JP2005023134A - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
JP2005023134A
JP2005023134A JP2003187579A JP2003187579A JP2005023134A JP 2005023134 A JP2005023134 A JP 2005023134A JP 2003187579 A JP2003187579 A JP 2003187579A JP 2003187579 A JP2003187579 A JP 2003187579A JP 2005023134 A JP2005023134 A JP 2005023134A
Authority
JP
Japan
Prior art keywords
rubber composition
silica
resin
rubber
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003187579A
Other languages
Japanese (ja)
Inventor
Chikashi Yatsuyanagi
史 八柳
Yoshiaki Kirino
美昭 桐野
Tsukasa Maruyama
司 丸山
Kazunori Ishikawa
和憲 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2003187579A priority Critical patent/JP2005023134A/en
Publication of JP2005023134A publication Critical patent/JP2005023134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silica-compounded rubber composition which gives vulcanized rubber products having excellent abrasion resistance, breaking physical properties and hysteresis loss. <P>SOLUTION: This rubber composition comprises 100 pts.wt. of a vulcanizable dienic rubber, 5 to 90 pts.wt. of silica, a silane coupling agent having a main chain represented by formula (I): -(-Y-S<SB>x</SB>-)<SB>n</SB>- [Y is an organic group which may contain one or more heterogeneous atoms; (n) is an integer of 2 to 50; (x) is the number of 1.5 to 4 on the average] and one or more alkoxysilyl groups in an amount of 1 to 20 wt. % based on the silica, 1 to 10 pts.wt. of a phenolic resin, and a resin-curing agent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はゴム組成物に関し、更に詳しくはシリカ、フェノール樹脂及び樹脂硬化剤を配合したゴム組成物に特定の構造を有するシランカップリング剤を混合して得られる耐摩耗性や破壊物性及びヒステリシスロスに優れたゴム組成物に関する。
【0002】
【従来の技術】
ジエン系ゴムに耐摩耗性などの向上を意図してシリカを配合することは知られており、更にこれにフェノール系樹脂及びメチレンドナー等の樹脂硬化物を配合してゴム組成物の破壊物性を向上させることが提案されている(例えば特許文献1及び2参照)。しかしながら、シリカ配合ゴムにフェノール系樹脂及び樹脂硬化剤を添加した場合、破壊物性が向上するもののヒステリシスロスが大きくなり、低燃費性が悪化するという問題があった。
【0003】
【特許文献1】
特開2000−80205号公報
【特許文献2】
特開2000−313772号公報
【特許文献3】
特開2002−30186号公報
【特許文献4】
特開2000−63521号公報
【特許文献5】
特開2001−163979号公報
【0004】
【発明が解決しようとする課題】
従って、本発明は、前述の従来技術の問題を排除して、シリカ配合ゴム組成物の耐摩耗性を維持しながら、破壊物性及びヒステリシスロスを改良したゴム組成物を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に従えば、加硫可能なジエン系ゴム100重量部、シリカ5〜90重量部、式(I):
−(−Y−S −) − (I)
(式中、Yはヘテロ原子を含んでも良い有機基を表わし、nは2〜50の整数、xは平均1.5〜4の数である)
で示される主鎖とアルコキシシリル基を有する、シリカ配合量の1〜20重量%の、シランカップリング剤、フェノール系樹脂1〜10重量部及び樹脂硬化剤を含んでなるゴム組成物が提供される。
【0006】
【発明の実施の形態】
本発明において使用する加硫可能なジエン系ゴムとしてはタイヤ用やその他一般用ゴム組成物に配合することができる任意のジエン系ゴムとすることができ、具体的には各種天然ゴム(NR)、各種ポリイソプレンゴム(IR)、各種ポリブタジエンゴム(BR)、各種ブタジエン−スチレン共重合体ゴム(SBR)、スチレン−ブタジエン−イソプレン3元共重合ゴム(SBIR)などをあげることができる。これらは単独又は2種以上の任意の混合物(ブレンド)で使用することができる。
【0007】
本発明において使用するシリカはタイヤ、その他用ゴム組成物に配合することができる任意のシリカとすることができ、例えば湿式沈降法シリカ、乾式シリカなどを用いることができる。シリカの配合量はゴム分100重量部に対し5〜90重量部(phr)であり、好ましくは10〜80phrである。このシリカの配合量が少な過ぎるとシリカ配合を使用する利点を得ることができないので好ましくなく、逆に多過ぎるとゴムとシリカの混合が極めて困難となるため、所望のゴム組成物を受ることができないので好ましくない。
【0008】
本発明においては、前記シリカ配合量の1〜20重量%、好ましくは5〜10重量%の式(I)のシランカップリング剤を配合する。このシランカップリング剤の配合量が少な過ぎるとシリカは、表面にあるシラノール基が残存し、ゴム中で凝集しやすくなることで未加硫ゴム粘度を上昇させ、加工性が著しく悪化するので好ましくなく、逆に多過ぎるとシランカップリング剤中のイオウ分が過剰となり、ゴムの破壊物性が極めて低下するので好ましくない。
【0009】
本発明で用いるシランカップリング剤は、前記式(I)で示される主鎖とアルコキシシリル基とを有する化合物であり、これは、式(I)で示される主鎖及びチオール基とを有するポリスルフィド重合体とアルコキシシリル基及びエポキシ基を有するシラン化合物とを、例えば酸化エチレンや、1.8−ジアザビシクロ[5,4,0]−7−ウンデセン等の触媒存在下の条件下に反応させることによって得ることができる。なお式(I)においてYは酸素、硫黄又は窒素原子などのヘテロ原子を含んでいてもよい2価の有機基が、好ましくは炭素数1〜24、更に好ましくは2〜10の有機基であり、具体的には以下のものを例示することができる。
【0010】
即ち、メチレン、エチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン、オクチレン、ノニレン、デシレン、ウンデシレン、ヘキシレン、オクチレン、ノニレン、デシレン、ウンデシレン、ドデシレン、1−メチルエチレン、1−メチルプロピレン、2−メチルプロピレン、1.1−ジメチルエチレンなどの直鎖又は分岐鎖アルキレン基;オキシジエチレン、メチレン−ビス(オキシエチレン)、エチレン−ビス(オキシエチレン)などの酸素含有有機基;チオジエチレンなどの硫黄含有有機基;N−メチル−N,N−ジエチレンなどの窒素含有有機基などを例示することができる。
【0011】
式(I)において平均重合度nは2〜50、好ましくは2〜30であり、xは平均値として1.5〜4、好ましくは3〜4である。
【0012】
本発明に従えば、フェノール系樹脂1〜10phr、好ましくは3〜7phrを配合する。このフェノール系樹脂の配合量が少な過ぎるとゴム加工性や、破壊物性において所望の特性が得られないので好ましくなく、逆に多過ぎるとヒステリシスロスが大きくなり過ぎると同時に、破壊物性も低下してしまうので好ましくない。本発明で使用するフェノール系樹脂としては、例えばノボラック型フェノール樹脂をあげることができる。本発明に用いるノボラック型のフェノール樹脂は、フェノールもしくは変性フェノールとホルムアルデヒドを縮合重合させて得られる。融点が50〜120℃範囲の固形の樹脂である。具体的には、ストレートフェノール樹脂、アルキル置換フェノール樹脂、オイル変性フェノール樹脂等が挙げられる。また、アルキル置換フェノール樹脂の場合、ストレートフェノール樹脂の骨格中の少なくとも1部の芳香環にアルキル基が置換されたフェノール樹脂である。
オイル変性フェノール樹脂としては、その変性種として、レゾルシン、クレゾール、アルキルフェノール、オクチルフェノール、ノニルフェノール、フェニルフェノール、ブチルフェノール、カシュー油、芳香族炭化水素樹脂、アルキルベンゼン等が挙げられる。変性方法は、フェノール樹脂の芳香環への置換、ホルマリンとフェノールおよびオイル変性フェノールを共縮合重合又はオイル変性種とフェノールの共縮合重合著しくは、縮合反応が挙げられる。特にイレゾール又はレゾルシンとホルムアルデヒドとの縮合物を用いるのが好ましい。かかるフェノール樹脂は公知の樹脂であり、例えばスミカノール610(住友化学)、やPanacalite Rejin B−18−5(INDSPEC Chemical Corporation)スミライトレジンPR−5073(住友バークライト社製)などの市販品を用いることができる。
【0013】
本発明に従えば、更に樹脂硬化剤を、好ましくは1〜10phr、更に好ましくは1〜7phr、配合する。このよぅな樹脂硬化剤としては例えばメチレン誘導体(具体的にはホルムアデヒド、メラミン、テトラミン、ヘキサシン)を用いることができ、特にメラミン誘導体(例えばメラミン、メラミンミアヌレート、メラミン−ホルムアルデヒド縮合物、メチロールメラミン、ヘキサメチレンテトラミン)を用いるのが好ましい。かかる樹脂硬化剤は公知であり、例えばスミカノール 507A(住友化学製)、Cyrez 964RPC(Cytec Industries INC)、サンセラーH−T(三新化学工業製)などの市販品を用いることができる。
【0014】
本発明のゴム組成物は、前記した必須成分に加えてゴム組成物に一般に使用されている添加剤、例えばカーボンブラック軟化剤、可塑剤、老化防止剤、架橋又は加硫剤、架橋又は加硫促進剤などを含むことができ、これらの配合量も従前通りである。また本発明のゴム組成物は前記各成分を一般的なゴム用混練機(ロール、インターナルミキサー、バンバリミキサーなど)を用いて混合することができる。
【0015】
【実施例】
以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。
【0016】
実施例1〜6及び比較例1〜8
表Iに示す配合(重量部)に示す各成分を、イオウ及び加硫促進剤を除いて、1.8リットルの密閉型ミキサーを用いて3〜5分間混練し、内部温度が165±5℃に達した時に内容物を放出した。得られた未加硫ゴム組成物のムーニー粘度及びスコーチ時間を以下の方法で評価し結果を表Iに示した。
【0017】
次にこれにイオウ及び加硫促進剤を加えて8インチのオープンロールで混練してゴム組成物を得た。このゴム組成物を15cm×15cm×0.2cmの金型中で160℃×20分間ブレス加硫して試験中を得、いかに示す方法で加硫物性を評価した。結果は表Iに示す。
【0018】
【表1】

Figure 2005023134
【0019】
表I脚注
*1:27.3%油展乳化重合SBR,Nipol1712(日本ゼオン製)
*2:湿式法シリカ Nipsie AQ(日本シリカ工業製)
*3:ビス(3−トリエトキシシリルプロピル)テトラスルファイド、Si
69(Degussa−Huls社製)
*4:イオウ含有シランカップリング剤A
チオール基含有ポリサルファイド重合体(東レファインケミカル(株)製LP−3)にエタノール、γ−グリシドキシプロピルトリメトキシシラン、1.8−ジアザビシクロ[5.4.0]−7−ウンデセン、イオウ添加及び反応させて得た(イオウランク:平均4)。
*5:イオウ含有シランカップリング剤B
チオール基含有ポリサルファイド重合体(東レファインケミカル(株)製LP−3)の末端を酸化エチレンでOHした後、3−イソシアネートプロピルトリエトキシシランをアミン触媒下で反応させる。このシリル化ポリサルファイド重合体にアミン触媒下でイオウを添加・反応させた後、ビス(3−トリエトキシシリルプロピル)テトラスルフィド及びトリエチルアミンを添加して得た(イオウランク:平均4)。
*6:酸化亜鉛:酸化亜鉛 3種(正同化学工業製)
*7:ステアリン酸:工業用ステアリン酸(日本油脂製)
*8:老化防止剤 N−(1.3ジメチルブチル)−N’−(フェニレンジアミン)Santoflex 6PPD(Flexsys社製)
*9:芳香族系プロセスオイル:デソレックス3号(昭和シェル石油製)
*10:フェノール系樹脂(1)(クレゾールとホルムアルデヒドの縮合物;住友化学(株)製スミカノール610)
*11:フェノール系樹脂(2)(レゾルシンとホルムアルデヒドの縮合物;INDSPEC Chamical Corporation製Penacolite Resin B−18−S)
*12:樹脂硬化剤(1)(エーテルファイドメチロールメラミン、住友化学(株)製スミカノール507A)
*13:樹脂硬化剤(2)(ヘキサメトキシメチロールメラミン;CytecIndustries INC製CYREZ964RPC)
*14:粉末イオウ:油処理イオウ(軽井沢製錬所製)
*15:加硫促進剤CZ ノクサラーCZ−G(大内新興化学工業製)
*16:加硫促進剤DPG サンセラーD−G(三新化学工業製)
【0020】
物性評価方法
ムーニー粘度(Ml1+4(100℃)):JIS−K−6300に準拠して測定。100℃にて1分間保温後L形ローターで測定。単位はムーニー
スコーチ時間(分):JIS−K−6300に準拠して測定。125℃にて1分間保温後、L形ローターで、5ムーニー上昇後の時間を測定する。
【0021】
破断強度:JIS K−6251に準拠して測定
破断伸び:JIS K−6251に準拠して測定
【0022】
耐摩耗性:ランボーン摩耗試験装置を用いて、ある一定時間の摩耗減量を測定した。比較例2を基準として、以下の式で求めた。
耐摩耗性(指数)=([比較例2の摩耗減量]/[本サンプルの摩耗減量])×100
【0023】
tan δ(70℃):動的粘弾性測定装置を用いて70℃、20Hz、動歪±2%におけるtanδ値を測定した。
【0024】
【発明の効果】
以上の通り、本発明のゴム組成物は、シリカ配合ゴムにおいて、特定の構造を有するシランカップリング剤、フェノール系樹脂及びメチレンドナー等の樹脂硬化剤を混合して得られるもので、特定の構造を有するシランカップリング剤とフェノール系樹脂及び樹脂硬化剤を組み合わせて添加することにより、ヒステリシスロスを低減しながら、破壊物性を向上させることができる。本発明に従えば、通常用いられるTESPTを添加した従来のシリカ配合ゴムに比較して高温側tanδや反発弾性が大幅に低減し、かつ加工性と破壊物性も向上する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber composition, and more specifically, wear resistance, fracture property, and hysteresis loss obtained by mixing a silane coupling agent having a specific structure with a rubber composition containing silica, a phenol resin, and a resin curing agent. The present invention relates to an excellent rubber composition.
[0002]
[Prior art]
It is known that silica is added to diene rubber with the intention of improving wear resistance, and further, a cured resin such as a phenolic resin and methylene donor is added to this to improve the destructive properties of the rubber composition. Improvement has been proposed (see, for example, Patent Documents 1 and 2). However, when a phenol-based resin and a resin curing agent are added to the silica-containing rubber, there is a problem that although the destruction physical properties are improved, the hysteresis loss is increased and the fuel efficiency is deteriorated.
[0003]
[Patent Document 1]
JP 2000-80205 A [Patent Document 2]
JP 2000-313772 A [Patent Document 3]
JP 2002-30186 A [Patent Document 4]
JP 2000-63521 A [Patent Document 5]
Japanese Patent Laid-Open No. 2001-163979
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a rubber composition having improved fracture properties and hysteresis loss while eliminating the above-mentioned problems of the prior art and maintaining the wear resistance of the silica-containing rubber composition. .
[0005]
[Means for Solving the Problems]
According to the present invention, 100 parts by weight of vulcanizable diene rubber, 5 to 90 parts by weight of silica, formula (I):
-(-Y-S x- ) n- (I)
(In the formula, Y represents an organic group which may contain a hetero atom, n is an integer of 2 to 50, and x is an average of 1.5 to 4)
A rubber composition comprising a silane coupling agent, 1 to 10 parts by weight of a phenolic resin, and a resin curing agent having 1 to 20% by weight of the amount of silica having a main chain represented by formula (1) and an alkoxysilyl group is provided. The
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The vulcanizable diene rubber used in the present invention can be any diene rubber that can be blended with tire or other general rubber compositions, and specifically various natural rubbers (NR). And various polyisoprene rubbers (IR), various polybutadiene rubbers (BR), various butadiene-styrene copolymer rubbers (SBR), styrene-butadiene-isoprene terpolymer rubbers (SBIR), and the like. These can be used alone or in an arbitrary mixture (blend) of two or more.
[0007]
The silica used in the present invention can be any silica that can be blended in a tire or other rubber composition, and examples thereof include wet precipitation silica and dry silica. The amount of silica is 5 to 90 parts by weight (phr), preferably 10 to 80 phr, based on 100 parts by weight of rubber. If the amount of this silica is too small, the advantage of using the silica compound cannot be obtained, and this is not preferable. On the other hand, if the amount is too large, mixing of rubber and silica becomes extremely difficult, so that the desired rubber composition is received. It is not preferable because it cannot be done.
[0008]
In the present invention, 1 to 20% by weight, preferably 5 to 10% by weight of the silica compounding amount is blended with the silane coupling agent of the formula (I). If the amount of the silane coupling agent is too small, silica is preferable because silanol groups on the surface remain and easily aggregate in the rubber, thereby increasing the viscosity of the unvulcanized rubber and remarkably degrading the workability. On the other hand, if the amount is too large, the sulfur content in the silane coupling agent becomes excessive, and the destructive physical properties of the rubber are extremely deteriorated.
[0009]
The silane coupling agent used in the present invention is a compound having a main chain represented by the formula (I) and an alkoxysilyl group, which is a polysulfide having a main chain represented by the formula (I) and a thiol group. By reacting a polymer with a silane compound having an alkoxysilyl group and an epoxy group under conditions in the presence of a catalyst such as ethylene oxide or 1.8-diazabicyclo [5,4,0] -7-undecene. Can be obtained. In formula (I), Y is a divalent organic group which may contain a hetero atom such as oxygen, sulfur or nitrogen atom, preferably an organic group having 1 to 24 carbon atoms, more preferably 2 to 10 carbon atoms. Specifically, the following can be exemplified.
[0010]
That is, methylene, ethylene, propylene, butylene, pentylene, hexylene, octylene, nonylene, decylene, undecylene, hexylene, octylene, nonylene, decylene, undecylene, dodecylene, 1-methylethylene, 1-methylpropylene, 2-methylpropylene, 1 .1 linear or branched alkylene groups such as 1-dimethylethylene; oxygen-containing organic groups such as oxydiethylene, methylene-bis (oxyethylene), ethylene-bis (oxyethylene); sulfur-containing organic groups such as thiodiethylene; N Examples thereof include nitrogen-containing organic groups such as -methyl-N, N-diethylene.
[0011]
In the formula (I), the average polymerization degree n is 2 to 50, preferably 2 to 30, and x is 1.5 to 4, preferably 3 to 4, as an average value.
[0012]
According to the invention, 1 to 10 phr, preferably 3 to 7 phr of phenolic resin is blended. If the blended amount of this phenolic resin is too small, it is not preferable because the desired properties cannot be obtained in rubber processability and fracture properties. Conversely, if the amount is too large, hysteresis loss becomes too large and the fracture properties also decrease. This is not preferable. Examples of the phenolic resin used in the present invention include novolak type phenolic resins. The novolac type phenol resin used in the present invention is obtained by condensation polymerization of phenol or modified phenol and formaldehyde. It is a solid resin having a melting point in the range of 50 to 120 ° C. Specific examples include straight phenol resins, alkyl-substituted phenol resins, and oil-modified phenol resins. In the case of an alkyl-substituted phenol resin, it is a phenol resin in which an alkyl group is substituted on at least a part of the aromatic ring in the skeleton of the straight phenol resin.
Examples of the oil-modified phenolic resin include resorcin, cresol, alkylphenol, octylphenol, nonylphenol, phenylphenol, butylphenol, cashew oil, aromatic hydrocarbon resin, alkylbenzene, and the like. Examples of the modification method include substitution of a phenol resin with an aromatic ring, co-condensation polymerization of formalin and phenol and oil-modified phenol, or co-condensation polymerization of oil-modified species and phenol. In particular, it is preferable to use a condensate of ilesol or resorcin and formaldehyde. Such a phenol resin is a known resin, and for example, a commercially available product such as Sumikanol 610 (Sumitomo Chemical) or Panalite Rejin B-18-5 (INDSPEC Chemical Corporation) Sumilite Resin PR-5073 (manufactured by Sumitomo Burkelite) is used. be able to.
[0013]
According to the present invention, a resin curing agent is further preferably blended in an amount of 1 to 10 phr, more preferably 1 to 7 phr. As such a resin curing agent, for example, a methylene derivative (specifically, formaldehyde, melamine, tetramine, hexacin) can be used, and in particular, a melamine derivative (for example, melamine, melamine myanurate, melamine-formaldehyde condensate, methylol melamine, Hexamethylenetetramine) is preferably used. Such resin curing agents are known, and commercially available products such as Sumikanol 507A (manufactured by Sumitomo Chemical Co., Ltd.), Cyrez 964RPC (Cytec Industries Inc.), Sunseller HT (manufactured by Sanshin Chemical Industry Co., Ltd.) can be used.
[0014]
The rubber composition of the present invention includes additives generally used in the rubber composition in addition to the essential components described above, such as carbon black softener, plasticizer, anti-aging agent, crosslinking or vulcanizing agent, crosslinking or vulcanizing agent. Accelerators and the like can be included, and the blending amounts thereof are also the same as before. In the rubber composition of the present invention, the above components can be mixed using a general rubber kneader (roll, internal mixer, Banbury mixer, etc.).
[0015]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.
[0016]
Examples 1-6 and Comparative Examples 1-8
Each component shown in the formulation (parts by weight) shown in Table I was kneaded for 3 to 5 minutes using a 1.8 liter closed mixer, excluding sulfur and vulcanization accelerator, and the internal temperature was 165 ± 5 ° C. The contents were released when The Mooney viscosity and scorch time of the obtained unvulcanized rubber composition were evaluated by the following methods, and the results are shown in Table I.
[0017]
Next, sulfur and a vulcanization accelerator were added thereto and kneaded with an 8-inch open roll to obtain a rubber composition. This rubber composition was subjected to breath vulcanization at 160 ° C. for 20 minutes in a 15 cm × 15 cm × 0.2 cm mold and obtained during the test, and vulcanized physical properties were evaluated by the method described below. The results are shown in Table I.
[0018]
[Table 1]
Figure 2005023134
[0019]
Table I footnote * 1: 27.3% oil-extended emulsion polymerization SBR, Nipol 1712 (manufactured by Nippon Zeon)
* 2: Wet process silica Nippie AQ (Nippon Silica Kogyo)
* 3: Bis (3-triethoxysilylpropyl) tetrasulfide, Si
69 (Degussa-Huls)
* 4: Sulfur-containing silane coupling agent A
Ethyl, γ-glycidoxypropyltrimethoxysilane, 1.8-diazabicyclo [5.4.0] -7-undecene, sulfur addition and thiol group-containing polysulfide polymer (LP-3 manufactured by Toray Fine Chemical Co., Ltd.) Obtained by reaction (sulfur rank: average 4).
* 5: Sulfur-containing silane coupling agent B
After the terminal of the thiol group-containing polysulfide polymer (LP-3 manufactured by Toray Fine Chemical Co., Ltd.) is OH-treated with ethylene oxide, 3-isocyanatopropyltriethoxysilane is reacted under an amine catalyst. This silylated polysulfide polymer was obtained by adding and reacting sulfur under an amine catalyst, and then adding bis (3-triethoxysilylpropyl) tetrasulfide and triethylamine (sulfur rank: average 4).
* 6: Zinc oxide: 3 types of zinc oxide (manufactured by Shodo Chemical Industry)
* 7: Stearic acid: Industrial stearic acid (manufactured by NOF Corporation)
* 8: Anti-aging agent N- (1.3 dimethylbutyl) -N ′-(phenylenediamine) Santoflex 6PPD (manufactured by Flexsys)
* 9: Aromatic process oil: Desolex 3 (Showa Shell Sekiyu)
* 10: Phenol resin (1) (Condensate of cresol and formaldehyde; Sumikanol 610 manufactured by Sumitomo Chemical Co., Ltd.)
* 11: Phenol resin (2) (resorcin and formaldehyde condensate; Penacolite Resin B-18-S manufactured by INDSPEC Chemical Corporation)
* 12: Resin curing agent (1) (ether-fide methylol melamine, Sumikanol 507A manufactured by Sumitomo Chemical Co., Ltd.)
* 13: Resin curing agent (2) (hexamethoxymethylolmelamine; CYREZ964RPC manufactured by Cytec Industries Inc.)
* 14: Powdered sulfur: Oil-treated sulfur (manufactured by Karuizawa Smelter)
* 15: Vulcanization accelerator CZ Noxarer CZ-G (manufactured by Ouchi Shinsei Chemical Industry)
* 16: Vulcanization accelerator DPG Sunseller DG (manufactured by Sanshin Chemical Industry)
[0020]
Physical property evaluation method Mooney viscosity (Ml 1 + 4 (100 ° C)): Measured according to JIS-K-6300. Measured with an L-shaped rotor after incubation at 100 ° C for 1 minute The unit is Mooney scorch time (minutes): Measured according to JIS-K-6300. After incubating at 125 ° C. for 1 minute, the time after 5 Mooney rises is measured with an L-shaped rotor.
[0021]
Breaking strength: measured according to JIS K-6251 Breaking elongation: measured according to JIS K-6251
Abrasion resistance: Abrasion loss was measured for a certain period of time using a Lambourn abrasion tester. Using Comparative Example 2 as a reference, the following formula was used.
Abrasion resistance (index) = ([wear loss in Comparative Example 2] / [wear loss in this sample]) × 100
[0023]
tan δ (70 ° C.): The tan δ value at 70 ° C., 20 Hz, and dynamic strain ± 2% was measured using a dynamic viscoelasticity measuring apparatus.
[0024]
【The invention's effect】
As described above, the rubber composition of the present invention is obtained by mixing a silane coupling agent having a specific structure, a phenolic resin, and a resin curing agent such as a methylene donor in a silica-containing rubber, and has a specific structure. By adding a combination of a silane coupling agent having a phenolic resin and a resin curing agent, it is possible to improve fracture properties while reducing hysteresis loss. According to the present invention, the high temperature side tan δ and rebound resilience are greatly reduced, and the workability and fracture properties are improved as compared with the conventional silica-containing rubber to which TESPT is added.

Claims (6)

加硫可能なジエン系ゴム100重量部、シリカ5〜90重量部、式(I):
−(−Y−S −) − (I)
(式中、Yはヘテロ原子を含んでも良い有機基を表わし、nは2〜50の整数、xは平均1.5〜4の数である)
で示される主鎖とアルコキシシリル基を有する、シリカ配合量の1〜20重量%の、シランカップリング剤、フェノール系樹脂1〜10重量部及び樹脂硬化剤を含んでなるゴム組成物。
100 parts by weight of vulcanizable diene rubber, 5 to 90 parts by weight of silica, formula (I):
-(-Y-S x- ) n- (I)
(In the formula, Y represents an organic group which may contain a hetero atom, n is an integer of 2 to 50, and x is an average of 1.5 to 4)
A rubber composition comprising a silane coupling agent, 1 to 10 parts by weight of a phenolic resin, and a resin curing agent having 1 to 20% by weight of the amount of silica having a main chain and an alkoxysilyl group.
前記フェノール系樹脂がノボラック型フェノール樹脂である請求項1に記載のゴム組成物。The rubber composition according to claim 1, wherein the phenolic resin is a novolac type phenolic resin. 前記フェノール系樹脂がクレゾールとホルムアルデヒドの縮合物又はレゾルシンとホルムアルデヒドの縮合物である請求項1又は2に記載のゴム組成物。The rubber composition according to claim 1 or 2, wherein the phenolic resin is a condensate of cresol and formaldehyde or a condensate of resorcin and formaldehyde. 前記樹脂硬化剤がメチレン誘導体である請求項1〜3のいずれか1項に記載のゴム組成物。The rubber composition according to claim 1, wherein the resin curing agent is a methylene derivative. 前記樹脂硬化剤がメラミン誘導体又はヘキサメチレンテトラミンである請求項1〜4のいずれか1項に記載のゴム組成物。The rubber composition according to any one of claims 1 to 4, wherein the resin curing agent is a melamine derivative or hexamethylenetetramine. 前記シランカップリング剤が式(I)で示される主鎖とチオール基とを有するポリスルフィド重合体とアルコキシシリル基及びエポキシ基を有するシラン化合物とを反応させて得られる請求項1〜5のいずれか1項に記載のゴム組成物。The silane coupling agent is obtained by reacting a polysulfide polymer having a main chain represented by formula (I) and a thiol group with a silane compound having an alkoxysilyl group and an epoxy group. The rubber composition according to item 1.
JP2003187579A 2003-06-30 2003-06-30 Rubber composition Pending JP2005023134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187579A JP2005023134A (en) 2003-06-30 2003-06-30 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187579A JP2005023134A (en) 2003-06-30 2003-06-30 Rubber composition

Publications (1)

Publication Number Publication Date
JP2005023134A true JP2005023134A (en) 2005-01-27

Family

ID=34186387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187579A Pending JP2005023134A (en) 2003-06-30 2003-06-30 Rubber composition

Country Status (1)

Country Link
JP (1) JP2005023134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084591A (en) * 2005-09-20 2007-04-05 Nippon Zeon Co Ltd Rubber composition and rubber crosslinked product
JP2009007511A (en) * 2007-06-29 2009-01-15 Yokohama Rubber Co Ltd:The Diene-based rubber composition
JP2009040902A (en) * 2007-08-09 2009-02-26 Bridgestone Corp Rubber composition and pneumatic tire produced by using the same
JP2011241362A (en) * 2010-05-21 2011-12-01 Yokohama Rubber Co Ltd:The Rubber composition for tire tread and pneumatic tire using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084591A (en) * 2005-09-20 2007-04-05 Nippon Zeon Co Ltd Rubber composition and rubber crosslinked product
JP2009007511A (en) * 2007-06-29 2009-01-15 Yokohama Rubber Co Ltd:The Diene-based rubber composition
JP2009040902A (en) * 2007-08-09 2009-02-26 Bridgestone Corp Rubber composition and pneumatic tire produced by using the same
JP2011241362A (en) * 2010-05-21 2011-12-01 Yokohama Rubber Co Ltd:The Rubber composition for tire tread and pneumatic tire using the same

Similar Documents

Publication Publication Date Title
CN101643554B (en) Rubber composition for cap tread and tire having cap tread comprising the same
JP2014084312A (en) Compound for improving viscoelastic properties of vulcanized rubber, and rubber composition including the compound
US10544287B2 (en) Rubber composition for tire
WO2015125538A1 (en) Tire rubber composition and pneumatic tire
JP6016297B2 (en) Cocondensate and rubber composition containing the same
US20090056845A1 (en) Rubber composition and tire having component containing combination of emulsion sbr and tackifying resin
WO2018179919A1 (en) Novolak-type cocondesate, method for producing same, resin composition, and rubber composition
WO2018079258A1 (en) Tire rubber composition and pneumatic tire
JP2014152220A (en) Co-condensation product and rubber composition containing the same
JP6675137B2 (en) Resin composition, method for producing the same, and rubber composition containing resin composition
EP3567076A1 (en) Vulcanized rubber composition and pneumatic tire
WO2018020967A1 (en) Novolac-type cocondensation product to be compounded into rubber, and method for producing said cocondensation product
JP2005023134A (en) Rubber composition
US7365110B2 (en) Rubber composition
JP6517639B2 (en) Method of producing rubber composition
JP2007217465A (en) Rubber composition for tire
JP2014105225A (en) Co-condensed material and rubber composition containing the same
JP5830938B2 (en) Rubber composition for tire and method for producing pneumatic tire using the same
JP6686324B2 (en) Rubber composition and pneumatic tire using the same
US7671137B2 (en) Rubber composition for tire
WO2019031538A1 (en) Method for producing rubber composition
JP2015174954A (en) Method of producing alkoxy-modified diene rubber and rubber composition using the same
JP2005023150A (en) Rubber composition
JP2011001463A (en) Rubber composition for bead apex or insulation, and pneumatic tire
JP2017179101A (en) Tackifier and rubber composition containing the same