JP2014073919A - Method for manufacturing nitride-based ceramic substrate - Google Patents

Method for manufacturing nitride-based ceramic substrate Download PDF

Info

Publication number
JP2014073919A
JP2014073919A JP2012221075A JP2012221075A JP2014073919A JP 2014073919 A JP2014073919 A JP 2014073919A JP 2012221075 A JP2012221075 A JP 2012221075A JP 2012221075 A JP2012221075 A JP 2012221075A JP 2014073919 A JP2014073919 A JP 2014073919A
Authority
JP
Japan
Prior art keywords
separation layer
nitride
ceramic substrate
silicon nitride
based ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012221075A
Other languages
Japanese (ja)
Inventor
Yoichiro Kaga
洋一郎 加賀
Junichi Watanabe
渡辺  純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012221075A priority Critical patent/JP2014073919A/en
Publication of JP2014073919A publication Critical patent/JP2014073919A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nitride-based ceramic substrate which does not require a thermal treatment step of reducing deformation after a sintering step, can suppress deformation after the sintering step, and can prevent sheet moldings laminated at sintering from being stuck to each other.SOLUTION: A separation layer is formed on one principal surface of a sheet molding so that its area is 95% or less of the area of the principal surface, and the sheet molding is sintered at 1,700-2,000°C in a state where a plurality of sheet moldings are superposed on each other through the separation layer to manufacture a nitride-based ceramic substrate.

Description

本発明は、窒化物系セラミックス基板の製造方法に関する。   The present invention relates to a method for manufacturing a nitride ceramic substrate.

窒化珪素基板、窒化アルミニウム基板その他窒化物系セラミックス基板は、IGBT、パワーMOSFET等のパワー半導体モジュールその他の電子部品が搭載されるセラミックス回路基板を構成する絶縁部材として、広く使用されている。このような窒化物系セラミックス基板は、その一方または両方の主面に金属板(金属回路板及び金属放熱板等)が接合され、セラミックス回路基板を構成する。そして、この窒化物系セラミックス基板と金属板との接合方法としては、例えばろう材を介し接合する活性金属法、銅板を直接接合する、いわゆる銅直接接合法が知られている。   Silicon nitride substrates, aluminum nitride substrates and other nitride-based ceramic substrates are widely used as insulating members constituting ceramic circuit substrates on which power semiconductor modules such as IGBTs and power MOSFETs and other electronic components are mounted. Such a nitride-based ceramic substrate has a ceramic circuit substrate formed by bonding a metal plate (such as a metal circuit plate and a metal heat dissipation plate) to one or both main surfaces thereof. As a method for joining the nitride-based ceramic substrate and the metal plate, for example, an active metal method for joining via a brazing material and a so-called copper direct joining method for directly joining a copper plate are known.

ここで、通常、窒化物系セラミックス基板を製造する際には、窒化珪素粉末、焼結助剤粉末、有機バインダーおよび溶媒等を混合した原料スラリーを例えばドクターブレード法で所定厚さにシート成形し、このシート成形体を複数枚重ねて焼結炉内で焼結する。この焼結の際にシート成形体同士が固着しないように、シート成形体の少なくとも一方の主面に窒化ホウ素を主原料とする分離層を形成する場合が多い。そして、この分離層の形成に係る窒化物系セラミックス基板の製造方法の一例が、下記特許文献1および2に開示されている。   Here, normally, when manufacturing a nitride-based ceramic substrate, a raw material slurry mixed with silicon nitride powder, sintering aid powder, organic binder, solvent, etc. is formed into a sheet with a predetermined thickness by, for example, a doctor blade method. A plurality of the sheet compacts are stacked and sintered in a sintering furnace. In many cases, a separation layer containing boron nitride as a main raw material is formed on at least one main surface of the sheet molded body so that the sheet molded bodies do not adhere to each other during the sintering. And an example of the manufacturing method of the nitride-type ceramic substrate which concerns on formation of this isolation | separation layer is disclosed by following patent document 1 and 2. FIG.

特許文献1には、「セラミックスのグリーンシートを成形し、その表面に、酸素量が3重量%以下で、平均粒径が20μm以下のBN粉を含む離型剤をロールコーターによりBN粉として0.3〜3mg/cmを塗布した後、その複数枚を積層し、脱脂後、その積層体の上下面をBN製セッターで押さえ、そのままセッターと同一材質で製作された密閉容器内に収納し、焼結することを特徴とするセラミックス焼結体の製造方法」、およびその製造方法で形成された平面度が100μm以下の板状の窒化アルミニウム焼結体が開示されている。 Patent Document 1 states that “a ceramic green sheet is molded, and a release agent containing BN powder having an oxygen content of 3% by weight or less and an average particle size of 20 μm or less is formed on the surface as BN powder by a roll coater. After applying 3 to 3 mg / cm 2 , stack multiple sheets, degrease, press the top and bottom surfaces of the laminate with a BN setter, and store in a sealed container made of the same material as the setter. And a method for producing a ceramic sintered body characterized by sintering, and a plate-like aluminum nitride sintered body having a flatness of 100 μm or less formed by the production method.

また、本願出願人の出願に係わる特許文献2には、「分離材を介して複数枚のグリーンシートを積層して焼結した後に分離することによって複数枚の窒化珪素焼結体を得て、該窒化珪素焼結体から窒化珪素基板を得る、窒化珪素基板の製造方法であって、前記分離材が酸素量0.01〜0.5重量%、平均粒子径4〜20μm、比表面積20m/g以下の窒化ホウ素(BN)粉であり、前記BN粉を0.05〜1.4mg/cmの塗布量でグリーンシート表面に塗布することを特徴とする窒化珪素基板の製造方法」、および、「Siを主成分とする窒化珪素基板において、前記窒化珪素基板の表面に残留したBNに由来するB量の分布を示す変動係数Cvが1.0以下であり、前記窒化珪素基板表面のうねりWaが1.5μm以下であり(但し、うねりは、表面粗さ計を用いて、ろ波中心線うねりを測定して、その算術平均うねりWa、すなわち、表面高さの平均値からの偏差の絶対値の算術平均である量を用いるものとし、測定条件は評価長さ30mm、測定速度0.3mm/s、カットオフ値(λc)0.25mm、カットオフ値(λf)8.0mmとする)、相対密度が98%以上であることを特徴とする窒化珪素基板」、が開示されている。 In addition, in Patent Document 2 relating to the application of the present applicant, "a plurality of silicon nitride sintered bodies are obtained by separating and then laminating and sintering a plurality of green sheets via a separating material, A silicon nitride substrate manufacturing method for obtaining a silicon nitride substrate from the silicon nitride sintered body, wherein the separating material has an oxygen content of 0.01 to 0.5% by weight, an average particle diameter of 4 to 20 μm, and a specific surface area of 20 m 2. / G or less boron nitride (BN) powder, and the BN powder is applied to the surface of the green sheet at a coating amount of 0.05 to 1.4 mg / cm 2 , ” And “in the silicon nitride substrate containing Si 3 N 4 as a main component, the coefficient of variation Cv indicating the distribution of B amount derived from BN remaining on the surface of the silicon nitride substrate is 1.0 or less, and the silicon nitride Waviness Wa of the substrate surface is 1.5 μm or less (However, the waviness is measured by using a surface roughness meter to measure the waviness center line waviness, and the arithmetic mean waviness Wa, that is, the arithmetic mean of the absolute value of the deviation from the mean value of the surface height. The measurement conditions are an evaluation length of 30 mm, a measurement speed of 0.3 mm / s, a cutoff value (λc) of 0.25 mm, a cutoff value (λf) of 8.0 mm), and a relative density of A silicon nitride substrate characterized by being 98% or more "is disclosed.

しかし、上記特許文献1または2のように、シート成形体の主面の全てに分離層を形成すると、得られた窒化物系セラミックス基板に、例えば反りなどの変形が生じるという問題がある。ここで、窒化物系セラミックス基板に変形が生じる理由は、次の理由だと推定される。すなわち、シート成形体と分離層の収縮率を比較すると、窒化ホウ素を主成分とする分離層の収縮率が小さい。そして、積層された状態の各シート成形体には荷重がかかっているため、焼結時にシート成形体の収縮が分離層で抑制され、焼結後の窒化物系セラミックス基板に残留応力が生じる。そして、焼結後に積層された窒化物系セラミックス基板から個々の窒化物系セラミックス基板を分離した際、または焼結工程後の他の工程で加熱等された時に、この残留応力が解放され、窒化物系セラミックス基板に変形が生じると考えられる。   However, as in Patent Document 1 or 2, when the separation layer is formed on the entire main surface of the sheet molded body, there is a problem that deformation such as warpage occurs in the obtained nitride-based ceramic substrate. Here, it is estimated that the reason why deformation occurs in the nitride-based ceramic substrate is as follows. That is, when the shrinkage ratio between the sheet molded body and the separation layer is compared, the shrinkage ratio of the separation layer mainly composed of boron nitride is small. And since the load is applied to each sheet molded body in the laminated state, the shrinkage of the sheet molded body is suppressed by the separation layer during sintering, and residual stress is generated in the nitride-based ceramic substrate after sintering. This residual stress is released when individual nitride ceramic substrates are separated from the nitride ceramic substrates laminated after sintering, or when heated in other processes after the sintering process. It is considered that deformation occurs in the physical ceramic substrate.

このように変形が生じた窒化物系セラミックス基板に金属板を接合した場合には、窒化物系セラミックス基板の変形に金属板が倣うために、パワー半導体等が実装される金属板の表面の平面度が低下する可能性がある。また、この窒化物系セラミックス基板に金属板が接合されたセラミックス回路基板にパワー半導体等を搭載したパワーモジュールを使用した場合に、パワー半導体等の起動停止による冷熱サイクルにともない発生する熱応力により窒化物系セラミックス基板から金属板が剥離する可能性がある。   When a metal plate is bonded to the nitride-based ceramic substrate that has been deformed in this way, the metal plate follows the deformation of the nitride-based ceramic substrate, so that the plane of the surface of the metal plate on which the power semiconductor or the like is mounted The degree may decrease. In addition, when using a power module in which a power semiconductor is mounted on a ceramic circuit board in which a metal plate is bonded to this nitride-based ceramic substrate, nitriding is caused by the thermal stress generated by the cooling / heating cycle due to the start / stop of the power semiconductor, etc. There is a possibility that the metal plate is peeled off from the physical ceramic substrate.

そこで、下記特許文献3には、窒化珪素原料粉をシート成形し、このシート成形体焼結した後、複数枚重ねた状態で0.5〜6.0kPaの荷重を印加しながら1550〜1700℃で熱処理することにより変形が小さい窒化珪素基板を得る技術が開示されている。   Therefore, in Patent Document 3 below, a silicon nitride raw material powder is formed into a sheet, and after this sheet molded body is sintered, a load of 0.5 to 6.0 kPa is applied in a state where a plurality of sheets are stacked, and 1550 to 1700 ° C. A technique for obtaining a silicon nitride substrate with a small deformation by heat treatment in JIS is disclosed.

特許3369819号号公報Japanese Patent No. 3369819 特開2011−178598号公報JP 2011-178598 A 特開2009−215142号公報JP 2009-215142 A

上記特許文献3の窒化物系セラミックス基板の製造方法によれば、特許文献1および2の窒化物系セラミックス基板の製造方法に対し変形が低減された窒化物系セラミックス基板を得ることができるものの、焼結工程後、変形を低減するために熱処理工程を別途実施する必要があるので、工業生産上コスト的に不利となる。   According to the method for manufacturing a nitride-based ceramic substrate of Patent Document 3, a nitride-based ceramic substrate with reduced deformation compared to the methods for manufacturing the nitride-based ceramic substrate of Patent Documents 1 and 2 can be obtained. After the sintering process, it is necessary to separately perform a heat treatment process to reduce deformation, which is disadvantageous in terms of industrial production.

本発明の目的は、焼結工程後に変形を低減する熱処理工程が不要で、焼結工程後の変形が抑制され、焼結時における積層されたシート成形体同士の固着を防止可能な窒化物系セラミックス基板の製造方法を提供することにある。   An object of the present invention is a nitride system that does not require a heat treatment step to reduce deformation after the sintering step, can suppress deformation after the sintering step, and can prevent adhesion of the laminated sheet compacts during sintering. The object is to provide a method for manufacturing a ceramic substrate.

上記目的を達成するために、本発明の一態様は、窒化物系セラミックス基板の製造方法であって、シート成形体の一方の主面に、当該主面の面積の95%以下の面積となるように分離層を形成し、前記シート成形体を、前記分離層を介して複数枚重ねた状態で1700〜2000℃で焼結することを特徴とする。   In order to achieve the above object, one aspect of the present invention is a method for manufacturing a nitride-based ceramic substrate, wherein one main surface of the sheet molded body has an area of 95% or less of the area of the main surface. The separation layer is formed as described above, and the sheet compact is sintered at 1700 to 2000 ° C. in a state where a plurality of the sheet compacts are stacked via the separation layer.

なお、上記分離層は、前記主面上において互いに分離して複数形成されているのが好ましい。加えて、上記分離層は、前記主面上において点状に配置されているのが好ましく、略矩形状、略円形状、略三角形状および略楕円形状の少なくともいずれかであるのがよい。さらに、分離して複数形成された分離層の個々の面積は、0.004〜4mmであるのがより好ましい。 In addition, it is preferable that a plurality of the separation layers are formed separately from each other on the main surface. In addition, the separation layer is preferably arranged in a dot shape on the main surface, and may be at least one of a substantially rectangular shape, a substantially circular shape, a substantially triangular shape, and a substantially elliptical shape. Furthermore, it is more preferable that the individual areas of the plurality of separation layers formed by separation are 0.004 to 4 mm 2 .

さらに加えて、上記分離層の前記主面からの高さは、1〜20μmであるのが好適である。   In addition, the height of the separation layer from the main surface is preferably 1 to 20 μm.

本発明によれば、その目的を達成することができる。   According to the present invention, the object can be achieved.

実施形態にかかる窒化物系セラミックス基板の製造方法の工程図である。It is process drawing of the manufacturing method of the nitride-type ceramic substrate concerning embodiment. 実施形態にかかる分離層の形成例を示す図である。It is a figure which shows the example of formation of the separation layer concerning embodiment. 実施形態にかかる分離層の形成例を示す図である。It is a figure which shows the example of formation of the separation layer concerning embodiment. 実施形態にかかる分離層の形成例を示す図である。It is a figure which shows the example of formation of the separation layer concerning embodiment. 実施形態にかかる分離層の形成例を示す図である。It is a figure which shows the example of formation of the separation layer concerning embodiment. 実施形態にかかる分離層の形成例を示す図である。It is a figure which shows the example of formation of the separation layer concerning embodiment. 窒化物系セラミックス基板の変形の測定方法を説明する図である。It is a figure explaining the measuring method of a deformation | transformation of a nitride-type ceramic substrate.

以下、本発明を実施するための形態(以下、実施形態という)を、図面に従って説明する。なお、以下、窒化物系セラミックス基板として窒化珪素基板の製造方法を例として説明する。しかしながら、本発明はこれに限定されず、同様なプロセスを経て製造される窒化アルミニウム基板その他窒化物系セラミックス基板に適用することが可能である。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. Hereinafter, a method for manufacturing a silicon nitride substrate as a nitride-based ceramic substrate will be described as an example. However, the present invention is not limited to this, and can be applied to an aluminum nitride substrate or other nitride ceramic substrate manufactured through a similar process.

本実施形態にかかる窒化物系セラミックス基板の製造方法は、シート成形体の一方の主面に、当該主面の面積の95%以下の面積となるように分離層を形成し、前記シート成形体を、前記分離層を介して複数枚重ねた状態で1700〜2000℃で焼結するものである。   In the method for producing a nitride ceramic substrate according to the present embodiment, a separation layer is formed on one main surface of a sheet molded body so as to have an area of 95% or less of the area of the main surface. Are sintered at 1700 to 2000 ° C. in a state where a plurality of layers are stacked via the separation layer.

上述したように、分離層とシート成形体との収縮率が異なるため、焼結時に、シート成形体の収縮が分離層で抑制され、その結果、焼結後の窒化珪素基板に残留応力が生じる。そのため、焼結後に積層された窒化珪素基板から個々の窒化珪素基板を分離した際、または、焼結工程後の他の工程での窒化珪素基板の加熱時に、残留応力が解放され窒化珪素基板に変形が生じやすい。一方、上記本実施形態の構成によれば、焼結工程におけるシート成形体の固着防止のためには必要であるが、シート成形体の円滑な収縮を阻害する分離層の面積を、シート成形体の主面の面積の95%以下とした。これにより、焼結時に、シート成形体の収縮が円滑となり、得られた窒化珪素基板の残留応力の発生が低減され、焼結後に得られた窒化珪素基板の変形が抑制されているので、焼結工程後に変形を修正する工程を別途設ける必要もない。加えて、シート成形体同士の固着も防止され、積層された窒化珪素基板から個々の窒化珪素基板が容易に分離される。   As described above, since the shrinkage rate between the separation layer and the sheet molded body is different, the shrinkage of the sheet molded body is suppressed by the separation layer during sintering, and as a result, residual stress is generated in the sintered silicon nitride substrate. . Therefore, the residual stress is released when the individual silicon nitride substrates are separated from the laminated silicon nitride substrates after sintering, or when the silicon nitride substrate is heated in another process after the sintering process. Deformation tends to occur. On the other hand, according to the configuration of the present embodiment, the area of the separation layer that inhibits the smooth shrinkage of the sheet molded body is required to prevent the sheet molded body from being fixed in the sintering process. The area of the main surface was 95% or less. This facilitates the shrinkage of the sheet compact during sintering, reduces the occurrence of residual stress in the obtained silicon nitride substrate, and suppresses deformation of the silicon nitride substrate obtained after sintering. There is no need to separately provide a process for correcting deformation after the ligation process. In addition, the sheet compacts are prevented from sticking to each other, and the individual silicon nitride substrates are easily separated from the stacked silicon nitride substrates.

図1には、実施形態にかかる窒化珪素基板の製造方法の工程図が示される。図1に示す原料調整・混合工程(I)では、窒化珪素基板の原料の調整と当該原料の混合による原料スラリーの形成が行われる。ここで、原料スラリーは、窒化珪素原料粉末に焼結助剤としての酸化マグネシウム(MgO)を0.1〜6質量%、同じく焼結助剤としての酸化イットリウム(Y)および酸化エルビウム(Er)の少なくとも一方を2〜10質量%を合計3〜10質量%となるように混合し、有機バインダー等とともにボールミル等で混合して形成される。また、有機バインダーとしては、例えばポリビニルブチラール、メタクリル酸メチル樹脂等を使用でき、5〜20質量%添加する。 FIG. 1 is a process diagram of a method for manufacturing a silicon nitride substrate according to an embodiment. In the raw material adjustment / mixing step (I) shown in FIG. 1, the raw material slurry is formed by adjusting the raw material of the silicon nitride substrate and mixing the raw materials. Here, the raw material slurry is silicon nitride raw material powder containing 0.1 to 6% by mass of magnesium oxide (MgO) as a sintering aid, and also yttrium oxide (Y 2 O 3 ) and erbium oxide as a sintering aid. At least one of (Er 2 O 3 ) is formed by mixing 2 to 10% by mass so that the total amount is 3 to 10% by mass and mixing with an organic binder or the like by a ball mill or the like. Moreover, as an organic binder, polyvinyl butyral, a methyl methacrylate resin, etc. can be used, for example, and 5-20 mass% is added.

次に、図1に示す成形工程(II)では、上記原料スラリーを脱泡した後、これをドクターブレード法等により所定厚さの板にシート成形する。このときのシート成形体の板厚は、用途に応じて適宜決定できるが、例えば0.1〜1.0mm程度とすることができる。   Next, in the forming step (II) shown in FIG. 1, the raw slurry is defoamed and then formed into a sheet having a predetermined thickness by a doctor blade method or the like. Although the plate | board thickness of the sheet molded object at this time can be suitably determined according to a use, it can be about 0.1-1.0 mm, for example.

次に、図1に示す分離層形成工程(III)では、上記成形工程(II)で成形したシート成形体の一方の主面に、当該主面の面積の95%以下の面積となるように分離層を形成する。この分離層は、後の焼結工程(IV)において、シート成形体を複数枚積層した状態で焼結する際に、シート成形体同士を固着させないために形成する。分離層は、例えば窒化ホウ素を溶媒に混合し、スクリーン印刷やスプレー塗布等により形成される。   Next, in the separation layer forming step (III) shown in FIG. 1, one main surface of the sheet molded body formed in the forming step (II) has an area of 95% or less of the area of the main surface. A separation layer is formed. In the subsequent sintering step (IV), the separation layer is formed so that the sheet molded bodies are not fixed to each other when sintered in a state where a plurality of sheet molded bodies are laminated. The separation layer is formed, for example, by screen printing or spray coating by mixing boron nitride in a solvent.

例えば、分離層をスクリーン印刷で形成するための窒化ホウ素ペーストは、窒化ホウ素粉末、有機バインダーおよび有機溶媒を含んで構成される。それぞれの混合割合としては、窒化ホウ素粉末100質量部に対し、有機バインダーを8.75〜87.5質量部、有機溶剤を10〜750質量部とするのが好適である。ここで、有機バインダーとしては、例えばポリビニルブチラール、エチルセルロース等が挙げられる。また、有機溶剤としては、例えばエタノール、ブタノール、α−テルピネオール等が挙げられる。   For example, a boron nitride paste for forming the separation layer by screen printing includes a boron nitride powder, an organic binder, and an organic solvent. As mixing ratios, it is preferable that the organic binder is 8.75 to 87.5 parts by mass and the organic solvent is 10 to 750 parts by mass with respect to 100 parts by mass of the boron nitride powder. Here, examples of the organic binder include polyvinyl butyral and ethyl cellulose. Examples of the organic solvent include ethanol, butanol, α-terpineol, and the like.

上記分離層形成工程(III)で形成された分離層12の一例が図2に示される。この例の分離層12の形状は、シート成形体10の外縁から所定の距離離れた四辺を有する矩形状であり、その面積はシート成形体10の主面の95%以下、好ましくは80%以上である。なお、積層されるシート成形体10が焼結中に固着しないように、シート成形体10の主面からの分離層12の高さは、1〜20μmとするのが好ましい(以下の図3〜6で示す他の例の分離層において同じ。)。さらに、分離層12の平面方向の形状は、図2に限定されることなく、シート成形体10の主面の95%以下の略円形状または多角形状としてもよい。   An example of the separation layer 12 formed in the separation layer formation step (III) is shown in FIG. The shape of the separation layer 12 in this example is a rectangular shape having four sides separated by a predetermined distance from the outer edge of the sheet molded body 10, and the area thereof is 95% or less, preferably 80% or more of the main surface of the sheet molded body 10. It is. In addition, it is preferable that the height of the separation layer 12 from the main surface of the sheet molded body 10 is 1 to 20 μm so that the laminated sheet molded body 10 is not fixed during sintering (see FIGS. 3 to 3 below). The same applies to the separation layer of another example shown by 6). Furthermore, the shape of the separation layer 12 in the planar direction is not limited to FIG. 2, and may be a substantially circular shape or a polygonal shape that is 95% or less of the main surface of the sheet molded body 10.

図3(a)、(b)には、好ましい形態の分離層の形成例が示される。なお、図3(b)は、図3(a)において円で囲まれた領域Jの拡大平面図である。図3(a)、(b)に示す分離層12のように、シート成形体10の主面上において互いに分離して複数形成し、図2の分離層12に対し、個々の分離層12の合計面積をより小さくすることにより、焼結時に、シート成形体の収縮が分離層で抑制される程度がより低くなり、焼結後の窒化珪素基板に生じる残留応力を低減できる。   FIGS. 3A and 3B show examples of forming a separation layer in a preferable form. FIG. 3B is an enlarged plan view of a region J surrounded by a circle in FIG. Like the separation layer 12 shown in FIGS. 3A and 3B, a plurality of the separation layers 12 are formed separately from each other on the main surface of the sheet molded body 10. By making the total area smaller, the degree to which the shrinkage of the sheet compact is suppressed by the separation layer during sintering becomes lower, and the residual stress generated in the sintered silicon nitride substrate can be reduced.

ここで、図3(a)、(b)の例は、シート成形体10の一方の主面に、点状の(小面積の)分離層12を複数格子状パターンに形成したものである。なお、点状に配置された分離層12の平面方向の形状は図3(a)、(b)に限定されるものではない。例えば略矩形状、略円形状、略三角形状、略楕円形状等の形状を適宜に決定することができる。また、5角形以上の多角形としてもよい。この場合の個々の分離層12の面積は、全ての分離層12の合計面積が、シート成形体10の主面の面積の95%以下であれば適宜に決定できるが、焼結時にシート成形体10同士が接触し、互いに固着しないように、0.004〜4mmとするのが好適である。なお、図3(a)、(b)の分離層12の場合には、個々の分離層12の合計面積は、シート成形体10の主面の面積の80%以下、20%以上とすることが好ましい。 Here, in the example of FIGS. 3A and 3B, dot-like (small area) separation layers 12 are formed in a plurality of grid patterns on one main surface of the sheet molded body 10. It should be noted that the shape of the separation layer 12 arranged in a dot shape in the planar direction is not limited to FIGS. 3 (a) and 3 (b). For example, shapes such as a substantially rectangular shape, a substantially circular shape, a substantially triangular shape, and a substantially elliptical shape can be appropriately determined. Moreover, it is good also as a polygon more than a pentagon. The area of the individual separation layers 12 in this case can be determined as appropriate as long as the total area of all the separation layers 12 is 95% or less of the area of the main surface of the sheet molded body 10. It is preferable that the thickness is 0.004 to 4 mm 2 so that the ten pieces come into contact with each other and do not stick to each other. 3A and 3B, the total area of the individual separation layers 12 should be 80% or less and 20% or more of the area of the main surface of the sheet molded body 10. Is preferred.

このように、複数の分離層12の総面積がシート成形体10の主面の面積の95%以下であるとともに、図3(a)、(b)では、個々の分離層12が互いに分離して形成されている。このため、焼結時に、シート成形体の収縮が分離層で抑制される程度がより低くなり、焼結後の窒化珪素基板に生じる残留応力を低減できる。その結果、得られる窒化珪素基板の変形が抑制される。   As described above, the total area of the plurality of separation layers 12 is 95% or less of the area of the main surface of the sheet molded body 10, and in FIGS. 3 (a) and 3 (b), the individual separation layers 12 are separated from each other. Is formed. For this reason, at the time of sintering, the degree to which the shrinkage of the sheet molded body is suppressed by the separation layer becomes lower, and the residual stress generated in the sintered silicon nitride substrate can be reduced. As a result, deformation of the obtained silicon nitride substrate is suppressed.

なお、シート成形体の主面上において互いに分離して複数形成するように形成された分離層は、図3(a)、(b)の分離層に限定されることなく、例えば図4〜6に示す分離層とすることができる。図4の例は、シート成形体10の一方の主面に、主面より小面積の4個の分離層12を形成したものである。4個の分離層12の合計面積は、シート成形体10の主面の面積の95%以下とされている。なお、本例の場合、分離層12の数は4個に限定されるものではなく、5個以上としてもよい。   In addition, the separation layer formed so as to be separated from each other on the main surface of the sheet molded body is not limited to the separation layers in FIGS. 3A and 3B, for example, FIGS. It can be set as the separation layer shown in FIG. In the example of FIG. 4, four separation layers 12 having a smaller area than the main surface are formed on one main surface of the sheet molded body 10. The total area of the four separation layers 12 is 95% or less of the area of the main surface of the sheet molded body 10. In the case of this example, the number of separation layers 12 is not limited to four, and may be five or more.

図5の例は、シート成形体10の一方の主面の端部付近の領域に2個の分離層12を形成したものである。2個の分離層12の合計面積は、シート成形体10の主面の面積の95%以下とされている。なお、本例の場合、分離層12の数は2個に限定されるものではなく、例えば図5に示されたシート成形体10の上下左右の端部付近の領域に4個形成してもよい。   In the example of FIG. 5, two separation layers 12 are formed in a region near the end of one main surface of the sheet molded body 10. The total area of the two separation layers 12 is 95% or less of the area of the main surface of the sheet molded body 10. In the case of this example, the number of separation layers 12 is not limited to two. For example, four separation layers 12 may be formed in regions near the upper, lower, left, and right ends of the sheet molded body 10 shown in FIG. Good.

図6の例は、シート成形体10の一方の主面に、分離層12を格子状に形成したものである。この格子状の分離層12の全体の面積は、シート成形体10の主面の面積の95%以下とされている。   In the example of FIG. 6, the separation layer 12 is formed in a lattice shape on one main surface of the sheet molded body 10. The entire area of the grid-like separation layer 12 is 95% or less of the area of the main surface of the sheet molded body 10.

なお、図4〜6で示される分離層12においても、シート成形体10の主面からの分離層12の高さは、1〜20μmとするのが好適である。ただし、各分離層12の合計面積が大きくなれば高さを低くしてもよい。分離層12の合計面積が大きくなるほど焼結時にシート成形体10同士が接触し難く、シート成形体同士の固着が発生しにくいからである。そして、いずれの分離層12の場合にも、個々の分離層12の合計面積は主面の95%以下、望ましくは80%以下であり、さらに分離層12が互いに分離して形成されているので、焼結時に、シート成形体の収縮が分離層で抑制される程度がより低くなり、焼結後の窒化珪素基板に生じる残留応力を低減できる。その結果、得られる窒化珪素基板の変形が抑制される。   In addition, also in the separation layer 12 shown by FIGS. 4-6, it is suitable that the height of the separation layer 12 from the main surface of the sheet molded object 10 shall be 1-20 micrometers. However, the height may be lowered if the total area of each separation layer 12 is increased. This is because as the total area of the separation layer 12 increases, the sheet molded bodies 10 are less likely to contact each other during sintering, and the sheet molded bodies are less likely to stick to each other. In any of the separation layers 12, the total area of the individual separation layers 12 is 95% or less of the main surface, preferably 80% or less, and the separation layers 12 are formed separately from each other. During sintering, the degree to which the shrinkage of the sheet compact is suppressed by the separation layer becomes lower, and the residual stress generated in the sintered silicon nitride substrate can be reduced. As a result, deformation of the obtained silicon nitride substrate is suppressed.

焼結工程(IV)では、シート成形体を、焼結炉内で上記分離層を介して複数枚積層した状態で1700〜2000℃の温度で焼結し、窒化珪素基板を製造する。このとき、0.1〜6.0MPaの窒素加圧雰囲気中で焼結するのが好適である。また、積層されたシート成形体に対し10〜200Paの荷重を印加しながら焼結することが好ましい。なお、焼結工程(IV)の終了後、積層された各窒化物系セラミックス基板を分離し、個別の窒化珪素基板とする。その後、窒化珪素基板の表面から分離層をブラスト処理などで除去する。   In the sintering step (IV), the sheet compact is sintered at a temperature of 1700 to 2000 ° C. in a state where a plurality of sheet compacts are laminated via the separation layer in a sintering furnace to manufacture a silicon nitride substrate. At this time, it is preferable to sinter in a nitrogen pressurized atmosphere of 0.1 to 6.0 MPa. Moreover, it is preferable to sinter while applying a load of 10 to 200 Pa to the laminated sheet compact. In addition, after completion | finish of a sintering process (IV), each laminated | stacked nitride type ceramic substrate is isolate | separated and it is set as an individual silicon nitride substrate. Thereafter, the separation layer is removed from the surface of the silicon nitride substrate by blasting or the like.

以上の工程により窒化物系セラミックス基板としての窒化珪素基板を製造するが、焼結工程(IV)の前に、示差熱分析で計測された、上記シート成形体の有機バインダーの発熱ピーク温度に加えて15〜450℃高い温度で上記分離層及びシート成形体を加熱し、上記分離層及びシート成形体から有機バインダーを除去する脱脂工程を実施してもよい。   A silicon nitride substrate as a nitride-based ceramic substrate is manufactured through the above steps, but in addition to the exothermic peak temperature of the organic binder of the sheet molded body, measured by differential thermal analysis, before the sintering step (IV). The degreasing step of heating the separation layer and the sheet molded body at a temperature higher by 15 to 450 ° C. to remove the organic binder from the separation layer and the sheet molded body may be performed.

以下、本発明の実施例を具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be specifically described below. The present invention is not limited to these examples.

図1に示された製造方法に基づいて窒化珪素基板を製造し、得られた窒化珪素基板の変形量および固着性を評価した。以下実施例1〜7および比較例1〜5の製造方法および窒化珪素基板の変形量および固着性の評価方法について説明する。   A silicon nitride substrate was manufactured based on the manufacturing method shown in FIG. 1, and the deformation amount and the sticking property of the obtained silicon nitride substrate were evaluated. Hereinafter, the production methods of Examples 1 to 7 and Comparative Examples 1 to 5, and the method for evaluating the amount of deformation and adhesion of the silicon nitride substrate will be described.

各実施例および比較例ともに、平均粒径0.8μm、酸素量1%、α化率97%の窒化珪素粉末92質量%、平均粒径0.5μmの酸化マグネシウム粉末4質量%、及び平均粒径0.5μmの酸化イットリウム粉末4質量%の合計100質量部に対して、有機バインダーとしてポリビニルブチラール20質量部、可塑剤としてジ−2−エチルヘキシルフタレート5質量部、有機溶剤としてエチルアルコールと1−ブチルアルコールの混合物150質量部を樹脂で内張りされた容器に入れ、窒化珪素ボールを用いてボールミルで20時間混合して原料スラリーを作製した。得られたスラリーの粘度を調整した後、ドクターブレード法により、厚さが0.4mmのシート状に成形した。その後、これをプレス装置により切断してシート成形体とした。なお、各実施例および比較例ともに、図2および3(a)、(b)に示すシート成形体10の寸法aは150mm、寸法cは100mmとした。   In each of the examples and comparative examples, an average particle size of 0.8 μm, an oxygen content of 1%, an α conversion of 97% of silicon nitride powder of 92% by mass, an average particle size of 0.5 μm of magnesium oxide powder of 4% by mass and an average particle For a total of 100 parts by mass of 4% by mass of yttrium oxide powder having a diameter of 0.5 μm, 20 parts by mass of polyvinyl butyral as an organic binder, 5 parts by mass of di-2-ethylhexyl phthalate as a plasticizer, ethyl alcohol and 1- 150 parts by mass of a mixture of butyl alcohol was put in a container lined with resin, and mixed with a silicon nitride ball for 20 hours by a ball mill to prepare a raw material slurry. After adjusting the viscosity of the obtained slurry, it was formed into a sheet having a thickness of 0.4 mm by a doctor blade method. Then, this was cut | disconnected with the press apparatus and it was set as the sheet molded object. In each of the examples and the comparative examples, the dimension a of the sheet molded body 10 shown in FIGS. 2 and 3A and 2B was 150 mm, and the dimension c was 100 mm.

六方晶窒化ホウ素粉末(以下、BN粉末と言う場合がある。)100質量部に対し、有機バインダーとしてポリビニルブチラール10質量部と、有機溶剤としてエチルアルコール250質量部を、1時間混合して、BN粉末スラリーを作製した。各実施例および比較例ともに、このBN粉末スラリーをスクリーン印刷でシート成形体の主面に印刷し、図2または図3(a)、(b)に示すパターンで所定の厚みの分離層を形成した。その後、大気中において100℃で加熱し、分離層12中の溶媒を除去した。なお、図2に示すパターンで分離層12を形成した実施例1、2および比較例1における寸法bおよび寸法d、ならびに図3(a)、(b)に示すパターンで分離層12を形成した実施例3〜7および比較例2〜5における寸法f、g(図3(b)参照)、個々の分離層の面積および分離層の厚みを表1に示す。なお、個々の分離層の面積については、図3(a)、(b)の分離層を形成した実施例3〜7および比較例2〜5についてのみ、表示してある。また、図3(a)、(b)の場合には、各分離層12を等ピッチで形成し、さらに最も外側に配置された分離層12からシート成形体の外縁までの、平面方向において縦および横方向の距離eは、各々ほぼ等分となるよう分離層12を配置した。   To 100 parts by mass of hexagonal boron nitride powder (hereinafter sometimes referred to as BN powder), 10 parts by mass of polyvinyl butyral as an organic binder and 250 parts by mass of ethyl alcohol as an organic solvent are mixed for 1 hour. A powder slurry was prepared. In each example and comparative example, this BN powder slurry is printed on the main surface of the sheet molded body by screen printing, and a separation layer having a predetermined thickness is formed in the pattern shown in FIG. 2 or FIGS. 3 (a) and 3 (b). did. Then, it heated at 100 degreeC in air | atmosphere and the solvent in the separated layer 12 was removed. In addition, the separation layer 12 was formed with the patterns shown in FIGS. 3A and 3B and the dimensions b and d in Examples 1 and 2 and Comparative Example 1 in which the separation layer 12 was formed with the pattern shown in FIG. Table 1 shows the dimensions f and g (see FIG. 3B), the area of each separation layer, and the thickness of the separation layer in Examples 3 to 7 and Comparative Examples 2 to 5. In addition, about the area of each isolation | separation layer, it has displayed only about Examples 3-7 and Comparative Examples 2-5 which formed the isolation | separation layer of Fig.3 (a), (b). In the case of FIGS. 3A and 3B, the separation layers 12 are formed at an equal pitch, and further, in the plane direction from the separation layer 12 arranged on the outermost side to the outer edge of the sheet molded body. In addition, the separation layer 12 was arranged so that the distance e in the horizontal direction was substantially equally divided.

Figure 2014073919
Figure 2014073919

各実施例および比較例ともに、分離層が形成されたシート成形体を、当該分離層が形成された面を上面とし10枚積層して、窒化ホウ素製のセッター上に配置し、600℃で5時間、大気中で加熱し、脱脂した。   In each of the examples and comparative examples, 10 sheet molded bodies on which the separation layer was formed were stacked with the surface on which the separation layer was formed as the upper surface, and placed on a boron nitride setter. Heated in air for hours and degreased.

次いで、積層された状態のシート成形体に60Paの荷重を印加しつつ、0.9MPaの加圧された窒素雰囲気下で1900℃にて3時間焼結し、10枚の積層された状態の窒化珪素基板を得た。   Next, while applying a load of 60 Pa to the laminated sheet molded body, sintering was performed at 1900 ° C. for 3 hours in a pressurized nitrogen atmosphere of 0.9 MPa, and nitriding of 10 laminated sheets was performed. A silicon substrate was obtained.

ここで、積層された状態の窒化珪素基板から個々の窒化珪素基板を分離するが、窒化珪素基板間の固着性の評価は、次のようにして確認した。窒化珪素基板に割れやクラックが発生することなく容易に剥離できた場合を(○)、木ハンマーで衝撃を加えることで窒化珪素基板に割れやクラックが発生することなく剥離できた場合を(△)、木ハンマーで衝撃を加えて剥離する際に窒化珪素基板に割れやクラックが発生する基板が一枚でもあった場合を(×)と判定した。固着性の評価結果を上記表1に示す。   Here, individual silicon nitride substrates were separated from the stacked silicon nitride substrates, and the evaluation of the adhesion between the silicon nitride substrates was confirmed as follows. The case where the silicon nitride substrate can be easily peeled without cracks or cracks (◯), and the case where the silicon nitride substrate can be peeled without cracks or cracks by applying an impact with a wooden hammer (△) ), The case where there was even one substrate in which the silicon nitride substrate was cracked or cracked when it was peeled off by applying an impact with a wooden hammer was determined as (x). Table 1 shows the results of evaluating the sticking property.

その後、分離した窒化珪素基板に平均粒子径50μmのアルミナ砥粒と水を混合したスラリーを0.2MPaの圧力で噴射することによってホーニング処理を行い、縦横が各々120mmおよび80mm、厚みが0.32mmの窒化珪素基板を得た。   Thereafter, a honing process is performed by injecting a slurry obtained by mixing alumina abrasive grains having an average particle diameter of 50 μm and water onto the separated silicon nitride substrate at a pressure of 0.2 MPa, and the length and width are 120 mm and 80 mm, respectively, and the thickness is 0.32 mm. A silicon nitride substrate was obtained.

各実施例および比較例で得られた窒化珪素基板の変形量は、三次元レーザー計測器(キーエンス製LT−8100)で、次のようにして確認した。図7(a)に示すように、定盤81に載置された窒化珪素基板1の表面にレーザー83を照射しつつ窒化珪素基板の両端AおよびBが含まれるよう矢印方向に走査する。図7(a)において紙面奥行方向におけるレーザー83の照射位置は、図7(b)に示すように窒化珪素基板1の各々の端面から10mmの位置、および中央の3点とし、設定した走査線L1〜L3に沿いレーザー83を走査させる。ここで、窒化珪素基板1に変形が生じていると、図7(a)に示すように、傾斜した姿勢で定盤81に載置される場合が多い。そこで、図7(c)に示すように、走査線L1〜L3ごとに、窒化珪素基板1の両端を結ぶ破線Cが水平になるよう計測されたデータを調整する。例えば図7(c)において図示する変形を有する窒化珪素基板1の場合には、当該破線Cを基準として、窒化珪素基板10の表面において、当該直線Cから上側に最も離隔した点Eまでの距離Gと、下側に最も離隔した点Fまでの距離Hとを求める。走査線L1〜L3ごとに、この距離GとHとを加算した値を走査方向における窒化珪素基板10の長さIで除した値を算出し、単位長さ当たりの変形量(μm/mm)を求め、走査線L1〜L3ごとに得られた3つの値の平均値を変形量として算出する。そして、各実施例および比較例ともに得られた10枚の窒化珪素基板の変形量を求めた。10枚の窒化珪素基板の変形量の平均値を上記表1に示す。   The deformation amount of the silicon nitride substrate obtained in each example and comparative example was confirmed with a three-dimensional laser measuring instrument (LT-8100 manufactured by Keyence) as follows. As shown in FIG. 7A, the surface of the silicon nitride substrate 1 placed on the surface plate 81 is irradiated with a laser 83, and scanning is performed in the direction of the arrow so that both ends A and B of the silicon nitride substrate are included. In FIG. 7A, the irradiation position of the laser 83 in the depth direction of the paper surface is set to a position of 10 mm from each end face of the silicon nitride substrate 1 and three points in the center as shown in FIG. The laser 83 is scanned along L1 to L3. Here, when the silicon nitride substrate 1 is deformed, it is often placed on the surface plate 81 in an inclined posture as shown in FIG. Therefore, as shown in FIG. 7C, the data measured so that the broken line C connecting both ends of the silicon nitride substrate 1 is horizontal is adjusted for each of the scanning lines L1 to L3. For example, in the case of the silicon nitride substrate 1 having the deformation illustrated in FIG. G and a distance H to a point F that is farthest from the lower side are obtained. For each of the scanning lines L1 to L3, a value obtained by dividing the value obtained by adding the distances G and H by the length I of the silicon nitride substrate 10 in the scanning direction is calculated, and the deformation amount per unit length (μm / mm) And an average value of the three values obtained for each of the scanning lines L1 to L3 is calculated as the deformation amount. Then, the deformation amounts of the 10 silicon nitride substrates obtained in each example and comparative example were obtained. The average value of the deformation amount of the 10 silicon nitride substrates is shown in Table 1 above.

表1に示されるように、実施例1〜7のいずれにおいても、変形量が2μmを下回っており、また固着評価の結果も○または△であり、ほぼ良好な窒化珪素基板が得られた。一方、比較例1、3、5では変形量が2を超えており、比較例2、4では固着評価の結果が×となっている。   As shown in Table 1, in any of Examples 1 to 7, the deformation amount was less than 2 μm, and the result of sticking evaluation was also “◯” or “Δ”, and a substantially good silicon nitride substrate was obtained. On the other hand, in Comparative Examples 1, 3, and 5, the amount of deformation exceeds 2, and in Comparative Examples 2 and 4, the result of the sticking evaluation is x.

これらを詳細に見ると、図2に示すパターンで分離層12を形成した実施例1、2および比較例1からは、主面上での面積比が大きくなるほど変形量も大きくなるが、固着はしにくくなることがわかる。主面上での面積比が実施例2<実施例1<比較例1となっており、変形量も実施例2<実施例1<比較例1となっているが、固着評価は比較例1が×、実施例2が△、実施例1が○となっているからである。   Looking at these in detail, from Examples 1 and 2 and Comparative Example 1 in which the separation layer 12 was formed in the pattern shown in FIG. 2, the larger the area ratio on the main surface, the larger the deformation amount. It turns out that it becomes difficult to do. The area ratio on the main surface is Example 2 <Example 1 <Comparative Example 1, and the deformation amount is also Example 2 <Example 1 <Comparative Example 1. Is ×, Example 2 is Δ, and Example 1 is ○.

また、図3(a)、(b)に示すパターンで分離層12を形成した実施例3〜7および比較例2〜5では、実施例3〜6と比較例2、3とを比較すると、個々の分離層の面積が大きくなるほど変形量も大きくなる傾向にあることがわかる。また、実施例3〜6と比較例2、3とを比較すると、個々の分離層の面積が大きくなるほど固着しにくくなることがわかる。さらに、実施例7と比較例4、5とを比較すると、分離層の高さが高くなるほど変形量が大きくなるが、固着しにくくなることがわかる。   Further, in Examples 3 to 7 and Comparative Examples 2 to 5 in which the separation layer 12 was formed in the pattern shown in FIGS. 3A and 3B, when Examples 3 to 6 and Comparative Examples 2 and 3 were compared, It can be seen that the amount of deformation tends to increase as the area of each separation layer increases. Further, when Examples 3 to 6 and Comparative Examples 2 and 3 are compared, it can be seen that the larger the area of each separation layer, the harder it becomes to adhere. Furthermore, when Example 7 and Comparative Examples 4 and 5 are compared, it can be seen that the amount of deformation increases as the height of the separation layer increases, but it becomes difficult to adhere.

1 窒化珪素基板、10 シート成形体、12 分離層、81 定盤、83 レーザー。   1 silicon nitride substrate, 10 sheet compact, 12 separation layer, 81 surface plate, 83 laser.

Claims (6)

窒化物系セラミックス基板の製造方法であって、
シート成形体の一方の主面に、当該主面の面積の95%以下の面積となるように分離層を形成し、
前記シート成形体を、前記分離層を介して複数枚重ねた状態で1700〜2000℃で焼結する、窒化物系セラミックス基板の製造方法。
A method of manufacturing a nitride-based ceramic substrate,
A separation layer is formed on one main surface of the sheet molded body so as to have an area of 95% or less of the area of the main surface,
A method for producing a nitride-based ceramic substrate, comprising sintering the sheet compact at 1700 to 2000 ° C in a state where a plurality of the sheet compacts are stacked via the separation layer.
前記分離層は、前記主面上において互いに分離して複数形成されている請求項1に記載の窒化物系セラミックス基板の製造方法。   The method for manufacturing a nitride-based ceramic substrate according to claim 1, wherein a plurality of the separation layers are formed separately from each other on the main surface. 前記分離層は、前記主面上において点状に配置されていることを特徴とする請求項2に記載の窒化物系セラミックス基板の製造方法。   The method for manufacturing a nitride-based ceramic substrate according to claim 2, wherein the separation layer is arranged in a dot shape on the main surface. 前記分離層は、略矩形状、略円形状、略三角形状および略楕円形状の少なくともいずれかである請求項3に記載の窒化物系セラミックス基板の製造方法。   The method for manufacturing a nitride-based ceramic substrate according to claim 3, wherein the separation layer is at least one of a substantially rectangular shape, a substantially circular shape, a substantially triangular shape, and a substantially elliptical shape. 前記分離層の面積は、0.004〜4mmである請求項4に記載の窒化物系セラミックス基板の製造方法。 The method for manufacturing a nitride-based ceramic substrate according to claim 4, wherein an area of the separation layer is 0.004 to 4 mm 2 . 前記分離層の前記主面からの高さは、1〜20μmである請求項1から請求項5の何れか一項に記載の窒化物系セラミックス基板の製造方法。   The method for producing a nitride-based ceramic substrate according to any one of claims 1 to 5, wherein a height of the separation layer from the main surface is 1 to 20 µm.
JP2012221075A 2012-10-03 2012-10-03 Method for manufacturing nitride-based ceramic substrate Pending JP2014073919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012221075A JP2014073919A (en) 2012-10-03 2012-10-03 Method for manufacturing nitride-based ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012221075A JP2014073919A (en) 2012-10-03 2012-10-03 Method for manufacturing nitride-based ceramic substrate

Publications (1)

Publication Number Publication Date
JP2014073919A true JP2014073919A (en) 2014-04-24

Family

ID=50748392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012221075A Pending JP2014073919A (en) 2012-10-03 2012-10-03 Method for manufacturing nitride-based ceramic substrate

Country Status (1)

Country Link
JP (1) JP2014073919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321954A (en) * 2022-08-09 2022-11-11 广东环波新材料有限责任公司 Preparation method of ceramic substrate and low-temperature co-fired ceramic substrate
CN115557795A (en) * 2022-09-07 2023-01-03 广东环波新材料有限责任公司 Sintering method of low-temperature co-fired ceramic substrate
WO2023038151A1 (en) * 2021-09-13 2023-03-16 デンカ株式会社 Method for producing boron nitride sintered body, and boron nitride sintered body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185413A (en) * 1992-01-10 1993-07-27 Ngk Spark Plug Co Ltd Manufacture of ceramic board
JPH05221733A (en) * 1992-02-06 1993-08-31 Nitto Denko Corp Ceramic firing insert
JPH05330924A (en) * 1992-06-02 1993-12-14 Toshiba Corp Production of aluminum nitride base plate and sintering vessel
JPH06172041A (en) * 1992-12-04 1994-06-21 Asahi Glass Co Ltd Production of aluminum nitride substrate
JPH09136312A (en) * 1995-11-15 1997-05-27 Denki Kagaku Kogyo Kk Fabrication of ceramic sintered body
JP2011178598A (en) * 2010-03-01 2011-09-15 Hitachi Metals Ltd Method for manufacturing silicon nitride substrate and silicon nitride substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185413A (en) * 1992-01-10 1993-07-27 Ngk Spark Plug Co Ltd Manufacture of ceramic board
JPH05221733A (en) * 1992-02-06 1993-08-31 Nitto Denko Corp Ceramic firing insert
JPH05330924A (en) * 1992-06-02 1993-12-14 Toshiba Corp Production of aluminum nitride base plate and sintering vessel
JPH06172041A (en) * 1992-12-04 1994-06-21 Asahi Glass Co Ltd Production of aluminum nitride substrate
JPH09136312A (en) * 1995-11-15 1997-05-27 Denki Kagaku Kogyo Kk Fabrication of ceramic sintered body
JP2011178598A (en) * 2010-03-01 2011-09-15 Hitachi Metals Ltd Method for manufacturing silicon nitride substrate and silicon nitride substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038151A1 (en) * 2021-09-13 2023-03-16 デンカ株式会社 Method for producing boron nitride sintered body, and boron nitride sintered body
JP7282279B1 (en) * 2021-09-13 2023-05-26 デンカ株式会社 Method for manufacturing boron nitride sintered body and boron nitride sintered body
CN115321954A (en) * 2022-08-09 2022-11-11 广东环波新材料有限责任公司 Preparation method of ceramic substrate and low-temperature co-fired ceramic substrate
CN115321954B (en) * 2022-08-09 2023-07-07 广东环波新材料有限责任公司 Preparation method of ceramic substrate and low-temperature co-fired ceramic substrate
CN115557795A (en) * 2022-09-07 2023-01-03 广东环波新材料有限责任公司 Sintering method of low-temperature co-fired ceramic substrate

Similar Documents

Publication Publication Date Title
JP5339214B2 (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate
US9655237B2 (en) Silicon nitride substrate and method for producing silicon nitride substrate
JP5729519B2 (en) Sintered silicon nitride substrate and manufacturing method thereof
WO2014080536A1 (en) Metal-ceramic bonded substrate and method for producing same
JP2014073919A (en) Method for manufacturing nitride-based ceramic substrate
JP7468769B2 (en) Manufacturing method of silicon nitride sintered substrate
JP6304923B2 (en) Metal-ceramic bonding substrate and manufacturing method thereof
WO2022034810A1 (en) Laminate for circuit board
JP6672960B2 (en) Manufacturing method of ceramic sintered plate
JP4358777B2 (en) Zirconia setter and method for manufacturing ceramic substrate
JP6067394B2 (en) Firing jig
CN112912356B (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate
WO2021095843A1 (en) Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards
JPWO2007000963A1 (en) Method for manufacturing ceramic substrate having steps
CN107507778B (en) Method for manufacturing LTCC substrate with rough bottom and LTCC substrate
JP2010159184A (en) Method for producing aluminum nitride sintered compact
JP2008186897A (en) Method of manufacturing multilayer ceramic substrate
JP6401012B2 (en) Ceramic substrate
JP4439257B2 (en) Ceramic green sheet and manufacturing method thereof
JP4347206B2 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP7211476B2 (en) silicon nitride substrate
JP7318835B2 (en) silicon nitride substrate
JP7248187B2 (en) silicon nitride substrate
JP7168796B2 (en) Ceramic substrate, composite substrate, circuit substrate, method for manufacturing ceramic substrate, method for manufacturing composite substrate, method for manufacturing circuit substrate, and method for manufacturing a plurality of circuit substrates
WO2022019181A1 (en) Ceramic sintered body and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170124