JP2016014110A - Co-condensate and method for producing the same, and rubber composition containing co-condensate - Google Patents

Co-condensate and method for producing the same, and rubber composition containing co-condensate Download PDF

Info

Publication number
JP2016014110A
JP2016014110A JP2014137279A JP2014137279A JP2016014110A JP 2016014110 A JP2016014110 A JP 2016014110A JP 2014137279 A JP2014137279 A JP 2014137279A JP 2014137279 A JP2014137279 A JP 2014137279A JP 2016014110 A JP2016014110 A JP 2016014110A
Authority
JP
Japan
Prior art keywords
cocondensate
rubber
tert
resorcin
phenylphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014137279A
Other languages
Japanese (ja)
Other versions
JP6292715B2 (en
Inventor
文哉 尾崎
Fumiya Ozaki
文哉 尾崎
伸行 佐藤
Nobuyuki Sato
伸行 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Original Assignee
Taoka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoka Chemical Co Ltd filed Critical Taoka Chemical Co Ltd
Priority to JP2014137279A priority Critical patent/JP6292715B2/en
Publication of JP2016014110A publication Critical patent/JP2016014110A/en
Application granted granted Critical
Publication of JP6292715B2 publication Critical patent/JP6292715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel co-condensate for an adhesive used in a filed of rubber products reinforced with reinforcement materials, which does not contain p-tert-octylphenol and p-nonylphenol, the use of which is possible to be limited by legislation, has the same level of softening point as those of the heretofore known co-condensates and therefore disperses efficiently in rubber when kneading, and further contains p-tert-butylphenol which can be available inexpensively, and to provide a resin composition and a method for producing these.SOLUTION: It was found that, by further adding o-phenylphenol as a constituent unit to a co-condensate containing p-tert-butylphenol and resorcin, a softening point of the co-condensate drops significantly, that a coumarone resin can be used specifically as a softener for the co-condensate, and that, by optimizing reaction conditions, a reaction solvent having a boiling point of 190°C or less in the co-condensate and the resin composition can be reduced to 1 wt% or less.

Description

本発明は、アルキルフェノール等から得られる共縮合物の製造方法の改良及びその製法によって得られる共縮合物、並びに当該共縮合物を含む樹脂組成物に関する。 The present invention relates to an improvement in a method for producing a cocondensate obtained from alkylphenol or the like, a cocondensate obtained by the production method, and a resin composition containing the cocondensate.

タイヤ、ベルト、ホースなどのように、スチールコード類や有機繊維類等の補強材で補強する必要のあるゴム製品においては、ゴムと補強材との強固な接着が求められている。ゴムとの接着を行うため、補強材を種々の接着剤で処理する方法や、ゴムの加工工程において接着剤を他の各種配合剤とともに配合する方法が知られている。これらの中でも、ゴムの加工工程において接着剤を配合する方法は、補強材の接着剤処理の有無に関わらず、強固に加硫接着することが可能であるため広く採用されている。このようなゴムの加工工程において使用される接着剤として、トルエン等の芳香族炭化水素の存在下、p−tert−オクチルフェノールやp−ノニルフェノール等のアルキルフェノールとホルマリン類とを反応させレゾール型縮合物を得、そのレゾール型縮合物に更にレゾルシンを反応させた共縮合物が知られている。(例えば特許文献1)。 In rubber products such as tires, belts, hoses, and the like that need to be reinforced with reinforcing materials such as steel cords and organic fibers, strong adhesion between the rubber and the reinforcing material is required. In order to bond with rubber, a method of treating a reinforcing material with various adhesives and a method of blending an adhesive together with other various compounding agents in a rubber processing step are known. Among these, a method of blending an adhesive in the rubber processing step is widely adopted because it can be firmly vulcanized and bonded regardless of whether or not the reinforcing material is treated with an adhesive. As an adhesive used in such a rubber processing step, a resol-type condensate is obtained by reacting alkylphenols such as p-tert-octylphenol and p-nonylphenol with formalins in the presence of an aromatic hydrocarbon such as toluene. A co-condensate obtained by further reacting resorcin with the resole-type condensate is known. (For example, patent document 1).

しかしながら、p−tert−オクチルフェノールやp−ノニルフェノールは昨今、EU域内の規制であるREACH規則に定められるSVHCの候補物質とされ、EU域内においてその使用が今後制限される可能性が高くなっている。また、トルエン等の芳香族炭化水素をはじめとした有機溶媒は揮発性有機化合物(VOC)と呼ばれ、できる限り環境中へ放出されないことが望まれていることから、製品の使用温度より沸点の低い有機溶媒は可能な限り製品中に存在しないことが好ましいとされている。 However, p-tert-octylphenol and p-nonylphenol are now candidates for SVHC defined in the REACH regulations, which are regulations within the EU region, and there is a high possibility that their use will be restricted in the EU region in the future. Also, organic solvents such as aromatic hydrocarbons such as toluene are called volatile organic compounds (VOC), and it is desired that they are not released into the environment as much as possible. It is preferred that low organic solvents are not present in the product as much as possible.

そこで、p−tert−オクチルフェノールやp−ノニルフェノールを使用しない代替樹脂の開発と同時に、製品の使用温度より沸点の低い有機溶媒を可能な限り含まない樹脂の開発が求められている。樹脂から製品の使用温度より沸点の低い有機溶媒を除去する方法として例えば、反応時に溶媒を使用し、反応溶媒を濃縮により除去し製品化するという製法が考えられるが、反応溶媒を濃縮により完全に除去しようとした場合、濃縮中に共縮合物の重合が進み高分子化するため、得られる共縮合物の軟化点が非常に高くなり、ゴムの加工工程において使用される接着剤として不適となるといった問題があった。 Therefore, simultaneously with the development of an alternative resin that does not use p-tert-octylphenol or p-nonylphenol, there is a need for the development of a resin that contains as little organic solvent as possible with a boiling point lower than the use temperature of the product. For example, a method of removing an organic solvent having a boiling point lower than the use temperature of the product from the resin by using a solvent at the time of the reaction and removing the reaction solvent by concentration to produce a product can be considered, but the reaction solvent is completely concentrated by concentration. If it is attempted to be removed, the polymerization of the cocondensate proceeds during polymerization, resulting in a high softening point of the resulting cocondensate, making it unsuitable as an adhesive used in rubber processing steps. There was a problem.

特開平6−234824号公報JP-A-6-234824

本発明は補強材で補強するゴム製品の分野に用いられる接着剤用の共縮合物であって、法規制による使用の制限が為される可能性のあるp−tert−オクチルフェノールやp−ノニルフェノールといった特定のフェノール類を含まず、かつ軟化点が従来公知の共縮合物と同程度であるので混練時にゴムに効率よく分散し、更には安価に入手可能なp−tert−ブチルフェノールを含む新規な共縮合物、及び、前記共縮合物に含まれる有機溶媒量を削減する為、前記共縮合物の製造時に芳香族炭化水素等の有機溶媒を使用しない新規な製造方法を提供することにある。 The present invention is a co-condensate for adhesives used in the field of rubber products reinforced with a reinforcing material, such as p-tert-octylphenol and p-nonylphenol, which may be restricted by legal regulations. Since it does not contain specific phenols and has a softening point similar to that of a conventionally known cocondensate, it is efficiently dispersed in rubber during kneading, and a new co-polymer containing p-tert-butylphenol, which is available at low cost. In order to reduce the amount of the organic solvent contained in the condensate and the cocondensate, it is an object of the present invention to provide a novel production method that does not use an organic solvent such as an aromatic hydrocarbon during the production of the cocondensate.

本発明者が課題解決に向けて鋭意検討した結果、p−tert−ブチルフェノールとレゾルシンとを含む共縮合物の構成単位に、更にo−フェニルフェノールを含む共縮合物とすることにより軟化点が大幅に低下し、補強材で補強するゴム製品の分野に用いられる接着剤として好適に用いることが可能なp−tert−ブチルフェノールを含む新規な共縮合物となること、更には、前記共縮合物の製造条件を最適化することにより、有機溶媒を使用せずとも前記の共縮合物を提供可能であることを同時に見出した。具体的には下記〔1〕〜〔8〕の発明を含む。 As a result of intensive studies aimed at solving the problems by the present inventors, the softening point is greatly increased by using a cocondensate containing o-phenylphenol as a constituent unit of the cocondensate containing p-tert-butylphenol and resorcin. To a novel cocondensate containing p-tert-butylphenol which can be suitably used as an adhesive used in the field of rubber products reinforced with a reinforcing material. It was simultaneously found that by optimizing the production conditions, the above-mentioned cocondensate can be provided without using an organic solvent. Specifically, the following inventions [1] to [8] are included.

〔1〕
以下<a>及び<b>の工程を含む、以下式(1)
[1]
The following formula (1) including the steps <a> and <b>

Figure 2016014110
で表されるp−tert−ブチルフェノール、以下式(2)
Figure 2016014110
P-tert-butylphenol represented by the following formula (2)

Figure 2016014110
で表されるo−フェニルフェノール及び以下式(3)
Figure 2016014110
O-phenylphenol represented by the following formula (3)

Figure 2016014110
で表されるレゾルシン由来の構成単位を含む共縮合物の製造方法。
<a>p−tert−ブチルフェノールとo−フェニルフェノールの混合物を、p−tert−ブチルフェノールとo−フェニルフェノールの総量(物質量基準)に対し0.2倍モル以上のアルカリ存在下、70℃以下で反応させ、レゾール型共縮合物得る工程
<b>前記レゾール型共縮合物にレゾルシンを反応させる工程
Figure 2016014110
The manufacturing method of the cocondensate containing the structural unit derived from resorcin represented by these.
<a> A mixture of p-tert-butylphenol and o-phenylphenol is 70 ° C. or less in the presence of 0.2 moles or more of alkali with respect to the total amount (substance basis) of p-tert-butylphenol and o-phenylphenol. <B> Resorcin is reacted with the resol-type cocondensate

〔2〕
レゾルシンの使用量がp−tert−ブチルフェノールとo−フェニルフェノールの総量(物質量基準)に対し、1.0〜2.0倍モルである〔1〕記載の共縮合物の製造方法。
[2]
[1] The method for producing a cocondensate according to [1], wherein the amount of resorcin used is 1.0 to 2.0 times mol based on the total amount (substance basis) of p-tert-butylphenol and o-phenylphenol.

〔3〕
上記式(1)で表されるp−tert−ブチルフェノール、上記式(2)で表されるo−フェニルフェノール及び上記式(3)で表されるレゾルシン由来の構成単位を含む共縮合物であって、沸点が190℃以下の脂肪族炭化水素、芳香族炭化水素、ハロゲン化脂肪族炭化水素、ハロゲン化芳香族炭化水素及び分岐を有しても良い炭素数1〜5のケトン類の合計含有量が1重量%以下である共縮合物。
[3]
It is a cocondensate comprising p-tert-butylphenol represented by the above formula (1), o-phenylphenol represented by the above formula (2), and a resorcin-derived structural unit represented by the above formula (3). The total content of aliphatic hydrocarbons having a boiling point of 190 ° C. or less, aromatic hydrocarbons, halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons, and optionally branched ketones having 1 to 5 carbon atoms Cocondensate in an amount of 1% by weight or less.

〔4〕
遊離レゾルシンの含量が10重量%以下、軟化点が150℃以下である〔3〕記載の共縮合物。
[4]
The co-condensate according to [3], wherein the content of free resorcin is 10% by weight or less and the softening point is 150 ° C. or less.

〔5〕
〔3〕または〔4〕記載の共縮合物とクマロン樹脂を含む樹脂組成物。
[5]
A resin composition comprising the cocondensate according to [3] or [4] and a coumarone resin.

〔6〕
遊離レゾルシンの含有量が5重量%以下であって軟化点が120℃以下である〔5〕記載の樹脂組成物。
[6]
[5] The resin composition according to [5], wherein the content of free resorcin is 5% by weight or less and the softening point is 120 ° C. or less.

〔7〕
〔3〕または〔4〕記載の共縮合物を含むゴム組成物。
[7]
A rubber composition comprising the cocondensate according to [3] or [4].

〔8〕
〔5〕または〔6〕記載の樹脂組成物を含むゴム組成物。
[8]
A rubber composition comprising the resin composition according to [5] or [6].

本発明によれば、安価で一般的に入手可能なp−tert−ブチルフェノールを原料として使用でき、混練時にゴムに効率的に分散し、それを加硫して得られるゴムと補強材との接着を強固にすることが可能であり、更には、将来的に法規制による使用の制限を受ける可能性が低い共縮合物及び該共縮合物を含む樹脂組成物を、有機溶媒を使用せず製造することが可能となる。 According to the present invention, p-tert-butylphenol which is inexpensive and generally available can be used as a raw material, and is efficiently dispersed in rubber at the time of kneading, and adhesion between the rubber obtained by vulcanizing it and a reinforcing material In addition, it is possible to produce a cocondensate and a resin composition containing the cocondensate that are unlikely to be restricted in the future by law and regulation without using an organic solvent. It becomes possible to do.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

<共縮合物>
本発明の製造方法によって得られるp−tert−ブチルフェノール、o−フェニルフェノール及びレゾルシン由来の構成単位を含む共縮合物(以下本発明の共縮合物と称することもある)について説明する。
<Co-condensate>
A cocondensate containing structural units derived from p-tert-butylphenol, o-phenylphenol and resorcin obtained by the production method of the present invention (hereinafter also referred to as the cocondensate of the present invention) will be described.

本発明の共縮合物は主鎖中に以下式(1) The cocondensate of the present invention has the following formula (1) in the main chain.

Figure 2016014110

で示されるp−tert−ブチルフェノール由来の構成単位と、以下式(2)
Figure 2016014110

A structural unit derived from p-tert-butylphenol represented by formula (2):

Figure 2016014110
で示されるo−フェニルフェノール由来の構成単位、及び以下式(3)
Figure 2016014110
A structural unit derived from o-phenylphenol represented by formula (3):

Figure 2016014110
で示されるレゾルシン由来の構成単位を必ず含んでいることを特徴とする。なお、これら構成単位は通常共縮合物の主鎖中に含まれるが、側鎖中に含まれる場合もある。
Figure 2016014110
The structural unit derived from resorcin represented by is necessarily included. These structural units are usually contained in the main chain of the cocondensate, but may be contained in the side chain.

これら構成単位の内、o−フェニルフェノール由来の構成単位が含まれていない場合、軟化点が高くなり混練時にゴムに配合した際に分散性不良の問題が発生する結果、混練時にゴムに配合して使用するゴムと補強材との接着剤として不適となる。また、レゾルシン由来の構成単位が含まれていない場合、混練時にゴムに配合して使用するゴムと補強材との接着剤としての能力を十分に発揮しない。更には、p−tert−ブチルフェノール由来の構成単位を含まない場合、共縮合物としての価格が非常に高くなり、工業的有利に本願発明の共縮合物を得ることが出来なくなる。 Among these structural units, when a structural unit derived from o-phenylphenol is not included, the softening point becomes high, resulting in problems of poor dispersibility when blended with rubber during kneading. As a result, blended with rubber during kneading. It becomes unsuitable as an adhesive between rubber and reinforcing material used. In addition, when a constituent unit derived from resorcin is not contained, the ability as an adhesive between a rubber and a reinforcing material used by mixing with rubber during kneading is not sufficiently exhibited. Furthermore, when the structural unit derived from p-tert-butylphenol is not included, the cost as a cocondensate becomes very high, and the cocondensate of the present invention cannot be obtained industrially advantageously.

これら構成単位は、p−tert−ブチルフェノール由来の構成単位(1)の1モルに対し、o−フェニルフェノール由来の構成単位(2)を0.5〜15倍モルとすることが好ましく、1.5〜10倍モルとすることがより好ましく、1.5〜6倍モルとすることが特に好ましい。0.5倍モルより少ない場合、軟化点が高くなりすぎて前述のような問題が発生する場合があり、15倍モルより多い場合、混練時にゴムに配合して使用するゴムと補強材との接着剤としての性能には影響は与えないものの、共縮合物の原料コストが高くなり工業上有利に本願記載の共縮合物を製造することができなくなる場合がある。 These structural units are preferably 0.5 to 15 moles of the structural unit (2) derived from o-phenylphenol relative to 1 mole of the structural unit (1) derived from p-tert-butylphenol. It is more preferable to set it as 5-10 times mole, and it is especially preferable to set it as 1.5-6 times mole. When the amount is less than 0.5 times mole, the softening point may be too high and the above-mentioned problems may occur. When the amount is more than 15 times mole, the rubber and the reinforcing material used by blending with rubber at the time of kneading are used. Although it does not affect the performance as an adhesive, the raw material cost of the cocondensate increases, and the cocondensate described in the present application may not be produced industrially advantageously.

レゾルシン由来の構成単位(3)はp−tert−ブチルフェノール由来の構成単位(1)及びo−フェニルフェノール由来の構成単位(2)の合計量1モルに対し通常0.5〜2.0倍モル含まれる。0.5倍モルより少ない場合、混練時にゴムに配合して使用するゴムと補強材との接着剤としての能力を十分に発揮しない場合があり、2.0倍モルより多く含まれるものは工業上製造が困難である場合がある。 The structural unit (3) derived from resorcin is usually 0.5 to 2.0 moles per mole of the total amount of the structural unit (1) derived from p-tert-butylphenol and the structural unit (2) derived from o-phenylphenol. included. When the amount is less than 0.5 times mol, the ability as an adhesive between the rubber and the reinforcing material to be used by mixing with rubber during kneading may not be sufficiently exhibited. It may be difficult to manufacture.

これら構成単位は通常、反応で使用するアルデヒド由来のアルキル基及び/又はアルキルエーテル基のような結合基によって結合される。中でも結合基は、ホルムアルデヒド由来のメチレン基及び/又はジメチレンエーテル基であることが好ましい。結合基は、p−tert−ブチルフェノール由来の構成単位(1)及びo−フェニルフェノール由来の構成単位(2)の合計量1モルに対して、通常1〜2倍モル含まれる。 These structural units are usually connected by a linking group such as an alkyl group and / or an alkyl ether group derived from an aldehyde used in the reaction. Among them, the linking group is preferably a methylene group and / or a dimethylene ether group derived from formaldehyde. The linking group is usually contained in an amount of 1 to 2 moles per mole of the total amount of the structural unit (1) derived from p-tert-butylphenol and the structural unit (2) derived from o-phenylphenol.

これら構成単位の比率は、例えば共縮合物をH−NMRを用い分析することにより決定可能である。具体的には、共縮合物をH−NMRにて分析し、得られた分析結果の内、各構成単位に由来するプロトン積分値からその比率を決定する方法が例示される。 The ratio of these structural units can be determined, for example, by analyzing the cocondensate using 1 H-NMR. Specifically, a method is exemplified in which the cocondensate is analyzed by 1 H-NMR, and the ratio is determined from the proton integral value derived from each constituent unit in the obtained analysis results.

本発明の共縮合物中には、必要に応じp−tert−ブチルフェノール、o−フェニルフェノール及びレゾルシン由来の構成単位以外を含むことができる。このような構成単位の例として、一般的にゴムの加工工程において使用される接着剤として用いられる共縮合物の原料として用いられる各種アルキルフェノール由来の構成単位が例示される。 In the cocondensate of the present invention, components other than structural units derived from p-tert-butylphenol, o-phenylphenol and resorcin can be included as necessary. Examples of such structural units include structural units derived from various alkylphenols used as raw materials for cocondensates generally used as adhesives used in rubber processing steps.

本発明の共縮合物の軟化点は、後述するクマロン樹脂と混合し樹脂組成物とせず、そのまま混練時にゴムに配合して使用するゴムと補強材との接着剤として使用する場合は150℃以下である必要がある。なお、クマロン樹脂と混合し樹脂組成物とする場合であっても、そのまま接着剤として使用する場合であっても本発明の共縮合物の軟化点は80〜150℃であることが好ましく、80〜140℃であることがより好ましく、中でも90〜130℃であることが特に好ましい。軟化点が150℃より高いと、本発明の共縮合物をそのまま接着剤として使用した場合、ゴム成分と混練するときに分散不良となり、ゴムと補強材との接着剤として不適となる。また、共縮合物の高分子化が進行するためクマロン樹脂と混合し樹脂組成物とする場合、十分な量のクマロン樹脂と混合できないため軟化点が十分に低下しない結果、前述の問題と同様の問題が発生する場合がある。軟化点が80℃より低いと保存中にブロッキングする場合がある。 The softening point of the co-condensate of the present invention is 150 ° C. or lower when used as an adhesive between a rubber and a reinforcing material used by mixing with rubber at the time of kneading as it is without mixing with a coumarone resin, which will be described later. It needs to be. In addition, it is preferable that the softening point of the cocondensate of the present invention is 80 to 150 ° C., even when the resin composition is mixed with coumarone resin or used as an adhesive as it is. More preferably, it is -140 degreeC, and it is especially preferable that it is 90-130 degreeC. When the softening point is higher than 150 ° C., when the co-condensate of the present invention is used as an adhesive as it is, dispersion becomes poor when kneaded with a rubber component, and it becomes unsuitable as an adhesive between rubber and a reinforcing material. In addition, since the co-condensate is polymerized and mixed with a coumarone resin to obtain a resin composition, the softening point is not sufficiently lowered because it cannot be mixed with a sufficient amount of coumarone resin. Problems may occur. If the softening point is lower than 80 ° C., blocking may occur during storage.

本発明の共縮合物に含まれる、共縮合物の製造時に一般的に使用可能とされる有機溶媒であって、本共縮合物の使用目的、即ちゴムの混練が実施される上限温度、190℃より低い沸点を有する脂肪族炭化水素、芳香族炭化水素、ハロゲン化脂肪族炭化水素、ハロゲン化芳香族炭化水素及び分岐を有しても良い炭素数1〜5のケトン類の合計含有量は1重量%以下であり、好ましくは0.5重量%以下、更に好ましくは0.1重量%以下である。沸点が190℃以下の脂肪族炭化水素、芳香族炭化水素、ハロゲン化脂肪族炭化水素、ハロゲン化芳香族炭化水素及び分岐を有しても良い炭素数1〜5のケトン類の合計含有量については、ガスクロマトグラフィー等の分析装置を用い分析することが可能である。これらの合計含有量が1重量%以上であっても混練時にゴムに配合して使用するゴムと補強材との接着剤として使用可能であるが、使用時に揮発、蒸散することにより、揮発性有機化合物(VOC)として浮遊粒子状物質及び光化学オキシダントの原因物質となったり、臭気等、作業環境上の問題が生じる場合がある。なお、本発明の共縮合物の製造時には副反応が生じたり、軟化点が高くなる等の理由から一般的には使用されない有機溶媒、例えばアルコール類やエステル類、エーテル類等、沸点が190℃以下の有機溶媒の合計含有量についても上記と同様の理由から1重量%以下であることが好ましい。 An organic solvent which can be generally used in the production of the cocondensate contained in the cocondensate of the present invention, and is intended for use of the cocondensate, that is, an upper limit temperature at which the rubber is kneaded, 190 The total content of aliphatic hydrocarbons having a boiling point lower than ° C., aromatic hydrocarbons, halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons, and optionally branched ketones having 1 to 5 carbon atoms is It is 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.1% by weight or less. Regarding the total content of aliphatic hydrocarbons having a boiling point of 190 ° C. or less, aromatic hydrocarbons, halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons, and optionally branched ketones having 1 to 5 carbon atoms Can be analyzed using an analyzer such as gas chromatography. Even if the total content is 1% by weight or more, it can be used as an adhesive between rubber and reinforcing material used by mixing with rubber at the time of kneading. As a compound (VOC), it may become a cause of suspended particulate matter and photochemical oxidant, and problems in working environment such as odor may occur. In the production of the co-condensate of the present invention, an organic solvent that is not generally used due to a side reaction or a high softening point, such as alcohols, esters, ethers, etc., has a boiling point of 190 ° C. The total content of the following organic solvents is also preferably 1% by weight or less for the same reason as described above.

共縮合物中に含まれる遊離レゾルシンの含有量は、共縮合物をそのまま混練時にゴムに配合して使用するゴムと補強材との接着剤として使用する場合、5重量%以下であることが好ましい。5重量%以下とすることで、ゴム混練時のレゾルシンの蒸散を抑えることが可能であり、作業環境上好ましい。なお、共縮合物をクマロン樹脂と混合し、樹脂組成物として使用する場合、共縮合物とクマロン樹脂との混合比にもよるが10重量%以下とすることが好ましい。 The content of free resorcin contained in the co-condensate is preferably 5% by weight or less when the co-condensate is used as it is as an adhesive between a rubber and a reinforcing material that is used by mixing it with rubber during kneading. . By setting it to 5% by weight or less, it is possible to suppress transpiration of resorcin at the time of rubber kneading, which is preferable in terms of the working environment. When the cocondensate is mixed with coumarone resin and used as a resin composition, it is preferably 10% by weight or less although it depends on the mixing ratio of the cocondensate and coumarone resin.

共縮合物中の遊離レゾルシン以外の未反応モノマーであるp−tert−ブチルフェノールやo−フェニルフェノールの総量は、共縮合物をそのまま混練時にゴムに配合して使用するゴムと補強材との接着剤として使用する場合、好ましくは5重量%以下、更に好ましくは3重量%以下とする。5重量%以下とすることで未反応モノマーに由来する臭気が低減可能である。なお、共縮合物をクマロン樹脂と混合し、樹脂組成物として使用する場合、共縮合物とクマロン樹脂との混合比にもよるが10重量%以下とすることが好ましい。 The total amount of p-tert-butylphenol and o-phenylphenol, which are unreacted monomers other than free resorcin in the cocondensate, is the adhesive between the rubber and the reinforcing material used by mixing the cocondensate with the rubber during kneading. When used as, preferably 5% by weight or less, more preferably 3% by weight or less. By setting the content to 5% by weight or less, the odor derived from the unreacted monomer can be reduced. When the cocondensate is mixed with coumarone resin and used as a resin composition, it is preferably 10% by weight or less although it depends on the mixing ratio of the cocondensate and coumarone resin.

本発明の共縮合物は水を含んでいても良い。水を含む場合、その含有量は通常2重量%以下であることが好ましく、1重量%以下であることがさらに好ましく、0.5重量%以下であることが特に好ましい。2重量%以下とすることで本発明の共縮合物が保管中にブロッキングを起こす可能性が低減される。 The cocondensate of the present invention may contain water. When water is contained, the content is usually preferably 2% by weight or less, more preferably 1% by weight or less, and particularly preferably 0.5% by weight or less. By setting the content to 2% by weight or less, the possibility that the cocondensate of the present invention causes blocking during storage is reduced.

本発明の共縮合物中の灰分(不揮発性の無機物)は通常5重量%以下であり、好ましくは2重量%以下とする。灰分が5重量%より多い場合、後述する本発明の共縮合物とクマロン樹脂を含む樹脂組成物とした際に灰分が分離・析出する場合や、灰分の分だけ有効成分が減少する為、混練時にゴムに配合して使用するゴムと補強材との接着剤としての能力が低下する場合がある。 The ash content (nonvolatile inorganic substance) in the cocondensate of the present invention is usually 5% by weight or less, preferably 2% by weight or less. When the ash content is more than 5% by weight, the ash content is separated and deposited when the resin composition containing the co-condensate of the present invention and coumarone resin described later is used, or the active ingredient decreases by the ash content, so kneading. Occasionally, the ability as an adhesive between a rubber and a reinforcing material used by blending with rubber may be reduced.

<樹脂組成物>
続いて、上述した本発明の共縮合物とクマロン樹脂を含む樹脂組成物について説明する。(以下、本発明の共縮合物とクマロン樹脂を含む樹脂組成物のことを単に樹脂組成物と称することもある。)
<Resin composition>
Subsequently, a resin composition containing the above-described cocondensate of the present invention and coumarone resin will be described. (Hereinafter, the resin composition containing the cocondensate of the present invention and coumarone resin may be simply referred to as a resin composition.)

前述した本発明の共縮合物の軟化点が高い場合、本発明の共縮合物にクマロン樹脂を混合させ、本発明の共縮合物とクマロン樹脂を含む樹脂組成物とすることにより軟化点を低下させることが可能である。なお、通常ゴムの加工用途に使用されるプロセスオイルをクマロン樹脂の代わりに使用した場合、本発明の共縮合物との相溶性が悪いため混合すると樹脂層とオイル層の分離が起こり、軟化剤としての効果を十分に得ることができず、また、均一な製品として製造することができない。 When the softening point of the cocondensate of the present invention described above is high, the softening point is lowered by mixing the cocondensate of the present invention with a coumarone resin to obtain a resin composition containing the cocondensate of the present invention and coumarone resin. It is possible to make it. In addition, when process oil usually used for rubber processing is used instead of coumarone resin, the resin layer and the oil layer are separated when mixed because the compatibility with the cocondensate of the present invention is poor, and the softening agent As a result, it is not possible to sufficiently obtain the effect as described above, and it is impossible to produce a uniform product.

本発明におけるクマロン樹脂とは、その骨格構造にクマロン残基を含む平均重合度4〜8の共重合体のことを示し、クマロン残基の他にインデン、スチレン残基を有しているものが一般的に入手可能である。本発明で使用されるクマロン樹脂としては、通常、軟化点が120℃以下であるものを使用し、好ましくは100℃以下のものを使用する。120℃よりも高いものを使用した場合、樹脂組成物の軟化点を効果的に下げることができない。軟化点が120℃以下のクマロン樹脂の具体例として、Rutgers社製 ノバレスCシリーズ(ノバレスC10、C30、C70、C80、C90、C100、C120)、ノバレスCAシリーズ(ノバレスCA80、CA100、CA120)、日塗化学株式会社製 ニットレジンクマロン(G−90、L−5、L−20)、神戸油化学工業株式会社製 プロセスレジンなどが挙げられる。これらのクマロン樹脂は単独で使用してもよいし、必要に応じて2種類以上を混合して使用することも可能である。 The coumarone resin in the present invention refers to a copolymer having an average degree of polymerization of 4 to 8 containing a coumarone residue in its skeleton structure, and has an indene and styrene residue in addition to the coumarone residue. Generally available. As the coumarone resin used in the present invention, those having a softening point of 120 ° C. or lower are used, preferably those having a softening point of 100 ° C. or lower. When a temperature higher than 120 ° C. is used, the softening point of the resin composition cannot be effectively reduced. Specific examples of coumarone resins having a softening point of 120 ° C. or less include Novales C series (Novares C10, C30, C70, C80, C90, C100, C120), Novales CA series (Novares CA80, CA100, CA120) manufactured by Rutgers, Japan Examples thereof include Knit Resin Coumarone (G-90, L-5, L-20) manufactured by Coating Chemical Co., Ltd. and Process Resin manufactured by Kobe Oil Chemical Co., Ltd. These coumarone resins may be used alone or in combination of two or more as required.

樹脂組成物中のクマロン樹脂の含有量は、通常、樹脂組成物の総量に対し5〜70重量%であり、好ましくは10〜60重量%である。含有量が70重量%を超えた場合、樹脂組成物のブロッキングや、ゴム用接着剤としての性能の低下が起こる場合がある。5重量%を下回る場合、軟化点が十分に下がらず、クマロン樹脂を混合させる意義が見いだせない場合がある。また、軟化点が40℃以下の油状のクマロン樹脂を使用する場合、その使用量は40重量%以下であることが好ましい。40重量%を超えた場合、ブロッキングが起こりやすい傾向にある。したがって、ブロッキングを避けながらクマロン樹脂の含有量を増やし軟化点を大きく低下させる為には、軟化点が40℃以下の油状のクマロン樹脂を40重量%を超えない範囲で使用した上、更に軟化点70℃以上の固体のクマロン樹脂を併用することが好ましい。 The content of coumarone resin in the resin composition is usually 5 to 70% by weight, preferably 10 to 60% by weight, based on the total amount of the resin composition. When the content exceeds 70% by weight, the resin composition may be blocked or the performance as a rubber adhesive may be deteriorated. If the amount is less than 5% by weight, the softening point may not be sufficiently lowered, and the significance of mixing coumarone resin may not be found. Moreover, when using the oily coumarone resin whose softening point is 40 degrees C or less, it is preferable that the usage-amount is 40 weight% or less. If it exceeds 40% by weight, blocking tends to occur. Therefore, in order to increase the content of coumarone resin while largely avoiding blocking and to greatly reduce the softening point, an oily coumarone resin having a softening point of 40 ° C. or lower is used in a range not exceeding 40% by weight, and further, the softening point is further increased. It is preferable to use a solid coumarone resin at 70 ° C. or higher in combination.

樹脂組成物の軟化点は150℃以下が好ましく、中でも80℃〜140℃であることが好ましく、90℃〜120℃であることが特に好ましい。本発明の樹脂組成物を通常の混練温度である170℃程度でゴムへ混練する場合、軟化点は150℃以下であれば十分であるが、混練中のレゾルシンの蒸散を抑制する目的で100〜130℃の低温で混練を行う場合、軟化点を混練温度より低い120℃以下としなければ分散性不良の問題が発生する場合があり、ゴムと補強材との接着剤としての性能が十分に発現されない場合がある。また、80℃より低いと、保存中にブロッキングする場合がある。 The softening point of the resin composition is preferably 150 ° C. or lower, more preferably 80 ° C. to 140 ° C., and particularly preferably 90 ° C. to 120 ° C. When the resin composition of the present invention is kneaded into rubber at a normal kneading temperature of about 170 ° C., a softening point of 150 ° C. or less is sufficient, but 100 to 100 for the purpose of suppressing resorcinol transpiration during kneading. When kneading at a low temperature of 130 ° C., the problem of poor dispersibility may occur unless the softening point is 120 ° C. or lower, which is lower than the kneading temperature, and the performance as an adhesive between the rubber and the reinforcing material is sufficiently developed. May not be. On the other hand, if it is lower than 80 ° C., it may block during storage.

樹脂組成物中の沸点が190℃以下の脂肪族炭化水素、芳香族炭化水素、ハロゲン化脂肪族炭化水素、ハロゲン化芳香族炭化水素及び分岐を有しても良い炭素数1〜5のケトン類の合計含有量は、樹脂組成物の原料である本発明の共縮合物と同様に1重量%以下とすることが好ましく、更に好ましくは0.5重量%以下、特に好ましくは0.1重量%以下とする。そのためには、これらの合計含有量ができるだけ少ないクマロン樹脂を本発明の共縮合物と混合させることが必要である。なお、樹脂組成物中のこれらの合計含有量が1重量%以上であっても混練時にゴムに配合して使用するゴムと補強材との接着剤として使用可能であるが、使用時に揮発、蒸散することにより、揮発性有機化合物(VOC)として浮遊粒子状物質及び光化学オキシダントの原因物質となったり、臭気等、作業環境上の問題が生じる場合がある。なお、その他の有機溶媒、例えばアルコール類やエステル類、エーテル類等、沸点が190℃以下の有機溶媒の合計含有量についても上記と同様の理由から1重量%以下であることが好ましい。 Aliphatic hydrocarbons, aromatic hydrocarbons, halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons having a boiling point of 190 ° C. or less in the resin composition, and optionally branched ketones having 1 to 5 carbon atoms The total content of is preferably 1% by weight or less, more preferably 0.5% by weight or less, and particularly preferably 0.1% by weight, in the same manner as the cocondensate of the present invention that is the raw material of the resin composition. The following. For this purpose, it is necessary to mix the coumarone resin having the smallest total content as much as possible with the cocondensate of the present invention. Even if the total content of these in the resin composition is 1% by weight or more, it can be used as an adhesive between the rubber and the reinforcing material used by mixing with the rubber at the time of kneading. By doing so, it may become a cause of suspended particulate matter and photochemical oxidant as a volatile organic compound (VOC), and problems in working environment such as odor may occur. In addition, the total content of other organic solvents such as alcohols, esters, ethers, and the like having a boiling point of 190 ° C. or lower is preferably 1% by weight or less for the same reason as described above.

樹脂組成物中に含まれる遊離レゾルシンの含有量は5重量%以下であることが好ましい。5重量%以下とすることで、ゴム混練時のレゾルシンの蒸散を抑えることが可能であり、作業環境上好ましい。 The content of free resorcin contained in the resin composition is preferably 5% by weight or less. By setting it to 5% by weight or less, it is possible to suppress transpiration of resorcin at the time of rubber kneading, which is preferable in terms of the working environment.

樹脂組成物中の遊離レゾルシン以外の未反応モノマーであるp−tert−ブチルフェノールやo−フェニルフェノールの総量は特に限定されないが、5重量%以下であることが好ましく、3重量%以下であることがさらに好ましい。5重量%以下とすることで未反応モノマーに由来する臭気が低減可能である。 The total amount of p-tert-butylphenol and o-phenylphenol which are unreacted monomers other than free resorcin in the resin composition is not particularly limited, but is preferably 5% by weight or less, and preferably 3% by weight or less. Further preferred. By setting the content to 5% by weight or less, the odor derived from the unreacted monomer can be reduced.

<共縮合物の製造方法>
続いて、本発明の共縮合物の製造方法について詳述する。本発明の共縮合物の製造方法は、
<a>p−tert−ブチルフェノールとo−フェニルフェノールの混合物を、p−tert−ブチルフェノールとo−フェニルフェノールの総量(物質量基準)に対し0.2倍モル以上のアルカリ存在下、70℃以下で反応させ、レゾール型共縮合物を得る工程
<b>前記レゾール型共縮合物にレゾルシンを反応させる工程
をこの順で含むことを特徴とする。
<Method for producing co-condensate>
Then, the manufacturing method of the cocondensate of this invention is explained in full detail. The method for producing the cocondensate of the present invention comprises:
<a> A mixture of p-tert-butylphenol and o-phenylphenol is 70 ° C. or less in the presence of 0.2 moles or more of alkali with respect to the total amount (substance basis) of p-tert-butylphenol and o-phenylphenol. <B> The step of reacting resorcin with the resole-type cocondensate is performed in this order.

工程<a>で用いられるp−tert−ブチルフェノールとo−フェニルフェノールの混合物(以下、フェノール誘導体と称することがある)におけるo−フェニルフェノールの比率は、p−tert−ブチルフェノールとo−フェニルフェノールの総量に対し35%〜94モル%であることが好ましく、40〜91モル%であることがより好ましく、60モル%〜85モル%であることが特に好ましい。35モル%より少ないと得られる共縮合物の軟化点が高くなり、ゴム成分と混練するときに分散不良となる場合がある。94モル%より多いと、混練時にゴムに配合して使用するゴムと補強材との接着剤としての性能には影響は与えないものの、高価なo−フェニルフェノールが多量に必要となり、工業上有利に本願記載の共縮合物を製造できなくなる場合がある。なお、本発明におけるp−tert−ブチルフェノールとo−フェニルフェノールの混合物とは、反応器に投入する前に事前に混合したものの他、それぞれ別個に反応器に投入し、結果として反応器内で混合物となったものも含まれる。 The ratio of o-phenylphenol in the mixture of p-tert-butylphenol and o-phenylphenol (hereinafter sometimes referred to as a phenol derivative) used in step <a> is the ratio of p-tert-butylphenol and o-phenylphenol. It is preferably 35% to 94% by mole, more preferably 40% to 91% by mole, and particularly preferably 60% to 85% by mole based on the total amount. When the amount is less than 35 mol%, the softening point of the resulting cocondensate is increased, which may result in poor dispersion when kneaded with the rubber component. If it exceeds 94 mol%, it does not affect the performance as an adhesive between the rubber and the reinforcing material used by mixing with rubber during kneading, but a large amount of expensive o-phenylphenol is required, which is industrially advantageous. In some cases, the cocondensate described in the present application cannot be produced. In addition, the mixture of p-tert-butylphenol and o-phenylphenol in the present invention is a mixture mixed in advance before being charged into the reactor, and separately charged into the reactor, resulting in a mixture in the reactor. Also included are.

工程<a>で用いられるホルムアルデヒドとしては、ホルムアルデヒド自体のほか、水溶液であるホルマリン、及びパラホルムアルデヒドやトリオキサンのような、容易にホルムアルデヒドを発生する化合物を使用することができる。ホルムアルデヒドの仕込みモル比はフェノール誘導体の総量(物質量基準)に対し通常1〜3倍モルであり、好ましくは1.5〜2.5倍モルである。1倍モルより少ない場合、未反応モノマーが多くなり臭気が増加する場合がある。また、3倍モルより多い場合、ホルムアルデヒドが未反応のまま多く残存するため、樹脂が三次元構造化して軟化点が高くなる場合がある。 As the formaldehyde used in the step <a>, in addition to formaldehyde itself, a formalin that is an aqueous solution, and a compound that easily generates formaldehyde, such as paraformaldehyde and trioxane, can be used. The charged molar ratio of formaldehyde is usually 1 to 3 times, preferably 1.5 to 2.5 times, the total amount of phenol derivative (based on the amount of substance). When the amount is less than 1 mole, unreacted monomers may increase and odor may increase. Further, when the amount is more than 3 times mole, a large amount of formaldehyde remains unreacted, so that the resin may have a three-dimensional structure and the softening point may be increased.

工程<a>で用いられるアルカリとしては、アルカリ金属やアルカリ土類金属の水酸化物または炭酸塩、アンモニア、アミンのような、通常のレゾール型縮合物を製造する際に用いられるものを使用することができる。アルカリ金属やアルカリ土類金属の水酸化物または炭酸塩の具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。この中でも、水酸化ナトリウム、水酸化カリウムが好ましい。これらのアルカリは固体状のものでも、水溶液状のものでも使用可能であるが、反応性、取扱いの面から水溶液のものを使用することが好ましい。水溶液状のものを使用する場合、その濃度は通常、10重量%〜50重量%のものを使用する。 As the alkali used in the step <a>, those used for producing ordinary resol-type condensates such as hydroxides or carbonates of alkali metals or alkaline earth metals, ammonia, and amines are used. be able to. Specific examples of the alkali metal or alkaline earth metal hydroxide or carbonate include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, and potassium carbonate. Among these, sodium hydroxide and potassium hydroxide are preferable. These alkalis can be used in the form of a solid or an aqueous solution, but it is preferable to use an aqueous solution in terms of reactivity and handling. When an aqueous solution is used, the concentration is usually 10% to 50% by weight.

工程<a>で用いられるアルカリの使用量はフェノール誘導体の総量(物質量基準)に対し0.2倍モル以上である必要があり、好ましくは0.3〜0.8倍モルである。アルカリの使用量が0.2倍モルより少ない場合、後述する条件でフェノール誘導体とホルムアルデヒドとを反応させた場合、反応が十分に進行せず、共縮合物中のp−tert−ブチルフェノールとo−フェニルフェノールの残量が高くなり、ゴム混練時の臭気が問題になる場合や、工程<a>の終了後、工程<b>でレゾルシンとを反応させる際、未反応のまま残留したホルムアルデヒドとレゾルシンとの反応が起こり、樹脂が三次元構造化して軟化点が高くなり、混練時にゴムに配合して使用するゴムと補強材との接着剤として使用できなくなる。 The amount of alkali used in the step <a> needs to be 0.2 times mol or more, preferably 0.3 to 0.8 times mol based on the total amount of phenol derivative (based on the amount of substance). When the amount of alkali used is less than 0.2 times mol, when the phenol derivative and formaldehyde are reacted under the conditions described later, the reaction does not proceed sufficiently, and p-tert-butylphenol and o- in the cocondensate are not reacted. Formaldehyde and resorcin that remain unreacted when the residual amount of phenylphenol becomes high and the odor at the time of rubber kneading becomes a problem or when reacting resorcin in step <b> after step <a> Reaction occurs, the resin has a three-dimensional structure and has a high softening point, and cannot be used as an adhesive between the rubber and the reinforcing material blended with the rubber during kneading.

工程<a>の反応は、本反応時に一般的に使用可能とされる有機溶媒、即ち沸点が190℃以下の脂肪族炭化水素、芳香族炭化水素、ハロゲン化脂肪族炭化水素、ハロゲン化芳香族炭化水素及び分岐を有しても良い炭素数1〜5のケトン類を用いて実施しても良いが、これら有機溶媒を使用した場合、最終製品である本発明の共縮合物あるいは樹脂組成物から除去することが困難となることから、本発明においてはこれら有機溶媒を使用しないことが好ましく、代わりに水存在下で反応させることが好ましい。水の使用量はフェノール誘導体の総量に対して通常0.3〜2.0重量倍、好ましくは0.5〜1.0重量倍使用する。水を使用する場合、個別反応容器に添加しても良いし、水溶液状のホルムアルデヒドやアルカリを使用しても良い。 The reaction of the step <a> is an organic solvent that can be generally used in the present reaction, that is, an aliphatic hydrocarbon, aromatic hydrocarbon, halogenated aliphatic hydrocarbon, halogenated aromatic having a boiling point of 190 ° C. or less. Although it may be carried out using hydrocarbons and C1-C5 ketones which may have branches, when these organic solvents are used, the final product is the cocondensate or resin composition of the present invention. In the present invention, it is preferable not to use these organic solvents, and it is preferable to carry out the reaction in the presence of water instead. The amount of water used is usually 0.3 to 2.0 times by weight, preferably 0.5 to 1.0 times by weight based on the total amount of the phenol derivative. When water is used, it may be added to an individual reaction vessel, or aqueous formaldehyde or alkali may be used.

工程<a>の反応は、例えば反応器にp−tert−ブチルフェノールとo−フェニルフェノール、ホルマリン(ホルムアルデヒドの水溶液)を投入後、40〜50℃程度まで昇温させ、アルカリの水溶液を投入後、更に70℃以下で1〜48時間反応させることにより実施される。なお、工程<a>の反応は70℃以下、好ましくは50〜70℃で実施する必要がある。70℃より高い温度で反応させた場合、高分子化が進みすぎ、工程<a>の終了段階で反応生成物が乳化を起こし、有機溶媒を使用しなければ後述する中和水洗工程を実施できないため、レゾール型縮合物とアルカリとを分離することができず、その結果、工程<b>でレゾルシンとの反応が十分に起こらないため共縮合物中の遊離レゾルシンの含量が高くなり、ゴム混練中に生じるレゾルシンの蒸散が問題となったり、得られる共縮合物中の灰分が高くなり、品質が低下する。 The reaction in the step <a> is performed by, for example, adding p-tert-butylphenol, o-phenylphenol, and formalin (formaldehyde aqueous solution) to the reactor, and then raising the temperature to about 40 to 50 ° C. Further, it is carried out by reacting at 70 ° C. or lower for 1 to 48 hours. In addition, it is necessary to implement reaction of process <a> at 70 degrees C or less, Preferably it is 50-70 degreeC. When the reaction is carried out at a temperature higher than 70 ° C., the polymerization becomes too advanced, the reaction product is emulsified at the end of the step <a>, and the neutralization washing step described later cannot be performed unless an organic solvent is used. Therefore, the resole-type condensate cannot be separated from the alkali, and as a result, the reaction with resorcin does not occur sufficiently in the step <b>, so the content of free resorcin in the co-condensate becomes high, and rubber kneading The transpiration of resorcin produced therein becomes a problem, the ash content in the resulting cocondensate becomes high, and the quality deteriorates.

工程<a>の終了後、続いて工程<b>を実施しても良いが、工程<a>で得られたレゾール型縮合物を含む反応生成物に水や酸、更に必要に応じ硫酸ナトリウムや食塩などの水溶性の塩を比重調整剤として添加し、撹拌した後、レゾール型縮合物と水層とを分離する工程(以下中和水洗工程と称することもある)を実施することが好ましい。中和水洗工程を実施しない場合、後述するレゾルシンとの反応で高分子化が進み過ぎる場合や、工程<a>で使用したアルカリが本発明の共縮合物や樹脂組成物に残存し灰分となる結果、本発明の共縮合物とクマロン樹脂を含む樹脂組成物とした際に灰分が分離・析出する場合や、灰分の分だけ有効成分が減少する為、混練時にゴムに配合して使用するゴムと補強材との接着剤としての能力が低下する場合がある。 After the step <a> is completed, the step <b> may be carried out subsequently. However, the reaction product containing the resol-type condensate obtained in the step <a> may be added with water, acid, and sodium sulfate as necessary. It is preferable to carry out a step of separating the resol-type condensate from the aqueous layer (hereinafter also referred to as neutralized water washing step) after adding a water-soluble salt such as salt or salt as a specific gravity adjusting agent and stirring. . When the neutralization water washing step is not performed, when the polymerization is excessively advanced by the reaction with resorcin described below, or the alkali used in the step <a> remains in the cocondensate or resin composition of the present invention and becomes ash. As a result, when the resin composition containing the co-condensate of the present invention and coumarone resin is used, the ash is separated and deposited, or the active ingredient is reduced by the amount of the ash, so the rubber used by blending with the rubber during kneading In some cases, the capacity of the adhesive and the reinforcing material decreases.

なお、中和水洗工程を実施する場合、通常は有機溶媒にレゾール型縮合物を溶解させ、有機溶媒存在下で実施するが、上述した条件にて工程<a>を実施した場合、有機溶媒にレゾール型縮合物を溶解させなくても中和水洗工程を実施することが可能であるので、共縮合物に含まれる沸点が190℃以下の脂肪族炭化水素、芳香族炭化水素、ハロゲン化脂肪族炭化水素、ハロゲン化芳香族炭化水素及び分岐を有しても良い炭素数1〜5のケトン類の合計含有量を1重量%以下とすることが可能となる。 In the case of carrying out the neutralized water washing step, the resol-type condensate is usually dissolved in an organic solvent and carried out in the presence of the organic solvent. However, if the step <a> is carried out under the conditions described above, Since it is possible to carry out the neutralization washing step without dissolving the resol-type condensate, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated aliphatics having a boiling point of 190 ° C. or less contained in the cocondensate The total content of hydrocarbons, halogenated aromatic hydrocarbons, and optionally branched ketones having 1 to 5 carbon atoms can be 1% by weight or less.

中和水洗工程で使用する水の量は通常、p−tert−ブチルフェノールとo−フェニルフェノールの総量に対し0.2〜1重量倍使用する。なお、工程<a>で水を使用した場合、その水をそのまま中和水洗工程の水として使用しても良いし、新たに水を追加しても良い。 The amount of water used in the neutralized water washing step is usually 0.2 to 1 times the weight of the total amount of p-tert-butylphenol and o-phenylphenol. In addition, when water is used at the process <a>, the water may be used as it is as the water for the neutralization washing process, or water may be newly added.

中和水洗工程において、レゾール型縮合物から工程<a>で使用したアルカリをより効率よく除去するため酸を併用することが好ましい。中和水洗工程で使用可能な酸として例えば、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸、シュウ酸、p−トルエンスルホン酸などが例示される。これらの酸は1種類のみを単独で使用してもよいし、2種類以上を混合して使用してもよい。また、使用する酸の総量は通常、工程<a>で使用したアルカリに対し等量(物質量基準)以上の酸を使用する。また、これらの酸は水溶液状のものを使用することも可能であるが、その際は中和水洗工程で使用する水の総量が上述した範囲に入るように適宜濃度を調製すれば良い。 In the neutralized water washing step, it is preferable to use an acid together in order to more efficiently remove the alkali used in step <a> from the resol-type condensate. Examples of acids that can be used in the neutralized water washing step include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, and p-toluenesulfonic acid. These acids may be used alone or in combination of two or more. In addition, the total amount of acid used is usually an acid equal to or greater than the alkali used in step <a> (substance amount basis). These acids can be used in the form of an aqueous solution. In this case, the concentration may be adjusted appropriately so that the total amount of water used in the neutralized water washing step falls within the above-mentioned range.

中和水洗工程を実施する際の温度(撹拌・静置の際の温度)は通常40〜100℃、好ましくは50〜80℃で実施する。 The temperature at the time of carrying out the neutralized water washing step (temperature at the time of stirring and standing) is usually 40 to 100 ° C., preferably 50 to 80 ° C.

中和水洗工程を実施する際、レゾール型縮合物と工程<a>で使用したアルカリ、あるいは該アルカリを酸で中和した場合、中和により生じた塩を含む水(水層)とを効率良く分離可能とするため、比重調整剤として塩を添加することが好ましい。比重調整剤として使用可能な塩はレゾール型縮合物と反応せず、水への溶解度が大きければよく、例えば硫酸ナトリウムや硫酸アンモニウム及びこれらの水和物や食塩などが例示される。これらの塩は1種類のみを単独で使用してもよいし、2種類以上を混合して使用してもよい。塩の使用量としては、通常、水層に完溶する量以下とすれば良く、例えば硫酸ナトリウムを使用する場合、p−tert−ブチルフェノールとo−フェニルフェノールの総量に対し、0.10〜0.16重量倍使用する。 When carrying out the neutralized water washing step, the resol-type condensate and the alkali used in step <a>, or the water containing the salt produced by neutralization (water layer) when the alkali is neutralized with an acid, are efficiently used. In order to make separation well, it is preferable to add a salt as a specific gravity adjusting agent. A salt that can be used as a specific gravity adjusting agent does not react with the resol-type condensate and has only high solubility in water. Examples thereof include sodium sulfate, ammonium sulfate, and their hydrates and sodium chloride. These salts may be used alone or in combination of two or more. The amount of salt used may be usually less than or equal to the amount completely dissolved in the aqueous layer. For example, when sodium sulfate is used, the amount of salt is 0.10 to 0 with respect to the total amount of p-tert-butylphenol and o-phenylphenol. Use 16 times the weight.

中和水洗工程終了後、必要に応じレゾール型縮合物を更に水洗しても良いし、活性炭処理等定法の精製処理を行っても良い。 After completion of the neutralization water washing step, the resol-type condensate may be further washed with water if necessary, or a conventional purification treatment such as activated carbon treatment may be performed.

続いて工程<b>について詳述する。工程<b>において使用するレゾルシンの使用量は通常、フェノール誘導体の総量に対し、0.5〜4.0倍であり、好ましくは1〜2倍モル、特に1.0〜1.6倍モルが好ましい。4.0倍モルより多い場合、未反応のレゾルシンが多く残存し、共縮合物からのレゾルシンの揮発が問題となる場合がある。0.5倍モルより低い場合、反応が完結せず混練時にゴムに配合して使用するゴムと補強材との接着剤としての性能が出ない場合がある。なお、工程<b>において有機溶媒を使用せず反応を行う場合、レゾルシンの使用量はフェノール誘導体の総量に対し1〜2倍モルとする必要がある。 Next, step <b> will be described in detail. The amount of resorcin used in step <b> is usually 0.5 to 4.0 times, preferably 1 to 2 times, particularly 1.0 to 1.6 times, the total amount of phenol derivative. Is preferred. When the amount is more than 4.0 times, a large amount of unreacted resorcin remains, and volatilization of resorcin from the cocondensate may be a problem. When it is lower than 0.5 times mol, the reaction may not be completed and the performance as an adhesive between the rubber and the reinforcing material used by mixing with rubber during kneading may not be obtained. In addition, when performing reaction without using an organic solvent in process <b>, it is necessary to use the usage-amount of resorcinol 1-2 times with respect to the total amount of a phenol derivative.

工程<b>は沸点が190℃以下の脂肪族炭化水素、芳香族炭化水素、ハロゲン化脂肪族炭化水素、ハロゲン化芳香族炭化水素等の不活性有機溶媒存在下で反応を実施しても良いが、得られる共縮合物中のこれらの合計含有量が1重量%以下とするためには、不活性有機溶媒を使用せず反応を行うことが好ましい。不活性有機溶媒を使用し反応した場合、工程<b>終了後、濃縮により不活性有機溶媒を共縮合物から除去する必要があるが、得られる共縮合物の軟化点が非常に高くなり、混練時にゴムに配合して使用するゴムと補強材との接着剤として不適となる場合や、濃縮操作で高温下に置かれることで着色や樹脂の分解が進行する場合がある。 In the step <b>, the reaction may be carried out in the presence of an inert organic solvent such as an aliphatic hydrocarbon having a boiling point of 190 ° C. or less, an aromatic hydrocarbon, a halogenated aliphatic hydrocarbon, or a halogenated aromatic hydrocarbon. However, in order for the total content of the obtained cocondensate to be 1% by weight or less, it is preferable to carry out the reaction without using an inert organic solvent. When the reaction is carried out using an inert organic solvent, it is necessary to remove the inert organic solvent from the cocondensate by concentration after completion of the step <b>, but the softening point of the resulting cocondensate becomes very high, When kneaded, it may be unsuitable as an adhesive between rubber and reinforcing material used in rubber, or may be colored or decomposed by being placed under high temperature during a concentration operation.

工程<b>は通常、内温40〜150℃、1〜8時間で実施される。また、レゾール型縮合物とレゾルシンとの反応では、系内に水が存在すると反応速度が遅くなる傾向がある為、工程<a>終了後、中和水洗工程にて余分な水層を除去しておくことが好ましく、そのためには有機溶媒を使用せずともレゾール型縮合物と水層とを分離可能とするために、工程<a>で規定した条件にてレゾール型縮合物を製造することが重要となる。また、工程<b>を実施する際、レゾール型縮合物とレゾルシンとの反応で生成した水により反応速度が低下する場合があるため、反応を促進する目的で脱水しながら反応を行うことが好ましい。 Step <b> is usually performed at an internal temperature of 40 to 150 ° C. for 1 to 8 hours. In the reaction between the resole-type condensate and resorcin, the reaction rate tends to be slow if water is present in the system. Therefore, after the step <a> is completed, the excess water layer is removed in the neutralization washing step. For this purpose, the resol-type condensate should be produced under the conditions defined in the step <a> in order to make it possible to separate the resol-type condensate and the aqueous layer without using an organic solvent. Is important. Further, when performing the step <b>, the reaction rate may be lowered by the water generated by the reaction of the resole-type condensate and resorcin. Therefore, the reaction is preferably performed while dehydrating for the purpose of promoting the reaction. .

工程<b>終了後、本発明の共縮合物が得られるが、必要に応じ、工程<b>終了後、反応で使用した溶媒や未反応のフェノール誘導体、レゾルシン等を濃縮除去することが可能である。(以下濃縮除去工程と称することもある。)濃縮除去工程は、除去したい物質の沸点に応じて一般的に行われる方法で実施することが可能であり、この際、反応器内を減圧し濃縮することで除去したい物質の除去効率を高めることも可能である。しかしながら濃縮除去工程を実施することにより共縮合物の軟化点が上昇する傾向や、高温下に置かれることで着色や樹脂の分解が進行する場合があるので、可能であれば濃縮除去工程を実施しないことが好ましい。 After completion of step <b>, the co-condensate of the present invention is obtained. If necessary, after the step <b>, the solvent used in the reaction, unreacted phenol derivative, resorcin, etc. can be concentrated and removed. It is. (Hereinafter, it may also be called a concentration removal process.) A concentration removal process can be implemented by the method generally performed according to the boiling point of the substance to remove, and in this case, the inside of a reactor is pressure-reduced and concentrated. By doing so, it is possible to increase the removal efficiency of the substance to be removed. However, the concentration removal process tends to increase the softening point of the co-condensate, and coloring and decomposition of the resin may progress when placed under high temperatures. Preferably not.

<樹脂組成物の製造方法>
本発明の共縮合物とクマロン樹脂とを含む樹脂組成物の製造方法について詳説する。本願の共縮合物にクマロン樹脂を添加し樹脂組成物とする場合、クマロン樹脂はアルキルフェノールとホルムアルデヒドとを、アルカリ触媒の存在下で反応させる前から本発明の樹脂組成物を得る工程の間の任意の工程で加えることが可能であるが、工程<b>終了後、反応器にクマロン樹脂を添加し、必要に応じて前述の濃縮除去工程を行い樹脂組成物とするか、上述した方法にて一旦共縮合物を製造した後、得られた共縮合物とクマロン樹脂とを任意の比率で反応器に添加し、その後撹拌・混合することにより均一化した樹脂組成物とする方法が好ましい。
<Method for producing resin composition>
The method for producing a resin composition containing the cocondensate of the present invention and coumarone resin will be described in detail. In the case where coumarone resin is added to the cocondensate of the present application to form a resin composition, coumarone resin is an optional component during the step of obtaining the resin composition of the present invention before reacting alkylphenol and formaldehyde in the presence of an alkali catalyst. However, after completion of the step <b>, a coumarone resin is added to the reactor, and if necessary, the concentration removal step is performed to obtain a resin composition. A method is preferably used in which the cocondensate is once produced and then the obtained cocondensate and coumarone resin are added to the reactor at an arbitrary ratio, and then the mixture is stirred and mixed to obtain a uniform resin composition.

以上のようにして得られた本発明の共縮合物及び樹脂組成物は、ゴム組成物への練り込みによりゴムと各種補強材との接着剤として利用可能である。特に補強材との加硫接着において有効である。かかる補強材としては、ナイロン、レーヨン、ポリエステル、アラミド等の有機繊維類、真鍮メッキしたスチールコード、亜鉛メッキしたスチールコード等のスチールコード類が例示される。中でも真鍮メッキしたスチールコードとの加硫接着において特に有効である。なお、本発明の共縮合物及び樹脂組成物は単独、あるいは必要に応じこれらを混合し上述した用途に使用することができる。 The co-condensate and resin composition of the present invention obtained as described above can be used as an adhesive between rubber and various reinforcing materials by kneading into the rubber composition. This is particularly effective in vulcanization adhesion with a reinforcing material. Examples of the reinforcing material include organic fibers such as nylon, rayon, polyester, and aramid, and steel cords such as a brass-plated steel cord and a galvanized steel cord. In particular, it is particularly effective in vulcanization adhesion with a steel cord plated with brass. In addition, the cocondensate and resin composition of this invention can be used for the use mentioned above individually or in mixture as needed.

<ゴム組成物>
続いて、本発明の共縮合物及び/又は樹脂組成物を含むゴム組成物について詳述する。
<Rubber composition>
Subsequently, the rubber composition containing the cocondensate and / or resin composition of the present invention will be described in detail.

本発明のゴム組成物は上記の共縮合物及び/又は樹脂組成物とゴム成分と充填剤とイオウとを混練して得られる。これらとともに加硫促進剤、酸化亜鉛、メチレンドナー化合物や有機コバルト化合物を混練することが好ましい。   The rubber composition of the present invention is obtained by kneading the above-mentioned cocondensate and / or resin composition, rubber component, filler and sulfur. It is preferable to knead a vulcanization accelerator, zinc oxide, a methylene donor compound and an organic cobalt compound together with these.

上記の共縮合物及び/又は樹脂組成物の使用量は通常、ゴム成分100重量部あたり0.5〜10重量部の範囲で用いられる。中でも1〜5重量部の範囲が好ましい。0.5重量部より少ない場合補強材とゴムとの接着剤として有用に作用せず、10重量部より多い場合、前記作用に問題はないが添加量に見合う作用が発現せず経済的に好ましくない。 The amount of the above-mentioned cocondensate and / or resin composition used is usually in the range of 0.5 to 10 parts by weight per 100 parts by weight of the rubber component. Among these, the range of 1 to 5 parts by weight is preferable. When the amount is less than 0.5 parts by weight, it does not function usefully as an adhesive between the reinforcing material and the rubber. Absent.

ゴム成分としては、天然ゴム、エポキシ化天然ゴム、脱蛋白天然ゴムおよびその他の変性天然ゴムのほか、ポリイソプレンゴム(IR)、スチレン・ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、イソプレン・イソブチレン共重合ゴム(IIR)、エチレン・プロピレン−ジエン共重合ゴム(EPDM)、ハロゲン化ブチルゴム(HR)等の各種の合成ゴムが例示されるが、天然ゴム、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム等の高不飽和性ゴムが好ましく用いられる。特に好ましくは天然ゴムである。また、天然ゴムとスチレン・ブタジエン共重合ゴムの併用、天然ゴムとポリブタジエンゴムの併用等、数種のゴム成分を組み合わせることも有効である。 Rubber components include natural rubber, epoxidized natural rubber, deproteinized natural rubber and other modified natural rubber, as well as polyisoprene rubber (IR), styrene / butadiene copolymer rubber (SBR), polybutadiene rubber (BR), and acrylonitrile. -Various synthetic rubbers such as butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber (IIR), ethylene / propylene-diene copolymer rubber (EPDM), halogenated butyl rubber (HR), etc. are exemplified. Highly unsaturated rubbers such as rubber, styrene / butadiene copolymer rubber and polybutadiene rubber are preferably used. Particularly preferred is natural rubber. It is also effective to combine several rubber components such as a combination of natural rubber and styrene / butadiene copolymer rubber, a combination of natural rubber and polybutadiene rubber.

天然ゴムの例としては、RSS#1、RSS#3、TSR20、SIR20等のグレードの天然ゴムを挙げることができる。エポキシ化天然ゴムとしては、エポキシ化度10〜60モル%のものが好ましく、例えばクンプーラン ガスリー社製ENR25やENR50が例示できる。脱蛋白天然ゴムとしては、総窒素含有率が0.3重量%以下である脱蛋白天然ゴムが好ましい。変性天然ゴムとしては天然ゴムにあらかじめ4−ビニルピリジン、N,N,−ジアルキルアミノエチルアクリレート(例えばN,N,−ジエチルアミノエチルアクリレート)、2−ヒドロキシアクリレート等を反応させた極性基を含有する変性天然ゴムが好ましく用いられる。 Examples of natural rubber include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, SIR20 and the like. As the epoxidized natural rubber, those having a degree of epoxidation of 10 to 60 mol% are preferable, and examples thereof include ENR25 and ENR50 manufactured by Kumpoulan Guthrie. As the deproteinized natural rubber, a deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable. The modified natural rubber contains a polar group obtained by reacting natural rubber with 4-vinylpyridine, N, N, -dialkylaminoethyl acrylate (for example, N, N, -diethylaminoethyl acrylate), 2-hydroxyacrylate, or the like in advance. Natural rubber is preferably used.

SBRの例としては、日本ゴム協会編「ゴム工業便覧<第四版>」の210〜211頁に記載されている乳化重合SBRおよび溶液重合SBRを挙げることができる。とりわけ溶液重合SBRが好ましく用いられ、更には日本ゼオン社製「ニッポール(登録商標)NS116」等の4,4’−ビス−(ジアルキルアミノ)ベンゾフェノンを用いて分子末端を変性した溶液重合SBR、JSR社製「SL574」等のハロゲン化スズ化合物を用いて分子末端を変性した溶液重合SBR、旭化成社製「E10」、「E15」等シラン変性溶液重合SBRの市販品や、ラクタム化合物、アミド化合物、尿素系化合物、N,N−ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(トリアルコキシシラン化合物等)、アミノシラン化合物のいずれかを単独で用いて、または、スズ化合物とアルコキシ基を有するシラン化合物や、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物等、前記記載の異なった複数の化合物を2種以上用いて、それぞれ分子末端を変性して得られる分子末端に窒素、スズ、ケイ素のいずれか、またはそれら複数の元素を有する溶液重合SBRが、特に好ましく用いられる。 Examples of the SBR include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. In particular, solution polymerization SBR is preferably used, and further, solution polymerization SBR, JSR in which molecular ends are modified with 4,4′-bis- (dialkylamino) benzophenone such as “Nippol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd. Solution polymerized SBR having a molecular end modified with a tin halide compound such as “SL574” manufactured by the company, commercially available silane-modified solution polymerized SBR such as “E10” and “E15” manufactured by Asahi Kasei Corporation, lactam compounds, amide compounds, A urea compound, an N, N-dialkylacrylamide compound, an isocyanate compound, an imide compound, a silane compound having an alkoxy group (trialkoxysilane compound, etc.), an aminosilane compound alone, or a tin compound and an alkoxy group Silane compounds with alkyl and alkyl acrylamide compounds And silane compound having an alkoxy group or the like, and using two or more different compounds described above and modifying the molecular terminals, respectively, nitrogen, tin, silicon, or a plurality of these elements A solution-polymerized SBR having the following is particularly preferably used.

BRの例としては、シス1,4結合が90%以上の高シスBRやシス結合が35%前後の低シスBR等の溶液重合BRが例示され、高ビニル含量の低シスBRは好ましく用いられる。更には日本ゼオン製「Nipol(登録商標)BR 1250H」等スズ変性BRや、4,4‘−ビス−(ジアルキルアミノ)ベンゾフェノン、ハロゲン化スズ化合物、ラクタム化合物、アミド化合物、尿素系化合物、N,N−ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(トリアルコキシシラン化合物等)、アミノシラン化合物のいずれかを単独で用いて、または、スズ化合物とアルコキシ基を有するシラン化合物や、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物等、前記記載の異なった複数の化合物を2種以上用いて、それぞれ分子末端を変性して得られる分子末端に窒素、スズ、ケイ素のいずれか、またはそれら複数の元素を有する溶液重合BRが、特に好ましく用いられる。これらBRは通常は天然ゴムとのブレンドで使用される。 Examples of BR include solution polymerization BR such as high cis BR having 90% or more of cis 1,4 bond and low cis BR having cis bond of around 35%, and low cis BR having a high vinyl content is preferably used. . Furthermore, tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon, 4,4′-bis- (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, An N-dialkylacrylamide compound, an isocyanate compound, an imide compound, a silane compound having an alkoxy group (trialkoxysilane compound, etc.), an aminosilane compound alone, or a silane compound having a tin compound and an alkoxy group, Using two or more different compounds as described above, such as an alkylacrylamide compound and a silane compound having an alkoxy group, each of the molecular ends obtained by modifying the molecular ends is either nitrogen, tin, or silicon, or those Solution polymerization B with multiple elements But particularly preferably used. These BRs are usually used in blends with natural rubber.

ゴム成分としては天然ゴムが好ましく、ゴム成分に占める天然ゴムの割合は70重量%以上であることが好ましい。 Natural rubber is preferred as the rubber component, and the proportion of natural rubber in the rubber component is preferably 70% by weight or more.

充填剤としては、ゴム分野で通常使用されているカーボンブラック、シリカ、タルク、クレイ、水酸化アルミニウム、酸化チタン等が例示されるが、カーボンブラック及びシリカが好ましく用いられ、更にはカーボンブラックが特に好ましく使用される。カーボンブラックとしては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の494頁に記載されるものが挙げられ、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、FEF(Fast Extrusion Furnace)、MAF、GPF(General Purpose Furnace)、SRF(Semi−Reinforcing Furnace)等のカーボンブラックが好ましい。タイヤトレッド用ゴム組成物にはCTAB表面積40〜250m2/g、窒素吸着比表面積20〜200m2/g、粒子径10〜50nmのカーボンブラックが好ましく用いられ、CTAB表面積70〜180m2/gであるカーボンブラックが更に好ましく、その例としてはASTMの規格において、N110、N220、N234、N299、N326、N330、N330T、N339、N343、N351等である。またカーボンブラックの表面にシリカを0.1〜50重量%付着させた表面処理カーボンブラックも好ましい。更には、カーボンブラックとシリカの併用等、数種の充填剤を組み合わせることも有効である。 Examples of the filler include carbon black, silica, talc, clay, aluminum hydroxide, titanium oxide and the like that are usually used in the rubber field. Carbon black and silica are preferably used, and carbon black is particularly preferable. Preferably used. Examples of the carbon black include those described in page 494 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. HAF (High Ablation Furnace), SAF (Super Ablation Furnace), ISAF (Intermediate). Carbon black such as SAF), FEF (Fast Extension Furnace), MAF, GPF (General Purpose Furnace), SRF (Semi-Reinforcing Furnace) is preferable. Carbon black having a CTAB surface area of 40 to 250 m <2> / g, a nitrogen adsorption specific surface area of 20 to 200 m <2> / g, and a particle diameter of 10 to 50 nm is preferably used for the tire tread rubber composition, and the carbon black having a CTAB surface area of 70 to 180 m <2> / g. More preferable examples include N110, N220, N234, N299, N326, N330, N330T, N339, N343, and N351 in the ASTM standard. A surface-treated carbon black in which 0.1 to 50% by weight of silica is attached to the surface of the carbon black is also preferable. Furthermore, it is also effective to combine several kinds of fillers such as a combination of carbon black and silica.

シリカとしては、CTAB比表面積50〜180m2/gや、窒素吸着比表面積50〜300m2/gのシリカが例示され、東ソー・シリカ(株)社製「AQ」、「AQ−N」、デグッサ社製「ウルトラジル(登録商標)VN3」、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」、日本シリカ社製「ニップシール(登録商標)AQ」等の市販品が好ましく用いられる。また通常充填剤としてシリカを用いる場合にはビス(3−トリエトキシシリルプロピル)テトラスルフィド(デグッサ社製「Si−69」)、ビス(3−トリエトキシシリルプロピル)ジスルフィド(デグッサ社製「Si−75」)、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3−ジエトキシメチルシリルプロピル)ジスルフィド、オクタンチオ酸S−[3−(トリエトキシシリル)プロピル]エステル(ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)からなる群から選択される1種以上のシランカップリング剤等、シリカと結合可能なケイ素等の元素またはアルコシキシラン等の官能基を有する化合物を添加することが好ましい。 Examples of the silica include silica having a CTAB specific surface area of 50 to 180 m <2> / g and a nitrogen adsorption specific surface area of 50 to 300 m <2> / g. "AQ", "AQ-N" manufactured by Tosoh Silica Corporation, manufactured by Degussa "Ultrasil (registered trademark) VN3", "Ultrasil (registered trademark) 360", "Ultrasil (registered trademark) 7000", "Zeosil (registered trademark) 115GR", "Zeosil (registered trademark) 1115MP" manufactured by Rhodia Commercially available products such as “Zeosil (registered trademark) 1205MP”, “Zeosil (registered trademark) Z85MP”, and “Nip Seal (registered trademark) AQ” manufactured by Nippon Silica Co., Ltd. are preferably used. When silica is usually used as a filler, bis (3-triethoxysilylpropyl) tetrasulfide ("Si-69" manufactured by Degussa) or bis (3-triethoxysilylpropyl) disulfide ("Si-" manufactured by Degussa) 75 "), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, octanethioic acid S- [3- (triethoxysilyl) propyl] ester (General Electronic Silicones) It is preferable to add a compound having an element such as silicon that can be bonded to silica or a functional group such as alkoxysilane, such as one or more silane coupling agents selected from the group consisting of “NXT silane” manufactured by the same manufacturer.

水酸化アルミニウムとしては、窒素吸着比表面積5〜250m2/g、DOP給油量50〜100ml/100gの水酸化アルミニウムが例示される。 The aluminum hydroxide is exemplified by aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m <2> / g and a DOP oil supply amount of 50 to 100 ml / 100 g.

かかる充填剤の使用量は特に限定されるものではないが、ゴム成分100重量部あたり10〜120重量部の範囲が好ましい。特に好ましいのは30〜70重量部である。 The amount of the filler used is not particularly limited, but is preferably in the range of 10 to 120 parts by weight per 100 parts by weight of the rubber component. Particularly preferred is 30 to 70 parts by weight.

充填剤としてはカーボンブラックが好ましく、充填剤に占めるカーボンブラックの割合は70重量%以上であることが好ましい。 The filler is preferably carbon black, and the proportion of carbon black in the filler is preferably 70% by weight or more.

硫黄成分としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、及び高分散性硫黄等が挙げられる。通常は粉末硫黄が好ましく、タイヤのベルト用部材等の硫黄量が多いタイヤ部材に用いる場合には不溶性硫黄が好ましい。硫黄成分の使用量は特に限定されるものではないが、ゴム成分100重量部あたり1〜10重量部の範囲が好ましい。タイヤのベルト用部材等では5〜10重量部の範囲が好ましい。 Examples of the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Usually, powdered sulfur is preferred, and insoluble sulfur is preferred when used for tire members having a large amount of sulfur such as tire belt members. Although the usage-amount of a sulfur component is not specifically limited, The range of 1-10 weight part per 100 weight part of rubber components is preferable. The range of 5 to 10 parts by weight is preferable for tire belt members and the like.

加硫促進剤の例としては、ゴム工業便覧<第四版>(平成6年1月20日社団法人 日本ゴム協会発行)の412〜413ページに記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が挙げられる。 Examples of vulcanization accelerators include thiazole-based vulcanization accelerators and sulfur compounds described on pages 412 to 413 of Rubber Industry Handbook <Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994). Examples thereof include phenamide vulcanization accelerators and guanidine vulcanization accelerators.

具体的には、例えば、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロへキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)、2−メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)、ジフェニルグアニジン(DPG)が挙げられる。中でも、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(BBS)、N,N−ジシクロへキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)、またはジベンゾチアジルジスルフィド(MBTS)とジフェニルグアニジン(DPG)とを併用することが好ましい。 Specifically, for example, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2 -Benzothiazolylsulfenamide (DCBS), 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS), diphenylguanidine (DPG). Among them, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclohexyl-2-benzothiazolylsulfur It is preferable to use phenamide (DCBS) or dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG) in combination.

加硫促進剤の使用量は特に限定されるものではないが、ゴム成分100重量部あたり0.5〜3重量部の範囲が好ましい。中でも0.5〜1.2重量部の範囲が特に好ましい。 Although the usage-amount of a vulcanization accelerator is not specifically limited, The range of 0.5-3 weight part per 100 weight part of rubber components is preferable. In particular, the range of 0.5 to 1.2 parts by weight is particularly preferable.

酸化亜鉛の使用量は特に限定されるものではないが、ゴム成分100重量部あたり3〜15重量部の範囲が好ましい。中でも5〜10重量部の範囲が特に好ましい。 Although the usage-amount of zinc oxide is not specifically limited, The range of 3-15 weight part per 100 weight part of rubber components is preferable. Among these, the range of 5 to 10 parts by weight is particularly preferable.

ホルムアルデヒド発生剤としては、ヘキサメチレンテトラミン、ヘキサキス(メトキシメチル)メラミン、ペンタキス(メトキシメチル)メチロールメラミン、テトラキス(メトキシメチル)ジメチロールメラミン等のゴム工業において通常使用されているものを挙げることができる。中でもヘキサキス(メトキシメチル)メラミン単独又はそれを主成分とする混合物が好ましい。これらのホルムアルデヒド発生剤は、それぞれ単独で、又は組み合わせて用いることができ、その配合量は前記ゴム成分100重量部に対し、0.5〜4重量部程度の範囲が好ましく、1〜3重量部程度の範囲がより好ましい。 Examples of the formaldehyde generator include those usually used in the rubber industry such as hexamethylenetetramine, hexakis (methoxymethyl) melamine, pentakis (methoxymethyl) methylolmelamine, and tetrakis (methoxymethyl) dimethylolmelamine. Among them, hexakis (methoxymethyl) melamine alone or a mixture containing it as a main component is preferable. These formaldehyde generators can be used alone or in combination, and the blending amount thereof is preferably in the range of about 0.5 to 4 parts by weight with respect to 100 parts by weight of the rubber component, and 1 to 3 parts by weight. A range of the degree is more preferable.

有機コバルト化合物としては、例えば、ナフテン酸コバルト、ステアリン酸コバルト等の酸コバルト塩や、脂肪酸コバルト・ホウ素錯体化合物(例えば、商品名「マノボンドC(登録商標)」:ローディア社製)等が挙げられる。有機コバルト化合物の使用量は、前記ゴム成分100重量部に対し、コバルト含量にして0.05〜0.4重量部の範囲が好ましい。 Examples of the organic cobalt compound include acid cobalt salts such as cobalt naphthenate and cobalt stearate, and fatty acid cobalt / boron complex compounds (for example, trade name “Manobond C (registered trademark)” manufactured by Rhodia). . The amount of the organic cobalt compound used is preferably in the range of 0.05 to 0.4 parts by weight in terms of cobalt content with respect to 100 parts by weight of the rubber component.

本発明のゴム組成物は従来よりゴム分野で用いられている各種の配合剤を配合し、混練することも可能である。かかる配合剤としては、例えば、老化防止剤、オイル、リターダー、しゃく解剤、ステアリン酸等が挙げられる。 The rubber composition of the present invention can be compounded with various compounding agents conventionally used in the rubber field and kneaded. Examples of such compounding agents include anti-aging agents, oils, retarders, peptizers, and stearic acid.

上記の老化防止剤としては、例えば日本ゴム協会編「ゴム工業便覧<第四版>」の436〜443頁に記載されるものが挙げられる。中でもN−フェニル−N’−1,3−ジメチルブチル−p−フェニレンジアミン(6PPD)、アニリンとアセトンの反応生成物(TMDQ)、ポリ(2,2,4−トリメチル−1,2−)ジヒドロキノリン)(松原産業社製「アンチオキシダントFR」)、合成ワックス(パラフィンワックス等)、植物性ワックスが好ましく用いられる。 Examples of the anti-aging agent include those described in pages 436 to 443 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Among them, N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine (6PPD), reaction product of aniline and acetone (TMDQ), poly (2,2,4-trimethyl-1,2-) dihydro Quinoline) (“Antioxidant FR” manufactured by Matsubara Sangyo Co., Ltd.), synthetic wax (paraffin wax, etc.) and vegetable wax are preferably used.

上記のオイルとしては、プロセスオイル、植物油脂等が挙げられる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル等が挙げられる。 Examples of the oil include process oil and vegetable oil. Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.

上記のリターダーとしては、無水フタル酸、安息香酸、サリチル酸、N−ニトロソジフェニルアミン、N−(シクロヘキシルチオ)−フタルイミド(CTP)、スルホンアミド誘導体、ジフェニルウレア、ビス(トリデシル)ペンタエリスリトール−ジホスファイト等が例示され、N−(シクロヘキシルチオ)−フタルイミド(CTP)が好ましく用いられる。 Examples of the retarder include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) -phthalimide (CTP), sulfonamide derivatives, diphenylurea, bis (tridecyl) pentaerythritol-diphosphite, etc. N- (cyclohexylthio) -phthalimide (CTP) is preferably used.

本発明の共縮合物及び/又は樹脂組成物を含むゴム組成物は、例えば以下の方法により得ることが出来る。   The rubber composition containing the cocondensate and / or resin composition of the present invention can be obtained, for example, by the following method.

(A)充填剤とゴム成分を混練する工程
充填剤とゴム成分の混練はバンバリーミキサー等の密閉式混練装置を用いて行うことが出来る。かかる混練は、通常、発熱を伴い、混練終了時の温度が140℃〜180℃の範囲であることが好ましく、150℃〜170℃の範囲であることが、さらに好ましい。混練時間は5分〜10分程度である。
(A) Process of kneading filler and rubber component The filler and rubber component can be kneaded using a closed kneading apparatus such as a Banbury mixer. Such kneading usually involves heat generation, and the temperature at the end of kneading is preferably in the range of 140 ° C. to 180 ° C., more preferably in the range of 150 ° C. to 170 ° C. The kneading time is about 5 to 10 minutes.

(B)Aの工程で得た混練物と硫黄成分と加硫促進剤を混練する工程
Aの工程で得た混練物と硫黄成分と加硫促進剤の混練は、例えばバンバリーミキサー等の密閉式混練装置やオープンロールを用いて行うことが出来る。混練終了時の混練物の温度が30℃〜100℃であることが好ましく、60℃〜90℃であることがより好ましい。混練時間は通常5〜10分程度である。
(B) The kneaded product obtained in step A, the sulfur component and the vulcanization accelerator are kneaded. The kneaded product obtained in step A, the sulfur component and the vulcanization accelerator are kneaded, for example, in a sealed manner such as a Banbury mixer. It can be performed using a kneading apparatus or an open roll. The temperature of the kneaded product at the end of kneading is preferably 30 ° C to 100 ° C, and more preferably 60 ° C to 90 ° C. The kneading time is usually about 5 to 10 minutes.

本発明の共縮合物及び/又は樹脂組成物は軟化点が低い為、(A)または(B)の工程で加えることが可能となるが、好ましくは(A)の工程で加える。 Since the cocondensate and / or resin composition of the present invention has a low softening point, it can be added in the step (A) or (B), but is preferably added in the step (A).

酸化亜鉛、老化防止剤、オイル、脂肪酸類、しゃく解剤を用いる場合、これらは(A)の工程で加えることが好ましい。 When using zinc oxide, an antioxidant, oil, fatty acids, and peptizer, these are preferably added in the step (A).

リターダーを用いる場合、(B)の工程で加えることが好ましい。 When using a retarder, it is preferable to add at the process of (B).

こうして得られた本発明の共縮合物及び/又は樹脂組成物を含むゴム組成物は、特に補強材との加硫接着において有効である。かかる補強材としては、ナイロン、レーヨン、ポリエステル、アラミド等の有機繊維類、真鍮メッキしたスチールコード、亜鉛メッキしたスチールコード等のスチールコード類が例示される。中でも真鍮メッキしたスチールコードとの加硫接着において特に有効である。 The rubber composition containing the cocondensate and / or resin composition of the present invention thus obtained is particularly effective in vulcanization adhesion with a reinforcing material. Examples of the reinforcing material include organic fibers such as nylon, rayon, polyester, and aramid, and steel cords such as a brass-plated steel cord and a galvanized steel cord. In particular, it is particularly effective in vulcanization adhesion with a steel cord plated with brass.

本発明の共縮合物及び/又は樹脂組成物を含むゴム組成物を補強材と共に成形し、加硫工程を経ることでゴムと補強材が強固に接着したゴム製品を得ることが出来る。加硫工程は120℃〜180℃で行うことが好ましい。加硫工程は常圧又は加圧下で行われる。 A rubber composition containing the cocondensate and / or resin composition of the present invention is molded together with a reinforcing material, and a rubber product in which the rubber and the reinforcing material are firmly bonded can be obtained through a vulcanization process. The vulcanization step is preferably performed at 120 ° C to 180 ° C. The vulcanization step is performed at normal pressure or under pressure.

以下、実施例と比較例を示すことで本発明をより具体的に説明する。本発明はこれらの例によって何ら限定されるものではない。なお、以下実施例及び比較例に記載される各成分の含有量、残留溶媒量、遊離モノマー量は、特に断りのない限り、得られた共縮合物又はクマロン樹脂を含む樹脂組成物全量に対する当該物質の重量%である。 Hereinafter, the present invention will be described more specifically by showing examples and comparative examples. The present invention is not limited by these examples. In addition, unless otherwise specified, the content of each component, the amount of residual solvent, and the amount of free monomer described in the following Examples and Comparative Examples are the same for the total amount of the resin composition containing the obtained cocondensate or coumarone resin. % By weight of the substance.

共縮合物、樹脂組成物の分析および性能評価は以下のようにして行った。
〔1〕樹脂の平均分子量の測定
共縮合物、樹脂組成物の平均分子量に関しては、ゲル透過クロマトグラフィー(GPC)により、ポリスチレン換算重量平均分子量として算出した。
使用機器 :HLC−8220GPC(東ソー製)
カラム : TSK ガードカラム SUPER HZ−L(東ソー製)
+TSK−GEL SUPER HZ1000(4.6mmφ×150mm)
+TSK−GEL SUPER HZ2500(4.6mmφ×150mm)
+TSK−GEL SUPER HZ4000(4.6mmφ×150mm)
カラム温度:40℃
注入量 :10μL
キャリアーおよび流速 :テトラヒドロフラン 0.35mL/min
サンプル調製:本願の共合物または樹脂組成物約0.02gをテトラヒドロフラン20mLに溶解
Analysis and performance evaluation of the cocondensate and resin composition were performed as follows.
[1] Measurement of average molecular weight of resin The average molecular weight of the cocondensate and the resin composition was calculated as a polystyrene-converted weight average molecular weight by gel permeation chromatography (GPC).
Equipment used: HLC-8220GPC (manufactured by Tosoh Corporation)
Column: TSK guard column SUPER HZ-L (manufactured by Tosoh)
+ TSK-GEL SUPER HZ1000 (4.6 mmφ × 150 mm)
+ TSK-GEL SUPER HZ2500 (4.6mmφ × 150mm)
+ TSK-GEL SUPER HZ4000 (4.6 mmφ × 150 mm)
Column temperature: 40 ° C
Injection volume: 10 μL
Carrier and flow rate: Tetrahydrofuran 0.35 mL / min
Sample preparation: About 0.02 g of the present compound or resin composition is dissolved in 20 mL of tetrahydrofuran.

〔2〕遊離モノマー、残留溶媒の測定
遊離モノマー及び残留溶媒については、以下の条件に基づくガスクロマトグラフィーにより定量を行った。
使用機器 :島津製作所社製 ガスクロマトグラフ GC−14B
カラム :ガラスカラム外径5mm×内径3.2mm×長さ3.1m
充填剤 :充填剤 Silicone OV−17 10% Chromosorb WHP 80/100mesh, max.temp.340℃
カラム温度:80℃→280℃
気化室温度:250℃
検出器温度:280℃
検出器 :FID
キャリアー:N2(40ml/min)
燃焼ガス :水素(60kPa), 空気(60kPa)
注入量 :2μL
共縮合物、または樹脂組成物1gをアセトン10mLに溶解させ上記条件にて分析した。絶対検量線法(GC−ES法)により、樹脂中の残留溶媒の種類および含有量(%)、残留モノマーの含有量(%)を測定した。
[2] Measurement of free monomer and residual solvent The free monomer and the residual solvent were quantified by gas chromatography based on the following conditions.
Equipment used: Gas chromatograph GC-14B manufactured by Shimadzu Corporation
Column: Glass column outer diameter 5 mm x inner diameter 3.2 mm x length 3.1 m
Filler: Filler Silicone OV-17 10% Chromosorb WHP 80/100 mesh, max. temp. 340 ° C
Column temperature: 80 ° C → 280 ° C
Vaporization chamber temperature: 250 ° C
Detector temperature: 280 ° C
Detector: FID
Carrier: N2 (40 ml / min)
Combustion gas: Hydrogen (60 kPa), Air (60 kPa)
Injection volume: 2 μL
1 g of the cocondensate or resin composition was dissolved in 10 mL of acetone and analyzed under the above conditions. By the absolute calibration curve method (GC-ES method), the type and content (%) of the residual solvent in the resin and the content (%) of the residual monomer were measured.

〔3〕軟化点の測定
JIS−K2207に準拠した方法により測定した。
[3] Measurement of softening point Measured by a method based on JIS-K2207.

〔4〕共縮合物中の各構成単位の混合比
以下条件に基づく方法によりH−NMR分析を行った。
装置:日本電子社製「JMN−ECS」(400MHz)
溶媒:重水素置換ジメチルスルホキシド 試料:約2mg/1mLで溶解
各成分の化学シフト:テトラメチルシランを基準(0ppm)とし、以下の値に示されるピークをそれぞれの成分のピークとした。
p−tert−ブチルフェノール由来のp−tert−ブチル基のプロトン:1.0〜1.2ppm
ホルムアルデヒド由来のメチレン基のプロトン:3.4〜3.9ppm
o−フェニルフェノール由来のo−フェニル基のプロトン:7.1〜7.5ppm
レゾルシン由来のフェノール性水酸基のプロトンは、個別の分離帰属が困難であったため、全てのフェノール性水酸基由来のプロトン:7.80〜9.30ppmの積分値から、p−tert−ブチルフェノール由来の1個のフェノール性水酸基由来のプロトンの積分値および、o−フェニルフェノール由来の1個のフェノール性水酸基由来のプロトンの積分値を差し引きし、レゾルシン由来の2個のフェノール性水酸基の積分値を算出した。
なお、以下実施例中の構成比率については以下の基準に基づく比率である。
o−フェニルフェノール:p−tert−ブチルフェノール1とした時の割合(モル倍)
ホルムアルデヒド由来のメチレン基:o−フェニルフェノールとp−tert−ブチルフェノールの合計量に対する割合(モル倍)
レゾルシン:p−tert−ブチルフェノール1とした時の割合(モル倍)。()内はo−フェニルフェノールとp−tert−ブチルフェノールの合計量に対する割合。(モル倍)
[4] 1 H-NMR analysis was performed by a method based on the following conditions of the mixing ratio of each structural unit in the cocondensate.
Equipment: “JMN-ECS” (400 MHz) manufactured by JEOL Ltd.
Solvent: Deuterium-substituted dimethyl sulfoxide Sample: Dissolved at about 2 mg / 1 mL Chemical shift of each component: Tetramethylsilane was used as a standard (0 ppm), and the peaks shown below were taken as the peak of each component.
Proton of p-tert-butyl group derived from p-tert-butylphenol: 1.0 to 1.2 ppm
Proton of methylene group derived from formaldehyde: 3.4 to 3.9 ppm
Proton of o-phenyl group derived from o-phenylphenol: 7.1 to 7.5 ppm
Since it was difficult to separate and assign the protons of the phenolic hydroxyl group derived from resorcin, all the protons derived from the phenolic hydroxyl group: from the integral value of 7.80 to 9.30 ppm, one derived from p-tert-butylphenol The integral value of two phenolic hydroxyl groups derived from resorcin was calculated by subtracting the integral value of protons derived from phenolic hydroxyl group and the integral value of protons derived from one phenolic hydroxyl group derived from o-phenylphenol.
In addition, about the component ratio in an Example below, it is a ratio based on the following references | standards.
o-Phenylphenol: Ratio (molar times) when p-tert-butylphenol 1 is used
Methylene group derived from formaldehyde: ratio (mole times) to the total amount of o-phenylphenol and p-tert-butylphenol
Resorcin: Ratio (molar times) when p-tert-butylphenol 1 is used. Figures in parentheses are percentages of the total amount of o-phenylphenol and p-tert-butylphenol. (Mole times)

〔5〕水分の分析法
JIS−K0068に準拠した方法により測定した。
[5] Moisture analysis method Measured by a method based on JIS-K0068.

〔6〕灰分の分析法
JIS−K6201に準拠した方法により測定した。
[6] Ash content analysis The ash content was measured by a method based on JIS-K6201.

1.共縮合物及び樹脂組成物の製造及び物性評価
<実施例1>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン180.0g(2.22mol)、p−tert−ブチルフェノール30.0g(0.20mol)、o−フェニルフェノール170.0g(1.00mol)を順に加えた。その後、内温40℃まで昇温し、24%水酸化ナトリウム水溶液80.0g(0.48mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて2時間反応した。
反応終了後、30%硫酸70.5g(0.216mol)、シュウ酸二水和物3.02(0.024mol)を加え0.2時間撹拌後静置し、下層のレゾール型共縮合物一旦取出し、水層を除去したのち、フラスコ内に戻した。
レゾルシン184.8g(1.68mol)を加え、内温110℃まで昇温し、微減圧下(92kPa)で3時間かけて脱水を行った。この間内温は115℃から118℃まで上昇した。続いて、内温140℃まで昇温し、2時間脱水(92kPa)を行った。その後、内温145〜150℃まで昇温し、1時間保温することで水を留去した。その後、内温140〜150℃に保ったまま16kPaまで減圧し、水をさらに留去した。上記の操作により、黄色の共縮合物414gを得た。
共縮合物の平均分子量:1576、軟化点:127℃、遊離p−tert−ブチルフェノール分:0.0%、遊離o−フェニルフェノール分:0.8%、遊離レゾルシン分:7.9%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.2%、灰分0.0%。共縮合物の各構成単位の比率;o−フェニルフェノール:5.31、メチレン基:1.69、レゾルシン:8.73(1.38)
続いて、還流冷却器および温度計を備えた四つ口セパラブルフラスコに、得られた共縮合物200.0g、クマロン樹脂としてRutgers社製ノバレスC10(常温で油状、100.0g)、Rutgers社製ノバレスC90(軟化点:85〜95℃、100.0g)を順に加えた。その後、内温150℃まで昇温し、内温140〜150℃で保温しながら2時間攪拌することで、共縮合物とクマロン樹脂が均一になるように混合した。上記の操作により、クマロン樹脂を含む樹脂組成物398.2gを得た。
クマロン樹脂を含む樹脂組成物の平均分子量:1207、軟化点:108℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.4%、遊離レゾルシン:3.7%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.1%、灰分0.0%。クマロン樹脂の含量:50%。
1. Production of cocondensate and resin composition and evaluation of physical properties <Example 1>
A four-necked separable flask equipped with a reflux condenser and a thermometer was charged with 180.0 g (2.22 mol) of formalin having a purity of 37%, 30.0 g (0.20 mol) of p-tert-butylphenol, 170 of o-phenylphenol. 0.0 g (1.00 mol) was added in order. Thereafter, the internal temperature was raised to 40 ° C., 80.0 g (0.48 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C., and the reaction was performed at the same temperature for 2 hours.
After completion of the reaction, 70.5 g (0.216 mol) of 30% sulfuric acid and 3.02 (0.024 mol) of oxalic acid dihydrate were added and stirred for 0.2 hours. After removing and removing the aqueous layer, it was returned to the flask.
184.8 g (1.68 mol) of resorcin was added, the temperature was raised to an internal temperature of 110 ° C., and dehydration was performed for 3 hours under slightly reduced pressure (92 kPa). During this time, the internal temperature rose from 115 ° C to 118 ° C. Subsequently, the internal temperature was raised to 140 ° C. and dehydration (92 kPa) was performed for 2 hours. Then, it heated up to 145-150 degreeC of internal temperature, and water was distilled off by heat-retaining for 1 hour. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and water was further distilled off. By the above operation, 414 g of a yellow cocondensate was obtained.
Average molecular weight of co-condensate: 1576, softening point: 127 ° C., free p-tert-butylphenol content: 0.0%, free o-phenylphenol content: 0.8%, free resorcin content: 7.9%, boiling point Is 190 ° C. or lower organic solvent: 0.0%, moisture content 0.2%, ash content 0.0%. Ratio of each structural unit of co-condensate: o-phenylphenol: 5.31, methylene group: 1.69, resorcin: 8.73 (1.38)
Subsequently, in a four-neck separable flask equipped with a reflux condenser and a thermometer, 200.0 g of the obtained cocondensate, Novales C10 manufactured by Rutgers as a coumarone resin (oil-free at room temperature, 100.0 g), Rutgers Novares C90 (softening point: 85-95 ° C., 100.0 g) was added in order. Thereafter, the temperature was raised to an internal temperature of 150 ° C., and the mixture was stirred for 2 hours while keeping the internal temperature at 140 to 150 ° C., thereby mixing the cocondensate and the coumarone resin uniformly. By the above operation, 398.2 g of a resin composition containing coumarone resin was obtained.
Average molecular weight of resin composition containing coumarone resin: 1207, softening point: 108 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.4%, free resorcin: 3.7%, Organic solvent having a boiling point of 190 ° C. or lower: 0.0%, moisture content 0.1%, ash content 0.0%. Coumarone resin content: 50%.

<実施例2>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン180.0g(2.22mol)、p−tert−ブチルフェノール30.0g(0.20mol)、o−フェニルフェノール170.0g(1.00mol)を順に加えた。その後、内温40℃まで昇温し、24%水酸化ナトリウム水溶液80.0g(0.48mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて2時間反応した。
反応終了後、30%硫酸70.5g(0.216mol)、シュウ酸二水和物3.02(0.024mol)、硫酸ナトリウム26.0g(0.0183mol)を加え0.2時間撹拌後静置し、水層を除去した。
レゾルシン171.6g(1.56mol)を加え、内温110℃まで昇温し、微減圧下(92kPa)で1.5時間かけて脱水を行った。この間内温は115℃から125℃まで上昇した。続いて、内温145℃まで昇温し、1時間脱水(92kPa)を行った。その後、内温145〜150℃まで昇温し、1時間保温することで水を留去した。その後、内温140〜150℃に保ったまま16kPaまで減圧し、水をさらに留去した。上記の操作により、黄色の共縮合物389gを得た。
共縮合物の平均分子量:1728、軟化点:135℃、遊離p−tert−ブチルフェノール分:0.0%、遊離o−フェニルフェノール分:0.7%、遊離レゾルシン分:5.9%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.2%、灰分0.1%。共縮合物の各構成単位の比率;o−フェニルフェノール:5.23、メチレン基:1.62、レゾルシン:7.97(1.28)
続いて、還流冷却器および温度計を備えた四つ口セパラブルフラスコに、得られた共縮合物200.0g、クマロン樹脂としてRutgers社製ノバレスC10(常温で油状、120.0g)、Rutgers社製ノバレスC90(軟化点:85〜95℃、80.0g)を順に加えた。その後、内温150℃まで昇温し、内温140〜150℃で保温しながら2時間攪拌することで、共縮合物とクマロン樹脂が均一になるように混合した。上記の操作により、クマロン樹脂を含む樹脂組成物398.5gを得た。
クマロン樹脂を含む樹脂組成物の平均分子量:1242、軟化点:109℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.5%、遊離レゾルシン:2.9%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.1%、灰分0.1%。クマロン樹脂の含量:50%。
<Example 2>
A four-necked separable flask equipped with a reflux condenser and a thermometer was charged with 180.0 g (2.22 mol) of formalin having a purity of 37%, 30.0 g (0.20 mol) of p-tert-butylphenol, 170 of o-phenylphenol. 0.0 g (1.00 mol) was added in order. Thereafter, the internal temperature was raised to 40 ° C., 80.0 g (0.48 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C., and the reaction was performed at the same temperature for 2 hours.
After completion of the reaction, 70.5 g (0.216 mol) of 30% sulfuric acid, 3.02 (0.024 mol) of oxalic acid dihydrate, and 26.0 g (0.0183 mol) of sodium sulfate were added and the mixture was stirred for 0.2 hours. And the aqueous layer was removed.
171.6 g (1.56 mol) of resorcin was added, the temperature was raised to an internal temperature of 110 ° C., and dehydration was performed under a slightly reduced pressure (92 kPa) for 1.5 hours. During this time, the internal temperature rose from 115 ° C to 125 ° C. Subsequently, the internal temperature was raised to 145 ° C., and dehydration (92 kPa) was performed for 1 hour. Then, it heated up to 145-150 degreeC of internal temperature, and water was distilled off by heat-retaining for 1 hour. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and water was further distilled off. By the above operation, 389 g of a yellow cocondensate was obtained.
Average molecular weight of co-condensate: 1728, softening point: 135 ° C., free p-tert-butylphenol content: 0.0%, free o-phenylphenol content: 0.7%, free resorcin content: 5.9%, boiling point Is 190% or lower organic solvent: 0.0%, moisture content 0.2%, ash content 0.1%. Ratio of each structural unit of co-condensate: o-phenylphenol: 5.23, methylene group: 1.62, resorcin: 7.97 (1.28)
Subsequently, in a four-neck separable flask equipped with a reflux condenser and a thermometer, 200.0 g of the obtained cocondensate, Novales C10 manufactured by Rutgers as a coumarone resin (oil at room temperature, 120.0 g), Rutgers Novares C90 (softening point: 85-95 ° C., 80.0 g) was added in order. Thereafter, the temperature was raised to an internal temperature of 150 ° C., and the mixture was stirred for 2 hours while keeping the internal temperature at 140 to 150 ° C., thereby mixing the cocondensate and the coumarone resin uniformly. By the above operation, 398.5 g of a resin composition containing coumarone resin was obtained.
Average molecular weight of resin composition containing coumarone resin: 1242, softening point: 109 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.5%, free resorcin: 2.9%, Organic solvent having a boiling point of 190 ° C. or lower: 0.0%, moisture content 0.1%, ash content 0.1%. Coumarone resin content: 50%.

<実施例3>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン180.0g(2.22mol)、p−tert−ブチルフェノール30.0g(0.20mol)、o−フェニルフェノール170.0g(1.00mol)を順に加えた。その後、内温40℃まで昇温し、24%水酸化ナトリウム水溶液60.0g(0.36mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて2時間反応した。
反応終了後、30%硫酸52.9g(0.162mol)、シュウ酸二水和物2.26(0.018mol)、硫酸ナトリウム26.0g(0.0183mol)を加え0.2時間撹拌後静置し、水層を除去した。
レゾルシン184.8g(1.68mol)を加え、内温110℃まで昇温し、微減圧下(92kPa)で2.0時間かけて脱水を行った。この間内温は118℃から120℃まで上昇した。続いて、内温147℃まで昇温し、1時間脱水(92kPa)を行った。その後、内温145〜151℃まで昇温し、1時間保温することで水を留去した。その後、内温145〜150℃に保ったまま16kPaまで減圧し、水をさらに留去した。上記の操作により、黄色の共縮合物403gを得た。
共縮合物の平均分子量:1889、軟化点:129℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.7%、遊離レゾルシン:7.1%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.2%、灰分0.2%。共縮合物の各構成単位の比率;o−フェニルフェノール:5.25、メチレン基:1.66、レゾルシン:8.70(1.41)
続いて、還流冷却器および温度計を備えた四つ口セパラブルフラスコに、得られた共縮合物200.0g、クマロン樹脂としてRutgers社製ノバレスC10(常温で油状、120.0g)、Rutgers社製ノバレスC90(軟化点:85〜95℃、80.0g)を順に加えた。その後、内温150℃まで昇温し、内温140〜150℃で保温しながら2時間攪拌することで、共縮合物とクマロン樹脂が均一になるように混合した。上記の操作により、クマロン樹脂を含む樹脂組成物397.5gを得た。
クマロン樹脂を含む樹脂組成物の平均分子量:1339、軟化点:105℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.3%、遊離レゾルシン:3.5%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.1%、灰分0.1%。クマロン樹脂の含量:50%。
<Example 3>
A four-necked separable flask equipped with a reflux condenser and a thermometer was charged with 180.0 g (2.22 mol) of formalin having a purity of 37%, 30.0 g (0.20 mol) of p-tert-butylphenol, 170 of o-phenylphenol. 0.0 g (1.00 mol) was added in order. Thereafter, the internal temperature was raised to 40 ° C., 60.0 g (0.36 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C., and the reaction was carried out at the same temperature for 2 hours.
After completion of the reaction, 52.9 g (0.162 mol) of 30% sulfuric acid, 2.26 (0.018 mol) of oxalic acid dihydrate and 26.0 g (0.0183 mol) of sodium sulfate were added, and the mixture was stirred for 0.2 hours. And the aqueous layer was removed.
184.8 g (1.68 mol) of resorcin was added, the temperature was raised to an internal temperature of 110 ° C., and dehydration was performed over 2.0 hours under slightly reduced pressure (92 kPa). During this time, the internal temperature rose from 118 ° C to 120 ° C. Subsequently, the internal temperature was raised to 147 ° C., and dehydration (92 kPa) was performed for 1 hour. Then, the temperature was raised to an internal temperature of 145 to 151 ° C., and water was distilled off by keeping the temperature for 1 hour. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 145 to 150 ° C., and water was further distilled off. By the above operation, 403 g of a yellow cocondensate was obtained.
Average molecular weight of the cocondensate: 1889, softening point: 129 ° C, free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.7%, free resorcin: 7.1%, boiling point 190 ° C The following organic solvents: 0.0%, moisture content 0.2%, ash content 0.2%. Ratio of each structural unit of co-condensate: o-phenylphenol: 5.25, methylene group: 1.66, resorcin: 8.70 (1.41)
Subsequently, in a four-neck separable flask equipped with a reflux condenser and a thermometer, 200.0 g of the obtained cocondensate, Novales C10 manufactured by Rutgers as a coumarone resin (oil at room temperature, 120.0 g), Rutgers Novares C90 (softening point: 85-95 ° C., 80.0 g) was added in order. Thereafter, the temperature was raised to an internal temperature of 150 ° C., and the mixture was stirred for 2 hours while keeping the internal temperature at 140 to 150 ° C., thereby mixing the cocondensate and the coumarone resin uniformly. By the above operation, 397.5 g of a resin composition containing coumarone resin was obtained.
Average molecular weight of resin composition containing coumarone resin: 1339, softening point: 105 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.3%, free resorcin: 3.5%, Organic solvent having a boiling point of 190 ° C. or lower: 0.0%, moisture content 0.1%, ash content 0.1%. Coumarone resin content: 50%.

<実施例4>
実施例3においてクマロン樹脂としてRutgers社製ノバレスC10(常温で油状)を80.0g、Rutgers社製ノバレスC90(軟化点:85〜95℃)を120.0g用いる以外は実施例3と同様の操作を行い、クマロン樹脂を含む樹脂組成物399.5gを得た。
クマロン樹脂を含む樹脂組成物の平均分子量:1368、軟化点:110℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.4%、遊離レゾルシン:3.7%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.1%、灰分0.1%。クマロン樹脂の含量:50%。
<Example 4>
The same operation as in Example 3 except that 80.0 g of Ruggers Novares C10 (oily at room temperature) and 120.0 g of Ruggers Novares C90 (softening point: 85 to 95 ° C.) are used as the coumarone resin in Example 3. To obtain 399.5 g of a resin composition containing coumarone resin.
Average molecular weight of resin composition containing coumarone resin: 1368, softening point: 110 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.4%, free resorcin: 3.7%, Organic solvent having a boiling point of 190 ° C. or lower: 0.0%, moisture content 0.1%, ash content 0.1%. Coumarone resin content: 50%.

<実施例5>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン360.0g(4.44mol)、p−tert−ブチルフェノール60.0g(0.40mol)、o−フェニルフェノール340.0g(2.00mol)を順に加えた。その後、内温40℃まで昇温し、24%水酸化ナトリウム水溶液120.0g(0.72mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて2時間反応した。
反応終了後、30%硫酸105.1g(0.324mol)、シュウ酸二水和物4.53(0.036mol)、硫酸ナトリウム50.0g(0.0352mol)を加え0.2時間撹拌後静置し、水層を除去した。
レゾルシン369.6g(3.36mol)を加え、内温125℃まで昇温し、微減圧下(92kPa)で3時間かけて脱水を行った。この間内温は115℃から125℃まで上昇した。続いて、内温140℃まで昇温し、2時間脱水(92kPa)を行った。その後、内温145〜150℃まで昇温し、1時間保温することで水を留去した。その後、内温140〜150℃に保ったまま16kPaまで減圧し、水をさらに留去した。上記の操作により、黄色の共縮合物808gを得た。
共縮合物の平均分子量:1857、軟化点:132.3℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:1.5%、遊離レゾルシン:7.8%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.5%、灰分0.0%。共縮合物の各構成単位の比率;o−フェニルフェノール:5.30、メチレン基:1.69、レゾルシン:8.76(1.39)
続いて、還流冷却器および温度計を備えた四つ口セパラブルフラスコに、得られた共縮合物200.0g、クマロン樹脂としてRutgers社製ノバレスC10(常温で油状、80.0g)、Rutgers社製ノバレスC90(軟化点:85〜95℃、120.0g)を順に加えた。その後、内温150℃まで昇温し、内温140〜150℃で保温しながら2時間攪拌することで、共縮合物とクマロン樹脂が均一になるように混合した。上記の操作により、クマロン樹脂を含む樹脂組成物397.5gを得た。
クマロン樹脂を含む樹脂組成物の平均分子量:1189、軟化点:109℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.8%、遊離レゾルシン:3.8%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.4%、灰分0.0%。クマロン樹脂の含量:50%。
<Example 5>
In a four-necked separable flask equipped with a reflux condenser and a thermometer, 360.0 g (4.44 mol) of formalin having a purity of 37%, 60.0 g (0.40 mol) of p-tert-butylphenol, o-phenylphenol 340 0.0 g (2.00 mol) was added in order. Thereafter, the temperature was raised to 40 ° C., 120.0 g (0.72 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C., and the reaction was carried out at the same temperature for 2 hours.
After completion of the reaction, 105.1 g (0.324 mol) of 30% sulfuric acid, 4.53 (0.036 mol) of oxalic acid dihydrate, and 50.0 g (0.0352 mol) of sodium sulfate were added, and the mixture was stirred for 0.2 hours. And the aqueous layer was removed.
369.6 g (3.36 mol) of resorcin was added, the temperature was raised to an internal temperature of 125 ° C., and dehydration was performed for 3 hours under slightly reduced pressure (92 kPa). During this time, the internal temperature rose from 115 ° C to 125 ° C. Subsequently, the internal temperature was raised to 140 ° C. and dehydration (92 kPa) was performed for 2 hours. Then, it heated up to 145-150 degreeC of internal temperature, and water was distilled off by heat-retaining for 1 hour. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and water was further distilled off. By the above operation, 808 g of a yellow cocondensate was obtained.
Average molecular weight of cocondensate: 1857, softening point: 132.3 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 1.5%, free resorcinol: 7.8%, boiling point Organic solvent at 190 ° C. or lower: 0.0%, water content 0.5%, ash content 0.0%. Ratio of each structural unit of co-condensate: o-phenylphenol: 5.30, methylene group: 1.69, resorcin: 8.76 (1.39)
Subsequently, in a four-necked separable flask equipped with a reflux condenser and a thermometer, the obtained cocondensate 200.0 g, Novales C10 manufactured by Rutgers as a coumarone resin (oil at room temperature, 80.0 g), Rutgers Novares C90 (softening point: 85-95 ° C., 120.0 g) was added in order. Thereafter, the temperature was raised to an internal temperature of 150 ° C., and the mixture was stirred for 2 hours while keeping the internal temperature at 140 to 150 ° C., thereby mixing the cocondensate and the coumarone resin uniformly. By the above operation, 397.5 g of a resin composition containing coumarone resin was obtained.
Average molecular weight of resin composition containing coumarone resin: 1189, softening point: 109 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.8%, free resorcin: 3.8%, Organic solvent having a boiling point of 190 ° C. or lower: 0.0%, moisture content 0.4%, ash content 0.0%. Coumarone resin content: 50%.

<実施例6>
実施例5においてクマロン樹脂としてRutgers社製ノバレスC30(常温で油状)を80.0g、Rutgers社製ノバレスC90(軟化点:85〜95℃)を120.0g用いる以外は実施例3と同様の操作を行い、クマロン樹脂を含む樹脂組成物399.0gを得た。
クマロン樹脂を含む樹脂組成物の平均分子量:1398、軟化点:111℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.7%、遊離レゾルシン:3.7%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.5%、灰分0.0%。クマロン樹脂の含量:50%。
<Example 6>
The same operation as in Example 3 except that 80.0 g of Ruggers Novales C30 (oily at normal temperature) and 120.0 g of Rutgers Novales C90 (softening point: 85 to 95 ° C.) are used as the coumarone resin in Example 5. To obtain 399.0 g of a resin composition containing coumarone resin.
Average molecular weight of resin composition containing coumarone resin: 1398, softening point: 111 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.7%, free resorcin: 3.7%, Organic solvent having a boiling point of 190 ° C. or lower: 0.0%, water content 0.5%, ash content 0.0%. Coumarone resin content: 50%.

<実施例7>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン360.0g(4.44mol)、p−tert−ブチルフェノール60.0g(0.40mol)、o−フェニルフェノール340.0g(2.00mol)を順に加えた。その後、内温40℃まで昇温し、24%水酸化ナトリウム水溶液160.0g(0.96mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温68℃まで昇温し、同温度にて2時間反応した。
反応終了後、30%硫酸140.1g(0.432mol)、シュウ酸二水和物6.04(0.048mol)、硫酸ナトリウム45.0g(0.0316mol)を加え0.2時間撹拌後静置し、水層を除去した。
レゾルシン343.2g(3.24mol)を加え、内温125℃まで昇温し、微減圧下(92kPa)で2.5時間かけて脱水を行った。この間内温は118℃から125℃まで上昇した。続いて、内温140℃まで昇温し、2時間脱水(92kPa)を行った。その後、内温145〜150℃まで昇温し、1時間保温することで水を留去した。その後、内温140〜150℃に保ったまま16kPaまで減圧し、水をさらに留去した。上記の操作により、黄色の共縮合物772gを得た。
共縮合物の平均分子量:2003、軟化点:134℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.7%、遊離レゾルシン:7.5%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.4%、灰分0.0%。共縮合物の各構成単位の比率;o−フェニルフェノール:5.32、メチレン基:1.69、レゾルシン:8.46(1.34)
続いて、還流冷却器および温度計を備えた四つ口セパラブルフラスコに、得られた共縮合物200.0g、クマロン樹脂としてRutgers社製ノバレス10(常温で油状、120.0g)、Rutgers社製ノバレスC90(軟化点:85〜95℃、80.0g)を順に加えた。その後、内温150℃まで昇温し、内温140〜150℃で保温しながら2時間攪拌することで、共縮合物とクマロン樹脂が均一になるように混合した。上記の操作により、クマロン樹脂を含む樹脂組成物398.1gを得た。
クマロン樹脂を含む樹脂組成物の平均分子量:1401、軟化点:107℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.3%、遊離レゾルシン:3.5%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.4%、灰分0.0%。クマロン樹脂の含量:50%。
<Example 7>
In a four-necked separable flask equipped with a reflux condenser and a thermometer, 360.0 g (4.44 mol) of formalin having a purity of 37%, 60.0 g (0.40 mol) of p-tert-butylphenol, o-phenylphenol 340 0.0 g (2.00 mol) was added in order. Thereafter, the internal temperature was raised to 40 ° C., 160.0 g (0.96 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 68 ° C., and the reaction was carried out at the same temperature for 2 hours.
After completion of the reaction, 140.1 g (0.432 mol) of 30% sulfuric acid, 6.04 (0.048 mol) of oxalic acid dihydrate and 45.0 g (0.0316 mol) of sodium sulfate were added, and the mixture was stirred for 0.2 hours. And the aqueous layer was removed.
343.2 g (3.24 mol) of resorcin was added, the temperature was raised to an internal temperature of 125 ° C., and dehydration was performed under a slightly reduced pressure (92 kPa) over 2.5 hours. During this time, the internal temperature rose from 118 ° C to 125 ° C. Subsequently, the internal temperature was raised to 140 ° C. and dehydration (92 kPa) was performed for 2 hours. Then, it heated up to 145-150 degreeC of internal temperature, and water was distilled off by heat-retaining for 1 hour. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and water was further distilled off. By the above operation, 772 g of a yellow cocondensate was obtained.
Average molecular weight of co-condensate: 2003, softening point: 134 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.7%, free resorcin: 7.5%, boiling point of 190 ° C. The following organic solvents: 0.0%, moisture content 0.4%, ash content 0.0%. Ratio of each structural unit of co-condensate: o-phenylphenol: 5.32, methylene group: 1.69, resorcin: 8.46 (1.34)
Subsequently, in a four-necked separable flask equipped with a reflux condenser and a thermometer, 200.0 g of the obtained cocondensate, Novales 10 manufactured by Rutgers as a coumarone resin (oil at room temperature, 120.0 g), Rutgers Novares C90 (softening point: 85-95 ° C., 80.0 g) was added in order. Thereafter, the temperature was raised to an internal temperature of 150 ° C., and the mixture was stirred for 2 hours while keeping the internal temperature at 140 to 150 ° C., thereby mixing the cocondensate and the coumarone resin uniformly. By the above operation, 398.1 g of a resin composition containing coumarone resin was obtained.
Average molecular weight of resin composition containing coumarone resin: 1401, softening point: 107 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.3%, free resorcin: 3.5%, Organic solvent having a boiling point of 190 ° C. or lower: 0.0%, moisture content 0.4%, ash content 0.0%. Coumarone resin content: 50%.

<実施例8>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン180.0g(2.22mol)、p−tert−ブチルフェノール30.0g(0.20mol)、o−フェニルフェノール170.0g(1.00mol)を順に加えた。その後、内温40℃まで昇温し、24%水酸化ナトリウム水溶液160.0g(0.96mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温54℃まで昇温し、同温度にて2時間反応した。
反応終了後、30%硫酸141g(0.432mol)、シュウ酸二水和物6.04(0.048mol)、硫酸ナトリウム26.0g(0.0183mol)を加え0.2時間撹拌後静置し、水層を除去した。
レゾルシン198.0g(1.80mol)を加え、内温110℃まで昇温し、微減圧下(92kPa)で3時間かけて脱水を行った。この間内温は110℃から125℃まで上昇した。続いて、内温145℃まで昇温し、1時間脱水(92kPa)を行った。その後、内温145〜150℃まで昇温し、1時間保温することで水を留去した。その後、内温140〜150℃に保ったまま16kPaまで減圧し、水をさらに留去した。上記の操作により、黄色の共縮合物416gを得た。
共縮合物の平均分子量:1568、軟化点:122℃、遊離p−tert−ブチルフェノール:0.3%、遊離o−フェニルフェノール:1.2%、遊離レゾルシン:8.0%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.2%、灰分0.1%。共縮合物の各構成単位の比率;o−フェニルフェノール:5.28、メチレン基:1.72、レゾルシン:9.23(1.47)
続いて、還流冷却器および温度計を備えた四つ口セパラブルフラスコに、得られた共縮合物200.0g、クマロン樹脂としてRutgers社製ノバレスC10(常温で油状、120.0g)、Rutgers社製ノバレスC90(軟化点:85〜95℃、80.0g)を順に加えた。その後、内温150℃まで昇温し、内温140〜150℃で保温しながら2時間攪拌することで、共縮合物とクマロン樹脂が均一になるように混合した。上記の操作により、クマロン樹脂を含む樹脂組成物396.5gを得た。
クマロン樹脂を含む樹脂組成物の平均分子量:1087、軟化点:104℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.5%、遊離レゾルシン:4.0%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.1%、灰分0.0%。クマロン樹脂の含量:50%。
<実施例9>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン180.0g(2.22mol)、p−tert−ブチルフェノール30.0g(0.20mol)、o−フェニルフェノール170.0g(1.00mol)を順に加えた。その後、内温40℃まで昇温し、24%水酸化ナトリウム水溶液40.0g(0.24mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて4時間反応した。
反応終了後、30%硫酸35.3g(0.108mol)、シュウ酸二水和物1.51(0.012mol)、硫酸ナトリウム26.0g(0.0183mol)を加え0.2時間撹拌後静置し、水層を除去した。
レゾルシン184.8g(1.68mol)を加え、内温110℃まで昇温し、微減圧下(92kPa)で2時間かけて脱水を行った。この間内温は110℃から125℃まで上昇した。続いて、内温145℃まで昇温し、1時間脱水(92kPa)を行った。その後、内温145〜150℃まで昇温し、2時間保温することで水を留去した。その後、内温140〜150℃に保ったまま16kPaまで減圧し、水をさらに留去した。上記の操作により、黄色の共縮合物414gを得た。
共縮合物の平均分子量:1865、軟化点:133℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:1.5%、遊離レゾルシン:7.1%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.2%、灰分0.0%。共縮合物の各構成単位の比率;o−フェニルフェノール:5.25、メチレン基:1.64、レゾルシン:8.75(1.40)
<Example 8>
A four-necked separable flask equipped with a reflux condenser and a thermometer was charged with 180.0 g (2.22 mol) of formalin having a purity of 37%, 30.0 g (0.20 mol) of p-tert-butylphenol, 170 of o-phenylphenol. 0.0 g (1.00 mol) was added in order. Thereafter, the internal temperature was raised to 40 ° C., 160.0 g (0.96 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 54 ° C., and the reaction was carried out at the same temperature for 2 hours.
After completion of the reaction, 141 g (0.432 mol) of 30% sulfuric acid, 6.04 (0.048 mol) of oxalic acid dihydrate, and 26.0 g (0.0183 mol) of sodium sulfate were added and stirred for 0.2 hours and left to stand. The aqueous layer was removed.
Resorcin 198.0g (1.80mol) was added, it heated up to the internal temperature of 110 degreeC, and it spin-dry | dehydrated over 3 hours under slight reduced pressure (92 kPa). During this time, the internal temperature rose from 110 ° C to 125 ° C. Subsequently, the internal temperature was raised to 145 ° C., and dehydration (92 kPa) was performed for 1 hour. Then, it heated up to 145-150 degreeC of internal temperature, and water was distilled off by heat-retaining for 1 hour. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and water was further distilled off. By the above operation, 416 g of a yellow cocondensate was obtained.
Average molecular weight of co-condensate: 1568, softening point: 122 ° C, free p-tert-butylphenol: 0.3%, free o-phenylphenol: 1.2%, free resorcin: 8.0%, boiling point 190 ° C The following organic solvents: 0.0%, moisture content 0.2%, ash content 0.1%. Ratio of each structural unit of co-condensate: o-phenylphenol: 5.28, methylene group: 1.72, resorcin: 9.23 (1.47)
Subsequently, in a four-neck separable flask equipped with a reflux condenser and a thermometer, the obtained cocondensate 200.0 g, Novales C10 manufactured by Rutgers as a coumarone resin (oil at room temperature, 120.0 g), Rutgers Novares C90 (softening point: 85-95 ° C., 80.0 g) was added in order. Thereafter, the temperature was raised to an internal temperature of 150 ° C., and the mixture was stirred for 2 hours while keeping the internal temperature at 140 to 150 ° C., thereby mixing the cocondensate and the coumarone resin uniformly. By the above operation, 396.5 g of a resin composition containing coumarone resin was obtained.
Average molecular weight of resin composition containing coumarone resin: 1087, softening point: 104 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.5%, free resorcin: 4.0%, Organic solvent having a boiling point of 190 ° C. or lower: 0.0%, moisture content 0.1%, ash content 0.0%. Coumarone resin content: 50%.
<Example 9>
A four-necked separable flask equipped with a reflux condenser and a thermometer was charged with 180.0 g (2.22 mol) of formalin having a purity of 37%, 30.0 g (0.20 mol) of p-tert-butylphenol, 170 of o-phenylphenol. 0.0 g (1.00 mol) was added in order. Thereafter, the temperature was raised to an internal temperature of 40 ° C., 40.0 g (0.24 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C. and reacted at the same temperature for 4 hours.
After completion of the reaction, 35.3 g (0.108 mol) of 30% sulfuric acid, 1.51 (0.012 mol) of oxalic acid dihydrate, and 26.0 g (0.0183 mol) of sodium sulfate were added and the mixture was stirred for 0.2 hours. And the aqueous layer was removed.
184.8 g (1.68 mol) of resorcin was added, the temperature was raised to an internal temperature of 110 ° C., and dehydration was performed for 2 hours under slightly reduced pressure (92 kPa). During this time, the internal temperature rose from 110 ° C to 125 ° C. Subsequently, the internal temperature was raised to 145 ° C., and dehydration (92 kPa) was performed for 1 hour. Thereafter, the temperature was raised to an internal temperature of 145 to 150 ° C., and water was distilled off by keeping the temperature for 2 hours. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and water was further distilled off. By the above operation, 414 g of a yellow cocondensate was obtained.
Average molecular weight of co-condensate: 1865, softening point: 133 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 1.5%, free resorcin: 7.1%, boiling point 190 ° C. The following organic solvents: 0.0%, moisture content 0.2%, ash content 0.0%. Ratio of each structural unit of co-condensate: o-phenylphenol: 5.25, methylene group: 1.64, resorcin: 8.75 (1.40)

<参考例1>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン180.0g(2.22mol)、p−tert−ブチルフェノール30.0g(0.20mol)、o−フェニルフェノール170.0g(1.00mol)を順に加えた。その後、内温45℃まで昇温し、24%水酸化ナトリウム水溶液60.0g(0.36mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて2時間反応した。
反応終了後、30%硫酸52.9g(0.162mol)、シュウ酸二水和物2.26(0.018mol)、メチルイソブチルケトン154.0を加え0.2時間撹拌後静置し、水層を除去した。
レゾルシン171.6g(1.56mol)を加え、内温118℃まで昇温し、減圧下(45kPa)で6時間かけて共沸脱水を行った。この間内温は122−124℃まで上昇した。続いて、内温140℃まで昇温し、2時間共沸脱水(減圧度66kPa)を行った。その後、内温145〜150℃まで昇温し、徐々に減圧度を上げながら2時間保温することで溶媒メチルイソブチルケトンを留去した。その後、内温140〜150℃に保ったまま16kPaまで減圧し、溶媒メチルイソブチルケトンをさらに留去した。上記の操作により、橙色の共縮合物416gを得た。
共縮合物の平均分子量:1931、軟化点:121℃、残留メチルイソブチルケトン分:1.7%、メチルイソブチルケトン以外の沸点が190℃以下の有機溶媒:0.0%、遊離p−tert−ブチルフェノール分:0.0%、遊離o−フェニルフェノール分:1.2%、遊離レゾルシン分:7.2%、水分含量0.1%、灰分0.0%。共縮合物の各構成単位の比率;o−フェニルフェノール:5.19、メチレン基:1.58、レゾルシン:8.48(1.37)
続いて、還流冷却器および温度計を備えた四つ口セパラブルフラスコに、得た共縮合物60.0g、クマロン樹脂としてRutgers社製ノバレスC10(常温で油状、36.0g)、Rutgers社製ノバレスC90(軟化点:85〜95℃、24.0g)を順に加えた。その後、内温150℃まで昇温し、内温140〜150℃で保温しながら2時間攪拌することで、共縮合物とクマロン樹脂が均一になるように混合した。上記の操作により、クマロン樹脂を含む樹脂組成物119gを得た。
クマロン樹脂を含む樹脂組成物の平均分子量:1330、軟化点:102℃、残留メチルイソブチルケトン:0.6%、メチルイソブチルケトン以外の沸点が190℃以下の有機溶媒:0.0%、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.7%、遊離レゾルシン:3.3%、水分含量0.1%、灰分0.0%、クマロン樹脂の含量:50%。
<Reference Example 1>
A four-necked separable flask equipped with a reflux condenser and a thermometer was charged with 180.0 g (2.22 mol) of formalin having a purity of 37%, 30.0 g (0.20 mol) of p-tert-butylphenol, 170 of o-phenylphenol. 0.0 g (1.00 mol) was added in order. Thereafter, the internal temperature was raised to 45 ° C., 60.0 g (0.36 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C., and the reaction was carried out at the same temperature for 2 hours.
After completion of the reaction, 52.9 g (0.162 mol) of 30% sulfuric acid, 2.26 (0.018 mol) of oxalic acid dihydrate, and 154.0 of methyl isobutyl ketone were added and stirred for 0.2 hours, and left to stand. The layer was removed.
171.6 g (1.56 mol) of resorcin was added, the temperature was raised to an internal temperature of 118 ° C., and azeotropic dehydration was performed under reduced pressure (45 kPa) for 6 hours. During this time, the internal temperature rose to 122-124 ° C. Subsequently, the internal temperature was raised to 140 ° C., and azeotropic dehydration (decompression degree 66 kPa) was performed for 2 hours. Thereafter, the temperature was raised to an internal temperature of 145 to 150 ° C., and the solvent methyl isobutyl ketone was distilled off by keeping the temperature for 2 hours while gradually increasing the degree of vacuum. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and the solvent methyl isobutyl ketone was further distilled off. By the above operation, 416 g of orange cocondensate was obtained.
Average molecular weight of cocondensate: 1931, softening point: 121 ° C., residual methyl isobutyl ketone content: 1.7%, organic solvent having a boiling point other than methyl isobutyl ketone of 190 ° C. or less: 0.0%, free p-tert- Butylphenol content: 0.0%, free o-phenylphenol content: 1.2%, free resorcin content: 7.2%, moisture content 0.1%, ash content 0.0%. Ratio of each structural unit of co-condensate: o-phenylphenol: 5.19, methylene group: 1.58, resorcin: 8.48 (1.37)
Subsequently, in a four-neck separable flask equipped with a reflux condenser and a thermometer, 60.0 g of the obtained cocondensate, Novales C10 manufactured by Rutgers as a coumarone resin (oil at room temperature, 36.0 g), manufactured by Rutgers Novales C90 (softening point: 85-95 ° C., 24.0 g) was added in order. Thereafter, the temperature was raised to an internal temperature of 150 ° C., and the mixture was stirred for 2 hours while keeping the internal temperature at 140 to 150 ° C., thereby mixing the cocondensate and the coumarone resin uniformly. By the above operation, 119 g of a resin composition containing coumarone resin was obtained.
Average molecular weight of resin composition containing coumarone resin: 1330, softening point: 102 ° C., residual methyl isobutyl ketone: 0.6%, organic solvent having a boiling point other than methyl isobutyl ketone of 190 ° C. or lower: 0.0%, free p -Tert-butylphenol: 0.0%, free o-phenylphenol: 0.7%, free resorcin: 3.3%, moisture content 0.1%, ash content 0.0%, coumarone resin content: 50%.

<比較例1>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン270g(3.33mol)、p−tert−ブチルフェノール45.0g(0.30mol)、o−フェニルフェノール255g(1.50mol)を順に加えた。その後、内温45℃まで昇温し、24%水酸化ナトリウム水溶液53.9g(0.32mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて1.5時間保温した。その後、内温75℃になるまで再度昇温し、さらに同温度で3時間反応した。
反応終了後、内温65℃以下になるまで冷却し、30%硫酸47.6g(0.14mol)、シュウ酸二水和物2.04g(0.018mol)を加え0.2時間撹拌したが粘性があり乳化し分層しなかった為、分液、水層の除去は実施しなかった。
次いで、レゾルシン197.5g(1.79mol)を加え、内温80℃まで昇温し、徐々に減圧度を上げながら(92kPa→45kPa)で8時間かけて濃縮を行った。この間内温は120℃まで上昇した。続いて、内温140℃まで昇温し、6時間濃縮を行った。この間減圧度は45kPaから15kPaまで変化させた。その後、内温140〜150℃に保ったまま11kPaまで減圧し、さらに2時間保温することで水をさらに留去した。上記の操作により、褐色の共縮合物506gを得た。共縮合物の平均分子量:6604、軟化点:158℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.1%、遊離レゾルシン:4.1%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.2%、灰分5.2%。共縮合物の各構成単位の比率;o−フェニルフェノール:5.13、メチレン基:1.36、レゾルシン:6.02(0.98)
続いて、還流冷却器および温度計を備えた四つ口セパラブルフラスコに、得た共縮合物60.0g、クマロン樹脂としてRutgers社製ノバレスC10(常温で油状、36.0g)、Rutgers社製ノバレスC90(軟化点:85〜95℃、24.0g)を順に加えた。その後、内温150℃まで昇温し、内温140〜160℃で保温しながら2時間攪拌したが、相溶性が低く、一部共縮合物とクマロン樹脂が相溶した混合物として、クマロン樹脂を含む樹脂組成物119gを得た。
クマロン樹脂を含む樹脂組成物の平均分子量:3816、軟化点:144℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:0.1%、遊離レゾルシン:2.1%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.1%、灰分2.5%、クマロン樹脂の含量:50%。
<比較例2>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン180.0g(2.22mol)、p−tert−ブチルフェノール30.0g(0.20mol)、o−フェニルフェノール170.0g(1.00mol)を順に加えた。その後、内温40℃まで昇温し、24%水酸化ナトリウム水溶液40.0g(0.24mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて1.5時間保温した。その後、内温75℃になるまで再度昇温し、さらに同温度で3時間反応した。
反応終了後、30%硫酸35.2g(0.108mol)、シュウ酸二水和物1.56(0.012mol)、硫酸ナトリウム26.0g(0.0183mol)を加え、0.2時間撹拌後静置したが、粘性があり乳化しており、分層しなかった。そこでメチルイソブチルケトン154.0gを添加し、0.2時間撹拌後静置し分層させ、水層を除去した。
次いでレゾルシン184.8g(1.68mol)を加え、内温118℃まで昇温し、減圧下(45kPa)で6時間かけて共沸脱水を行った。この間内温は122−124℃まで上昇した。続いて、内温140℃まで昇温し、2時間共沸脱水(減圧度66kPa)を行った。その後、内温145〜150℃まで昇温し、徐々に減圧度を上げながら2時間保温することでメチルイソブチルケトンを留去した。その後、内温140〜150℃に保ったまま16kPaまで減圧し、メチルイソブチルケトンをさらに留去した。上記の操作により、橙色の共縮合物419gを得た。
共縮合物の平均分子量:2735、軟化点:129℃、残留メチルイソブチルケトン:1.5%、メチルイソブチルケトン以外の沸点が190℃以下の有機溶媒:0.0%、遊離p−tert−ブチルフェノール分:0.0%、遊離o−フェニルフェノール分:0.2%、遊離レゾルシン分:12.6%、水分含量0.2%、灰分0.0%。共縮合物の各構成単位の比率;o−フェニルフェノール:5.18、メチレン基:1.39、レゾルシン:8.53(1.38)
<Comparative Example 1>
In a four-necked separable flask equipped with a reflux condenser and a thermometer, 270 g (3.33 mol) of formalin having a purity of 37%, 45.0 g (0.30 mol) of p-tert-butylphenol, and 255 g of o-phenylphenol (1 .50 mol) was added in order. Thereafter, the internal temperature was raised to 45 ° C., 53.9 g (0.32 mol) of a 24% sodium hydroxide aqueous solution was added, and the mixture was stirred until the exotherm was stopped. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C. and kept at that temperature for 1.5 hours. Thereafter, the temperature was raised again until the internal temperature reached 75 ° C., and the reaction was further continued at the same temperature for 3 hours.
After completion of the reaction, the mixture was cooled to an internal temperature of 65 ° C. or lower, and 47.6 g (0.14 mol) of 30% sulfuric acid and 2.04 g (0.018 mol) of oxalic acid dihydrate were added and stirred for 0.2 hours. Since it was viscous and emulsified and not separated into layers, the liquid separation and the aqueous layer were not removed.
Next, 197.5 g (1.79 mol) of resorcin was added, the temperature was raised to an internal temperature of 80 ° C., and concentration was carried out over 8 hours at a gradually reduced pressure (92 kPa → 45 kPa). During this time, the internal temperature rose to 120 ° C. Then, it heated up to 140 degreeC of internal temperature, and concentrated for 6 hours. During this time, the degree of vacuum was changed from 45 kPa to 15 kPa. Thereafter, the pressure was reduced to 11 kPa while maintaining the internal temperature at 140 to 150 ° C., and the water was further distilled off by keeping the temperature for 2 hours. By the above operation, 506 g of a brown cocondensate was obtained. Average molecular weight of cocondensate: 6604, softening point: 158 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.1%, free resorcin: 4.1%, boiling point 190 ° C. The following organic solvents: 0.0%, moisture content 0.2%, ash content 5.2%. Ratio of each structural unit of co-condensate: o-phenylphenol: 5.13, methylene group: 1.36, resorcin: 6.02 (0.98)
Subsequently, in a four-neck separable flask equipped with a reflux condenser and a thermometer, 60.0 g of the obtained cocondensate, Novales C10 manufactured by Rutgers as a coumarone resin (oil at room temperature, 36.0 g), manufactured by Rutgers Novales C90 (softening point: 85-95 ° C., 24.0 g) was added in order. Thereafter, the temperature was raised to an internal temperature of 150 ° C., and the mixture was stirred for 2 hours while keeping the internal temperature at 140 to 160 ° C. However, the compatibility was low, and as a mixture in which the cocondensate and the coumarone resin were partially compatible, 119 g of a resin composition containing was obtained.
Average molecular weight of resin composition containing coumarone resin: 3816, softening point: 144 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 0.1%, free resorcin: 2.1%, Organic solvent having a boiling point of 190 ° C. or lower: 0.0%, moisture content 0.1%, ash content 2.5%, coumarone resin content: 50%.
<Comparative Example 2>
A four-necked separable flask equipped with a reflux condenser and a thermometer was charged with 180.0 g (2.22 mol) of formalin having a purity of 37%, 30.0 g (0.20 mol) of p-tert-butylphenol, 170 of o-phenylphenol. 0.0 g (1.00 mol) was added in order. Thereafter, the temperature was raised to an internal temperature of 40 ° C., 40.0 g (0.24 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C. and kept at that temperature for 1.5 hours. Thereafter, the temperature was raised again until the internal temperature reached 75 ° C., and the reaction was further continued at the same temperature for 3 hours.
After completion of the reaction, 35.2 g (0.108 mol) of 30% sulfuric acid, 1.56 (0.012 mol) of oxalic acid dihydrate and 26.0 g (0.0183 mol) of sodium sulfate were added and stirred for 0.2 hours. Although it was allowed to stand, it was viscous and emulsified, and was not separated. Therefore, 154.0 g of methyl isobutyl ketone was added, and the mixture was stirred for 0.2 hours and allowed to stand for separation to remove the aqueous layer.
Next, 184.8 g (1.68 mol) of resorcin was added, the temperature was raised to an internal temperature of 118 ° C., and azeotropic dehydration was performed under reduced pressure (45 kPa) over 6 hours. During this time, the internal temperature rose to 122-124 ° C. Subsequently, the internal temperature was raised to 140 ° C., and azeotropic dehydration (decompression degree 66 kPa) was performed for 2 hours. Thereafter, the temperature was raised to an internal temperature of 145 to 150 ° C., and methyl isobutyl ketone was distilled off by keeping the temperature for 2 hours while gradually increasing the degree of vacuum. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 140 to 150 ° C., and methyl isobutyl ketone was further distilled off. By the above operation, 419 g of orange cocondensate was obtained.
Average molecular weight of co-condensate: 2735, softening point: 129 ° C., residual methyl isobutyl ketone: 1.5%, organic solvent having a boiling point other than methyl isobutyl ketone of 190 ° C. or less: 0.0%, free p-tert-butylphenol Minute: 0.0%, Free o-phenylphenol content: 0.2%, Free resorcin content: 12.6%, Water content 0.2%, Ash content 0.0%. Ratio of each structural unit of co-condensate: o-phenylphenol: 5.18, methylene group: 1.39, resorcin: 8.53 (1.38)

<比較例3>
還流冷却器および温度計を備えた四つ口セパラブルフラスコに、純度37%のホルマリン180.0g(2.22mol)、p−tert−ブチルフェノール180.0g(1.20mol)を順に加えた。その後、内温40℃まで昇温し、24%水酸化ナトリウム水溶液80.0g(0.48mol)を添加し、発熱が収まるまで攪拌した。発熱が収まったのを確認した後、内温65℃まで昇温し、同温度にて2時間反応した。
反応終了後、30%硫酸70.5g(0.216mol)、シュウ酸二水和物3.01(0.024mol)、硫酸ナトリウム6.46g(0.0045mol)を加え0.2時間撹拌後静置し、水層を除去した。
レゾルシン184.8g(1.68mol)を加え、内温117℃まで昇温し、微減圧下(92kPa)で2.0時間かけて脱水を行った。この間内温は109℃から127℃まで上昇した。次いで、129℃で撹拌中に粘度が上昇し撹拌不能となった。そこで一旦スパチュラで内容物を取り出し、粉砕後再度脱水を継続した。その際、内温137℃から145℃まで昇温し、1時間脱水(92kPa)を行った。その後、内温145〜152℃に保ったまま16kPaまで減圧し、水をさらに留去した。上記の操作により、黄色の共縮合物391gを得た。得られた共縮合物は熱可塑性樹脂様でなく、固く脆い固体であった。
共縮合物の平均分子量:1658、軟化点:測定不可(>200℃)、遊離p−tert−ブチルフェノール分:0.0%、遊離o−フェニルフェノール分:1.0%、遊離レゾルシン分:7.3%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.2%、灰分0.1%。共縮合物の各構成単位の比率;o−フェニルフェノール:0.45、メチレン基:1.67、レゾルシン:1.97(1.36)
続いて、還流冷却器および温度計を備えた四つ口セパラブルフラスコに、得られた共縮合物200.0g、クマロン樹脂としてRutgers社製ノバレスC10(常温で油状、120.0g)、Rutgers社製ノバレスC90(軟化点:85〜95℃、80.0g)を順に加えた。その後、内温150℃まで昇温し、内温140〜150℃で保温しながら2時間攪拌したが、共縮合物が溶融せず、共縮合物とクマロン樹脂が均一にならないことが分かった。
<Comparative Example 3>
To a four-necked separable flask equipped with a reflux condenser and a thermometer, 180.0 g (2.22 mol) of formalin having a purity of 37% and 180.0 g (1.20 mol) of p-tert-butylphenol were sequentially added. Thereafter, the internal temperature was raised to 40 ° C., 80.0 g (0.48 mol) of a 24% aqueous sodium hydroxide solution was added, and the mixture was stirred until the exotherm subsided. After confirming that the exotherm had subsided, the temperature was raised to an internal temperature of 65 ° C., and the reaction was carried out at the same temperature for 2 hours.
After completion of the reaction, 70.5 g (0.216 mol) of 30% sulfuric acid, 3.01 (0.024 mol) of oxalic acid dihydrate and 6.46 g (0.0045 mol) of sodium sulfate were added and the mixture was stirred for 0.2 hours. And the aqueous layer was removed.
184.8 g (1.68 mol) of resorcin was added, the temperature was raised to an internal temperature of 117 ° C., and dehydration was performed under a slightly reduced pressure (92 kPa) over 2.0 hours. During this time, the internal temperature rose from 109 ° C to 127 ° C. Next, the viscosity increased during stirring at 129 ° C., and stirring became impossible. Therefore, the contents were once taken out with a spatula, and dehydrated again after pulverization. At that time, the internal temperature was raised from 137 ° C. to 145 ° C., and dehydration (92 kPa) was performed for 1 hour. Thereafter, the pressure was reduced to 16 kPa while maintaining the internal temperature at 145 to 152 ° C., and water was further distilled off. By the above operation, 391 g of a yellow cocondensate was obtained. The obtained cocondensate was not like a thermoplastic resin but was a hard and brittle solid.
Average molecular weight of cocondensate: 1658, softening point: not measurable (> 200 ° C.), free p-tert-butylphenol content: 0.0%, free o-phenylphenol content: 1.0%, free resorcin content: 7 Organic solvent with a boiling point of 190 ° C. or less: 0.0%, moisture content 0.2%, ash content 0.1%. Ratio of each structural unit of co-condensate; o-phenylphenol: 0.45, methylene group: 1.67, resorcin: 1.97 (1.36)
Subsequently, in a four-neck separable flask equipped with a reflux condenser and a thermometer, 200.0 g of the obtained cocondensate, Novales C10 manufactured by Rutgers as a coumarone resin (oil at room temperature, 120.0 g), Rutgers Novares C90 (softening point: 85-95 ° C., 80.0 g) was added in order. Thereafter, the temperature was raised to an internal temperature of 150 ° C. and stirred for 2 hours while maintaining the internal temperature at 140 to 150 ° C., but it was found that the cocondensate did not melt and the cocondensate and coumarone resin were not uniform.

<比較例4>
実施例5においてクマロン樹脂の代わりにプロセスオイルとして出光興産社製ダイアナプロセスオイルPW−380(常温で油状、20.0g)を用いる以外は実施例5と同様の操作を行い、得られた共縮合物80.0gとの混合により、プロセスオイルを含む樹脂組成物99.2g(固形分93.0g)を得た。橙色不透明のプロセスオイルを含む樹脂組成物からは6.2gの油状物質がブリードしており、相溶性が悪いことが分かった。
プロセスオイルを含む樹脂組成物の平均分子量:1425、軟化点:129℃、遊離p−tert−ブチルフェノール:0.0%、遊離o−フェニルフェノール:1.3%、遊離レゾルシン:6.8%、沸点が190℃以下の有機溶媒:0.0%、水分含量0.1%、灰分0.0%。プロセスオイルの含量:14%。
<Comparative Example 4>
The cocondensation obtained was carried out in the same manner as in Example 5 except that Diana Process Oil PW-380 (oily at room temperature, 20.0 g) manufactured by Idemitsu Kosan Co., Ltd. was used as the process oil instead of the coumarone resin in Example 5. 99.2 g of resin composition containing process oil (solid content: 93.0 g) was obtained by mixing with product 80.0 g. From the resin composition containing an orange opaque process oil, 6.2 g of an oily substance bleeded, indicating that the compatibility was poor.
Average molecular weight of resin composition containing process oil: 1425, softening point: 129 ° C., free p-tert-butylphenol: 0.0%, free o-phenylphenol: 1.3%, free resorcin: 6.8%, Organic solvent having a boiling point of 190 ° C. or lower: 0.0%, moisture content 0.1%, ash content 0.0%. Process oil content: 14%.

実施例1〜3、5、7〜9の共縮合物と、参考例1及び比較例1〜3の共縮合物の物性等について以下表1及び2に示す。なお、表中の含量は、全て重量基準(重量%)で記載した。また、表中の略称の意味は以下の通り。
RES:レゾルシン
PTBP:p−tert−ブチルフェノール
OPP:o−フェニルフェノール
The physical properties and the like of the cocondensates of Examples 1 to 3, 5, and 7 to 9, and the cocondensates of Reference Example 1 and Comparative Examples 1 to 3 are shown in Tables 1 and 2 below. In addition, all the contents in a table | surface were described on the basis of weight (weight%). The meanings of the abbreviations in the table are as follows.
RES: Resorcin PTBP: p-tert-butylphenol OPP: o-phenylphenol

Figure 2016014110
Figure 2016014110

Figure 2016014110
Figure 2016014110

上記表1に示す通り、p−tert−ブチルフェノールとo−フェニルフェノールの総量(物質量基準)に対し0.2倍モル以上のアルカリ存在下、70℃以下で反応させ、レゾール型共縮合物を製造した場合、レゾール型共縮合物が乳化を起こさず、有機溶媒を用いずとも分液可能となる為、該レゾール型共縮合物とレゾルシンと反応させることで、沸点が190℃以下の有機溶媒を含まず、かつ灰分が少なく、軟化点が150℃以下と参考例1と同等の物性を示す共縮合物が得られた。 As shown in Table 1 above, the resol type cocondensate is reacted at 70 ° C. or lower in the presence of 0.2 times mole or more of alkali with respect to the total amount of p-tert-butylphenol and o-phenylphenol (based on the amount of substance). When produced, the resol-type cocondensate does not emulsify and can be separated without using an organic solvent. By reacting the resol-type cocondensate with resorcin, an organic solvent having a boiling point of 190 ° C. or lower In addition, a cocondensate having a physical property equivalent to that of Reference Example 1 was obtained.

一方、上記表2に示す通り、p−tert−ブチルフェノールとo−フェニルフェノールの総量(物質量基準)に対し0.2倍モル未満のアルカリ存在下、及び/又は70℃より高い温度で反応させレゾール型共縮合物を製造した場合は、レゾール型共縮合物が乳化を起こし、そのままでは分液ができなくなった。(比較例1及び2)
そこで比較例1においては分液せずレゾルシンと反応させた所、表2に示す通り灰分が高く、また軟化点が150℃以上となることが判明した。
また、比較例2においてはメチルイソブチルケトンを用いてレゾール型共縮合物を溶解させ水層を分離した後レゾルシンと反応させたが、該レゾール型共縮合物はレゾール反応がよく進行した結果、レゾルシンとの反応点が減少し未反応レゾルシンが得られる共縮合物中に多量に残存することが判明した。
また、比較例3に示す通りo−フェニルフェノールを使用せず、p−tert−ブチルフェノールとレゾルシンを使用し、製造した共縮合物は軟化点が200℃以上と非常に高くなることが判明した。
On the other hand, as shown in Table 2 above, the reaction is carried out in the presence of less than 0.2-fold mole of alkali and / or at a temperature higher than 70 ° C. with respect to the total amount of p-tert-butylphenol and o-phenylphenol (substance basis). When the resol-type cocondensate was produced, the resol-type cocondensate was emulsified and could not be separated as it was. (Comparative Examples 1 and 2)
Therefore, in Comparative Example 1, when it was reacted with resorcinol without liquid separation, as shown in Table 2, it was found that the ash content was high and the softening point was 150 ° C. or higher.
In Comparative Example 2, the resole-type cocondensate was dissolved using methyl isobutyl ketone and the aqueous layer was separated and then reacted with resorcin. It was found that a large amount remained in the co-condensate in which the reaction point with the unreacted resorcin was reduced.
In addition, as shown in Comparative Example 3, it was found that the cocondensate produced using p-tert-butylphenol and resorcin without using o-phenylphenol had a very high softening point of 200 ° C. or higher.

実施例1〜8、参考例1及び比較例1、4で作成した共縮合物とクマロン樹脂を含む樹脂組成物の物性等について、以下表3及び4に示す。なお、表中の含量は、全て重量基準(重量%)で記載した。また、表中の略称の意味は以下の通り。
RES:レゾルシン
PTBP:p−tert−ブチルフェノール
OPP:o−フェニルフェノール
Tables 3 and 4 below show the physical properties and the like of the resin compositions containing the cocondensates and coumarone resins prepared in Examples 1 to 8, Reference Example 1 and Comparative Examples 1 and 4. In addition, all the contents in a table | surface were described on the basis of weight (weight%). The meanings of the abbreviations in the table are as follows.
RES: Resorcin PTBP: p-tert-butylphenol OPP: o-phenylphenol

Figure 2016014110
Figure 2016014110

Figure 2016014110
Figure 2016014110

上記表3に示す通り、各実施例で示した条件で合成した共縮合物にクマロン樹脂を混合させ樹脂組成物とした場合は軟化点が大幅に低下し、クマロン樹脂の軟化点低減効果が発現した。一方、表4の比較例1に示す通り、クマロン樹脂添加前の共縮合物の軟化点が150℃より高い場合、共縮合物の分子量が高いためかクマロン樹脂との相溶性が低下し、軟化点低減効果が十分でないことが判明した。また、比較例4に示す通りクマロン樹脂の代わりにプロセスオイルを使用した場合、本発明の共縮合物と相溶性が低く、プロセスオイルがブリードし、軟化点低減効果が殆ど発現しないことが判明した。 As shown in Table 3 above, when a coumarine resin synthesized under the conditions shown in each example was mixed with a coumarone resin to obtain a resin composition, the softening point was significantly lowered, and the softening point reducing effect of the coumarone resin was exhibited. did. On the other hand, as shown in Comparative Example 1 in Table 4, when the softening point of the cocondensate before addition of coumarone resin is higher than 150 ° C., the compatibility with coumarone resin is lowered due to the high molecular weight of the cocondensate, and softening It was found that the point reduction effect was not sufficient. Further, as shown in Comparative Example 4, it was found that when process oil was used instead of coumarone resin, the compatibility with the cocondensate of the present invention was low, the process oil bleeded, and the softening point reducing effect was hardly exhibited. .

2.上記実施例及び比較例で得られた樹脂組成物を用いたゴム組成物の製造例及び物性評価 2. Production examples and physical property evaluation of rubber compositions using the resin compositions obtained in the above Examples and Comparative Examples

<上記実施例で得られた樹脂組成物を含む未加硫ゴム組成物の製造>
樹脂接着剤として、実施例1で製造した樹脂組成物、及び該樹脂組成物の物性を比較するため、従来品として市販品の樹脂接着剤であるSUMIKANOL620(田岡化学工業社製)、溶媒を用いて製造した、参考例1で得られた樹脂組成物、及びブランクとして樹脂接着剤を使用せず未加硫ゴム組成物を製造した。各樹脂組成物の物性を下記表5に示す。(以下表1中の%は重量%を表す。)
<Manufacture of an unvulcanized rubber composition containing the resin composition obtained in the above example>
As a resin adhesive, in order to compare the physical properties of the resin composition produced in Example 1 and the resin composition, a conventional product, SUMIKANOL620 (manufactured by Taoka Chemical Industry Co., Ltd.), a solvent, is used. An unvulcanized rubber composition was produced without using a resin adhesive as a resin composition obtained in Reference Example 1 and a blank. The physical properties of each resin composition are shown in Table 5 below. (Hereinafter,% in Table 1 represents% by weight.)

Figure 2016014110
*:レゾルシン以外の樹脂を製造する際に用いるモノマーの残量。
Figure 2016014110
*: Remaining amount of monomer used when producing a resin other than resorcin.

以下表6に示す配合に従い、まず、トーシン製加圧式ニーダーで不溶性硫黄、加硫促進剤およびメチレンドナーを除く成分および、表1で示す樹脂接着剤を添加混合し160℃に達した時点で排出した。次いで、得られた混合物に、60℃に保温した関西ロール製6インチオープンロールで不溶性硫黄、加硫促進剤およびメチレンドナーを添加混合して、スチールコード被覆用ゴム組成物を調製した。表6中の各成分の詳細は以下の通りである。(以下表6中の数値は質量部を表す。)   In accordance with the composition shown in Table 6 below, first, components other than insoluble sulfur, vulcanization accelerator and methylene donor and a resin adhesive shown in Table 1 were added and mixed in a pressure kneader made by Toshin, and discharged when the temperature reached 160 ° C. did. Subsequently, insoluble sulfur, a vulcanization accelerator, and a methylene donor were added to and mixed with the obtained mixture using a 6-inch open roll made of Kansai Roll that was kept at 60 ° C. to prepare a rubber composition for coating a steel cord. The details of each component in Table 6 are as follows. (The numerical values in Table 6 below represent parts by mass.)

・天然ゴム:SMR−CV60
・カーボンブラック:東海カーボン株式会社製「シースト300」(HAF−LSグレード)
・亜鉛華:正同化学工業(株)亜鉛華2種
・老化防止剤:松原社製「Antioxidant FR」
・コバルト塩:ステアリン酸コバルト(試薬)
・不溶性硫黄:フレキシス社製「クリステックスHS OT−20」
・加硫促進剤:N,N−ジシクロヘキシル−2−べンゾチアゾリルスルフェンアミド(試薬)
・メチレンドナー:バラケミカル社製「スミカノール507AP」
・ Natural rubber: SMR-CV60
Carbon black: “Seast 300” (HAF-LS grade) manufactured by Tokai Carbon Co., Ltd.
・ Zinc flower: Zohua Chemical Industry Co., Ltd.
Anti-aging agent: “Antioxidant FR” manufactured by Matsubara
・ Cobalt salt: Cobalt stearate (reagent)
Insoluble sulfur: “Cristex HS OT-20” manufactured by Flexis
・ Vulcanization accelerator: N, N-dicyclohexyl-2-benzothiazolylsulfenamide (reagent)
・ Methylene donor: “Sumikanol 507AP” manufactured by Bara Chemical Co., Ltd.

Figure 2016014110
Figure 2016014110

<上記実施例、参考例及び比較例で得られた樹脂組成物を含む未加硫ゴム組成物のゴム物性試験>
上記の通り得られた未加硫ゴム組成物を用いて、ムーニー粘度試験(JIS K 6300−1:2001準拠、130℃で測定)およびレオメーター試験(JIS K 6300−2:2001準拠、160℃で測定)を実施した。また、未加硫試料を作製後室温にて24時間放置した後、160℃6MPaで加圧下、t90+5分の条件で加硫し、2mm厚の加硫ゴムシートを調製した。ついで、その加硫ゴムシートから作成したゴム試験片を用い、引張試験(JIS K 6251:2010準拠、25℃で測定)および硬度の測定(JIS K 6253:2006準拠、25℃で測定)を実施した。
<Rubber physical property test of unvulcanized rubber composition containing resin composition obtained in the above Examples, Reference Examples and Comparative Examples>
Using the unvulcanized rubber composition obtained as described above, Mooney viscosity test (based on JIS K 6300-1: 2001, measured at 130 ° C.) and rheometer test (based on JIS K 6300-2: 2001, 160 ° C.) Measured). Further, after preparing an unvulcanized sample, it was allowed to stand at room temperature for 24 hours, and then vulcanized under pressure at 160 ° C. and 6 MPa under conditions of t90 + 5 minutes to prepare a vulcanized rubber sheet having a thickness of 2 mm. Next, using a rubber test piece prepared from the vulcanized rubber sheet, a tensile test (based on JIS K 6251: 2010, measured at 25 ° C.) and a hardness measurement (based on JIS K 6253: 2006, measured at 25 ° C.) were performed. did.

上記ゴム物性試験結果につき、樹脂未添加のゴム組成物を比較例5(100)とし、それぞれ相対評価を実施した。結果を表7に示す。 With respect to the rubber physical property test results, a rubber composition to which no resin was added was designated as Comparative Example 5 (100), and a relative evaluation was performed. The results are shown in Table 7.

Figure 2016014110
Figure 2016014110

上記表7に示す通り、実施例1で得られた樹脂組成物を配合したゴム組成物は、未加硫ゴム物性試験および加硫ゴム物性試験の結果、公知の樹脂接着剤「SUMIKANOL620」や溶媒を用いて共縮合物を製造したものと同等あるいはそれ以上の性能を示し、樹脂組成物未添加のゴム組成物と比較し、各物性が向上することを確認した。 As shown in Table 7 above, the rubber composition containing the resin composition obtained in Example 1 is the result of the unvulcanized rubber physical property test and the vulcanized rubber physical property test. As a result, a known resin adhesive “SUMIKANOL620” or a solvent is used. It was confirmed that each physical property was improved as compared with a rubber composition to which no resin composition was added.

<上記実施例、参考例及び比較例で得られた樹脂組成物を含む加硫ゴム組成物の初期接着性及び湿熱接着性の評価方法及び評価結果> <Evaluation methods and evaluation results of initial adhesiveness and wet heat adhesiveness of vulcanized rubber compositions containing the resin compositions obtained in the above Examples, Reference Examples and Comparative Examples>

上記の通り得られた各未加硫ゴム組成物を用いて、ゴム−スチールコード複合体の試料を作製した。詳細には、真鍮メッキスチールコード(直径約0.8ミリ,3×0.20+6×0.35mm構造、銅/亜鉛=64/36(質量比)の真鍮めっき)を1本/10mmの間隔で5本を配列したものの両面を、上記各未加硫ゴム組成物からなる約2ミリ厚の未加硫ゴムシートを用いて被覆し、このコードを平行になるように積層した剥離接着試験用の未加硫試料を作製した。得られた未加硫試料を用いて、初期接着性と湿熱接着性を下記方法により評価した。 A rubber-steel cord composite sample was prepared using each of the unvulcanized rubber compositions obtained as described above. Specifically, a brass-plated steel cord (diameter of about 0.8 mm, 3 × 0.20 + 6 × 0.35 mm structure, brass plating of copper / zinc = 64/36 (mass ratio)) at intervals of 1/10 mm For the peel adhesion test, both sides of the array of five were coated with about 2 mm thick unvulcanized rubber sheets made of each of the above unvulcanized rubber compositions, and the cords were laminated in parallel. An unvulcanized sample was prepared. Using the obtained unvulcanized sample, initial adhesiveness and wet heat adhesiveness were evaluated by the following methods.

<初期接着性>
上記未加硫試料を作製後、室温にて24時間放置した後、160℃6MPaで加圧下、t90+5分の条件で加硫し、5本のスチールコードを1cm挟んだ1cm×1cm×6cmの直方体のゴム片を得た。本ゴム片を島津製作所(株)製オートグラフ「AGC−X」を用いて1本毎にスチールコードの引抜試験を行い、100ミリ/分で垂直方向に引き抜く際の応力をゴム引抜応力(kgf)として測定した。また、引抜後のスチールコードのゴム被覆率を目視にて観察し、0〜100%で評価した。測定、評価はN=10(本)で実施し、平均値を求めた。結果を以下表8に示す。
<Initial adhesiveness>
After preparing the above unvulcanized sample, it was allowed to stand at room temperature for 24 hours, then vulcanized under pressure at 160 ° C. and 6 MPa under conditions of t90 + 5 minutes, and a 1 cm × 1 cm × 6 cm rectangular parallelepiped with 1 cm of 5 steel cords sandwiched A piece of rubber was obtained. This rubber piece is subjected to a steel cord pull-out test for each piece using an autograph “AGC-X” manufactured by Shimadzu Corporation, and the stress when pulling out vertically at 100 mm / min is the rubber pulling stress (kgf ). Moreover, the rubber coverage of the steel cord after drawing was visually observed and evaluated at 0 to 100%. Measurement and evaluation were carried out at N = 10 (pieces), and an average value was obtained. The results are shown in Table 8 below.

Figure 2016014110
Figure 2016014110

<湿熱接着性(湿熱老化後の接着性)>
上記未加硫試料を作製し、室温にて24時間放置した後、160℃6MPaで加圧下、t90+5分の条件で加硫し、加硫した試験片を80℃×95%RHの蒸気内で5日間、10日間、20日間、40日間放置した後、上記初期接着性と同様の引抜試験を行い、引抜後のスチールコードのゴム被覆率を目視にて観察し、0〜100%で評価した。測定、評価はN=5(本)で実施し、平均値を求めた。結果を以下表9に示す。なお、以下表における引抜強度変化率とは、初期値の引張強度を100とした場合の変化率(湿熱老化後の引張強度/湿熱老化前の引張強度×100)である。
<Wet heat adhesion (adhesion after wet heat aging)>
The above-mentioned unvulcanized sample was prepared and allowed to stand at room temperature for 24 hours, and then vulcanized under conditions of t90 + 5 minutes under a pressure of 160 ° C. and 6 MPa. After leaving for 5 days, 10 days, 20 days, and 40 days, a pull-out test similar to the above initial adhesion was performed, and the rubber coverage of the steel cord after pulling was visually observed and evaluated at 0 to 100%. . Measurement and evaluation were performed at N = 5 (main), and an average value was obtained. The results are shown in Table 9 below. The pulling strength change rate in the following table is the change rate when the initial tensile strength is 100 (tensile strength after wet heat aging / tensile strength before wet heat aging × 100).

Figure 2016014110
Figure 2016014110

上記表8及び9に示す通り、実施例1で得られた樹脂組成物を配合したゴム組成物は、樹脂接着剤未添加のゴム組成物と比較して、ゴム‐スチールコード接着力が大きく改善し、また、公知の樹脂接着剤「SUMIKANOL620」や溶媒を用いて共縮合物を製造したものと同等以上の性能を示すことが判明した。 As shown in Tables 8 and 9 above, the rubber composition containing the resin composition obtained in Example 1 has a greatly improved rubber-steel cord adhesion compared to the rubber composition to which no resin adhesive is added. In addition, it has been found that the performance is equal to or better than that of a known resin adhesive “SUMIKANOL620” or a cocondensate produced using a solvent.

Claims (8)

以下<a>及び<b>の工程を含む、以下式(1)
Figure 2016014110
で表されるp−tert−ブチルフェノール、以下式(2)
Figure 2016014110
で表されるo−フェニルフェノール及び以下式(3)
Figure 2016014110
で表されるレゾルシン由来の構成単位を含む共縮合物の製造方法。
<a>p−tert−ブチルフェノールとo−フェニルフェノールの混合物を、p−tert−ブチルフェノールとo−フェニルフェノールの総量(物質量基準)に対し0.2倍モル以上のアルカリ存在下、70℃以下で反応させ、レゾール型共縮合物得る工程
<b>前記レゾール型共縮合物にレゾルシンを反応させる工程
The following formula (1) including the steps <a> and <b>
Figure 2016014110
P-tert-butylphenol represented by the following formula (2)
Figure 2016014110
O-phenylphenol represented by the following formula (3)
Figure 2016014110
The manufacturing method of the cocondensate containing the structural unit derived from resorcin represented by these.
<a> A mixture of p-tert-butylphenol and o-phenylphenol is 70 ° C. or less in the presence of 0.2 moles or more of alkali with respect to the total amount (substance basis) of p-tert-butylphenol and o-phenylphenol. <B> Resorcin is reacted with the resol-type cocondensate
レゾルシンの使用量がp−tert−ブチルフェノールとo−フェニルフェノールの総量(物質量基準)に対し、1.0〜2.0倍モルである請求項1記載の共縮合物の製造方法。 The method for producing a cocondensate according to claim 1, wherein the amount of resorcin used is 1.0 to 2.0 times mol of the total amount (substance basis) of p-tert-butylphenol and o-phenylphenol. 上記式(1)で表されるp−tert−ブチルフェノール、上記式(2)で表されるo−フェニルフェノール及び上記式(3)で表されるレゾルシン由来の構成単位を含む共縮合物であって、沸点が190℃以下の脂肪族炭化水素、芳香族炭化水素、ハロゲン化脂肪族炭化水素、ハロゲン化芳香族炭化水素及び分岐を有しても良い炭素数1〜5のケトン類の合計含有量が1重量%以下である共縮合物。 It is a cocondensate comprising p-tert-butylphenol represented by the above formula (1), o-phenylphenol represented by the above formula (2), and a resorcin-derived structural unit represented by the above formula (3). The total content of aliphatic hydrocarbons having a boiling point of 190 ° C. or less, aromatic hydrocarbons, halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons, and optionally branched ketones having 1 to 5 carbon atoms Cocondensate in an amount of 1% by weight or less. 遊離レゾルシンの含量が10重量%以下、軟化点が150℃以下である請求項3記載の共縮合物。 The cocondensate according to claim 3, wherein the content of free resorcin is 10% by weight or less and the softening point is 150 ° C or less. 請求項3または4記載の共縮合物とクマロン樹脂を含む樹脂組成物。 A resin composition comprising the cocondensate according to claim 3 or 4 and a coumarone resin. 遊離レゾルシンの含有量が5重量%以下であって軟化点が120℃以下である請求項5記載の樹脂組成物。 6. The resin composition according to claim 5, wherein the content of free resorcin is 5% by weight or less and the softening point is 120 ° C. or less. 請求項3または4記載の共縮合物を含むゴム組成物。 A rubber composition comprising the cocondensate according to claim 3 or 4. 請求項5または6記載の樹脂組成物を含むゴム組成物。 A rubber composition comprising the resin composition according to claim 5.
JP2014137279A 2014-07-03 2014-07-03 Cocondensate, method for producing the same, and rubber composition containing cocondensate Active JP6292715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137279A JP6292715B2 (en) 2014-07-03 2014-07-03 Cocondensate, method for producing the same, and rubber composition containing cocondensate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137279A JP6292715B2 (en) 2014-07-03 2014-07-03 Cocondensate, method for producing the same, and rubber composition containing cocondensate

Publications (2)

Publication Number Publication Date
JP2016014110A true JP2016014110A (en) 2016-01-28
JP6292715B2 JP6292715B2 (en) 2018-03-14

Family

ID=55230558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137279A Active JP6292715B2 (en) 2014-07-03 2014-07-03 Cocondensate, method for producing the same, and rubber composition containing cocondensate

Country Status (1)

Country Link
JP (1) JP6292715B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082069A (en) * 2015-10-27 2017-05-18 田岡化学工業株式会社 Resin composition and manufacturing method therefor, rubber composition containing resin composition
WO2018020967A1 (en) * 2016-07-28 2018-02-01 田岡化学工業株式会社 Novolac-type cocondensation product to be compounded into rubber, and method for producing said cocondensation product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154385A (en) * 1971-04-24 1975-12-12
JPH06184284A (en) * 1990-07-10 1994-07-05 Mitsui Toatsu Chem Inc Phenolic aralkyl resin having low softening point and epoxy resin composition containing the resin
JPH06234824A (en) * 1992-12-17 1994-08-23 Sumitomo Chem Co Ltd Co-condensation product and rubber composition compounding therewith
JP2014080502A (en) * 2012-10-16 2014-05-08 Taoka Chem Co Ltd Cocondensate and rubber composition containing the same
WO2014156870A1 (en) * 2013-03-26 2014-10-02 田岡化学工業株式会社 Cocondensate and method for producing same, and rubber composition containing cocondensate
JP2015163668A (en) * 2014-01-29 2015-09-10 田岡化学工業株式会社 Resin composition and production method thereof, and rubber composition including co-condensed object

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154385A (en) * 1971-04-24 1975-12-12
JPH06184284A (en) * 1990-07-10 1994-07-05 Mitsui Toatsu Chem Inc Phenolic aralkyl resin having low softening point and epoxy resin composition containing the resin
JPH06234824A (en) * 1992-12-17 1994-08-23 Sumitomo Chem Co Ltd Co-condensation product and rubber composition compounding therewith
JP2014080502A (en) * 2012-10-16 2014-05-08 Taoka Chem Co Ltd Cocondensate and rubber composition containing the same
WO2014156870A1 (en) * 2013-03-26 2014-10-02 田岡化学工業株式会社 Cocondensate and method for producing same, and rubber composition containing cocondensate
JP2015052097A (en) * 2013-03-26 2015-03-19 田岡化学工業株式会社 Co-condensate and method for producing the same, and rubber composition comprising the same
JP2015163668A (en) * 2014-01-29 2015-09-10 田岡化学工業株式会社 Resin composition and production method thereof, and rubber composition including co-condensed object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082069A (en) * 2015-10-27 2017-05-18 田岡化学工業株式会社 Resin composition and manufacturing method therefor, rubber composition containing resin composition
WO2018020967A1 (en) * 2016-07-28 2018-02-01 田岡化学工業株式会社 Novolac-type cocondensation product to be compounded into rubber, and method for producing said cocondensation product
CN109476799A (en) * 2016-07-28 2019-03-15 田冈化学工业株式会社 The manufacturing method of rubber compounding phenol aldehyde type cocondensation and the cocondensation
CN109476799B (en) * 2016-07-28 2021-07-30 田冈化学工业株式会社 Phenol-aldehyde cocondensate for compounding rubber and method for producing the cocondensate

Also Published As

Publication number Publication date
JP6292715B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6245752B2 (en) Cocondensate, method for producing the same, and rubber composition containing cocondensate
JP2015163668A (en) Resin composition and production method thereof, and rubber composition including co-condensed object
JP5865544B1 (en) Rubber composition for tire
JP6933068B2 (en) Rubber composition for steel cord coating and tires
JP5808305B2 (en) Rubber composition and pneumatic tire
JP2014095017A (en) Rubber composition for a steel cord coating, a steel cord adjacent strip or tie gum and pneumatic tire
JP6016297B2 (en) Cocondensate and rubber composition containing the same
JP2019052297A (en) Rubber composition
JP6297900B2 (en) Rubber composition for covering tire metal cord and pneumatic tire using the same
WO2018179919A1 (en) Novolak-type cocondesate, method for producing same, resin composition, and rubber composition
JP6675137B2 (en) Resin composition, method for producing the same, and rubber composition containing resin composition
JP2014152220A (en) Co-condensation product and rubber composition containing the same
JP6292715B2 (en) Cocondensate, method for producing the same, and rubber composition containing cocondensate
JP2015205948A (en) Rubber composition for coating tire fiber and pneumatic tire using the same
CN109476799B (en) Phenol-aldehyde cocondensate for compounding rubber and method for producing the cocondensate
WO2016052449A1 (en) Metal cord-rubber composite body
WO2016052447A1 (en) Rubber composition for tire
WO2016052451A1 (en) Metal cord-rubber composite body
JP2014105225A (en) Co-condensed material and rubber composition containing the same
JP2017179101A (en) Tackifier and rubber composition containing the same
JP2019183060A (en) Novolak type co-condensate for rubber blending, and manufacturing method of rubber composition containing the co-condensate
TW202112753A (en) Trisulfide compound
WO2016052450A1 (en) Metal cord-rubber composite body
JP2012207148A (en) Thiosulfonate compound and rubber composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180209

R150 Certificate of patent or registration of utility model

Ref document number: 6292715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250