JP2014071025A - Solid-liquid separation method and solid-liquid separation device - Google Patents

Solid-liquid separation method and solid-liquid separation device Download PDF

Info

Publication number
JP2014071025A
JP2014071025A JP2012217995A JP2012217995A JP2014071025A JP 2014071025 A JP2014071025 A JP 2014071025A JP 2012217995 A JP2012217995 A JP 2012217995A JP 2012217995 A JP2012217995 A JP 2012217995A JP 2014071025 A JP2014071025 A JP 2014071025A
Authority
JP
Japan
Prior art keywords
solid
liquid
liquid separation
filter
inner container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012217995A
Other languages
Japanese (ja)
Inventor
Tsuneo Omura
恒雄 大村
Hiroshi Okabe
寛史 岡部
Shinichi Makino
新一 牧野
Kazuya Yamada
和矢 山田
Rei Chiba
怜 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012217995A priority Critical patent/JP2014071025A/en
Publication of JP2014071025A publication Critical patent/JP2014071025A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of solid-liquid separation of solid suspension, which has a high concentration of solid contents with various particle diameters, without prolonging time required for solid-liquid separation.SOLUTION: A first solid-liquid separation device 50A comprises: a solid-liquid separation tank 3 which has an inner container 1, with a concave-shaped filter cloth section made of a filter cloth that allows liquid 7 to pass but does not allow a solid content 11 to pass therethrough and with a height to prevent a content from overflowing an upper edge of the filter cloth section, and an outer container 2 to store the inner container 1; a solid suspension supply line 5 which introduces solid suspension 12 into the inner container 1; and a liquid extraction line 8 which extracts the liquid 7, obtained from the solid suspension 12 through solid-liquid separation in the solid-liquid separation tank 3, out of the same.

Description

本発明は、放射性物質に汚染された物質を湿式溶離法により除染した後の物質を固液分離する固液分離方法および固液分離装置に関する。   The present invention relates to a solid-liquid separation method and a solid-liquid separation apparatus for solid-liquid separation of a substance after decontamination of a substance contaminated with a radioactive substance by a wet elution method.

放射性物質が広範囲に飛散するような事態が生じた場合、放射性物質およびその放射性核種は広範囲にわたって耕作地などの土壌、建築物、河川などに付着または吸収されることになり、放射性物質による汚染が引き起こされる。放射性物質により土壌や河川が汚染されると、そこで栽培される農作物や生息する魚介類に放射性物質が蓄積され、経口摂取による内部被ばくが懸念される。   When a situation occurs in which radioactive material is scattered over a wide area, the radioactive material and its radionuclide are attached or absorbed over a wide range of soil, buildings, rivers, etc. Is caused. When soil and rivers are polluted by radioactive substances, the radioactive substances accumulate in the crops grown and the fish and shellfish that live there, and there is concern about internal exposure due to ingestion.

放射性核種として想定される物質には、例えば、放射性セシウム(Cs)の134Csや137Csがある。137Csは半減期が約30.2年と長く、汚染状態を放置しておくと、長期にわたり一般公衆が被ばくする可能性が高まる。そのため、汚染土壌から放射性物質を除去する技術の開発が求められている。 Examples of a substance assumed as a radionuclide include, for example, 134 Cs and 137 Cs of radioactive cesium (Cs). 137 Cs has a long half-life of about 30.2 years, and if the contaminated state is left unattended, the possibility of exposure to the general public for a long time increases. For this reason, development of technology for removing radioactive substances from contaminated soil is required.

また、焼却により放射性物質の濃度が高くなった焼却灰、焼却飛灰などの処理方法は確立されておらず、課題となっていることから、湿式分級法、溶融処理法、湿式溶離法などの被ばく線量低減方法や除染方法の研究開発が進められている(例えば、平成23年度「除染技術実証試験事業」等)。   In addition, treatment methods such as incineration ash and incineration fly ash that have increased the concentration of radioactive materials due to incineration have not been established and are subject to problems, so wet classification methods, melting treatment methods, wet elution methods, etc. Research and development of exposure dose reduction methods and decontamination methods are ongoing (for example, “Decontamination Technology Demonstration Test Project 2011”).

湿式溶離法は、水、酸性溶液、アルカリ性溶液などを用いて対象物質から放射性物質やその化合物(以下、「放射性物質等」と称する。)を溶解させ、水溶液中に抽出する方法である。除染率が低い対象は、繰り返し溶離することにより除染率向上が期待できる(非特許文献1参照)。   The wet elution method is a method in which a radioactive substance or a compound thereof (hereinafter referred to as “radioactive substance or the like”) is dissolved from a target substance using water, an acidic solution, an alkaline solution or the like and extracted into an aqueous solution. An object with a low decontamination rate can be expected to improve the decontamination rate by repeated elution (see Non-Patent Document 1).

溶離後は、放射性物質等を溶離した後の対象物質と溶離液とを固液分離し、溶離液中の放射性物質を吸着剤などにより回収することで埋設処分が可能となるメリットがある。   After elution, there is a merit that the target substance after elution of the radioactive substance and the like and the eluent are separated into solid and liquid, and the radioactive substance in the eluent is recovered by an adsorbent or the like so that it can be buried.

また、湿式溶離法は、溶離液を変更することにより様々な対象を除染できることから特に注目されている。溶離液としては、シュウ酸や水が有望視されている。   In addition, the wet elution method is particularly attracting attention because various objects can be decontaminated by changing the eluent. As eluent, oxalic acid and water are promising.

湿式溶離法による除染速度は、主に対象物質から放射性物質等を溶離する時間と、放射性物質等を溶離した後の対象物質と溶離液とを固液分離する時間と、溶離液中の放射性物質を吸着剤などに吸着する時間に依存する。   The decontamination rate by the wet elution method mainly includes the time for elution of radioactive substances from the target substance, the time for solid-liquid separation of the target substance and eluent after elution of the radioactive substance, etc. It depends on the time to adsorb the substance to the adsorbent.

固液分離方法は、ろ過法、圧搾法、沈降分離法、遠心分離法、浮上分離法などに大別される。   Solid-liquid separation methods are roughly classified into filtration methods, squeezing methods, sedimentation separation methods, centrifugal separation methods, and flotation separation methods.

ろ過法は、細孔を有するろ布やフィルタに固液懸濁液を接触させ、清澄液と固形分とに分離する方法である。細孔径が大きいほど排液時間が速くなる一方、清澄液に含まれる固形分量が増加する。そのため、最適な細孔径とろ過面積とを選定することが課題となる。   The filtration method is a method in which a solid-liquid suspension is brought into contact with a filter cloth or a filter having pores and separated into a clarified liquid and a solid content. The larger the pore diameter, the faster the drainage time, while the solid content in the clarified liquid increases. Therefore, it becomes a subject to select an optimal pore diameter and filtration area.

圧搾法は、ろ過法に類似した固液分離方法であり、スラリー等の固液懸濁液を液体は通過するが、固体を通過させない隔壁内に収容し、これを圧縮脱水して圧縮ケークと液体とに分離する方法である。隔壁にはろ布をセットするのが通例であり、最適な細孔経とろ過面積とを選定することが課題となる。   The compression method is a solid-liquid separation method similar to the filtration method, in which liquid passes through a solid-liquid suspension such as slurry, but is stored in a partition wall that does not allow solids to pass through, and this is compressed and dehydrated to form a compressed cake. It is a method of separating into liquid. It is usual to set a filter cloth on the partition wall, and it becomes a problem to select an optimal pore diameter and filtration area.

沈降分離法、遠心分離法、浮上分離法は、いずれも固体と液体の比重差を利用した固液分離方法である。そのため比重差が小さいと分離に掛かる時間が長くなる問題がある。   The sedimentation separation method, the centrifugal separation method, and the flotation separation method are all solid-liquid separation methods using the difference in specific gravity between the solid and the liquid. Therefore, if the specific gravity difference is small, there is a problem that the time required for separation becomes long.

一般的に固液分離工程では、これらのいずれかの方法またはいくつかの方法を組み合わせた方法が適用される。   In general, any of these methods or a combination of several methods is applied in the solid-liquid separation step.

例えば、特許文献1では、土粒子、汚染物質および含有水からなる汚染土壌に水を加えてスラリーとした後、沈降分離により沈降分離槽の上部から上澄み液を連続回収し、固液分離槽の下部から土を連続回収する方法を提案している。   For example, in Patent Document 1, after adding water to a contaminated soil composed of soil particles, contaminants and contained water to form a slurry, the supernatant is continuously recovered from the upper part of the sedimentation tank by sedimentation separation, and the solid-liquid separation tank A method to continuously collect soil from the bottom is proposed.

また、特許文献2では、原水中のSS、BOD等の懸濁物質をろ材を用いたろ過による固液分離を提案しており、凝集剤沈殿工程を組み込むことで、懸濁物質の除去性能を向上させている。   Patent Document 2 proposes solid-liquid separation by filtering suspended substances such as SS and BOD in raw water using a filter medium. By incorporating a coagulant precipitation step, the suspended substance removal performance is proposed. It is improving.

特許第4372067号公報Japanese Patent No. 4372687 特開2007−229658号公報JP 2007-229658 A

日本原子力学会「2012年春の年会」、L09、福井大学、2012年3月19日Atomic Energy Society of Japan "Spring Annual Meeting 2012", L09, University of Fukui, March 19, 2012

しかしながら、特許文献1に記載される方法では、粒子径が大きい固形分については短時間で分離できるが粒子径が小さい固形分については沈降速度が小さくなるため、沈降分離に掛かる時間が長くなってしまうという課題がある。   However, in the method described in Patent Document 1, the solid content having a large particle size can be separated in a short time, but since the sedimentation speed is reduced for the solid content having a small particle size, the time required for the sedimentation separation becomes long. There is a problem of end.

また、特許文献2に記載される方法では、懸濁物質を沈殿させることで、ろ材の表面に懸濁物質のケーク層が生成されることとなり、ろ過に時間がかかるという課題がある。特に、放射性物質に汚染された土壌、汚泥、焼却灰、焼却飛灰の湿式処理では、固形分濃度を高くしなければ、放射性物質を含む溶離液量が増大するため、高い固形分濃度での固液分離、すなわち、時間を長く掛けて固液分離する必要が生じる。   Moreover, in the method described in patent document 2, the suspended substance is precipitated, and the cake layer of a suspended substance will be produced | generated on the surface of a filter medium, and there exists a subject that filtration takes time. In particular, in wet processing of soil, sludge, incineration ash, and incineration fly ash contaminated with radioactive substances, the amount of eluent containing radioactive substances will increase unless the solids concentration is high. There is a need for solid-liquid separation, that is, solid-liquid separation over a long time.

本発明は、上述の事情を考慮してなされたものであり、固液分離時間を長時間化させることなく、様々の粒子径を持ち高濃度の固形分を含有する固液懸濁液を固液分離可能な固液分離方法および固液分離装置を提供することを目的とする。   The present invention has been made in consideration of the above-mentioned circumstances, and solid-liquid suspensions having various particle sizes and containing high-concentration solids can be solidified without increasing the solid-liquid separation time. An object of the present invention is to provide a solid-liquid separation method and a solid-liquid separation apparatus capable of liquid separation.

本発明の実施形態に係る固液分離方法は、上述した課題を解決するため、液体は通過するが固形分は通過しないろ布で作られており上端から内容物が溢流しない高さを持つ内部容器と、この内部容器を収容する外部容器とを有する固液分離槽の前記内部容器に固液懸濁液を導入し、前記固液分離槽内で固液懸濁液を放置して固形分と液体とに固液分離した後、前記液体を抜き出す際に、前記液体の上澄み液を前記内部容器の側面のろ布によってろ過させて前記内部容器から排出することを特徴とする。   In order to solve the above-described problem, the solid-liquid separation method according to the embodiment of the present invention is made of a filter cloth that allows liquid to pass through but does not pass through solids, and has a height that prevents the content from overflowing from the upper end. A solid-liquid suspension is introduced into the internal container of a solid-liquid separation tank having an internal container and an external container that accommodates the internal container, and the solid-liquid suspension is left in the solid-liquid separation tank and solidified. After solid-liquid separation into a liquid and a liquid, when the liquid is extracted, the liquid supernatant is filtered through a filter cloth on the side of the inner container and discharged from the inner container.

本発明の実施形態に係る固液分離装置は、上述した課題を解決するため、液体は通過するが固形分は通過しないろ布で作られる凹型状のろ布部を有し、このろ布部の上端から内容物が溢流しない高さを持つ内部容器と、この内部容器を収容する外部容器とを有する固液分離槽と、前記内部容器に固液懸濁液を導入する固液懸濁液供給ラインと、前記固液分離槽内で固液懸濁液から固液分離して得られる液体を前記固液分離槽から外部へ抜き出す液体抜出ラインと、を具備することを特徴とする。   In order to solve the above-described problems, a solid-liquid separation device according to an embodiment of the present invention has a concave filter cloth portion made of a filter cloth that allows liquid to pass through but does not pass through solids, and this filter cloth section. A solid-liquid separation tank having an inner container having a height that prevents the contents from overflowing from the upper end of the container, an outer container for housing the inner container, and a solid-liquid suspension for introducing the solid-liquid suspension into the inner container A liquid supply line; and a liquid extraction line for extracting the liquid obtained by solid-liquid separation from the solid-liquid suspension in the solid-liquid separation tank to the outside from the solid-liquid separation tank. .

本発明によれば、固液分離時間を長時間化させることなく、様々の粒子径を持ち高濃度の固形分を含有する固液懸濁液を固液分離することができる。   According to the present invention, it is possible to perform solid-liquid separation of a solid-liquid suspension having various particle sizes and containing a high concentration of solid content without increasing the solid-liquid separation time.

本発明の第1の実施形態に係る固液分離装置の説明図であり、(A)は第1の固液分離装置の全体構成を示す概略図、(B)は固液分離槽の矢印X方向からの矢視図。It is explanatory drawing of the solid-liquid separation apparatus which concerns on the 1st Embodiment of this invention, (A) is the schematic which shows the whole structure of a 1st solid-liquid separation apparatus, (B) is the arrow X of a solid-liquid separation tank An arrow view from the direction. 本発明の第2の実施形態に係る固液分離装置の概略図。Schematic of the solid-liquid separator which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る固液分離装置の概略図。Schematic of the solid-liquid separator which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る固液分離装置の概略図。Schematic of the solid-liquid separator which concerns on the 4th Embodiment of this invention.

本発明の実施形態に係る固液分離装置および固液分離方法について、図面を参照して説明する。   A solid-liquid separation device and a solid-liquid separation method according to an embodiment of the present invention will be described with reference to the drawings.

本発明の実施形態に係る固液分離装置および固液分離方法は、放射性物質に汚染された土壌、汚泥、焼却灰、焼却飛灰等の物質を湿式溶離法により除染した後の物質を固液分離する際に使用される。   The solid-liquid separation device and the solid-liquid separation method according to the embodiment of the present invention are a solid-liquid separation device and a solid-liquid separation method. Used in liquid separation.

[第1の実施形態]
<構成>
図1は、本発明の第1の実施形態に係る固液分離装置の一例である第1の固液分離装置50Aの説明図であり、図1(A)は第1の固液分離装置50Aの全体構成を示す概略図、(B)は固液分離槽3の矢印X方向からの矢視図である。
[First embodiment]
<Configuration>
FIG. 1 is an explanatory diagram of a first solid-liquid separation device 50A that is an example of the solid-liquid separation device according to the first embodiment of the present invention, and FIG. 1 (A) shows the first solid-liquid separation device 50A. Schematic which shows the whole structure of this, (B) is an arrow line view from the arrow X direction of the solid-liquid separation tank 3. FIG.

第1の固液分離装置50Aは、例えば、内部容器1と、内部容器1を収容する外部容器2を有する二重容器で構成される固液分離槽3と、固液懸濁液12を内部容器1に導入する固液懸濁液供給ライン5と、固液分離槽3から液体7を外部へ抜き出す液体抜出ライン8と、を具備する。   The first solid-liquid separation device 50A includes, for example, a solid-liquid separation tank 3 constituted by a double container having an inner container 1 and an outer container 2 that accommodates the inner container 1, and a solid-liquid suspension 12 inside. A solid-liquid suspension supply line 5 to be introduced into the container 1 and a liquid extraction line 8 for extracting the liquid 7 from the solid-liquid separation tank 3 to the outside are provided.

固液分離槽3の内部容器1は、液体7は通過するが固形分11は通過させないろ布を凹型状に形成したろ布部を有し、このろ布部の上端、すなわち、内部容器1の上端から固形分11および液体7が懸濁状態にある固液懸濁液12を溢流させない程度の高さが確保される。   The internal container 1 of the solid-liquid separation tank 3 has a filter cloth part formed in a concave shape with a filter cloth that allows liquid 7 to pass but not solid content 11, and has an upper end of the filter cloth part, that is, the inner container 1. The height of the solid content 11 and the liquid 7 in a suspended state from the upper end of the liquid is ensured so as not to overflow.

ここで、液体7とは、水、酸性溶液、アルカリ溶液を意味する。酸性溶液としては、例えば、シュウ酸溶液が挙げられる。アルカリ溶液としては、例えば、硫酸アンモニウム水溶液が挙げられる。   Here, the liquid 7 means water, an acidic solution, or an alkaline solution. Examples of the acidic solution include an oxalic acid solution. Examples of the alkaline solution include an aqueous ammonium sulfate solution.

また、固形分11とは、例えば、土壌や汚泥等の放射性物質が付着または吸収する可能性がある固体状の物質、並びに、その焼却灰および焼却飛灰を意味し、放射性物質で汚染されたものも含む。   Further, the solid content 11 means, for example, solid substances that may be attached or absorbed by radioactive substances such as soil and sludge, incineration ash and incineration fly ash, and are contaminated with radioactive substances. Including things.

ろ布は、プロセス条件の温度や液体への耐性、濡れ性が良好であることが望まれるため、第1の固液分離装置50Aでは、例えば、ポリプロピレンを材料とするろ布が使用される。また、ポリプロピレン以外にも、例えば、ポリエチレン、ポリエステル、ナイロンなどは、プロセス条件の温度や液体への耐性、濡れ性が良好であり、これらをポリプロピレンの代わりにろ布の材料として使用することができる。   Since the filter cloth is desired to have good process condition temperature, liquid resistance, and wettability, the first solid-liquid separator 50A uses, for example, a filter cloth made of polypropylene. In addition to polypropylene, for example, polyethylene, polyester, nylon and the like have good process condition temperature, liquid resistance, and wettability, and these can be used as a filter cloth material instead of polypropylene. .

ろ布の孔径としては、液体7は通過するが固形分11は通過しないような構造、例えば、固形分11の粒子径dがd1<d<d2であった場合、孔径がd1以下である網目状のケースが望まれる。   The pore diameter of the filter cloth is a structure in which the liquid 7 passes but the solid content 11 does not pass, for example, when the particle diameter d of the solid content 11 is d1 <d <d2, the mesh size is less than d1. A shaped case is desired.

ろ布の孔径が小さすぎると、固形分11のつまりや液体7の排出時間が長くなるため、ろ布の孔径dはd1よりも若干大きいd3とすることができる。ここで、d3は固形物の質量基準粒子径積算分布の下方側1/100における粒子径に等しいものとする。   If the pore diameter of the filter cloth is too small, the solid content 11 or the discharge time of the liquid 7 becomes long, so the pore diameter d of the filter cloth can be set to d3 slightly larger than d1. Here, d3 is assumed to be equal to the particle diameter on the lower side 1/100 of the mass-based particle diameter cumulative distribution of the solid matter.

固液分離槽3の底面には、内部容器1を通過して外部容器2内に溜まった液体7を外部へ抜き出す液体抜出ライン8が取り付けられている。また、液体抜出ライン8には、液体抜出ライン8を開閉する液体抜出用弁9が取り付けられている。   On the bottom surface of the solid-liquid separation tank 3, a liquid extraction line 8 for extracting the liquid 7 that has passed through the inner container 1 and accumulated in the outer container 2 is attached. Further, a liquid extraction valve 9 for opening and closing the liquid extraction line 8 is attached to the liquid extraction line 8.

固液懸濁液12から分離された液体7は、液体抜出ライン8を通って固液分離槽3の外部へ排出され、液体回収槽10内に回収される。   The liquid 7 separated from the solid-liquid suspension 12 is discharged to the outside of the solid-liquid separation tank 3 through the liquid extraction line 8 and is collected in the liquid recovery tank 10.

固液懸濁液貯槽4は、固液分離前の固液懸濁液12を貯留する槽である。固液懸濁液12は固液懸濁液供給装置6によって固液懸濁液貯槽4から固液懸濁液供給ライン5を通って固液分離槽3の内部容器1内に供給される。   The solid-liquid suspension storage tank 4 is a tank for storing the solid-liquid suspension 12 before solid-liquid separation. The solid-liquid suspension 12 is supplied from the solid-liquid suspension storage tank 4 through the solid-liquid suspension supply line 5 into the internal container 1 of the solid-liquid separation tank 3 by the solid-liquid suspension supply device 6.

なお、内部容器1および外部容器2の大きさや形状には特に制限はないが、内部容器1と外部容器2の隙間部分の容積が小さい方が望ましい。   The size and shape of the inner container 1 and the outer container 2 are not particularly limited, but it is desirable that the volume of the gap portion between the inner container 1 and the outer container 2 is small.

また、図1に示される内部容器1および外部容器2は、いずれも断面形状が円形状であるが、内部容器1を収容した状態で外部容器2を配置可能であれば、任意である。例えば、内部容器1や外部容器2の断面形状は多角形状に構成されても良い。また、内部容器1の断面が多角形状に、外部容器2の断面形状が円形状に構成されていても良い。   In addition, the inner container 1 and the outer container 2 shown in FIG. 1 are both circular in cross-sectional shape, but are arbitrary as long as the outer container 2 can be arranged in a state where the inner container 1 is accommodated. For example, the cross-sectional shapes of the inner container 1 and the outer container 2 may be configured in a polygonal shape. Moreover, the cross section of the inner container 1 may be configured in a polygonal shape, and the cross section of the outer container 2 may be configured in a circular shape.

さらに、図1に示される内部容器1および外部容器2は、上部が開放された開放系の構成となっているが、固形分11の回収が可能であれば非開放系の構成でも良い。例えば、開閉が可能な蓋(図示せず)をつけても良い。   Furthermore, although the inner container 1 and the outer container 2 shown in FIG. 1 have an open system structure with the upper part opened, a non-open system structure may be used as long as the solid content 11 can be recovered. For example, a lid (not shown) that can be opened and closed may be attached.

さらにまた、内部容器1は、必ずしも全体が液体7は通過するが固形分11は通過させないろ布で構成されている必要はなく、一部が金属で構成されていても良い。例えば、内側にろ布部を設置したかご状の構造物であって、当該構造物が液体の通過の抵抗にならないような貫通口が側面、底面を含む全面にあり、かつ十分な強度を有するもの(例えば金網状やパンチングメタル)であっても良い。   Furthermore, the entire inner container 1 does not necessarily need to be configured with a filter cloth that allows the liquid 7 to pass therethrough but does not allow the solid content 11 to pass therethrough, and a part thereof may be configured with metal. For example, a basket-like structure with a filter cloth part installed on the inside, and through-holes that prevent the structure from resisting the passage of liquid are on the entire surface including the side surface and the bottom surface, and have sufficient strength It may be a thing (for example, wire mesh or punching metal).

このように構成される第1の固液分離装置50Aは、固液懸濁液貯槽4から内部容器1内に導入された固液懸濁液を固液分離し、固形分11をほとんど含まない液体7を液体抜出ライン8から排出する、いわゆるバッチ式の固液分離装置になっている。   The first solid-liquid separation device 50A configured in this way solid-liquid separates the solid-liquid suspension introduced from the solid-liquid suspension storage tank 4 into the inner container 1, and contains almost no solid content 11. This is a so-called batch-type solid-liquid separator that discharges the liquid 7 from the liquid extraction line 8.

固形分11の回収は、内部容器1を外部容器2内から外へ取り出し、別途用意される固形分回収槽(図を省略)内で内部容器1を天地反転させて行う。このとき、水等の洗浄液により内部容器1を洗浄し、固形分11を回収しても良い。   The recovery of the solid content 11 is performed by taking the inner container 1 out of the outer container 2 and inverting the inner container 1 upside down in a separately prepared solid content recovery tank (not shown). At this time, the inner container 1 may be washed with a washing liquid such as water to collect the solid content 11.

なお、第1の固液分離装置50Aにおいて、固液分離槽3や固液懸濁液貯槽4を加熱する加熱装置13(13a,13b)が、適宜、追設されていても良い。固液分離槽3を加熱する固液分離槽用加熱装置13aは、固液分離槽3の外側および内側の少なくとも一方の側に取り付けられていれば良い。同様に、固液懸濁液貯槽4を加熱する固液懸濁液貯槽用加熱装置13bについても、固液懸濁液貯槽4の外側および内側の少なくとも一方の側に取り付けられていれば良い。   In the first solid-liquid separation device 50A, a heating device 13 (13a, 13b) for heating the solid-liquid separation tank 3 and the solid-liquid suspension storage tank 4 may be additionally provided as appropriate. The solid-liquid separation tank heating device 13 a that heats the solid-liquid separation tank 3 may be attached to at least one of the outer side and the inner side of the solid-liquid separation tank 3. Similarly, the solid-liquid suspension storage tank heating device 13b for heating the solid-liquid suspension storage tank 4 may be attached to at least one of the outside and the inside of the solid-liquid suspension storage tank 4.

また、第1の固液分離装置50Aにおいても、後述する第2の固液分離装置50Bのように、固液分離槽3の内部を撹拌する撹拌装置14(図2)を、固液分離槽3や固液懸濁液貯槽4に、適宜、追設しても良い。   Also in the first solid-liquid separation device 50A, as in the second solid-liquid separation device 50B described later, the stirring device 14 (FIG. 2) for stirring the inside of the solid-liquid separation tank 3 is replaced with the solid-liquid separation tank. 3 or solid-liquid suspension storage tank 4 may be additionally provided as appropriate.

<作用>
次に、第1の固液分離装置50Aの作用について説明する。
第1の固液分離装置50Aを用いて固液分離方法を実施するに当たり、まず、液体7は通過するが固形分11は通過させないろ布を凹型状に形成したろ布部を有する内部容器1を外部容器2内に配置(収容)しておく。この状態で、固液懸濁液供給装置6を稼働させる。すると、固液懸濁液貯槽4内に貯留される固液懸濁液12は固液懸濁液供給ライン5を通って固液分離槽3の内部容器1内に導入される。
<Action>
Next, the operation of the first solid-liquid separator 50A will be described.
In carrying out the solid-liquid separation method using the first solid-liquid separation device 50A, first, the inner container 1 having a filter cloth portion formed in a concave shape is a filter cloth through which the liquid 7 passes but the solid content 11 does not pass. Is placed (accommodated) in the outer container 2. In this state, the solid-liquid suspension supply device 6 is operated. Then, the solid-liquid suspension 12 stored in the solid-liquid suspension storage tank 4 is introduced into the internal container 1 of the solid-liquid separation tank 3 through the solid-liquid suspension supply line 5.

この時、必要により固液分離槽用加熱装置13aや固液懸濁液貯槽用加熱装置13bを稼働させて固液懸濁液12の温度を調整する。温度調整によって、固液懸濁液12の粘性係数を小さくすれば、固形分11の沈降時間を短くすることができる。   At this time, if necessary, the temperature of the solid-liquid suspension 12 is adjusted by operating the solid-liquid separation tank heating device 13a and the solid-liquid suspension storage tank heating device 13b. If the viscosity coefficient of the solid-liquid suspension 12 is reduced by adjusting the temperature, the settling time of the solid content 11 can be shortened.

放射性物質で汚染された固形分11と液体7とを懸濁させることにより、固液懸濁液12から分離回収した液体7には放射性物質が含まれる。液体抜出ライン8から排出される液体7は、固形分11をほとんど含まない清浄な液体となる。   By suspending the solid content 11 and the liquid 7 contaminated with the radioactive substance, the liquid 7 separated and recovered from the solid-liquid suspension 12 contains the radioactive substance. The liquid 7 discharged from the liquid extraction line 8 is a clean liquid containing almost no solid content 11.

<効果>
第1の固液分離装置50Aおよび第1の固液分離装置50Aを用いた固液分離方法によれば、固液懸濁液12中の液体7を液体抜出ライン8から排出し、固形分11を固形分回収槽で回収されるため、液体7をほとんど含まない固形分11を回収することができる。
<Effect>
According to the solid-liquid separation method using the first solid-liquid separation device 50A and the first solid-liquid separation device 50A, the liquid 7 in the solid-liquid suspension 12 is discharged from the liquid extraction line 8, and the solid content Since 11 is recovered in the solid content recovery tank, the solid content 11 containing almost no liquid 7 can be recovered.

また、第1の固液分離装置50Aおよび第1の固液分離装置50Aを用いた固液分離方法によれば、内部容器1がろ布を通して内部容器1の底面のみならず側面からも液体7を排出可能に構成されるため、短時間で液体7をほとんど含まない固形分11を回収することができる。   Further, according to the solid-liquid separation method using the first solid-liquid separation device 50A and the first solid-liquid separation device 50A, the inner container 1 passes through the filter cloth, and the liquid 7 is not only from the bottom surface but also from the side surface. Therefore, the solid content 11 containing almost no liquid 7 can be recovered in a short time.

[第2の実施形態]
<構成>
図2は、本発明の第2の実施形態に係る固液分離装置の一例である第2の固液分離装置50Bの概略図である。
[Second Embodiment]
<Configuration>
FIG. 2 is a schematic view of a second solid-liquid separation device 50B which is an example of the solid-liquid separation device according to the second embodiment of the present invention.

第2の固液分離装置50Bは、第1の固液分離装置50Aに対して、固液分離槽3の内部容器1の内部を攪拌する攪拌装置14と、凝集剤15を溜めておく凝集剤貯槽16と、凝集剤供給ライン17と、凝集剤供給装置18と、をさらに具備する点で相違するが、その他の点は第1の固液分離装置50Aと実質的に相違しない。そこで、第2の実施形態では、第1の固液分離装置50Aに対する相違点を中心に説明し、第1の固液分離装置50Aの構成要素と相違しない構成要素については、同じ符号を付して説明を省略または簡略する。   The second solid-liquid separation device 50B is a stirrer 14 that stirs the inside of the inner container 1 of the solid-liquid separation tank 3 and a flocculant that stores the flocculant 15 with respect to the first solid-liquid separation device 50A. The difference is that the storage tank 16, the flocculant supply line 17, and the flocculant supply device 18 are further provided, but the other points are not substantially different from the first solid-liquid separation device 50 </ b> A. Therefore, in the second embodiment, the difference from the first solid-liquid separation device 50A will be mainly described, and the same reference numerals are given to the components that are not different from the components of the first solid-liquid separation device 50A. The description will be omitted or simplified.

攪拌装置14は、槽内の内容物を攪拌する機能を有する装置である。第2の固液分離装置50Bでは、少なくとも、固液分離槽3の内部容器1に導入される内容物を攪拌する攪拌装置14が設けられる。なお、図2には示されていないが、第2の固液分離装置50Bでは、固液懸濁液貯槽4に貯留される固液懸濁液12を攪拌する攪拌装置14を追設しても良い。   The stirring device 14 is a device having a function of stirring the contents in the tank. In the second solid-liquid separation device 50B, at least a stirring device 14 that stirs the contents introduced into the inner container 1 of the solid-liquid separation tank 3 is provided. Although not shown in FIG. 2, in the second solid-liquid separator 50 </ b> B, a stirring device 14 that stirs the solid-liquid suspension 12 stored in the solid-liquid suspension storage tank 4 is additionally provided. Also good.

凝集剤15は、内部容器1の側面、すなわち、ろ布の表面に固形分11のケーク層が形成されるのを防止するために固液懸濁液12に添加される。凝集剤15は、凝集剤供給装置18によって凝集剤貯槽16から凝集剤供給ライン17を通って内部容器1内に供給される。   The flocculant 15 is added to the solid-liquid suspension 12 to prevent the formation of a cake layer having a solid content 11 on the side surface of the inner container 1, that is, the surface of the filter cloth. The flocculant 15 is supplied from the flocculant storage tank 16 through the flocculant supply line 17 into the inner container 1 by the flocculant supply device 18.

このように構成される第2の固液分離装置50Bは、固液懸濁液供給装置4で内部容器1内に導入された固液懸濁液と凝集剤供給装置18で内部容器1内に導入された凝集剤15とを攪拌装置14で攪拌した後、攪拌装置14を停止して固形分11を沈降分離させ、固形分11をほとんど含まない液体7を液体抜出ライン8で排出する、いわゆるバッチ式の固液分離装置になっている。   The second solid-liquid separation device 50B configured as described above has the solid-liquid suspension introduced into the inner container 1 by the solid-liquid suspension supply device 4 and the inner container 1 by the flocculant supply device 18. After stirring the introduced flocculant 15 with the stirring device 14, the stirring device 14 is stopped, the solid content 11 is settled and separated, and the liquid 7 containing almost no solid content 11 is discharged through the liquid extraction line 8. This is a so-called batch type solid-liquid separator.

<作用>
次に、第2の固液分離装置50Bの作用について説明する。
第2の固液分離装置50Bを用いて固液分離方法を実施するに当たり、まず、液体7は通過するが固形分11は通過させないろ布を凹型状に形成したろ布部を有する内部容器1を外部容器2内に配置(収容)しておく。この状態で、固液懸濁液供給装置6を稼働させて、固液懸濁液貯槽4内に貯留される固液懸濁液12を固液分離槽3の内部容器1内に導入する。
<Action>
Next, the operation of the second solid-liquid separator 50B will be described.
In carrying out the solid-liquid separation method using the second solid-liquid separation device 50B, first, the inner container 1 having a filter cloth portion formed in a concave shape is a filter cloth through which the liquid 7 passes but the solid content 11 does not pass. Is placed (accommodated) in the outer container 2. In this state, the solid-liquid suspension supply device 6 is operated to introduce the solid-liquid suspension 12 stored in the solid-liquid suspension storage tank 4 into the internal container 1 of the solid-liquid separation tank 3.

続いて、凝集剤15を凝集剤貯槽16に入れておき、凝集剤供給装置18を稼働させる。すると、凝集剤貯槽16に貯留される凝集剤15は凝集剤供給ライン17を通って固液分離槽3の内部容器1内に導入される。   Subsequently, the flocculant 15 is placed in the flocculant storage tank 16 and the flocculant supply device 18 is operated. Then, the coagulant 15 stored in the coagulant storage tank 16 is introduced into the inner container 1 of the solid-liquid separation tank 3 through the coagulant supply line 17.

続いて、攪拌装置14で、固液懸濁液12と凝集剤15とを攪拌した後、攪拌を停止して沈降分離させる。この時、第1の固液分離装置50Aと同様に、必要に応じて固液分離槽用加熱装置13aや固液懸濁液貯槽用加熱装置13bを稼働させて固液懸濁液12の温度を調整する。   Subsequently, after the solid-liquid suspension 12 and the flocculant 15 are stirred by the stirring device 14, the stirring is stopped and the precipitate is separated. At this time, similarly to the first solid-liquid separation device 50A, the solid-liquid suspension 12 heating device 13a and the solid-liquid suspension storage heating device 13b are operated as necessary to change the temperature of the solid-liquid suspension 12. Adjust.

放射性物質で汚染された固形分11と液体7とを懸濁させることにより、固液懸濁液12から分離回収した液体7には放射性物質が含まれる。液体抜出ライン8から排出される液体7は、固形分11をほとんど含まない清浄な液体となる。   By suspending the solid content 11 and the liquid 7 contaminated with the radioactive substance, the liquid 7 separated and recovered from the solid-liquid suspension 12 contains the radioactive substance. The liquid 7 discharged from the liquid extraction line 8 is a clean liquid containing almost no solid content 11.

<効果>
第2の固液分離装置50Bおよび第2の固液分離装置50Bを用いた固液分離方法によれば、第1の固液分離装置50Aと同様の効果を奏するのに加えて、さらに、内部容器1の側面に固形分11のケーク層が形成されるのを防止するため、ろ布を通り抜ける(ろ過する)のに要する時間をより短縮できる。すなわち、第2の固液分離装置50Bおよび第2の固液分離装置50Bを用いた固液分離方法によれば、より短時間で液体7をほとんど含まない固形分11を回収することができる。
<Effect>
According to the solid-liquid separation method using the second solid-liquid separation device 50B and the second solid-liquid separation device 50B, in addition to achieving the same effect as the first solid-liquid separation device 50A, In order to prevent the cake layer having the solid content 11 from being formed on the side surface of the container 1, the time required to pass through (filter) the filter cloth can be further shortened. That is, according to the solid-liquid separation method using the second solid-liquid separation device 50B and the second solid-liquid separation device 50B, the solid content 11 containing almost no liquid 7 can be recovered in a shorter time.

[第3の実施形態]
<構成>
図3は、本発明の第3の実施形態に係る固液分離装置の一例である第3の固液分離装置50Cの概略図である。
[Third embodiment]
<Configuration>
FIG. 3 is a schematic view of a third solid-liquid separator 50C which is an example of the solid-liquid separator according to the third embodiment of the present invention.

第3の固液分離装置50Cは、第1の固液分離装置50Aに対して、液体回収槽10内にある固形分11をわずかに含む液体7を回収する液体回収ライン19と、液体供給装置20と、フィルタ21と、清澄液22を抜き出す清澄液抜出ライン23と、清澄液回収槽24と、ろ過助剤25を溜めておくろ過助剤貯槽26と、ろ過助剤25をフィルタ21に供給するろ過助剤供給装置27と、ろ過助剤貯槽26とフィルタ21の間をろ過助剤25が通過するろ過助剤循環ライン28と、をさらに具備する点で相違する。   The third solid-liquid separation device 50C includes a liquid recovery line 19 that recovers the liquid 7 that slightly contains the solid content 11 in the liquid recovery tank 10 and the liquid supply device with respect to the first solid-liquid separation device 50A. 20, filter 21, clarified liquid extraction line 23 for extracting clarified liquid 22, clarified liquid recovery tank 24, filter aid storage tank 26 for storing filter aid 25, and filter aid 25 in filter 21. It is different in that it further includes a filter aid supply device 27 to be supplied, and a filter aid circulation line 28 through which the filter aid 25 passes between the filter aid storage tank 26 and the filter 21.

しかしながら、第3の固液分離装置50Cは、第1の固液分離装置50Aに対して上記相違点を有する以外は第1の固液分離装置50Aと実質的に相違しない。そこで、第3の実施形態では、第1の固液分離装置50Aに対する相違点を中心に説明し、第1の固液分離装置50Aの構成要素と相違しない構成要素については、同じ符号を付して説明を省略または簡略する。   However, the third solid-liquid separation device 50C is not substantially different from the first solid-liquid separation device 50A except that the third solid-liquid separation device 50C has the above-described differences from the first solid-liquid separation device 50A. Therefore, in the third embodiment, differences from the first solid-liquid separation device 50A will be mainly described, and the same reference numerals are given to components that are not different from the components of the first solid-liquid separation device 50A. The description will be omitted or simplified.

液体回収ライン19は、固液分離槽3から液体抜出ライン8を通って液体回収槽10内に回収された液体7をフィルタ21へ導く流路である。液体7は、液体供給装置20によって、液体回収槽10から液体回収ライン19を通ってフィルタ21へ送り出される。   The liquid recovery line 19 is a flow path that guides the liquid 7 recovered in the liquid recovery tank 10 from the solid-liquid separation tank 3 through the liquid extraction line 8 to the filter 21. The liquid 7 is sent out from the liquid recovery tank 10 through the liquid recovery line 19 to the filter 21 by the liquid supply device 20.

フィルタ21は、液体7をろ過してわずかに残る固形分11を除去する。フィルタ21を通液した後の液体7である清澄液22は、固液分離槽3で回収した液体7よりも固形分11を含まない清浄な液体となる。清澄液22は、フィルタ21から清澄液抜出ライン23に導かれて清澄液回収槽24内に回収される。   The filter 21 filters the liquid 7 to remove the remaining solid content 11. The clarified liquid 22 that is the liquid 7 after passing through the filter 21 becomes a clean liquid that does not contain the solid content 11 than the liquid 7 collected in the solid-liquid separation tank 3. The clarified liquid 22 is guided from the filter 21 to the clarified liquid extraction line 23 and collected in the clarified liquid collection tank 24.

ろ過助剤25は、フィルタ21で液体7をろ過する際にろ過性改善や、ろ材の目詰まり防止のために使用される。ろ過助剤25は、珪藻土などの無機物であることが好ましい。ろ過助剤貯槽26に貯留されるろ過助剤25は、ろ過助剤供給装置27によって、フィルタ21へ供給される。   The filter aid 25 is used for improving filterability and preventing clogging of the filter medium when the liquid 7 is filtered by the filter 21. The filter aid 25 is preferably an inorganic substance such as diatomaceous earth. The filter aid 25 stored in the filter aid storage tank 26 is supplied to the filter 21 by the filter aid supply device 27.

ろ過助剤循環ライン28は、ろ過助剤貯槽26とフィルタ21との間をろ過助剤25が循環する流路である。ろ過助剤貯槽26からフィルタ21に供給されたろ過助剤25のうちフィルタ21を通過したものは、ろ過助剤循環ライン28を通ってろ過助剤貯槽26に戻される。   The filter aid circulation line 28 is a flow path through which the filter aid 25 circulates between the filter aid storage tank 26 and the filter 21. Of the filter aid 25 supplied from the filter aid storage tank 26 to the filter 21, the filter aid 25 that has passed through the filter 21 is returned to the filter aid storage tank 26 through the filter aid circulation line 28.

このように構成される第3の固液分離装置50Cは、固液懸濁液供給装置4で内部容器1内に導入された固液懸濁液12を固液分離し、液体抜出ライン8で排出される固形分11をほとんど含まない液体7を、さらに、フィルタ21に通液することで清澄液22を回収する、いわゆるバッチ式の固液分離装置になっている。   The third solid-liquid separation device 50C configured as described above performs solid-liquid separation on the solid-liquid suspension 12 introduced into the inner container 1 by the solid-liquid suspension supply device 4, and the liquid extraction line 8 The so-called batch-type solid-liquid separation apparatus recovers the clarified liquid 22 by further passing the liquid 7 containing almost no solid content 11 discharged through the filter 21.

なお、第3の固液分離装置50Cは、攪拌装置14と、凝集剤貯槽16と、凝集剤供給ライン17と、凝集剤供給装置18と、をさらに具備する構成であっても良い。   Note that the third solid-liquid separation device 50C may further include a stirring device 14, a flocculant storage tank 16, a flocculant supply line 17, and a flocculant supply device 18.

<作用>
次に、第3の固液分離装置50Cの作用について説明する。
第3の固液分離装置50Cを用いて固液分離方法を実施するに当たり、まず、液体7は通過するが固形分11は通過させないろ布を凹型状に形成したろ布部を有する内部容器1を外部容器2内に配置(収容)しておく。この状態で、固液懸濁液供給装置6を稼働させて、固液懸濁液貯槽4内に貯留される固液懸濁液12を固液分離槽3の内部容器1内に導入する。
<Action>
Next, the operation of the third solid-liquid separator 50C will be described.
In carrying out the solid-liquid separation method using the third solid-liquid separation device 50C, first, the inner container 1 having a filter cloth portion in which a filter cloth that passes the liquid 7 but does not allow the solid content 11 to pass is formed in a concave shape. Is placed (accommodated) in the outer container 2. In this state, the solid-liquid suspension supply device 6 is operated to introduce the solid-liquid suspension 12 stored in the solid-liquid suspension storage tank 4 into the internal container 1 of the solid-liquid separation tank 3.

続いて、ろ過助剤貯槽26にろ過助剤25を入れた状態で、ろ過助剤供給装置27を稼働させ、ろ過助剤貯槽26に貯留されるろ過助剤25をフィルタ21内に供給し、プリコートさせる。   Subsequently, in a state where the filter aid 25 is put in the filter aid storage tank 26, the filter aid supply device 27 is operated, and the filter aid 25 stored in the filter aid storage tank 26 is supplied into the filter 21, Precoat.

プリコートが完了したら、液体供給装置20を稼動させて、液体回収槽10に回収される液体7をフィルタ21へ導く。液体7はフィルタ21で内部容器1のろ布を通過した細かい固形分11がろ過された後、清澄液22として清澄液回収槽24内に回収される。   When the pre-coating is completed, the liquid supply device 20 is operated, and the liquid 7 recovered in the liquid recovery tank 10 is guided to the filter 21. The liquid 7 is collected in the clarified liquid collection tank 24 as the clarified liquid 22 after the fine solid content 11 that has passed through the filter cloth of the inner container 1 is filtered by the filter 21.

なお、第3の固液分離装置50Cを使用した結果、フィルタ21に掛かる差圧が上昇してきたら、液体供給装置20やろ過助剤供給装置27などで水を供給し、逆洗を実施することで差圧を解消する。差圧解消のために使用される水として、清澄液22を使用しても良い。   If the differential pressure applied to the filter 21 increases as a result of using the third solid-liquid separation device 50C, water is supplied by the liquid supply device 20, the filter aid supply device 27, etc., and backwashing is performed. To eliminate the differential pressure. As the water used for eliminating the differential pressure, the clarified liquid 22 may be used.

<効果>
第3の固液分離装置50Cおよび第3の固液分離装置50Cを用いた固液分離方法によれば、第1の固液分離装置50Aと同様の効果を奏することに加えて、さらに、清澄液22は固形分11の含有量が固液分離槽3で回収される液体7よりも少ないため、液中に含まれる放射性物質を回収する吸着装置(図示せず)に通液した際に生じる差圧上昇をより小さく抑えることができる。
<Effect>
According to the solid-liquid separation method using the third solid-liquid separation device 50C and the third solid-liquid separation device 50C, in addition to the same effects as the first solid-liquid separation device 50A, the clarification is further performed. Since the liquid 22 has a lower solid content 11 than the liquid 7 recovered in the solid-liquid separation tank 3, the liquid 22 is generated when the liquid 22 is passed through an adsorption device (not shown) that recovers radioactive substances contained in the liquid. The increase in the differential pressure can be further reduced.

[第4の実施形態]
<構成>
図4は、本発明の第4の実施形態に係る固液分離装置の一例である第4の固液分離装置50Dの概略図である。
[Fourth Embodiment]
<Configuration>
FIG. 4 is a schematic view of a fourth solid-liquid separation device 50D which is an example of the solid-liquid separation device according to the fourth embodiment of the present invention.

第4の固液分離装置50Dは、第1の固液分離装置50Aに対して、固液分離槽3内にある固液懸濁液を回収する固液懸濁液回収ライン29と、固液懸濁液回収装置30と、フィルタプレス31と、ケーク32を抜き出すケーク抜出ライン33と、ケーク回収槽34と、フィルタプレス31によって分離された分離液を抜き出す分離液抜出ライン35と、をさらに具備する点で相違する。   The fourth solid-liquid separation device 50D includes a solid-liquid suspension recovery line 29 for recovering the solid-liquid suspension in the solid-liquid separation tank 3, and the solid-liquid separation with respect to the first solid-liquid separation device 50A. A suspension recovery device 30, a filter press 31, a cake extraction line 33 for extracting the cake 32, a cake recovery tank 34, and a separation liquid extraction line 35 for extracting the separation liquid separated by the filter press 31. Furthermore, it differs in the point which comprises.

しかしながら、第4の固液分離装置50Dは、第1の固液分離装置50Aに対して上記相違点を有する以外は第1の固液分離装置50Aと実質的に相違しない。そこで、第4の実施形態では、第1の固液分離装置50Aに対する相違点を中心に説明し、第1の固液分離装置50Aの構成要素と相違しない構成要素については、同じ符号を付して説明を省略または簡略する。   However, the fourth solid-liquid separation device 50D is not substantially different from the first solid-liquid separation device 50A except that the fourth solid-liquid separation device 50D has the above-described differences from the first solid-liquid separation device 50A. Therefore, in the fourth embodiment, the difference from the first solid-liquid separator 50A will be mainly described, and the same reference numerals are given to the constituent elements that are not different from the constituent elements of the first solid-liquid separator 50A. The description will be omitted or simplified.

固液懸濁液回収ライン29は、固液分離槽3内にある固液懸濁液12を固液分離槽3からフィルタプレス31へ導く流路である。固液懸濁液回収装置30によって、固液分離槽3内にある固液懸濁液12が固液懸濁液回収ライン29を通ってフィルタプレス31へ送られる。   The solid-liquid suspension recovery line 29 is a flow path that guides the solid-liquid suspension 12 in the solid-liquid separation tank 3 from the solid-liquid separation tank 3 to the filter press 31. The solid-liquid suspension recovery device 30 sends the solid-liquid suspension 12 in the solid-liquid separation tank 3 to the filter press 31 through the solid-liquid suspension recovery line 29.

フィルタプレス31は、固液懸濁液12からケーク32を分離して回収する。フィルタプレス31が分離したケーク32は、ケーク抜出ライン33を介してケーク回収槽34内に集められる。ケーク32は、固液分離槽3で回収した固形分11よりも水分が少ない清浄な固体となる。   The filter press 31 separates and collects the cake 32 from the solid-liquid suspension 12. The cake 32 separated by the filter press 31 is collected in a cake collection tank 34 via a cake extraction line 33. The cake 32 becomes a clean solid with less moisture than the solid content 11 collected in the solid-liquid separation tank 3.

分離液抜出ライン35は、フィルタプレス31で分離された分離液を抜き出して固液分離槽3内に戻す流路である。   The separation liquid extraction line 35 is a flow path for extracting the separation liquid separated by the filter press 31 and returning it to the solid-liquid separation tank 3.

このように構成される第4の固液分離装置50Dは、固液懸濁液供給装置4で内部容器1内に導入された固液懸濁液12を固液分離し、固形分11をほとんど含まない液体7の一部を液体抜出ライン8で排出した後、内部容器1内に残った固液懸濁液12をフィルタプレス31に供給し、分離液とケーク32を回収する、いわゆるバッチ式の固液分離装置になっている。   The fourth solid-liquid separation device 50D configured as described above performs solid-liquid separation on the solid-liquid suspension 12 introduced into the inner container 1 by the solid-liquid suspension supply device 4, and almost eliminates the solid content 11. A part of the liquid 7 not included is discharged through the liquid extraction line 8, and then the solid-liquid suspension 12 remaining in the inner container 1 is supplied to the filter press 31 to recover the separated liquid and the cake 32. This is a solid-liquid separator of the type.

なお、第4の固液分離装置50Dは、フィルタプレス31を具備すると説明したが、フィルタプレス31の代わりに遠心脱水機を具備しても良い。   Although the fourth solid-liquid separation device 50 </ b> D has been described as including the filter press 31, a centrifugal dehydrator may be included instead of the filter press 31.

また、第4の固液分離装置50Dは、攪拌装置14と、凝集剤貯槽16と、凝集剤供給ライン17と、凝集剤供給装置18と、をさらに具備する構成であっても良い。   Further, the fourth solid-liquid separation device 50D may further include a stirring device 14, a flocculant storage tank 16, a flocculant supply line 17, and a flocculant supply device 18.

さらに、第4の固液分離装置50Dは、液体回収ライン19と、液体供給装置20と、フィルタ21と、清澄液抜出ライン23と、清澄液回収槽24と、ろ過助剤貯槽26と、ろ過助剤供給装置27と、ろ過助剤循環ライン28と、をさらに具備する構成であっても良い。   Further, the fourth solid-liquid separation device 50D includes a liquid recovery line 19, a liquid supply device 20, a filter 21, a clarified liquid extraction line 23, a clarified liquid recovery tank 24, a filter aid storage tank 26, The structure which further comprises the filter aid supply apparatus 27 and the filter aid circulation line 28 may be sufficient.

<作用>
次に、第4の固液分離装置50Dの作用について説明する。
第4の固液分離装置50Dを用いて固液分離方法を実施するに当たり、まず、液体7は通過するが固形分11は通過させないろ布を凹型状に形成したろ布部を有する内部容器1を外部容器2内に配置(収容)しておく。この状態で、固液懸濁液供給装置6を稼働させて、固液懸濁液貯槽4内に貯留される固液懸濁液12を固液分離槽3の内部容器1内に導入する。
<Action>
Next, the operation of the fourth solid-liquid separator 50D will be described.
In carrying out the solid-liquid separation method using the fourth solid-liquid separation device 50D, first, the inner container 1 having a filter cloth part formed in a concave shape with a filter cloth that passes the liquid 7 but does not allow the solid content 11 to pass therethrough. Is placed (accommodated) in the outer container 2. In this state, the solid-liquid suspension supply device 6 is operated to introduce the solid-liquid suspension 12 stored in the solid-liquid suspension storage tank 4 into the internal container 1 of the solid-liquid separation tank 3.

続いて、固液分離槽3内にある固液懸濁液12が固液懸濁液回収装置30によって、固液懸濁液回収ライン29を通ってフィルタプレス31へ送られる。フィルタプレス31は、固液懸濁液12からケーク32を分離して回収し、ケーク32はケーク抜出ライン33を介してケーク回収槽34内に集められる。固液懸濁液12からケーク32を分離した後の分離液は分離液抜出ライン35を介して固液分離槽3内に戻される。   Subsequently, the solid-liquid suspension 12 in the solid-liquid separation tank 3 is sent to the filter press 31 through the solid-liquid suspension recovery line 29 by the solid-liquid suspension recovery device 30. The filter press 31 separates and collects the cake 32 from the solid-liquid suspension 12, and the cake 32 is collected in the cake collection tank 34 via the cake extraction line 33. The separated liquid after separating the cake 32 from the solid-liquid suspension 12 is returned to the solid-liquid separation tank 3 through the separated liquid extraction line 35.

<効果>
第4の固液分離装置50Dおよび第4の固液分離装置50Dを用いた固液分離方法によれば、第1の固液分離装置50Aと同様の効果を奏することに加えて、さらに、ケーク32を分離して回収することができる。ケーク32は、固液分離槽3で回収した固形分11よりも水分が少ない清浄な固体であるため、元の固形分11に放射性物質を含む場合、分離後の固形分中の放射能濃度をさらに低減することができる。
<Effect>
According to the solid-liquid separation method using the fourth solid-liquid separation device 50D and the fourth solid-liquid separation device 50D, in addition to the same effects as the first solid-liquid separation device 50A, the cake 32 can be separated and recovered. The cake 32 is a clean solid with less water than the solid content 11 collected in the solid-liquid separation tank 3, and therefore when the original solid content 11 contains a radioactive substance, the radioactivity concentration in the solid content after separation is reduced. Further reduction can be achieved.

以下に実施例を示す。なお、本発明は以下に示す実施例に限定されて解釈されるものではない。   Examples are shown below. In addition, this invention is limited to the Example shown below and is not interpreted.

(実施例1)
内径55mm、高さ250mmのビーカに底面のみをろ布、あるいは底面および側面を全てろ布で製作した容器を入れた。容器は内径40mm、高さ250mmとし、ろ布は通気性25cm3/cm2/sec at 124.5 Paのものを使用した。容器内に土壌5g、水250mLを入れて良く攪拌した後、内部容器を外部容器内から取り出し、排水が完了する時間を測定した。土壌の粒度分布割合を表1に、固液分離時間(排水完了時間)の測定結果を表2に示す。
Example 1
A beaker having an inner diameter of 55 mm and a height of 250 mm was filled with a filter cloth only on the bottom surface or a container made entirely of filter cloth on the bottom surface and side surfaces. The container had an inner diameter of 40 mm and a height of 250 mm, and a filter cloth having a permeability of 25 cm 3 / cm 2 / sec at 124.5 Pa was used. After putting 5 g of soil and 250 mL of water in the container and stirring well, the inner container was taken out from the outer container, and the time for completing drainage was measured. Table 1 shows the particle size distribution ratio of the soil, and Table 2 shows the measurement results of the solid-liquid separation time (drainage completion time).

Figure 2014071025
Figure 2014071025

Figure 2014071025
Figure 2014071025

表2に示されるように、底面および側面を全てろ布で作成した容器で固液分離を実施する場合(排水完了時間:80sec)、底面のみをろ布とした容器を使用した場合(排水完了時間:150sec)に比べて大幅に排出時間を減少できることがわかる。   As shown in Table 2, when solid-liquid separation is performed with a container whose bottom and sides are all made of filter cloth (drainage completion time: 80 sec), when a container with only the bottom of the filter cloth is used (drainage completed) It can be seen that the discharge time can be greatly reduced as compared to the time (150 sec).

なお、土壌と水の固液懸濁液について、固液懸濁液供給ラインと、液体抜出ラインと、内部容器内の固形分回収装置を具備する固液分離装置を用いて分離を実施しても、上記と同様の結果が得られる。   In addition, solid-liquid suspensions for soil and water are separated using a solid-liquid separation device equipped with a solid-liquid suspension supply line, a liquid extraction line, and a solid content recovery device in the internal container. However, the same result as above can be obtained.

また、内部容器が内側にろ布を設置したかご状である金網状の固液分離装置によって分離を実施しても、上記と同様の結果が得られる。   Moreover, even if it isolate | separates with the metal-mesh-like solid-liquid separation apparatus which is the shape of a cage | basket | cabinet which installed the filter cloth inside, the result similar to the above will be obtained.

(実施例2)
内径55mm、高さ250mmのビーカに底面および側面を全てろ布で製作した容器を入れた。容器は内径40mm、高さ250mmとし、ろ布は通気性25cm3/cm2/sec at 124.5 Paのものを使用した。容器内に土壌5g、水250mLを入れて良く攪拌した後、珪藻土を主成分とし有機物を含まない凝集剤Aを25mg添加して、さらに攪拌した後、30秒静置した。内部容器を外部容器内から取り出し、排水が完了する時間を測定した。測定結果を表3に示す。
(Example 2)
A beaker having an inner diameter of 55 mm and a height of 250 mm was charged with a container whose bottom and side surfaces were all made of filter cloth. The container had an inner diameter of 40 mm and a height of 250 mm, and a filter cloth having a permeability of 25 cm 3 / cm 2 / sec at 124.5 Pa was used. After 5 g of soil and 250 mL of water were placed in the container and stirred well, 25 mg of flocculant A containing diatomaceous earth as a main component and containing no organic matter was added, and the mixture was further stirred and allowed to stand for 30 seconds. The inner container was taken out from the outer container, and the time for completing drainage was measured. Table 3 shows the measurement results.

Figure 2014071025
Figure 2014071025

表3に示されるように、凝集剤を添加しない場合(排水完了時間:80sec)と比較して、凝集剤を添加した場合(排水完了時間:静置時間を含めて40sec)には、大幅に排出時間を減少できる。   As shown in Table 3, when the flocculant is added (drainage completion time: 40 seconds including the standing time) compared to the case where no flocculant is added (drainage completion time: 80 sec), The discharge time can be reduced.

また、上澄み液の一部または全部を排出機で排出することでさらに大幅に排出時間を減少できる。   Further, the discharge time can be further reduced by discharging a part or all of the supernatant liquid with the discharger.

さらに、土壌と水の固液懸濁液について、固液懸濁液供給ラインと、液体抜出ラインと、内部容器内の固形分回収装置と、固液分離槽に凝集剤供給装置と内部容器内の固液懸濁液を混合する撹拌装置とを具備する固液分離装置によって分離を実施しても、上記と同様の結果が得られる。   Furthermore, for solid and liquid suspensions of soil and water, solid-liquid suspension supply line, liquid extraction line, solid content recovery device in the inner container, coagulant supply device and inner container in the solid-liquid separation tank Even if the separation is carried out by a solid-liquid separation device having a stirring device for mixing the solid-liquid suspension, the same result as above can be obtained.

さらにまた、内部容器が内側にろ布を設置したかご状である金網状の固液分離装置によって分離を実施しても上記と同様の結果が得られる。   Furthermore, the same result as described above can be obtained even when the separation is performed by a wire net-like solid-liquid separation device in which the inner container has a basket-like shape with a filter cloth installed inside.

(実施例3)
土壌10g、80℃の0.5Mシュウ酸200mL、シラスもしくは珪藻土を主成分とし有機物を含まない凝集剤を50〜200mg/L添加して混合し、メスシリンダーに入れて30秒静置した後、上澄み液の濃度を測定して、固形分除去率(%)(=(1 − 上澄み濃度/初期濃度)×100)を評価した。測定結果を表4に示す。
(Example 3)
10 g of soil, 200 mL of 0.5 M oxalic acid at 80 ° C., 50 to 200 mg / L of a flocculant containing shirasu or diatomaceous earth as a main component and not containing organic matter, mixed, placed in a graduated cylinder, allowed to stand for 30 seconds, and then supernatant The concentration of the liquid was measured to evaluate the solid content removal rate (%) (= (1−supernatant concentration / initial concentration) × 100). Table 4 shows the measurement results.

Figure 2014071025
Figure 2014071025

表4に示すように、凝集剤を添加することで大幅に固形分除去率が減少する。従ってろ布で作成した容器により固液分離を行った場合、シラスもしくは珪藻土を主成分とし有機物を含まない凝集剤を添加することにより排出時間を減少できる。   As shown in Table 4, the solid content removal rate is significantly reduced by adding the flocculant. Therefore, when solid-liquid separation is performed using a container made of filter cloth, the discharge time can be reduced by adding a flocculant containing shirasu or diatomaceous earth as a main component and not containing organic substances.

また、凝集剤を固液懸濁液1Lに対して50〜200mg添加することで排出時間を減少できる。   Moreover, discharge time can be reduced by adding 50-200 mg of flocculants with respect to 1 L of solid-liquid suspensions.

液体は、温度が高いほど粘性係数が小さくなる。そのため固形物の沈降速度が高くなる。従って温度が高いほど固液分離時間が速くなる。水の沸点に近い80〜95℃程度が好ましい。   The viscosity coefficient of the liquid decreases as the temperature increases. Therefore, the sedimentation rate of the solid matter is increased. Therefore, the higher the temperature, the faster the solid-liquid separation time. About 80-95 degreeC close | similar to the boiling point of water is preferable.

さらに、土壌と水の固液懸濁液について、固液懸濁液供給ラインと、液体抜出ラインと、内部容器内の固形分回収装置と、固液分離槽に凝集剤供給装置と内部容器内の固液懸濁液を混合する撹拌装置とを具備する固液分離装置によって分離を実施しても、上記と同様の結果が得られる。   Furthermore, for solid and liquid suspensions of soil and water, solid-liquid suspension supply line, liquid extraction line, solid content recovery device in the inner container, coagulant supply device and inner container in the solid-liquid separation tank Even if the separation is carried out by a solid-liquid separation device having a stirring device for mixing the solid-liquid suspension, the same result as above can be obtained.

(実施例4)
最高粒子径が20μm以下の土壌を含む土壌懸濁液をスプリングフィルタに1分当たり1リットル(=1L/min)で通水したときの固形分除去率を測定した。固形分除去率の測定は、珪藻土でのプリコート無し、珪藻土でのプリコート有り、および逆洗後の珪藻土でのプリコート(再プリコート)有りの場合で行った。測定結果を表5に示す。なお、プリコートには、珪藻土を10g使用した。また、逆洗後の再プリコートには、逆洗水に含まれる固形物をろ過助剤とした。
Example 4
The solid content removal rate was measured when a soil suspension containing soil having a maximum particle size of 20 μm or less was passed through a spring filter at 1 liter per minute (= 1 L / min). The measurement of the solid content removal rate was performed when there was no pre-coating with diatomaceous earth, with pre-coating with diatomaceous earth, and with pre-coating (re-pre-coating) with diatomaceous earth after backwashing. Table 5 shows the measurement results. In addition, 10g of diatomaceous earth was used for the precoat. Moreover, the solid substance contained in backwash water was used for the re-precoat after backwashing as a filter aid.

Figure 2014071025
Figure 2014071025

表5に示されるように、珪藻土によるプリコートがなくても約40%の土壌を除去できる。しかし、珪藻土をプリコートした場合、さらに除去率が上昇し、99%の固形分を除去することができる。   As shown in Table 5, about 40% of the soil can be removed without a diatomaceous earth precoat. However, when diatomaceous earth is precoated, the removal rate is further increased, and 99% of solid content can be removed.

表5に示されるように、差圧が生じたことを想定し、逆洗後、逆洗水に含まれる土壌および珪藻土をプリコートしてから、固形分除去を実施すると、97%の固形分を除去することができる。   As shown in Table 5, assuming that a differential pressure has occurred, pre-coating the soil and diatomaceous earth contained in the backwash water after backwashing, and then removing the solid content, 97% solids Can be removed.

固液分離槽の液体抜出ラインに逆洗再生式のフィルタを設置することで、上記と同様の結果が得られる。   A result similar to the above can be obtained by installing a backwash regenerative filter in the liquid extraction line of the solid-liquid separation tank.

(実施例5)
土壌5g、水100mLを孔径0.45μmのミリポアフィルタをセットした加圧ホルダに入れて加圧ろ過を実施した。排水が止まるまでに回収できた水量と圧力の関係を表6に示す。
(Example 5)
5 g of soil and 100 mL of water were put into a pressure holder in which a Millipore filter having a pore diameter of 0.45 μm was set, and pressure filtration was performed. Table 6 shows the relationship between the amount of water recovered until the drainage stops and the pressure.

Figure 2014071025
Figure 2014071025

表6に示されるように、圧力を掛けるほど土壌に残る水量が減ることがわかる。   As shown in Table 6, it can be seen that the amount of water remaining in the soil decreases as the pressure is applied.

また、固液分離槽の内部容器内の固形分回収装置としてフィルタプレスを具備することで上記と同様の結果が得られる。   Moreover, the result similar to the above is obtained by providing a filter press as a solid content recovery device in the inner container of the solid-liquid separation tank.

(実施例6)
内径55mm、高さ250mmのビーカに底面および側面を全てろ布で製作した容器を入れた。容器は内径40mm、高さ250mmとし、ろ布は通気性25cm3/cm2/sec、50cm3/cm2/sec、120cm3/cm2/secのものを使用した(いずれもat 124.5 Pa)。容器内に土壌5g、水250mlを入れて良く攪拌した後、内部容器を外部容器内から取り出し、排水が完了する時間を測定した。排水完了時間へのろ布通気性の影響を表7に示す。
(Example 6)
A beaker having an inner diameter of 55 mm and a height of 250 mm was charged with a container whose bottom and side surfaces were all made of filter cloth. The container had an inner diameter of 40 mm and a height of 250 mm, and a filter cloth having a breathability of 25 cm 3 / cm 2 / sec, 50 cm 3 / cm 2 / sec, 120 cm 3 / cm 2 / sec (all at 124.5 Pa) was used. . After putting 5 g of soil and 250 ml of water in the container and stirring well, the inner container was taken out from the outer container, and the time for completing drainage was measured. Table 7 shows the effect of filter cloth breathability on drainage completion time.

Figure 2014071025
Figure 2014071025

表7に示されるように、ろ布の通気性が良い(数値が大きい)ほど排水完了時間は短くなることがわかる。   As shown in Table 7, it can be seen that the better the breathability of the filter cloth (the larger the value), the shorter the drainage completion time.

固形分は底面からの漏洩量が多いため、細孔が細かいろ布を側面、細孔が粗いろ布を底面とした内部容器としても固液分離が可能である。   Since the solid content has a large amount of leakage from the bottom surface, solid-liquid separation is possible even as an internal container using a filter cloth with fine pores as a side surface and a filter cloth with coarse pores as a bottom surface.

固形分は底面からの漏洩量が多いため、底面に貫通穴が形成されない非貫通部を設けた内部容器(底面に孔を設けない構成の内部容器)としても固液分離が可能である。   Since the solid content has a large amount of leakage from the bottom surface, solid-liquid separation is possible even as an internal container provided with a non-penetrating portion in which no through hole is formed on the bottom surface (an internal container having a structure in which no hole is formed on the bottom surface).

土壌は、例えば表1に示すような粒度分布がある。そこで、下方側質量基準積算量が目標とする固形分除去率に等しくなる粒子経よりもろ布の孔径を小さくすると良い。例えば固形分除去率99%を目標とする場合、固形物の質量基準粒子径積算分布の下方側1/100における粒子径よりもろ布の孔径を小さくする。   The soil has a particle size distribution as shown in Table 1, for example. Therefore, it is preferable to make the pore diameter of the filter cloth smaller than the particle diameter at which the lower mass reference integrated amount becomes equal to the target solid content removal rate. For example, when a solid content removal rate of 99% is targeted, the pore size of the filter cloth is made smaller than the particle size on the lower side 1/100 of the mass-based particle size cumulative distribution of the solid matter.

(実施例7)
ろ布を80℃、0.5Mシュウ酸に150時間浸漬した後、当該ろ布を加圧ホルダにセットし、水100mLを入れ、90mL排出されるまでの時間を測定した。結果を表8に示す。
(Example 7)
After immersing the filter cloth in 0.5 M oxalic acid at 80 ° C. for 150 hours, the filter cloth was set in a pressure holder, 100 mL of water was added, and the time until 90 mL was discharged was measured. The results are shown in Table 8.

Figure 2014071025
Figure 2014071025

表8に示されるように、通気性が高いろ布ではポリエチレン製でもシュウ酸浸漬の影響を受けないが、通気性が低いと排水完了時間が増加する。一方、ポリエステル製はシュウ酸浸漬の影響を受けない。以上のことからポリエチレン製でも良いが、ポリエステル製のろ布が好ましい。   As shown in Table 8, the filter cloth having high air permeability is not affected by immersion in oxalic acid even if it is made of polyethylene, but if the air permeability is low, drainage completion time increases. On the other hand, polyester is not affected by oxalic acid immersion. From the above, polyethylene may be used, but a polyester filter cloth is preferred.

以上、第1〜4の固液分離装置50A〜50Dおよび第1〜4の固液分離装置50A〜50Dを用いた固液分離方法によれば、固形分濃度、固形分密度、固形分粒子径によらず、固液分離時間を大幅に短縮できる。また、固形分を内部容器ごと回収できるため、固液分離槽からの固形分回収が容易かつ短時間で実施できる。   As described above, according to the solid-liquid separation method using the first to fourth solid-liquid separation devices 50A to 50D and the first to fourth solid-liquid separation devices 50A to 50D, the solid content concentration, the solid content density, the solid content particle diameter Regardless, the solid-liquid separation time can be greatly shortened. Moreover, since solid content can be collect | recovered with an internal container, solid content recovery from a solid-liquid separation tank can be implemented easily and in a short time.

なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, additions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…内部容器、2…外部容器、3…固液分離槽、4…固液懸濁液貯槽、5…固液懸濁液供給ライン、6…固液懸濁液供給装置、7…液体、8…液体抜出ライン、9…液体抜出用弁、10…液体回収槽、11…固形分、12…固液懸濁液、13…加熱装置、13a…固液分離槽用加熱装置、13b…固液懸濁液貯槽用加熱装置、14…攪拌装置、15…凝集剤、16…凝集剤貯槽、17…凝集剤供給ライン、18…凝集剤供給装置、19…液体回収ライン、20…液体供給装置、21…フィルタ、22…清澄液、23…清澄液抜出ライン、24…清澄液回収槽、25…ろ過助剤、26…ろ過助剤貯槽、27…ろ過助剤供給装置、28…ろ過助剤循環ライン、29…固液懸濁液回収ライン、30…固液懸濁液回収装置、31…フィルタプレス、32…ケーク、33…ケーク抜出ライン、34…ケーク回収槽、35…分離液抜出ライン、50A…第1の固液分離装置、50B…第2の固液分離装置、50C…第3の固液分離装置、50D…第4の固液分離装置。   DESCRIPTION OF SYMBOLS 1 ... Internal container, 2 ... External container, 3 ... Solid-liquid separation tank, 4 ... Solid-liquid suspension storage tank, 5 ... Solid-liquid suspension supply line, 6 ... Solid-liquid suspension supply apparatus, 7 ... Liquid, DESCRIPTION OF SYMBOLS 8 ... Liquid extraction line, 9 ... Valve for liquid extraction, 10 ... Liquid recovery tank, 11 ... Solid content, 12 ... Solid-liquid suspension, 13 ... Heating device, 13a ... Heating device for solid-liquid separation tank, 13b ... heating device for solid-liquid suspension storage tank, 14 ... stirring apparatus, 15 ... flocculant, 16 ... flocculant storage tank, 17 ... flocculant supply line, 18 ... flocculant supply apparatus, 19 ... liquid recovery line, 20 ... liquid Supply device, 21 ... filter, 22 ... clarified liquid, 23 ... clarified liquid extraction line, 24 ... clarified liquid recovery tank, 25 ... filter aid, 26 ... filter aid storage tank, 27 ... filter aid supply device, 28 ... Filtration aid circulation line, 29 ... solid-liquid suspension recovery line, 30 ... solid-liquid suspension recovery device, 31 ... filter press, 3 ... Cake, 33 ... Cake extraction line, 34 ... Cake recovery tank, 35 ... Separation liquid extraction line, 50A ... First solid-liquid separation device, 50B ... Second solid-liquid separation device, 50C ... Third solid Liquid separation device, 50D: Fourth solid-liquid separation device.

Claims (21)

液体は通過するが固形分は通過しないろ布で作られており上端から内容物が溢流しない高さを持つ内部容器と、この内部容器を収容する外部容器とを有する固液分離槽の前記内部容器に固液懸濁液を導入し、
前記固液分離槽内で固液懸濁液を放置して固形分と液体とに固液分離した後、前記液体を抜き出す際に、前記液体の上澄み液を前記内部容器の側面のろ布によってろ過させて前記内部容器から排出することを特徴とする固液分離方法。
The solid-liquid separation tank has an inner container that is made of a filter cloth that allows liquid to pass but does not allow solids to pass, and has a height that prevents the contents from overflowing from the upper end, and an outer container that accommodates the inner container. Introduce a solid-liquid suspension into the inner container,
After leaving the solid-liquid suspension in the solid-liquid separation tank to separate into solid and liquid, the liquid supernatant is removed by a filter cloth on the side surface of the inner container. A solid-liquid separation method comprising filtering and discharging from the inner container.
前記内部容器に前記固液懸濁液を導入した後、前記固液懸濁液に懸濁される固形分の沈降を促す凝集剤を前記内部容器内の前記固液懸濁液に添加することを特徴とする請求項1記載の固液分離方法。 After the solid-liquid suspension is introduced into the inner container, a flocculant that promotes sedimentation of the solid content suspended in the solid-liquid suspension is added to the solid-liquid suspension in the inner container. The solid-liquid separation method according to claim 1. 前記凝集剤は、シラスまたは珪藻土を主成分とする無機系凝集剤であることを特徴とする請求項2記載の固液分離方法。 The solid-liquid separation method according to claim 2, wherein the flocculant is an inorganic flocculant mainly composed of shirasu or diatomaceous earth. 前記凝集剤の添加量は、前記固液懸濁液1Lに対して50〜200mgであることを特徴とする請求項2または3記載の固液分離方法。 The solid-liquid separation method according to claim 2 or 3, wherein the addition amount of the flocculant is 50 to 200 mg with respect to 1 L of the solid-liquid suspension. 前記固液懸濁液の温度を80〜95℃の間に調整することを特徴とする請求項4記載の固液分離方法。 The solid-liquid separation method according to claim 4, wherein the temperature of the solid-liquid suspension is adjusted to 80 to 95 ° C. 前記固液分離槽内で固液懸濁液を放置して固形分と液体とに固液分離した後、前記固液分離槽から抜き出される前記液体に含まれる残留固形分を、前記固液分離槽の後段に設けたフィルタで前記液体の液体成分と前記残留固形分とを分離することを特徴とする請求項1ないし5の何れか1項に記載の固液分離方法。 The solid-liquid suspension is allowed to stand in the solid-liquid separation tank, and after solid-liquid separation into solid and liquid, the residual solid contained in the liquid extracted from the solid-liquid separation tank is converted into the solid-liquid separation. 6. The solid-liquid separation method according to claim 1, wherein the liquid component of the liquid and the residual solid content are separated by a filter provided in a subsequent stage of the separation tank. 前記フィルタを用いて前記液体を液体成分と前記残留固形分とを分離する際に、前記フィルタに前記残留固形分が蓄積して流動抵抗が増加した場合に、前記フィルタを通過させた処理液および清浄な水の何れか一方を洗浄液として逆流させて、前記フィルタを逆洗して再生することを特徴とする請求項6記載の固液分離方法。 When the liquid is separated from the liquid component and the residual solid content using the filter, when the residual solid content is accumulated in the filter and the flow resistance is increased, the processing liquid passed through the filter and The solid-liquid separation method according to claim 6, wherein any one of clean water is made to flow backward as a washing liquid, and the filter is backwashed and regenerated. 前記固液分離槽の後段に設けたフィルタは、ろ過助剤をプリコートする形式のフィルタであることを特徴とする請求項7記載の固液分離方法。 The solid-liquid separation method according to claim 7, wherein the filter provided in the subsequent stage of the solid-liquid separation tank is a filter of a type in which a filter aid is precoated. 前記フィルタを逆洗して再生した後、前記フィルタの逆洗液に含まれる固形分をろ過助剤として再度プリコートする運用を行い、再度プリコートした後に前記フィルタの流動抵抗が増加していた場合、前記逆洗液を系統外に分離することを特徴とする請求項8記載の固液分離方法。 After re-washing and regenerating the filter, performing the operation of pre-coating again the solid content contained in the back-wash solution of the filter as a filter aid, and if the flow resistance of the filter has increased after pre-coating, The solid-liquid separation method according to claim 8, wherein the backwash liquid is separated outside the system. 前記固液分離槽の内部容器内に残った固形分と、前記固液分離槽の後段にフィルタが設けられている場合には当該フィルタを通過させた処理液および清浄な水の何れか一方を洗浄液として逆流させて、前記フィルタを逆洗して再生した後の前記フィルタの逆洗液と、を脱水して脱水固形物を得ることを特徴とする請求項1ないし9の何れか1項に記載の固液分離方法。 Solid matter remaining in the internal container of the solid-liquid separation tank and, if a filter is provided in the subsequent stage of the solid-liquid separation tank, either one of the treatment liquid passed through the filter or clean water The dehydrated solid material is obtained by dehydrating the backwash liquid of the filter after backwashing and regenerating the filter by washing it back as a washing liquid. The solid-liquid separation method described. 前記液体の上澄み液の少なくとも一部を排出機で排出することを特徴とする請求項1ないし10の何れか1項に記載の固液分離方法。 The solid-liquid separation method according to any one of claims 1 to 10, wherein at least a part of the supernatant of the liquid is discharged by a discharger. 液体は通過するが固形分は通過しないろ布で作られる凹型状のろ布部を有し、このろ布部の上端から内容物が溢流しない高さを持つ内部容器と、この内部容器を収容する外部容器とを有する固液分離槽と、
前記内部容器に固液懸濁液を導入する固液懸濁液供給ラインと、
前記固液分離槽内で固液懸濁液から固液分離して得られる液体を前記固液分離槽から外部へ抜き出す液体抜出ラインと、を具備することを特徴とする固液分離装置。
There is a concave filter cloth part made of a filter cloth through which liquid passes but solids do not pass, and the inner container has a height that prevents the contents from overflowing from the upper end of the filter cloth part. A solid-liquid separation tank having an external container to be accommodated;
A solid-liquid suspension supply line for introducing a solid-liquid suspension into the inner container;
A solid-liquid separation apparatus comprising: a liquid extraction line for extracting a liquid obtained by solid-liquid separation from a solid-liquid suspension in the solid-liquid separation tank to the outside from the solid-liquid separation tank.
前記固液懸濁液に懸濁される固形分の沈降を促す凝集剤を前記内部容器内に供給する凝集剤供給装置と、
前記内部容器内に導入される内容物を撹拌する撹拌装置とをさらに具備することを特徴とする請求項12記載の固液分離装置。
A flocculant supply device for supplying a flocculant that promotes sedimentation of solids suspended in the solid-liquid suspension into the internal container;
The solid-liquid separator according to claim 12, further comprising a stirring device that stirs the contents introduced into the inner container.
前記内部容器は、前記ろ布部の外側にさらにかご状構造体を有し、このかご状構造体は、固液懸濁液から固液分離して得られる液体が通過する際に抵抗とならない貫通口が側面および底面を含む全面にわたって設けられて構成されることを特徴とする請求項12または13記載の固液分離装置。 The inner container further has a cage structure outside the filter cloth portion, and this cage structure does not become resistant when liquid obtained by solid-liquid separation from a solid-liquid suspension passes through. The solid-liquid separation device according to claim 12 or 13, wherein the through-hole is provided over the entire surface including the side surface and the bottom surface. 前記内部容器の前記ろ布部は、前記凹型状の底面に位置するろ布の細孔を前記凹型状の側面に位置するろ布の細孔よりも粗く構成したことを特徴とする請求項12ないし14の何れか1項に記載の固液分離装置。 The filter cloth portion of the inner container is configured such that the pores of the filter cloth located on the concave bottom surface are coarser than the pores of the filter cloth located on the concave side surface. 15. The solid-liquid separation device according to any one of items 14 to 14. 前記内部容器の底面に貫通穴が形成されない非貫通部を設けたことを特徴とする請求項12ないし15の何れか1項に記載の固液分離装置。 The solid-liquid separator according to any one of claims 12 to 15, wherein a non-penetrating part in which a through hole is not formed is provided on a bottom surface of the inner container. 前記ろ布は、孔経が固形物の質量基準粒子径積算分布の下方側1/100における粒子径よりも小さいろ布が使用されることを特徴とする請求項12ないし16の何れか1項に記載の固液分離装置。 The filter cloth according to any one of claims 12 to 16, wherein a filter cloth having a pore diameter smaller than a particle diameter at a lower side 1/100 of a mass-based particle diameter integrated distribution of solid matter is used. The solid-liquid separator described in 1. 前記ろ布は、材質をポリプロピレンおよびポリエステルから選択される1種類以上を含む材料であることを特徴とする請求項12ないし17の何れか1項に記載の固液分離装置。 The solid-liquid separator according to any one of claims 12 to 17, wherein the filter cloth is a material including one or more materials selected from polypropylene and polyester. 前記固液分離槽の後段に前記固液分離槽内で固液懸濁液から固液分離して得られる液体からさらに残留固形分を分離する逆洗再生式のフィルタを前記固液分離槽の後段に設けたことを特徴とする請求項12ないし18の何れか1項に記載の固液分離装置。 A backwash regenerative filter that further separates residual solids from the liquid obtained by solid-liquid separation from the solid-liquid suspension in the solid-liquid separation tank in the subsequent stage of the solid-liquid separation tank. The solid-liquid separation device according to any one of claims 12 to 18, wherein the solid-liquid separation device is provided in a subsequent stage. 前記内部容器内の固形分を回収するフィルタプレスおよび遠心脱水機の何れか一方をさらに具備し、前記逆洗再生式のフィルタを逆洗する際に生じる逆洗液を前記逆洗再生式のフィルタから排出するラインを設けたことを特徴とする請求項12ないし19の何れか1項に記載の固液分離装置。 The filter further comprises any one of a filter press and a centrifugal dehydrator for collecting the solid content in the inner container, and the backwash liquid generated when backwashing the backwash filter is backwashed. The solid-liquid separation device according to any one of claims 12 to 19, further comprising a line for discharging from the liquid. 前記固液分離槽を加熱する加熱装置をさらに具備することを特徴とする請求項12ないし20の何れか1項に記載の固液分離装置。 The solid-liquid separation device according to any one of claims 12 to 20, further comprising a heating device for heating the solid-liquid separation tank.
JP2012217995A 2012-09-28 2012-09-28 Solid-liquid separation method and solid-liquid separation device Pending JP2014071025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217995A JP2014071025A (en) 2012-09-28 2012-09-28 Solid-liquid separation method and solid-liquid separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217995A JP2014071025A (en) 2012-09-28 2012-09-28 Solid-liquid separation method and solid-liquid separation device

Publications (1)

Publication Number Publication Date
JP2014071025A true JP2014071025A (en) 2014-04-21

Family

ID=50746356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217995A Pending JP2014071025A (en) 2012-09-28 2012-09-28 Solid-liquid separation method and solid-liquid separation device

Country Status (1)

Country Link
JP (1) JP2014071025A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104147814A (en) * 2014-08-28 2014-11-19 邓鑫 Electricity-saving and water-saving method for treating tailings
CN104174189A (en) * 2014-08-28 2014-12-03 邓鑫 Energy-saving method for treating tailings
JP2015225066A (en) * 2014-05-30 2015-12-14 株式会社 エー・イー・エル Method for removing radioactive contaminant in radioactive contaminated water
JP2021124437A (en) * 2020-02-07 2021-08-30 株式会社東芝 Contaminated suspension treatment device
KR102361564B1 (en) * 2021-02-23 2022-02-14 한전케이피에스 주식회사 Decontamination apparatus and decontamination method using same

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657899A (en) * 1979-10-16 1981-05-20 Duskin Franchise Co Regeneration recovery of high boiling point used oil
JPS62254811A (en) * 1986-04-25 1987-11-06 Toei Plant Kk Filter having excellent filtration efficiency
JPH06309A (en) * 1992-06-19 1994-01-11 Makino Milling Mach Co Ltd Method and device for dehydrating filter
JPH07971A (en) * 1993-06-07 1995-01-06 Yoshikawa Enbi Kogyosho:Kk Treatment of waste liquid and its device
JPH08318105A (en) * 1995-05-23 1996-12-03 Japan Organo Co Ltd Turbidity removing filter
JPH1062595A (en) * 1996-08-20 1998-03-06 Toshiba Eng Co Ltd Radioactive waste liquid processing device
JPH10332887A (en) * 1997-05-29 1998-12-18 Toshiba Corp Filtering condensing device for processing radioactive waste and its operation method and radioactive waste processing equipment and its processing method
JPH11507124A (en) * 1995-03-10 1999-06-22 ヴアツテンフアル・アクチエボラーグ Method and apparatus for handling radioactive waste
JPH11244628A (en) * 1998-03-02 1999-09-14 Tokuyama Corp Filtration
JP2000084321A (en) * 1998-09-08 2000-03-28 Tokyo Flow Meter Kenkyusho:Kk Environmental protection type precoat filtration system
JP2002224934A (en) * 2001-01-31 2002-08-13 Mori Seiki Co Ltd Working liquid supply device and machine tool with it
JP2004057934A (en) * 2002-07-29 2004-02-26 Chiyoda Kohan Co Ltd Method of making organic chlorine compound harmless
JP2005000820A (en) * 2003-06-12 2005-01-06 Toshiba Plant Systems & Services Corp Method and apparatus for treatment of wastewater
JP2005211822A (en) * 2004-01-30 2005-08-11 Furukawa:Kk Waste liquid treatment system
JP2006035178A (en) * 2004-07-30 2006-02-09 Victon Kogyo:Kk Apparatus, system and treatment method for recovering sludge
JP2007136400A (en) * 2005-11-22 2007-06-07 Subaru Enterprise Co Ltd Method for volume reduction of waste slurry
JP3169911U (en) * 2011-06-13 2011-08-25 株式会社北陽 Flock processing device
JP2012055862A (en) * 2010-09-10 2012-03-22 Toda Kogyo Corp Water cleaning agent, method for manufacturing the same, and method for treating water

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657899A (en) * 1979-10-16 1981-05-20 Duskin Franchise Co Regeneration recovery of high boiling point used oil
JPS62254811A (en) * 1986-04-25 1987-11-06 Toei Plant Kk Filter having excellent filtration efficiency
JPH06309A (en) * 1992-06-19 1994-01-11 Makino Milling Mach Co Ltd Method and device for dehydrating filter
JPH07971A (en) * 1993-06-07 1995-01-06 Yoshikawa Enbi Kogyosho:Kk Treatment of waste liquid and its device
JPH11507124A (en) * 1995-03-10 1999-06-22 ヴアツテンフアル・アクチエボラーグ Method and apparatus for handling radioactive waste
JPH08318105A (en) * 1995-05-23 1996-12-03 Japan Organo Co Ltd Turbidity removing filter
JPH1062595A (en) * 1996-08-20 1998-03-06 Toshiba Eng Co Ltd Radioactive waste liquid processing device
JPH10332887A (en) * 1997-05-29 1998-12-18 Toshiba Corp Filtering condensing device for processing radioactive waste and its operation method and radioactive waste processing equipment and its processing method
JPH11244628A (en) * 1998-03-02 1999-09-14 Tokuyama Corp Filtration
JP2000084321A (en) * 1998-09-08 2000-03-28 Tokyo Flow Meter Kenkyusho:Kk Environmental protection type precoat filtration system
JP2002224934A (en) * 2001-01-31 2002-08-13 Mori Seiki Co Ltd Working liquid supply device and machine tool with it
JP2004057934A (en) * 2002-07-29 2004-02-26 Chiyoda Kohan Co Ltd Method of making organic chlorine compound harmless
JP2005000820A (en) * 2003-06-12 2005-01-06 Toshiba Plant Systems & Services Corp Method and apparatus for treatment of wastewater
JP2005211822A (en) * 2004-01-30 2005-08-11 Furukawa:Kk Waste liquid treatment system
JP2006035178A (en) * 2004-07-30 2006-02-09 Victon Kogyo:Kk Apparatus, system and treatment method for recovering sludge
JP2007136400A (en) * 2005-11-22 2007-06-07 Subaru Enterprise Co Ltd Method for volume reduction of waste slurry
JP2012055862A (en) * 2010-09-10 2012-03-22 Toda Kogyo Corp Water cleaning agent, method for manufacturing the same, and method for treating water
JP3169911U (en) * 2011-06-13 2011-08-25 株式会社北陽 Flock processing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225066A (en) * 2014-05-30 2015-12-14 株式会社 エー・イー・エル Method for removing radioactive contaminant in radioactive contaminated water
CN104147814A (en) * 2014-08-28 2014-11-19 邓鑫 Electricity-saving and water-saving method for treating tailings
CN104174189A (en) * 2014-08-28 2014-12-03 邓鑫 Energy-saving method for treating tailings
JP2021124437A (en) * 2020-02-07 2021-08-30 株式会社東芝 Contaminated suspension treatment device
JP7273740B2 (en) 2020-02-07 2023-05-15 株式会社東芝 Pollution suspension treatment equipment
KR102361564B1 (en) * 2021-02-23 2022-02-14 한전케이피에스 주식회사 Decontamination apparatus and decontamination method using same

Similar Documents

Publication Publication Date Title
JP5736094B1 (en) Contaminated soil purification equipment
JP2014071025A (en) Solid-liquid separation method and solid-liquid separation device
JP5769082B2 (en) Cleaning treatment method for radioactive material contaminated soil
JP6009850B2 (en) Decontamination apparatus and decontamination method for contaminated water contaminated with radioactive substances
CN106830119A (en) The magnetic absorption processing unit of oil-polluted water
CA3048919C (en) Method and apparatus for metal removal from drinking water
CN103380085B (en) Water treatment system and water treatment method
JP6112475B2 (en) Extraction device
CN205740576U (en) A kind of oil-water separation processing means for oily waste water
WO2013136385A1 (en) Fluorine recovery device, fluorine recovery system, and fluorine recovery method
JP6028545B2 (en) How to recover cesium
JP2018025464A (en) Radioactive substance removal system and radioactive substance removal method
JP2020011222A (en) Soil remediation system
JP2015054287A (en) Sludge treatment method
JP6497513B2 (en) Contaminated soil treatment apparatus and contaminated soil treatment method
JP6319622B2 (en) Fly ash cleaning device and fly ash cleaning method
CN210009716U (en) Oil filtering and settling device for thickening instrument
JP6327741B2 (en) Apparatus and method for removing cesium from muddy water
JP5715992B2 (en) Radioactive cesium-containing water treatment method, fly ash treatment method, radioactive cesium-containing water treatment device, and fly ash treatment device
JP2018013489A (en) Device and method for removing cesium in turbid water
JP6090095B2 (en) Fly ash cleaning device and fly ash cleaning method
JP2016064323A (en) Muddy water treatment system and muddy water treatment method
JP6385141B2 (en) Method for removing radioactive pollutants from radioactively contaminated water
JP5742032B2 (en) Filtration device
JP4033671B2 (en) Coal storage muddy water purification device and coal muddy muddy water purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607