフェノールを用いた共縮合物であって、混練時にゴムに効率よく分散する共縮合物を提供することである。 The present invention is a co-condensate for adhesives used in the field of rubber products reinforced with a reinforcing material, and is a co-condensate using p-tert-butylphenol as an alkylphenol as a raw material. It is to provide a cocondensate that is efficiently dispersed.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、共縮合物の原料としてp−tert−ブチルフェノール単独でなく、p−tert−ブチルフェノールと同時に以下式(1) As a result of intensive studies to solve the above-mentioned problems, the present inventors have not used p-tert-butylphenol alone as a raw material of the cocondensate, but simultaneously with p-tert-butylphenol, the following formula (1)

Figure 2014080502
(式中のRは、炭素数1〜3のアルキル基を表す。)
で示される置換フェノールとホルムアルデヒドとを、アルカリ触媒の存在下で反応させて得られるレゾール型縮合物に、さらにレゾルシンを反応させた共縮合物であって、前記共縮合物を構成するp−tert−ブチルフェノール成分(ユニット)と式(1)で表される置換フェノール成分(ユニット)の合計量に対するp−tert−ブチルフェノール成分(ユニット)の割合が、物質量(モル)基準で10〜50%であることを特徴とする共縮合物とすることにより、p−tert−ブチルフェノールを原料として単独で使用した場合に比べ大幅に軟化点が低下し、混練時にゴムに効率よく分散する新規な共縮合物を提供することが可能であることを見出し、本発明を完成するに至った。具体的には下記〔1〕〜〔6〕記載の発明を含む。
〔1〕p−tert-ブチルフェノールと、式(1)
Figure 2014080502
(R in the formula represents an alkyl group having 1 to 3 carbon atoms.)
A co-condensate obtained by further reacting resorcin with a resole-type condensate obtained by reacting a substituted phenol represented by formula (II) with formaldehyde in the presence of an alkali catalyst, and constituting the co-condensate -The ratio of the p-tert-butylphenol component (unit) to the total amount of the substituted phenol component (unit) represented by the formula (1) and the butylphenol component (unit) is 10 to 50% based on the substance amount (mol). By using a cocondensate characterized by being a novel cocondensate that has a significantly lower softening point than p-tert-butylphenol used alone as a raw material and is efficiently dispersed in rubber during kneading. The present invention has been found to be able to be provided. Specifically, the inventions described in the following [1] to [6] are included.
[1] p-tert-butylphenol and the formula (1)

Figure 2014080502
(式中のRは、炭素数1〜3のアルキル基を表す。)
で示される置換フェノールと、ホルムアルデヒドとを、アルカリ触媒の存在下で反応させて得られるレゾール型縮合物に、さらにレゾルシンを反応させて得られる共縮合物であって、前記共縮合物を構成するp−tert−ブチルフェノール成分(ユニット)と式(1)で表される置換フェノール成分(ユニット)の合計量に対するp−tert−ブチルフェノール成分(ユニット)の割合が、物質量(モル)基準で10〜50%であることを特徴とする共縮合物。
〔2〕
軟化点が80℃以上160℃以下であることを特徴とする〔1〕に記載の共縮合物。
〔3〕請求項1または2記載の共縮合物中に含まれるp−tert-ブチルフェノール、式(1)で示される置換アルキルフェノール及びレゾルシンの総量が15重量%以下であることを特徴とする〔1〕または〔2〕に記載の共縮合物。
〔4〕
式(1)で示される置換アルキルフェノールがp−クレゾールであることを特徴とする〔1〕〜〔3〕
に記載の共縮合物。
〔5〕
〔1〕〜〔4〕いずれか一項に記載の共縮合物を含むことを特徴とするゴム組成物。
〔6〕
p−tert-ブチルフェノールと式(1)で示される置換アルキルフェノールにホルムアルデヒドを加えて反応させることでレゾール型縮合物を得る工程と、得られたレゾール型縮合物にレゾルシンを加えて共縮合させる工程とを含むことを特徴とする〔1〕〜〔4〕に記載の共縮合物の製造方法。
Figure 2014080502
(R in the formula represents an alkyl group having 1 to 3 carbon atoms.)
A co-condensate obtained by further reacting resorcin with a resole-type condensate obtained by reacting a substituted phenol represented by formula and formaldehyde in the presence of an alkali catalyst, and constituting the co-condensate The ratio of the p-tert-butylphenol component (unit) to the total amount of the p-tert-butylphenol component (unit) and the substituted phenol component (unit) represented by the formula (1) is 10 to 10 on the basis of the substance amount (mol). Cocondensate characterized by being 50%.
[2]
The cocondensate according to [1], wherein the softening point is 80 ° C or higher and 160 ° C or lower.
[3] The total amount of p-tert-butylphenol, substituted alkylphenol represented by the formula (1) and resorcin contained in the cocondensate according to claim 1 or 2 is 15% by weight or less [1] ] Or a cocondensate according to [2].
[4]
The substituted alkylphenol represented by the formula (1) is p-cresol [1] to [3]
Cocondensate described in 1.
[5]
[1] to [4] A rubber composition comprising the cocondensate according to any one of [1] to [4].
[6]
a step of obtaining a resole-type condensate by reacting p-tert-butylphenol with a substituted alkylphenol represented by the formula (1) by adding formaldehyde, and a step of adding resorcin to the resulting resole-type condensate and co-condensing them. The method for producing a cocondensate according to [1] to [4], wherein

本発明によれば、原料としてp−tert-ブチルフェノールを使用しても混練時にゴムに効率よく分散し、それを加硫して得られるゴムと補強材との接着を強固にすることが可能である、補強材とゴムとの接着剤として有用な共縮合物が提供可能となる。 According to the present invention, even when p-tert-butylphenol is used as a raw material, it can be efficiently dispersed in rubber during kneading, and the adhesion between the rubber obtained by vulcanizing it and the reinforcing material can be strengthened. A co-condensate useful as an adhesive between a reinforcing material and rubber can be provided.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

以下式(1) Formula (1) below

Figure 2014080502
(式中のRは、炭素数1〜3のアルキル基を表す。)
で表される置換フェノールとしては、p−クレゾール、4−エチルフェノール、4−プロピルフェノールが例示されるが、この中でも入手性が良いことからp−クレゾールが好ましい。また、式(1)で表される置換フェノールの使用量は特に限定されないが、p−tert-ブチルフェノール1モルに対し通常1〜10倍モル使用し、好ましくは1.5〜10倍モル使用する。
Figure 2014080502
(R in the formula represents an alkyl group having 1 to 3 carbon atoms.)
As the substituted phenol represented by the formula, p-cresol, 4-ethylphenol, and 4-propylphenol are exemplified. Among these, p-cresol is preferable because of its high availability. Moreover, although the usage-amount of the substituted phenol represented by Formula (1) is not specifically limited, 1-10 times mole is normally used with respect to 1 mol of p-tert- butylphenol, Preferably it uses 1.5-10 times mole. .

本発明で用いるホルムアルデヒドとしては、ホルムアルデヒド自体のほか、水溶液であるホルマリン、及びパラホルムアルデヒドやトリオキサンのような、容易にホルムアルデヒドを発生する化合物を使用することができる。ホルムアルデヒドの仕込みモル比は限定されないが、p−tert-ブチルフェノールと上記式(1)で示される置換フェノールの総計に対し、1〜2倍モルであることが好ましく、その中でも1.1〜1.5倍モルの範囲が特に好ましい。1倍モルより少ない場合、未反応モノマーが多くなり臭気や揮発性有機化合物が増加する懸念がある。また、2倍モルよりも多い場合、ホルムアルデヒドが未反応のまま多く残存するため、樹脂が三次元構造化して軟化点が高くなる懸念がある。 As formaldehyde used in the present invention, in addition to formaldehyde itself, formalin which is an aqueous solution, and compounds that easily generate formaldehyde such as paraformaldehyde and trioxane can be used. The charge molar ratio of formaldehyde is not limited, but it is preferably 1 to 2 times the total amount of p-tert-butylphenol and the substituted phenol represented by the above formula (1), among which 1.1 to 1. A range of 5 moles is particularly preferred. When the amount is less than 1 mol, there is a concern that unreacted monomers increase and odor and volatile organic compounds increase. When the amount is more than 2 moles, a large amount of formaldehyde remains unreacted, and there is a concern that the resin has a three-dimensional structure and the softening point is increased.

アルカリ触媒としては、アルカリ金属やアルカリ土類金属の水酸化物または炭酸塩、アンモニア、アミンのような、通常のレゾール型縮合物を製造する際に用いられるものを使用することができる。アルカリ金属やアルカリ土類金属の水酸化物または炭酸塩の具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。この中でも、水酸化ナトリウム、水酸化カリウムが好ましい。これらのアルカリは固体状のものでも、水溶液状のものでも利用可能であるが、反応性、取扱いの面から水溶液のものを使用することが好ましい。水溶液状のものを使用する場合、その濃度は通常、10重量%〜50重量%のものを使用する。アルカリの仕込みモル比としては通常限定されないが、p−tert-ブチルフェノールと上記式(1)の置換フェノールの総量に対し、0.03〜0.2倍モルの範囲が好ましい。 As an alkali catalyst, what is used when manufacturing a normal resol type | mold condensate like the hydroxide or carbonate of an alkali metal or an alkaline-earth metal, ammonia, and an amine can be used. Specific examples of the alkali metal or alkaline earth metal hydroxide or carbonate include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, and potassium carbonate. Among these, sodium hydroxide and potassium hydroxide are preferable. These alkalis can be used in the form of a solid or an aqueous solution, but it is preferable to use an aqueous solution in terms of reactivity and handling. When an aqueous solution is used, the concentration is usually 10% to 50% by weight. Although it does not normally limit as a preparation molar ratio of an alkali, The range of 0.03-0.2 times mole is preferable with respect to the total amount of the substituted phenol of p-tert- butylphenol and said Formula (1).

レゾール型縮合物を得る反応は、溶媒中で行うことも可能である。使用する溶媒は特に限定されることはなく、水、アルコール、芳香族炭化水素等を用いることが出来る。具体的には、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、エチルベンゼン、クメン、モノクロロベンゼンなどが例示される。中でも水、トルエン、キシレンが好ましい。これらの溶媒は単独あるいは2種類以上を併用して用いることも可能である。また、レゾール型縮合物を得る反応は通常、反応温度40〜100℃、1〜8時間で実施される。 The reaction for obtaining the resol-type condensate can also be performed in a solvent. The solvent to be used is not particularly limited, and water, alcohol, aromatic hydrocarbon and the like can be used. Specifically, methanol, ethanol, propanol, butanol, toluene, xylene, ethylbenzene, cumene, monochlorobenzene and the like are exemplified. Of these, water, toluene, and xylene are preferable. These solvents can be used alone or in combination of two or more. The reaction for obtaining the resol-type condensate is usually carried out at a reaction temperature of 40 to 100 ° C. for 1 to 8 hours.

レゾルシンの仕込みモル比は通常限定されないが、p−tert-ブチルフェノールと前記式(1)の置換フェノールの総量に対し、0.5〜4.0倍モルの範囲であることが好ましく、その中でも0.8〜1.2倍の範囲が特に好ましい。 The molar ratio of resorcin charged is not particularly limited, but it is preferably in the range of 0.5 to 4.0 times the total amount of p-tert-butylphenol and the substituted phenol of formula (1). A range of .8 to 1.2 times is particularly preferable.

レゾール型縮合物とレゾルシンとの反応は、溶媒中で行うことも可能である。使用する溶媒は特に限定されることはなく、水、アルコール、芳香族炭化水素等を用いることが出来る。具体的には、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、エチルベンゼン、クメン、モノクロロベンゼンなどが例示される。中でも水、トルエン、キシレンが好ましい。これらの溶媒は単独あるいは2種類以上を併用して用いることも可能である。また、レゾール型縮合物とレゾルシンとの反応は通常、反応温度40〜150℃、1〜8時間で実施される。 The reaction between the resole-type condensate and resorcin can also be performed in a solvent. The solvent to be used is not particularly limited, and water, alcohol, aromatic hydrocarbon and the like can be used. Specifically, methanol, ethanol, propanol, butanol, toluene, xylene, ethylbenzene, cumene, monochlorobenzene and the like are exemplified. Of these, water, toluene, and xylene are preferable. These solvents can be used alone or in combination of two or more. The reaction between the resole-type condensate and resorcin is usually carried out at a reaction temperature of 40 to 150 ° C. for 1 to 8 hours.

こうして得られる本発明の共縮合物は、共縮合物を構成するp−tert−ブチルフェノール成分(ユニット)と式(1)で表される置換フェノール成分(ユニット)の合計量に対するp−tert−ブチルフェノール成分(ユニット)の割合が、物質量(モル)基準で10〜50%となる。この割合は、得られた共縮合物をH−NMRにて分析を行い、以下の計算を行い決定される
(p−tert−ブチル基由来のプロトンの積分値/9)/〔(p−tert−ブチル基由来のプロトンの積分値/9)+(式(1)で表される置換フェノール由来のアルキル基(R)由来のプロトンの積分値)/(アルキル基のプロトン数)〕×100
50%より高いと軟化点が高くなり、混練時にゴムに効率よく分散しなくなる。
The cocondensate of the present invention thus obtained is p-tert-butylphenol relative to the total amount of the p-tert-butylphenol component (unit) constituting the cocondensate and the substituted phenol component (unit) represented by formula (1). The ratio of the component (unit) is 10 to 50% on the basis of the substance amount (mol). This ratio is determined by analyzing the obtained cocondensate by 1 H-NMR and performing the following calculation: (integral value of protons derived from p-tert-butyl group / 9) / [(p- integral value of protons derived from tert-butyl group / 9) + (integral value of protons derived from alkyl group (R) derived from substituted phenol represented by formula (1)) / (number of protons of alkyl group)] × 100
If it is higher than 50%, the softening point becomes high and the rubber is not efficiently dispersed during kneading.

本発明の共縮合物中に含まれる、未反応モノマーであるp−tert-ブチルフェノール、式(1)で示される置換アルキルフェノール、レゾルシンの総量は特に限定されないが、15重量%以下であることが好ましい。15重量%以下とすることで臭気が低減可能であり、併せて揮発性有機化合物が低減され、環境上好ましい。 The total amount of unreacted monomer p-tert-butylphenol, substituted alkylphenol represented by formula (1) and resorcin contained in the cocondensate of the present invention is not particularly limited, but is preferably 15% by weight or less. . By setting the content to 15% by weight or less, the odor can be reduced, and the volatile organic compound is reduced.

本発明の共縮合物の軟化点は特に限定されないが、80℃〜190℃の範囲であることが好ましい。中でも90℃〜160℃であることが特に好ましい。80℃より低いと保存中にブロッキングしてしまう懸念があり、190℃より高いとゴム成分と混練するときに分散不良となる懸念がある。 The softening point of the cocondensate of the present invention is not particularly limited, but is preferably in the range of 80 ° C to 190 ° C. Of these, 90 ° C. to 160 ° C. is particularly preferable. If it is lower than 80 ° C., there is a concern of blocking during storage, and if it is higher than 190 ° C., there is a concern of poor dispersion when kneaded with the rubber component.

本発明のゴム組成物は上記の共縮合物とゴム成分と充填剤とイオウとを混練して得られる。これらとともに加硫促進剤、酸化亜鉛、ホルムアルデヒド発生剤や有機コバルト化合物を混練することが好ましい。   The rubber composition of the present invention is obtained by kneading the above-mentioned cocondensate, rubber component, filler and sulfur. It is preferable to knead a vulcanization accelerator, zinc oxide, a formaldehyde generator and an organic cobalt compound together with these.

上記の共縮合物の使用量は特に限定されるものではないが、通常はゴム成分100重量部あたり0.5〜10重量部の範囲で用いられる。中でも1〜5重量部の範囲が好ましい。0.5重量部より少ない場合補強材とゴムとの接着剤として有用に作用せず、10重量部より多い場合、 前記作用に問題はないが添加量に見合う作用が発現せず経済的に好ましくない。 Although the usage-amount of said cocondensate is not specifically limited, Usually, it is used in the range of 0.5-10 weight part per 100 weight part of rubber components. Among these, the range of 1 to 5 parts by weight is preferable. When the amount is less than 0.5 parts by weight, it does not function usefully as an adhesive between the reinforcing material and the rubber. Absent.

ゴム成分としては、天然ゴム、エポキシ化天然ゴム、脱蛋白天然ゴムおよびその他の変性天然ゴムのほか、ポリイソプレンゴム(IR)、スチレン・ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、イソプレン・イソブチレン共重合ゴム(IIR)、エチレン・プロピレン−ジエン共重合ゴム(EPDM)、ハロゲン化ブチルゴム(HR)等の各種の合成ゴムが例示されるが、天然ゴム、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム等の高不飽和性ゴムが好ましく用いられる。特に好ましくは天然ゴムである。また、天然ゴムとスチレン・ブタジエン共重合ゴムの併用、天然ゴムとポリブタジエンゴムの併用等、数種のゴム成分を組み合わせることも有効である。 Rubber components include natural rubber, epoxidized natural rubber, deproteinized natural rubber and other modified natural rubber, as well as polyisoprene rubber (IR), styrene / butadiene copolymer rubber (SBR), polybutadiene rubber (BR), and acrylonitrile. -Various synthetic rubbers such as butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber (IIR), ethylene / propylene-diene copolymer rubber (EPDM), halogenated butyl rubber (HR), etc. are exemplified. Highly unsaturated rubbers such as rubber, styrene / butadiene copolymer rubber and polybutadiene rubber are preferably used. Particularly preferred is natural rubber. It is also effective to combine several rubber components such as a combination of natural rubber and styrene / butadiene copolymer rubber, a combination of natural rubber and polybutadiene rubber.

天然ゴムの例としては、RSS#1、RSS#3、TSR20、SIR20等のグレードの天然ゴムを挙げることができる。エポキシ化天然ゴムとしては、エポキシ化度10〜60モル%のものが好ましく、例えばクンプーラン ガスリー社製ENR25やENR50が例示できる。脱蛋白天然ゴムとしては、総窒素含有率が0.3重量%以下である脱蛋白天然ゴムが好ましい。変性天然ゴムとしては天然ゴムにあらかじめ4−ビニルピリジン、N,N,−ジアルキルアミノエチルアクリレート(例えばN,N,−ジエチルアミノエチルアクリレート)、2−ヒドロキシアクリレート等を反応させた極性基を含有する変性天然ゴムが好ましく用いられる。 Examples of natural rubber include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, SIR20 and the like. As the epoxidized natural rubber, those having a degree of epoxidation of 10 to 60 mol% are preferable, and examples thereof include ENR25 and ENR50 manufactured by Kumpoulan Guthrie. As the deproteinized natural rubber, a deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable. The modified natural rubber contains a polar group obtained by reacting natural rubber with 4-vinylpyridine, N, N, -dialkylaminoethyl acrylate (for example, N, N, -diethylaminoethyl acrylate), 2-hydroxyacrylate, or the like in advance. Natural rubber is preferably used.

SBRの例としては、日本ゴム協会編「ゴム工業便覧<第四版>」の210〜211頁に記載されている乳化重合SBRおよび溶液重合SBRを挙げることができる。とりわけ溶液重合SBRが好ましく用いられ、更には日本ゼオン社製「ニッポール(登録商標)NS116」等の4,4’−ビス−(ジアルキルアミノ)ベンゾフェノンを用いて分子末端を変性した溶液重合SBR、JSR社製「SL574」等のハロゲン化スズ化合物を用いて分子末端を変性した溶液重合SBR、旭化成社製「E10」、「E15」等シラン変性溶液重合SBRの市販品や、ラクタム化合物、アミド化合物、尿素系化合物、N,N−ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(トリアルコキシシラン化合物等)、アミノシラン化合物のいずれかを単独で用いて、または、スズ化合物とアルコキシ基を有するシラン化合物や、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物等、前記記載の異なった複数の化合物を2種以上用いて、それぞれ分子末端を変性して得られる分子末端に窒素、スズ、ケイ素のいずれか、またはそれら複数の元素を有する溶液重合SBRが、特に好ましく用いられる。 Examples of the SBR include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. In particular, solution polymerization SBR is preferably used, and further, solution polymerization SBR, JSR in which molecular ends are modified with 4,4′-bis- (dialkylamino) benzophenone such as “Nippol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd. Solution polymerized SBR having a molecular end modified with a tin halide compound such as “SL574” manufactured by the company, commercially available silane-modified solution polymerized SBR such as “E10” and “E15” manufactured by Asahi Kasei Corporation, lactam compounds, amide compounds, A urea compound, an N, N-dialkylacrylamide compound, an isocyanate compound, an imide compound, a silane compound having an alkoxy group (trialkoxysilane compound, etc.), an aminosilane compound alone, or a tin compound and an alkoxy group Silane compounds with alkyl and alkyl acrylamide compounds And silane compound having an alkoxy group or the like, and using two or more different compounds described above and modifying the molecular terminals, respectively, nitrogen, tin, silicon, or a plurality of these elements A solution-polymerized SBR having the following is particularly preferably used.

BRの例としては、シス1,4結合が90%以上の高シスBRやシス結合が35%前後の低シスBR等の溶液重合BRが例示され、高ビニル含量の低シスBRは好ましく用いられる。更には日本ゼオン製「Nipol(登録商標)BR 1250H」等スズ変性BRや、4,4‘−ビス−(ジアルキルアミノ)ベンゾフェノン、ハロゲン化スズ化合物、ラクタム化合物、アミド化合物、尿素系化合物、N,N−ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(トリアルコキシシラン化合物等)、アミノシラン化合物のいずれかを単独で用いて、または、スズ化合物とアルコキシ基を有するシラン化合物や、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物等、前記記載の異なった複数の化合物を2種以上用いて、それぞれ分子末端を変性して得られる分子末端に窒素、スズ、ケイ素のいずれか、またはそれら複数の元素を有する溶液重合BRが、特に好ましく用いられる。これらBRは通常は天然ゴムとのブレンドで使用される。 Examples of BR include solution polymerization BR such as high cis BR having 90% or more of cis 1,4 bond and low cis BR having cis bond of around 35%, and low cis BR having a high vinyl content is preferably used. . Furthermore, tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon, 4,4′-bis- (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, An N-dialkylacrylamide compound, an isocyanate compound, an imide compound, a silane compound having an alkoxy group (trialkoxysilane compound, etc.), an aminosilane compound alone, or a silane compound having a tin compound and an alkoxy group, Using two or more different compounds as described above, such as an alkylacrylamide compound and a silane compound having an alkoxy group, each of the molecular ends obtained by modifying the molecular ends is either nitrogen, tin, or silicon, or those Solution polymerization B with multiple elements But particularly preferably used. These BRs are usually used in blends with natural rubber.

ゴム成分としては天然ゴムが好ましく、ゴム成分に占める天然ゴムの割合は70重量%以上であることが好ましい。 Natural rubber is preferred as the rubber component, and the proportion of natural rubber in the rubber component is preferably 70% by weight or more.

充填剤としては、ゴム分野で通常使用されているカーボンブラック、シリカ、タルク、クレイ、水酸化アルミニウム、酸化チタン等が例示されるが、カーボンブラック及びシリカが好ましく用いられ、更にはカーボンブラックが特に好ましく使用される。カーボンブラックとしては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の494頁に記載されるものが挙げられ、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、FEF(Fast Extrusion Furnace)、MAF、GPF(General Purpose Furnace)、SRF(Semi-Reinforcing Furnace)等のカーボンブラックが好ましい。タイヤトレッド用ゴム組成物にはCTAB表面積40〜250m2/g、窒素吸着比表面積20〜200m2/g、粒子径10〜50nmのカーボンブラックが好ましく用いられ、CTAB表面積70〜180m2/gであるカーボンブラックが更に好ましく、その例としてはASTMの規格において、N110、N220、N234、N299、N326、N330、N330T、N339、N343、N351等である。またカーボンブラックの表面にシリカを0.1〜50重量%付着させた表面処理カーボンブラックも好ましい。更には、カーボンブラックとシリカの併用等、数種の充填剤を組み合わせることも有効である。 Examples of the filler include carbon black, silica, talc, clay, aluminum hydroxide, titanium oxide and the like that are usually used in the rubber field. Carbon black and silica are preferably used, and carbon black is particularly preferable. Preferably used. Examples of the carbon black include those described on page 494 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. HAF (High Abrasion Furnace), SAF (Super Abrasion Furnace), ISAF (Intermediate). Carbon blacks such as SAF), FEF (Fast Extrusion Furnace), MAF, GPF (General Purpose Furnace), and SRF (Semi-Reinforcing Furnace) are preferred. For the tire tread rubber composition, carbon black having a CTAB surface area of 40 to 250 m @ 2 / g, a nitrogen adsorption specific surface area of 20 to 200 m @ 2 / g, and a particle diameter of 10 to 50 nm is preferably used, and a carbon black having a CTAB surface area of 70 to 180 m @ 2 / g. More preferable examples include N110, N220, N234, N299, N326, N330, N330T, N339, N343, and N351 in the ASTM standard. A surface-treated carbon black in which 0.1 to 50% by weight of silica is attached to the surface of the carbon black is also preferable. Furthermore, it is also effective to combine several kinds of fillers such as a combination of carbon black and silica.

シリカとしては、CTAB比表面積50〜180m2/gや、窒素吸着比表面積50〜300m2/gのシリカが例示され、東ソー・シリカ(株)社製「AQ」、「AQ−N」、デグッサ社製「ウルトラジル(登録商標)VN3」、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」、日本シリカ社製「ニップシール(登録商標)AQ」等の市販品が好ましく用いられる。また通常充填剤としてシリカを用いる場合にはビス(3−トリエトキシシリルプロピル)テトラスルフィド(デグッサ社製「Si−69」)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(デグッサ社製「Si−75」)、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3−ジエトキシメチルシリルプロピル)ジスルフィド、オクタンチオ酸S−[3−(トリエトキシシリル)プロピル]エステル(ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)からなる群から選択される1種以上のシランカップリング剤等、シリカと結合可能なケイ素等の元素またはアルコシキシラン等の官能基を有する化合物を添加することが好ましい。 Examples of the silica include silica having a CTAB specific surface area of 50 to 180 m <2> / g and a nitrogen adsorption specific surface area of 50 to 300 m <2> / g. "AQ", "AQ-N" manufactured by Tosoh Silica Co., Ltd., manufactured by Degussa "Ultrasil (registered trademark) VN3", "Ultrasil (registered trademark) 360", "Ultrasil (registered trademark) 7000", "Zeosil (registered trademark) 115GR", "Zeosil (registered trademark) 1115MP" manufactured by Rhodia Commercially available products such as “Zeosil (registered trademark) 1205MP”, “Zeosil (registered trademark) Z85MP”, and “Nip Seal (registered trademark) AQ” manufactured by Nippon Silica Co., Ltd. are preferably used. When silica is usually used as a filler, bis (3-triethoxysilylpropyl) tetrasulfide ("Si-69" manufactured by Degussa) or bis (3-triethoxysilylpropyl) disulfide ("Si-" manufactured by Degussa) 75 "), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, octanethioic acid S- [3- (triethoxysilyl) propyl] ester (General Electronic Silicones) It is preferable to add a compound having an element such as silicon that can be bonded to silica or a functional group such as alkoxysilane, such as one or more silane coupling agents selected from the group consisting of “NXT silane” manufactured by the same manufacturer.

水酸化アルミニウムとしては、窒素吸着比表面積5〜250m2/g、DOP給油量50〜100ml/100gの水酸化アルミニウムが例示される。 Examples of aluminum hydroxide include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m @ 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.

かかる充填剤の使用量は特に限定されるものではないが、ゴム成分100重量部あたり10〜120重量部の範囲が好ましい。特に好ましいのは30〜70重量部である。 The amount of the filler used is not particularly limited, but is preferably in the range of 10 to 120 parts by weight per 100 parts by weight of the rubber component. Particularly preferred is 30 to 70 parts by weight.

充填剤としてはカーボンブラックが好ましく、充填剤に占めるカーボンブラックの割合は70重量%以上であることが好ましい。 The filler is preferably carbon black, and the proportion of carbon black in the filler is preferably 70% by weight or more.

硫黄成分としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、及び高分散性硫黄等が挙げられる。通常は粉末硫黄が好ましく、タイヤのベルト用部材等の硫黄量が多いタイヤ部材に用いる場合には不溶性硫黄が好ましい。硫黄成分の使用量は特に限定されるものではないが、ゴム成分100重量部あたり1〜10重量部の範囲が好ましい。タイヤのベルト用部材等では5〜10重量部の範囲が好ましい。 Examples of the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Usually, powdered sulfur is preferred, and insoluble sulfur is preferred when used for tire members having a large amount of sulfur such as tire belt members. Although the usage-amount of a sulfur component is not specifically limited, The range of 1-10 weight part per 100 weight part of rubber components is preferable. The range of 5 to 10 parts by weight is preferable for tire belt members and the like.

加硫促進剤の例としては、ゴム工業便覧<第四版>(平成6年1月20日社団法人 日本ゴム協会発行)の412〜413ページに記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が挙げられる。 Examples of vulcanization accelerators include thiazole-based vulcanization accelerators and sulfur compounds described on pages 412 to 413 of Rubber Industry Handbook <Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994). Examples thereof include phenamide vulcanization accelerators and guanidine vulcanization accelerators.

具体的には、例えば、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロへキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)、2−メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)、ジフェニルグアニジン(DPG)が挙げられる。中でも、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロへキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)、またはジベンゾチアジルジスルフィド(MBTS)とジフェニルグアニジン(DPG)とを併用することが好ましい。 Specifically, for example, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2 -Benzothiazolylsulfenamide (DCBS), 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS), diphenylguanidine (DPG). Among them, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2-benzothiazolylsulfur It is preferable to use phenamide (DCBS) or dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG) in combination.

加硫促進剤の使用量は特に限定されるものではないが、ゴム成分100重量部あたり0.5〜3重量部の範囲が好ましい。中でも0.5〜1.2重量部の範囲が特に好ましい。 Although the usage-amount of a vulcanization accelerator is not specifically limited, The range of 0.5-3 weight part per 100 weight part of rubber components is preferable. In particular, the range of 0.5 to 1.2 parts by weight is particularly preferable.

酸化亜鉛の使用量は特に限定されるものではないが、ゴム成分100重量部あたり3〜15重量部の範囲が好ましい。中でも5〜10重量部の範囲が特に好ましい。 Although the usage-amount of zinc oxide is not specifically limited, The range of 3-15 weight part per 100 weight part of rubber components is preferable. Among these, the range of 5 to 10 parts by weight is particularly preferable.

ホルムアルデヒド発生剤としては、ヘキサメチレンテトラミン、ヘキサキス(メトキシメチル)メラミン、ペンタキス(メトキシメチル)メチロールメラミン、テトラキス(メトキシメチル)ジメチロールメラミン等のゴム工業において通常使用されているものを挙げることができる。中でもヘキサキス(メトキシメチル)メラミン単独又はそれを主成分とする混合物が好ましい。これらのホルムアルデヒド発生剤は、それぞれ単独で、又は組み合わせて用いることができ、その配合量は前記ゴム成分100重量部に対し、0.5〜4重量部程度の範囲が好ましく、1〜3重量部程度の範囲がより好ましい。 Examples of the formaldehyde generator include those usually used in the rubber industry such as hexamethylenetetramine, hexakis (methoxymethyl) melamine, pentakis (methoxymethyl) methylolmelamine, and tetrakis (methoxymethyl) dimethylolmelamine. Among them, hexakis (methoxymethyl) melamine alone or a mixture containing it as a main component is preferable. These formaldehyde generators can be used alone or in combination, and the blending amount thereof is preferably in the range of about 0.5 to 4 parts by weight with respect to 100 parts by weight of the rubber component, and 1 to 3 parts by weight. A range of the degree is more preferable.

有機コバルト化合物としては、例えば、ナフテン酸コバルト、ステアリン酸コバルト等の酸コバルト塩や、脂肪酸コバルト・ホウ素錯体化合物(例えば、商品名「マノボンドC(登録商標)」:ローディア社製)等が挙げられる。有機コバルト化合物の使用量は、前記ゴム成分100重量部に対し、コバルト含量にして0.05〜0.4重量部の範囲が好ましい。 Examples of the organic cobalt compound include acid cobalt salts such as cobalt naphthenate and cobalt stearate, and fatty acid cobalt / boron complex compounds (for example, trade name “Manobond C (registered trademark)” manufactured by Rhodia). . The amount of the organic cobalt compound used is preferably in the range of 0.05 to 0.4 parts by weight in terms of cobalt content with respect to 100 parts by weight of the rubber component.

本発明のゴム組成物は従来よりゴム分野で用いられている各種の配合剤を配合し、混練することも可能である。かかる配合剤としては、例えば、老化防止剤、オイル、リターダー、しゃく解剤、ステアリン酸等が挙げられる。 The rubber composition of the present invention can be compounded with various compounding agents conventionally used in the rubber field and kneaded. Examples of such compounding agents include anti-aging agents, oils, retarders, peptizers, and stearic acid.

上記の老化防止剤としては、例えば日本ゴム協会編「ゴム工業便覧<第四版>」の436〜443頁に記載されるものが挙げられる。中でもN−フェニル−N’−1,3−ジメチルブチル−p−フェニレンジアミン(6PPD)、アニリンとアセトンの反応生成物(TMDQ)、ポリ(2,2,4−トリメチル−1,2−)ジヒドロキノリン)(松原産業社製「アンチオキシダントFR」)、合成ワックス(パラフィンワックス等)、植物性ワックスが好ましく用いられる。 Examples of the anti-aging agent include those described in pages 436 to 443 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Among them, N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine (6PPD), reaction product of aniline and acetone (TMDQ), poly (2,2,4-trimethyl-1,2-) dihydro Quinoline) (“Antioxidant FR” manufactured by Matsubara Sangyo Co., Ltd.), synthetic wax (paraffin wax, etc.) and vegetable wax are preferably used.

上記のオイルとしては、プロセスオイル、植物油脂等が挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル等が挙げられる。 Examples of the oil include process oil and vegetable oil. Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.

上記のリターダーとしては、無水フタル酸、安息香酸、サリチル酸、N−ニトロソジフェニルアミン、N−(シクロヘキシルチオ)−フタルイミド(CTP)、スルホンアミド誘導体、ジフェニルウレア、ビス(トリデシル)ペンタエリスリトール−ジホスファイト等が例示され、N−(シクロヘキシルチオ)−フタルイミド(CTP)が好ましく用いられる。 Examples of the retarder include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) -phthalimide (CTP), sulfonamide derivatives, diphenylurea, bis (tridecyl) pentaerythritol-diphosphite, etc. N- (cyclohexylthio) -phthalimide (CTP) is preferably used.

本発明の共縮合物を含むゴム組成物は、例えば以下の方法により得ることが出来る。   The rubber composition containing the cocondensate of the present invention can be obtained, for example, by the following method.

(A)充填剤とゴム成分を混練する工程
充填剤とゴム成分の混練はバンバリーミキサー等の密閉式混練装置を用いて行うことが出来る。かかる混練は、通常、発熱を伴い、混練終了時の温度が140℃〜180℃の範囲であることが好ましく、150℃〜170℃の範囲であることが、さらに(より)好ましい。混練時間は5分〜10分程度である。
(A) Process of kneading filler and rubber component The filler and rubber component can be kneaded using a closed kneading apparatus such as a Banbury mixer. Such kneading usually involves heat generation, and the temperature at the end of kneading is preferably in the range of 140 ° C. to 180 ° C., and more preferably (more) in the range of 150 ° C. to 170 ° C. The kneading time is about 5 to 10 minutes.

(B)Aの工程で得た混練物と硫黄成分と加硫促進剤を混練する工程
Aの工程で得た混練物と硫黄成分と加硫促進剤の混練は、例えばバンバリーミキサー等の密閉式混練装置やオープンロールを用いて行うことが出来る。混練終了時の混練物の温度が30℃〜100℃であることが好ましく、60℃〜90℃であることがより好ましい。混練時間は通常5〜10分程度である。
(B) The kneaded product obtained in step A, the sulfur component and the vulcanization accelerator are kneaded. The kneaded product obtained in step A, the sulfur component and the vulcanization accelerator are kneaded, for example, in a sealed manner such as a Banbury mixer. It can be performed using a kneading apparatus or an open roll. The temperature of the kneaded product at the end of kneading is preferably 30 ° C to 100 ° C, and more preferably 60 ° C to 90 ° C. The kneading time is usually about 5 to 10 minutes.

本発明の共縮合物、酸化亜鉛、老化防止剤、オイル、脂肪酸類、しゃく解剤は(A)の工程で加えることが好ましい。 The cocondensate, zinc oxide, antioxidant, oil, fatty acids and peptizer of the present invention are preferably added in the step (A).

リターダーは(B)の工程で加えることが好ましい。 The retarder is preferably added in the step (B).

こうして得られた本発明の共縮合物を含むゴム組成物は、特に補強材との加硫接着において有効である。かかる補強材としては、ナイロン、レーヨン、ポリエステル、アラミド等の有機繊維類、真鍮メッキしたスチールコード、亜鉛メッキしたスチールコード等のスチールコード類が例示される。中でも真鍮メッキしたスチールコードとの加硫接着において特に有効である。 The rubber composition containing the cocondensate of the present invention thus obtained is particularly effective in vulcanization adhesion with a reinforcing material. Examples of the reinforcing material include organic fibers such as nylon, rayon, polyester, and aramid, and steel cords such as a brass-plated steel cord and a galvanized steel cord. In particular, it is particularly effective in vulcanization adhesion with a steel cord plated with brass.

本発明の共縮合物を含むゴム組成物を補強材と共に成形し、加硫工程を経ることでゴムと補強材が強固に接着したゴム製品を得ることが出来る。加硫工程は120℃〜180℃で行うことが好ましい。加硫工程は常圧又は加圧下で行われる。 The rubber composition containing the cocondensate of the present invention is molded together with a reinforcing material, and a rubber product in which the rubber and the reinforcing material are firmly bonded can be obtained through a vulcanization process. The vulcanization step is preferably performed at 120 ° C to 180 ° C. The vulcanization step is performed at normal pressure or under pressure.

以下、実施例と比較例を示すことで本発明をより具体的に説明する。なお、本発明はこれらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically by showing examples and comparative examples. In addition, this invention is not limited at all by these examples.

共縮合物の分析および性能評価は以下のようにして行った。
「樹脂の平均分子量の測定」
共縮合物の平均分子量に関しては、ゲル透過クロマトグラフィー(GPC)により、ポリスチレン換算重量平均分子量として算出した。
The analysis and performance evaluation of the cocondensate were performed as follows.
"Measurement of average molecular weight of resin"
The average molecular weight of the cocondensate was calculated as a polystyrene-converted weight average molecular weight by gel permeation chromatography (GPC).

「残留モノマー、残留溶媒の測定」
残留モノマー及び残留溶媒については、以下の条件に基づくガスクロマトグラフィーにより定量を行った。
使用機器 :島津製作所社製 ガスクロマトグラフ GC−14B
カラム :ガラスカラム外径5mm×内径3.2mm×長さ3.1m
充填剤 :充填剤 Silicone OV-17 10% Chromosorb WHP 80/100meshx, max.temp.340℃
カラム温度:80℃→280℃
気化室温度:250℃
検出器温度:280℃
検出器 :FID
キャリアー:N(40ml/min)
燃焼ガス :水素(60kPa), 空気(60kPa)
注入量 :2μL
樹脂架橋剤1g、標品としてアニソール0.05gをアセトン10mLに溶解させ上記条件にて分析した。内部標準法(GC-IS法)により、樹脂中の残留溶媒、残留モノマーの含有量(%)を測定した。
なお、実施例および比較例の本文中に記載した含有量(%)は、特に断りのない限り重量パーセントとして表すものとする。
"Measurement of residual monomer and solvent"
The residual monomer and residual solvent were quantified by gas chromatography based on the following conditions.
Equipment used: Gas chromatograph GC-14B manufactured by Shimadzu Corporation
Column: Glass column outer diameter 5mm x inner diameter 3.2mm x length 3.1m
Filler: Filler Silicone OV-17 10% Chromosorb WHP 80 / 100meshx, max.temp. 340 ℃
Column temperature: 80 ° C → 280 ° C
Vaporization chamber temperature: 250 ° C
Detector temperature: 280 ° C
Detector: FID
Carrier: N 2 (40ml / min)
Combustion gas: Hydrogen (60kPa), Air (60kPa)
Injection volume: 2 μL
1 g of a resin crosslinking agent and 0.05 g of anisole as a standard were dissolved in 10 mL of acetone and analyzed under the above conditions. Residual solvent and residual monomer content (%) in the resin was measured by an internal standard method (GC-IS method).
The contents (%) described in the texts of the examples and comparative examples are expressed as weight percent unless otherwise specified.

「軟化点の測定」
JIS-K2207に準拠した方法により測定した。なお、軟化点が190℃を超えるものはゴムへの分散性が悪く、補強材とゴムとの接着剤として好ましくない。
"Measurement of softening point"
Measured by a method based on JIS-K2207. A material having a softening point exceeding 190 ° C. is not preferable as an adhesive between a reinforcing material and rubber because of its poor dispersibility in rubber.

「共縮合物を構成するp−tert−ブチルフェノール成分(ユニット)と式(1)で表される置換フェノール成分(ユニット)の合計量に対するp−tert−ブチルフェノール成分(ユニット)の割合」
以下条件に基づく方法によりH−NMR分析を行い、〔0019〕に記載される計算式に基づき算出を行った。
装置:日本電子社製「JMN-ECS」(400MHz)
溶媒:重水素置換ジメチルスルホキシド
各成分の化学シフト:テトラメチルシランを基準(0ppm)とし、以下の値に示されるピークをそれぞれの成分のピークとした。
p−tert−ブチルフェノール由来のp−tert−ブチル基のプロトン:1.0〜1.2ppm
p−クレゾール由来のメチル基(式(1)で表される置換フェノール由来のアルキル基(R))のプロトン:1.9〜2.3ppm
“Ratio of the p-tert-butylphenol component (unit) to the total amount of the p-tert-butylphenol component (unit) constituting the cocondensate and the substituted phenol component (unit) represented by the formula (1)”
1 H-NMR analysis was performed by a method based on the following conditions, and calculation was performed based on the calculation formula described in [0019].
Equipment: “JMN-ECS” (400 MHz) manufactured by JEOL Ltd.
Solvent: Chemical shift of each component of deuterium-substituted dimethyl sulfoxide: Tetramethylsilane was used as a reference (0 ppm), and the peaks shown in the following values were taken as the peaks of the respective components.
Proton of p-tert-butyl group derived from p-tert-butylphenol: 1.0 to 1.2 ppm
Proton of methyl group derived from p-cresol (alkyl group (R) derived from substituted phenol represented by formula (1)): 1.9 to 2.3 ppm

還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度92%のパラホルムアルデヒド43.5g (1.33mol)、p−tert-ブチルフェノール75.0g(0.50mol)、p−クレゾール54.0g(0.50mol)、トルエン75.0gを順に加えた。その後、内温45℃まで昇温し、48%水酸化ナトリウム水溶液4.16g (0.05mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて2時間保温した。その後、内温80℃になるまで再度昇温し、さらに1.5時間保温した。
反応終了後、内温75℃以下になるまで冷却し、シュウ酸二水和物3.15g (0.025mol)を加えて中和した後、レゾルシン110g (1.00mol)を加え、内温108〜111℃まで昇温し4時間かけて共沸脱水を行った。続いて、常圧のまま内温145〜150℃まで昇温し、2時間保温することで溶媒トルエンを留去した。その後、内温140〜150℃に保ったまま16kPaまで減圧し、2時間保温することで溶媒トルエンをさらに留去した。
上記の操作により、橙色の共縮合物259gを得た。
共縮合物の平均分子量:1334、共縮合物の軟化点:184.6℃、共縮合物中の残留トルエン分:1.4%、残留p−tert-ブチルフェノール分:4.4%、残留p−クレゾール分:2.7%、残留レゾルシン分:5.5%。p−tert-ブチル基とRの合計量に対するp−tert-ブチル基の割合:50%。
A four-necked separable flask equipped with a reflux condenser and a thermometer was charged with 43.5 g (1.33 mol) of paraformaldehyde having a purity of 92%, 75.0 g (0.50 mol) of p-tert-butylphenol, and 54.0 g (0.50 mol) of p-cresol. ) And 75.0 g of toluene were sequentially added. Thereafter, the internal temperature was raised to 45 ° C., 4.16 g (0.05 mol) of a 48% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C. and kept at that temperature for 2 hours. Thereafter, the temperature was raised again until the internal temperature reached 80 ° C, and the temperature was further maintained for 1.5 hours.
After completion of the reaction, the mixture was cooled to an internal temperature of 75 ° C. or less, neutralized by adding 3.15 g (0.025 mol) of oxalic acid dihydrate, and then added with 110 g (1.00 mol) of resorcin, and an internal temperature of 108 to 111 ° C. The temperature was raised to azeotropic dehydration over 4 hours. Subsequently, the temperature was raised to an internal temperature of 145 to 150 ° C. with normal pressure, and the solvent toluene was distilled off by keeping the temperature for 2 hours. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and the solvent toluene was further distilled off by keeping the temperature for 2 hours.
By the above operation, 259 g of orange cocondensate was obtained.
Average molecular weight of the cocondensate: 1334, softening point of the cocondensate: 184.6 ° C., residual toluene content in the cocondensate: 1.4%, residual p-tert-butylphenol content: 4.4%, residual p-cresol content: 2.7% Residual resorcin content: 5.5%. Ratio of p-tert-butyl group to the total amount of p-tert-butyl group and R: 50%.

実施例1において、p−tert-ブチルフェノールの仕込み量を60.0g(0.40mol)、p−クレゾールの仕込み量を64.8g(0.60mol)に変更した以外は、同様の条件にして合成を行った。
上記の操作により、橙色の共縮合物253gを得た。
共縮合物の平均分子量:1425、共縮合物の軟化点:156.4℃、共縮合物中の残留トルエン分:1.5%、残留p−tert-ブチルフェノール分:4.9%、残留p−クレゾール分:3.3%、残留レゾルシン分:4.2%。p−tert-ブチル基とRの合計量に対するp−tert-ブチル基の割合:41%。
In Example 1, the synthesis was performed under the same conditions except that the amount of p-tert-butylphenol charged was changed to 60.0 g (0.40 mol) and the amount of p-cresol charged was changed to 64.8 g (0.60 mol).
By the above operation, 253 g of orange cocondensate was obtained.
Average molecular weight of the cocondensate: 1425, softening point of the cocondensate: 156.4 ° C., residual toluene content in the cocondensate: 1.5%, residual p-tert-butylphenol content: 4.9%, residual p-cresol content: 3.3% Residual resorcin content: 4.2%. Ratio of p-tert-butyl group to the total amount of p-tert-butyl group and R: 41%.

実施例1において、p−tert-ブチルフェノールの仕込み量を50.0g(0.33mol)、p−クレゾールの仕込み量を72.0g(0.66mol)に変更した以外は、同様の条件にして合成を行った。
上記の操作により、橙色の共縮合物248gを得た。
共縮合物の平均分子量:1223、共縮合物の軟化点:109.8℃、共縮合物中の残留トルエン分:0.4%、残留p−tert-ブチルフェノール分:3.7%、残留p−クレゾール分:6.4%、残留レゾルシン分:11.5%。p−tert-ブチル基とRの合計量に対するp−tert-ブチル基の割合:33%。
In Example 1, the synthesis was performed under the same conditions except that the amount of p-tert-butylphenol charged was changed to 50.0 g (0.33 mol) and the amount of p-cresol charged was changed to 72.0 g (0.66 mol).
By the above operation, 248 g of orange cocondensate was obtained.
Average molecular weight of cocondensate: 1223, softening point of cocondensate: 109.8 ° C., residual toluene content in cocondensate: 0.4%, residual p-tert-butylphenol content: 3.7%, residual p-cresol content: 6.4% Residual resorcin content: 11.5%. Ratio of p-tert-butyl group to the total amount of p-tert-butyl group and R: 33%.

<比較例1>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度92%のパラホルムアルデヒド43.5g (1.33mol)、p−tert-ブチルフェノール100g(0.67mol)、p−クレゾール36.0g(0.33mol)、トルエン75.0gを順に加えた。その後、内温45℃まで昇温し、48%水酸化ナトリウム水溶液4.16g (0.05mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて2時間保温した。その後、内温80℃になるまで再度昇温し、さらに1.5時間保温した。
反応終了後、内温75℃以下になるまで冷却し、シュウ酸二水和物3.15g (0.025mol)を加えて中和した後、レゾルシン110g (1.00mol)を加え、内温108〜111℃まで昇温し4時間かけて共沸脱水を行った。続いて、常圧のまま内温145〜150℃まで昇温し、2時間保温することで溶媒トルエンを留去した。その後、内温140〜150℃に保ったまま16kPaまで減圧し、2時間保温することで溶媒トルエンをさらに留去した。
上記の操作により、橙色の共縮合物273gを得た。
共縮合物の平均分子量:1306、共縮合物の軟化点:195℃以上、共縮合物中の残留トルエン分:0.8%、残留p−tert-ブチルフェノール分:2.9%、残留p−クレゾール分:0.9%、残留レゾルシン分:7.5%。p−tert-ブチル基とRの合計量に対するp−tert-ブチル基の割合:67%。
<Comparative Example 1>
A four-necked separable flask equipped with a reflux condenser and a thermometer was charged with 43.5 g (1.33 mol) of paraformaldehyde having a purity of 92%, 100 g (0.67 mol) of p-tert-butylphenol, and 36.0 g (0.33 mol) of p-cresol. Then, 75.0 g of toluene was sequentially added. Thereafter, the internal temperature was raised to 45 ° C., 4.16 g (0.05 mol) of a 48% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C. and kept at that temperature for 2 hours. Thereafter, the temperature was raised again until the internal temperature reached 80 ° C, and the temperature was further maintained for 1.5 hours.
After completion of the reaction, the mixture was cooled to an internal temperature of 75 ° C. or less, neutralized by adding 3.15 g (0.025 mol) of oxalic acid dihydrate, and then added with 110 g (1.00 mol) of resorcin, and an internal temperature of 108 to 111 ° C. The temperature was raised to azeotropic dehydration over 4 hours. Subsequently, the temperature was raised to an internal temperature of 145 to 150 ° C. with normal pressure, and the solvent toluene was distilled off by keeping the temperature for 2 hours. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and the solvent toluene was further distilled off by keeping the temperature for 2 hours.
By the above operation, 273 g of orange cocondensate was obtained.
Average molecular weight of the cocondensate: 1306, softening point of the cocondensate: 195 ° C. or higher, residual toluene content in the cocondensate: 0.8%, residual p-tert-butylphenol content: 2.9%, residual p-cresol content: 0.9 %, Resorcin content: 7.5%. Ratio of p-tert-butyl group to the total amount of p-tert-butyl group and R: 67%.

<比較例2>
比較例1において、p−tert-ブチルフェノールの仕込み量を150g(1.00mol)、p−クレゾールの仕込みを無しに変更した以外は、同様の条件にして合成を行った。
上記の操作により、橙色の共縮合物286gを得た。
共縮合物の平均分子量:1212、共縮合物の軟化点:195℃以上、共縮合物中の残留トルエン分:2.0%、残留p−tert-ブチルフェノール分:2.6%、残留レゾルシン分:10.0%。
<Comparative Example 2>
Synthesis was carried out under the same conditions as in Comparative Example 1, except that the amount of p-tert-butylphenol charged was changed to 150 g (1.00 mol) and that the amount of p-cresol was not charged.
By the above operation, 286 g of orange cocondensate was obtained.
Average molecular weight of the cocondensate: 1212, softening point of the cocondensate: 195 ° C. or higher, residual toluene content in the cocondensate: 2.0%, residual p-tert-butylphenol content: 2.6%, residual resorcin content: 10.0%.

本発明により得られる共縮合物は、ゴム組成物への練り込みによりゴムと各種補強材との接着剤として利用可能である。   The cocondensate obtained by the present invention can be used as an adhesive between rubber and various reinforcing materials by kneading into the rubber composition.

Claims (6)

p−tert−ブチルフェノールと、式(1)
Figure 2014080502
(式中のRは、炭素数1〜3のアルキル基を表す。)
で示される置換フェノールと、ホルムアルデヒドとを、アルカリ触媒の存在下で反応させて得られるレゾール型縮合物に、さらにレゾルシンを反応させて得られる共縮合物であって、前記共縮合物を構成するp−tert−ブチルフェノール成分(ユニット)と式(1)で表される置換フェノール成分(ユニット)の合計量に対するp−tert−ブチルフェノール成分(ユニット)の割合が、物質量(モル)基準で10〜50%であることを特徴とする共縮合物。
p-tert-butylphenol and the formula (1)
Figure 2014080502
(R in the formula represents an alkyl group having 1 to 3 carbon atoms.)
A co-condensate obtained by further reacting resorcin with a resole-type condensate obtained by reacting a substituted phenol represented by formula and formaldehyde in the presence of an alkali catalyst, and constituting the co-condensate The ratio of the p-tert-butylphenol component (unit) to the total amount of the p-tert-butylphenol component (unit) and the substituted phenol component (unit) represented by the formula (1) is 10 to 10 on the basis of the substance amount (mol). Cocondensate characterized by being 50%.
軟化点が80℃以上160℃以下であることを特徴とする請求項1に記載の共縮合物。 2. The cocondensate according to claim 1, wherein the softening point is 80 ° C. or higher and 160 ° C. or lower. 請求項1または2記載の共縮合物中に残留するモノマーであるp−tert−ブチルフェノール、式(1)で示される置換アルキルフェノール及びレゾルシンの総量が15重量%以下であることを特徴とする請求項1または2記載の共縮合物。 The total amount of p-tert-butylphenol, which is a monomer remaining in the cocondensate according to claim 1 or 2, the substituted alkylphenol represented by the formula (1), and resorcin is 15% by weight or less. The cocondensate according to 1 or 2. 式(1)で示される置換アルキルフェノールがp−クレゾールであることを特徴とする請求項1〜3いずれか一項に記載の共縮合物。 The co-condensate according to any one of claims 1 to 3, wherein the substituted alkylphenol represented by the formula (1) is p-cresol. 請求項1〜4いずれか一項に記載の共縮合物を含むことを特徴とするゴム組成物。 A rubber composition comprising the cocondensate according to any one of claims 1 to 4. p−tert−ブチルフェノールと式(1)で示される置換アルキルフェノールにホルムアルデヒドを加えて反応させることでレゾール型縮合物を得る工程と、得られたレゾール型縮合物にレゾルシンを加えて共縮合させる工程とを含むことを特徴とする請求項1〜4いずれか一項に記載の共縮合物の製造方法。 a step of obtaining a resole-type condensate by reacting p-tert-butylphenol with a substituted alkylphenol represented by the formula (1) by adding formaldehyde, and a step of adding resorcin to the obtained resole-type condensate and co-condensing them. The manufacturing method of the cocondensate as described in any one of Claims 1-4 characterized by the above-mentioned.
JP2012229133A 2012-10-16 2012-10-16 Cocondensate and rubber composition containing the same Active JP6016297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229133A JP6016297B2 (en) 2012-10-16 2012-10-16 Cocondensate and rubber composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229133A JP6016297B2 (en) 2012-10-16 2012-10-16 Cocondensate and rubber composition containing the same

Publications (2)

Publication Number Publication Date
JP2014080502A true JP2014080502A (en) 2014-05-08
JP6016297B2 JP6016297B2 (en) 2016-10-26

Family

ID=50785005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229133A Active JP6016297B2 (en) 2012-10-16 2012-10-16 Cocondensate and rubber composition containing the same

Country Status (1)

Country Link
JP (1) JP6016297B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014110A (en) * 2014-07-03 2016-01-28 田岡化学工業株式会社 Co-condensate and method for producing the same, and rubber composition containing co-condensate
JP2017515941A (en) * 2014-05-12 2017-06-15 エスアイ・グループ・インコーポレイテッドSi Group, Inc. Modified phenolic resin and method for producing and using it as a reinforcing resin
EP3202840A4 (en) * 2014-10-01 2017-08-09 Bridgestone Corporation Rubber composition for tire
WO2018020967A1 (en) * 2016-07-28 2018-02-01 田岡化学工業株式会社 Novolac-type cocondensation product to be compounded into rubber, and method for producing said cocondensation product
CN111234148A (en) * 2020-03-04 2020-06-05 山东阳谷华泰化工股份有限公司 Maleimide modified p-tert-butyl phenol formaldehyde resin and synthetic method thereof
CN112175155A (en) * 2020-08-17 2021-01-05 杭摩新材料集团股份有限公司 Special phenolic resin for nylon cord fabric and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226275B2 (en) * 1973-03-27 1977-07-13
JPS5637902B2 (en) * 1977-01-24 1981-09-03
JPS5859828A (en) * 1981-10-07 1983-04-09 Sumitomo Chem Co Ltd Vulcanization bonding of rubber and reinforcing material
JPS62212411A (en) * 1986-03-12 1987-09-18 Hitachi Chem Co Ltd Production of modified phenolic resin
JPH06234824A (en) * 1992-12-17 1994-08-23 Sumitomo Chem Co Ltd Co-condensation product and rubber composition compounding therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226275B2 (en) * 1973-03-27 1977-07-13
JPS5637902B2 (en) * 1977-01-24 1981-09-03
JPS5859828A (en) * 1981-10-07 1983-04-09 Sumitomo Chem Co Ltd Vulcanization bonding of rubber and reinforcing material
JPS62212411A (en) * 1986-03-12 1987-09-18 Hitachi Chem Co Ltd Production of modified phenolic resin
JPH06234824A (en) * 1992-12-17 1994-08-23 Sumitomo Chem Co Ltd Co-condensation product and rubber composition compounding therewith

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017515941A (en) * 2014-05-12 2017-06-15 エスアイ・グループ・インコーポレイテッドSi Group, Inc. Modified phenolic resin and method for producing and using it as a reinforcing resin
JP2016014110A (en) * 2014-07-03 2016-01-28 田岡化学工業株式会社 Co-condensate and method for producing the same, and rubber composition containing co-condensate
EP3202840A4 (en) * 2014-10-01 2017-08-09 Bridgestone Corporation Rubber composition for tire
US10544287B2 (en) 2014-10-01 2020-01-28 Bridgestone Corporation Rubber composition for tire
WO2018020967A1 (en) * 2016-07-28 2018-02-01 田岡化学工業株式会社 Novolac-type cocondensation product to be compounded into rubber, and method for producing said cocondensation product
CN109476799A (en) * 2016-07-28 2019-03-15 田冈化学工业株式会社 The manufacturing method of rubber compounding phenol aldehyde type cocondensation and the cocondensation
CN109476799B (en) * 2016-07-28 2021-07-30 田冈化学工业株式会社 Phenol-aldehyde cocondensate for compounding rubber and method for producing the cocondensate
CN111234148A (en) * 2020-03-04 2020-06-05 山东阳谷华泰化工股份有限公司 Maleimide modified p-tert-butyl phenol formaldehyde resin and synthetic method thereof
CN111234148B (en) * 2020-03-04 2023-02-14 山东阳谷华泰化工股份有限公司 Maleimide modified p-tert-butyl phenol formaldehyde resin and synthetic method thereof
CN112175155A (en) * 2020-08-17 2021-01-05 杭摩新材料集团股份有限公司 Special phenolic resin for nylon cord fabric and production method thereof
CN112175155B (en) * 2020-08-17 2022-10-14 杭摩新材料集团股份有限公司 Special phenolic resin for nylon cord fabric and production method thereof

Also Published As

Publication number Publication date
JP6016297B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6245752B2 (en) Cocondensate, method for producing the same, and rubber composition containing cocondensate
KR101784018B1 (en) Use of s-(3-aminopropyl)thiosulfuric acid or metal salt thereof
JP6016297B2 (en) Cocondensate and rubber composition containing the same
US20120101219A1 (en) Vulcanized rubber and process for manufacturing same
JP2014084312A (en) Compound for improving viscoelastic properties of vulcanized rubber, and rubber composition including the compound
JP2015163668A (en) Resin composition and production method thereof, and rubber composition including co-condensed object
JP5865544B1 (en) Rubber composition for tire
WO2018179919A1 (en) Novolak-type cocondesate, method for producing same, resin composition, and rubber composition
JP2014152220A (en) Co-condensation product and rubber composition containing the same
JP6675137B2 (en) Resin composition, method for producing the same, and rubber composition containing resin composition
CN109476799B (en) Phenol-aldehyde cocondensate for compounding rubber and method for producing the cocondensate
WO2016052451A1 (en) Metal cord-rubber composite body
JP2014105225A (en) Co-condensed material and rubber composition containing the same
JP6292715B2 (en) Cocondensate, method for producing the same, and rubber composition containing cocondensate
JP2012116813A (en) Thiosulfuric acid compound or salt thereof, and rubber composition containing the same
JP2011184614A (en) Vulcanized rubber, and method for producing the same
WO2016052447A1 (en) Rubber composition for tire
JP2012117008A (en) Using of thiosulfuric acid compound or its salt for improving viscoelastic characteristics which vulcanized rubber has, and rubber composition
JP5310608B2 (en) Use of S- (4-aminobutyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP5310609B2 (en) Use of S- (5-aminopentyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP2017179101A (en) Tackifier and rubber composition containing the same
JP2011184613A (en) Vulcanized rubber and method for producing the same
JP2005023134A (en) Rubber composition
JP2019183060A (en) Novolak type co-condensate for rubber blending, and manufacturing method of rubber composition containing the co-condensate
JP2012153630A (en) Thiosulfuric acid compound or salt thereof and rubber composition including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6016297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250