JP2014070915A - Liquid sucking method, and solid phase washing method using the same - Google Patents

Liquid sucking method, and solid phase washing method using the same Download PDF

Info

Publication number
JP2014070915A
JP2014070915A JP2012214781A JP2012214781A JP2014070915A JP 2014070915 A JP2014070915 A JP 2014070915A JP 2012214781 A JP2012214781 A JP 2012214781A JP 2012214781 A JP2012214781 A JP 2012214781A JP 2014070915 A JP2014070915 A JP 2014070915A
Authority
JP
Japan
Prior art keywords
liquid
container
suction
solid phase
sucking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012214781A
Other languages
Japanese (ja)
Inventor
Hidekazu Makino
英一 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012214781A priority Critical patent/JP2014070915A/en
Publication of JP2014070915A publication Critical patent/JP2014070915A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid sucking method that enables with a simple configuration the remaining quantity of liquid to be effectively reduced and a washing method using the sucking method.SOLUTION: By a method of sucking liquid within a container while bringing down a sucking nozzle, the sucking nozzle goes down in contact with the liquid surface as far as to the bottom of the container while sucking the liquid and ambient gas at such a speed as allows the state of contact to be maintained. By a solid phase washing method, after causing the solid phase component and the liquid phase component to react with each other in the container, the liquid phase is discharged from the container and, after liquid is injected into the container to wash the solid phase, the liquid is sucked by the sucking method described above.

Description

本発明は、液体の吸引方法及びそれを用いた固相の洗浄方法に関するものである。   The present invention relates to a liquid suction method and a solid phase cleaning method using the same.

固相状態の反応物と液相状態の反応物とが反応する固液反応すなわち不均一系反応を利用して、試料中の成分分析を行なう免疫測定において、固液反応後の反応液の除去および固相担体の分離・洗浄を行なうB/F(Bound/Free)分離またはB/F洗浄は、測定結果の感度、再現性等の基本的性能に重要な役割を担っている。たとえば、上部開口容器に固相試薬と試料を注入して反応させたのち第1のB/F洗浄を行ない、さらに標識試薬をその容器に注入して反応させたのち第2のB/F洗浄を行ない、さらに基質試薬を加えて、試料に起因する信号を測定する酵素免疫測定において、B/F洗浄に使用した洗浄液が容器に残留すると、またその残留量が測定ごとに変動すると、洗浄効率の低下、または洗浄後追加する試薬の希釈もしくは阻害を経て、測定値の正確性の低下または測定値のばらつきにつながる。   Removal of reaction solution after solid-liquid reaction in immunoassay for analyzing components in a sample using solid-liquid reaction, that is, heterogeneous reaction in which a reactant in a solid phase reacts with a reactant in a liquid phase In addition, B / F (Bound / Free) separation or B / F washing for separating and washing the solid phase carrier plays an important role in basic performance such as sensitivity and reproducibility of measurement results. For example, the solid phase reagent and the sample are injected into the upper opening container and reacted, and then the first B / F washing is performed. Further, the labeling reagent is injected into the container and reacted, and then the second B / F washing is performed. In the enzyme immunoassay where the substrate reagent is added and the signal due to the sample is measured, if the cleaning solution used for B / F cleaning remains in the container and the residual amount varies from measurement to measurement, the cleaning efficiency Or the dilution or inhibition of the reagent added after washing leads to a decrease in the accuracy of the measurement value or a variation in the measurement value.

特許文献1および2には、吸引ノズルで平面状の底面を有する開口容器中の液体を吸引するとき、容器の隅に液体を残さないように、吸引ノズルを底面付近で水平移動させることが記述されている。また、特許文献3は、吸引ノズル部を多孔質かつ反応容器の内部形状に合わせた形にし、固相微粒子の集磁場所に対応するノズル部を引っ込ませて反応容器との隙間を広く取ることにより、微粒子の吸い込みを防止し、残液量を最小限にしようとするものである。さらに、特許文献4には、刷毛状の複数の吸引触手により容器隅部の残液を最小にする技術が開示されている。特許文献5は、水面と平行な容器内部の最大断面積に吸引ノズルの下降速度を乗じた体積変化速度よりも大きな一定の吸引量で液体を吸引する方法を開示している。この方法によれば、吸引ノズル外周面への液体の付着を最小限にすることができる。   Patent Documents 1 and 2 describe that when a liquid in an open container having a flat bottom surface is sucked by the suction nozzle, the suction nozzle is horizontally moved near the bottom surface so as not to leave the liquid in the corner of the container. Has been. Patent Document 3 discloses that a suction nozzle portion is made porous and matched to the internal shape of the reaction vessel, and the nozzle portion corresponding to the magnetic collection location of the solid phase fine particles is retracted to widen the gap with the reaction vessel. Therefore, the inhalation of fine particles is prevented and the amount of residual liquid is minimized. Further, Patent Document 4 discloses a technique for minimizing the residual liquid at the corner of the container by using a plurality of brush-like suction tentacles. Patent Document 5 discloses a method of sucking liquid with a constant suction amount larger than the volume change speed obtained by multiplying the maximum cross-sectional area inside the container parallel to the water surface by the lowering speed of the suction nozzle. According to this method, the adhesion of the liquid to the outer peripheral surface of the suction nozzle can be minimized.

特開平7−83939号公報Japanese Patent Laid-Open No. 7-83939 特開2003−190899号公報JP 2003-190899 A 特開平8−62215号公報JP-A-8-62215 特開2003−42912号公報JP 2003-42912 A 特開2008−76273号公報JP 2008-76273 A

上記先行技術文献において、特許文献1、2の技術は吸引ノズルを水平方向に操作する動作制御機構が必要となり、また吸引に余計な時間がかかってしまう。特許文献3、4の技術は吸引ノズルに複雑な形状の構成部材を必要とするため経済的に好ましくない。特許文献5の技術は、吸引ノズルは常に液面より上方にあり、吸引ノズルの外周面は液体に接触しないとある。本発明はこのような事情を鑑みてなされたものであり、簡単な構成にもとづき、液体の残留量を効果的に低下させることのできる迅速な液体の吸引方法及びそれを用いた固相の洗浄方法を提供することを目的とする。   In the above prior art documents, the techniques of Patent Documents 1 and 2 require an operation control mechanism for operating the suction nozzle in the horizontal direction, and it takes extra time for suction. The techniques of Patent Documents 3 and 4 are not economically preferable because the suction nozzle requires a component having a complicated shape. According to the technique of Patent Document 5, the suction nozzle is always above the liquid surface, and the outer peripheral surface of the suction nozzle does not contact the liquid. The present invention has been made in view of such circumstances, and based on a simple configuration, a rapid liquid suction method capable of effectively reducing the residual amount of liquid and cleaning of a solid phase using the same. It aims to provide a method.

本発明者は上記課題に関し鋭意検討した結果、本発明に到達した。即ち本発明は以下のとおりである。
(1)吸引ノズルを下降させながら容器内の液体を吸引する方法であって、吸引ノズルが、液面と接触して、液体と雰囲気ガスを吸引しながら、その接触状態を維持する速度で容器底部まで下降することを特徴とする、液体の吸引方法。
(2)上述の(1)に記載の方法において、(1)に記載の吸引方法を複数回行い、その最後の回において、それ以前の回と比較して、吸引ノズルが下降する速度を最も小さくする、液体の吸引方法。
(3)容器中で固相成分と液相成分とを反応させた後、容器から液相を排出し、次いで容器に液体を注入して固相を洗浄した後に、(1)に記載の方法により液体を吸引することを特徴とする、固相の洗浄方法。
(4)上述の(3)に記載の方法において、容器に液体を注入して固相を洗浄した後に(1)に記載の方法によって液体を吸引するという工程を複数回行い、その最後の回において、それ以前の回と比較して、吸引ノズルが下降する速度を最も小さくする、固相の洗浄方法。
As a result of intensive studies on the above problems, the present inventor has reached the present invention. That is, the present invention is as follows.
(1) A method of sucking the liquid in the container while lowering the suction nozzle, wherein the suction nozzle is in contact with the liquid surface and sucks the liquid and the atmospheric gas while maintaining the contact state. A liquid suction method, wherein the liquid is lowered to the bottom.
(2) In the method described in (1) above, the suction method described in (1) is performed a plurality of times, and the speed at which the suction nozzle descends is the highest in the last round compared to the previous round. A method of sucking a liquid to make it smaller.
(3) After reacting the solid phase component and the liquid phase component in the container, the liquid phase is discharged from the container, then the liquid is injected into the container to wash the solid phase, and then the method according to (1) A method of washing a solid phase, wherein the liquid is sucked by the method.
(4) In the method described in (3) above, after the liquid is injected into the container and the solid phase is washed, the step of sucking the liquid by the method described in (1) is performed a plurality of times, and the last round In the solid phase washing method, the speed at which the suction nozzle descends is minimized as compared with the previous time.

以下、本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明では、吸引ノズルを下降させながら容器内の液体を吸引するが、吸引ノズルを液面に接触させた状態を維持したまま、液体と雰囲気ガスを吸引しつつ、ノズルと液面が実質的に同じ速度で下降していくものである。この場合、吸引の初期段階から終期段階にかけて吸引配管内の減圧度は、空気の混入に伴う細かな変動があるものの、ドリフトなくほぼ一定になり、吸引の終期においてもゆるやかに液面部から液体を吸引する。そのため、容器隅部に付着している液体の分子群も、滑らかに液面中央部に移動しノズルに吸引されていくものと推察される。   In the present invention, the liquid in the container is sucked while lowering the suction nozzle, but the nozzle and the liquid level are substantially reduced while sucking the liquid and the atmospheric gas while maintaining the state where the suction nozzle is in contact with the liquid level. Will descend at the same speed. In this case, the degree of decompression in the suction pipe from the initial stage to the final stage of suction is almost constant without drifting, although there is a slight fluctuation due to air contamination, and the liquid from the liquid surface part gradually falls in the final stage of suction. Aspirate. For this reason, it is presumed that the liquid molecular group attached to the corner of the container also moves smoothly to the center of the liquid surface and is sucked by the nozzle.

これに対して、吸引ノズルによって液面より低い位置で液体を吸引すると、液面に接触させた状態で吸引した時と比べて、雰囲気ガスの吸引が起きないため、吸引配管内の減圧度が高まり、吸引速度が増加する。このため、吸引の終期に容器隅部に付着している液体は吸引ノズルまで移動する猶予が与えられず、ノズル付近の液体のみが引きちぎられるように吸引されて吸引工程が終わるので、容器隅部に吸い残しの液滴が残るものと推察される。   On the other hand, when the liquid is sucked at a position lower than the liquid level by the suction nozzle, the suction of the atmospheric gas does not occur compared to when the liquid is sucked in contact with the liquid level. Increases and suction speed increases. For this reason, the liquid adhering to the corner of the container at the end of the suction is not allowed to move to the suction nozzle, and only the liquid near the nozzle is sucked so as to be torn off, and the suction process is completed. It is inferred that the unsucked droplets remain.

また、本発明によれば、吸引ノズルは液面に接触させた状態で液体を吸引し、液面より下に深く浸漬することはないので、ノズル外表面への液体の付着を回避できる点で好ましい。   Further, according to the present invention, the suction nozzle sucks the liquid in contact with the liquid surface and does not immerse deeply below the liquid surface, so that adhesion of the liquid to the outer surface of the nozzle can be avoided. preferable.

なお、本発明では、吸引ノズルは液面と接触した状態を維持する速度で下降する。これは換言すれば、ノズル下降速度は、液体の吸引速度との兼ね合いによることとなる。   In the present invention, the suction nozzle descends at a speed that maintains the state in contact with the liquid surface. In other words, the nozzle lowering speed depends on the balance with the liquid suction speed.

本発明で使用する吸引ノズルの形状については特に限定はない。その材質についても、使用する液体や容器との接触に際して、腐食、変形、破損等のない安定した材質であれば、特定の材質に限定されることはない。一例として、長期間液体に接触しても変質しにくいステンレス鋼の管体、耐薬品性に優れたプラスチック(例えば、ポリエーテルエーテルケトン)の管体があげられる。吸引ノズル先端には容器底面によってノズルが閉塞しないように図2に示すようなスリットを形成するのが好ましい。スリットの高さによっては、終期段階の液体吸い切りのときに多量の雰囲気ガスが混入して吸引配管内の減圧度が弱まり、液体の吸引が不完全となり液体残りが増加する。そのため吸引ノズルとして、内径1mm前後のステンレス管を使用したとき、スリットはノズルの円形縁部の直径位置2箇所に設けるのが好適であり、1箇所または3箇所にスリットを設けると液体残りが増加する傾向があった。   The shape of the suction nozzle used in the present invention is not particularly limited. The material is not limited to a specific material as long as it is a stable material that does not corrode, deform, break, or the like when in contact with the liquid or container to be used. As an example, a stainless steel tube that hardly changes in quality even when it is in contact with liquid for a long period of time and a plastic (for example, polyetheretherketone) tube that has excellent chemical resistance can be given. A slit as shown in FIG. 2 is preferably formed at the tip of the suction nozzle so that the nozzle is not blocked by the bottom of the container. Depending on the height of the slit, a large amount of atmospheric gas is mixed when the liquid is sucked out at the final stage, the degree of decompression in the suction pipe is weakened, the liquid suction is incomplete, and the remaining liquid increases. For this reason, when a stainless steel tube with an inner diameter of about 1 mm is used as the suction nozzle, it is preferable to provide slits at two diameter positions on the circular edge of the nozzle, and if one or three slits are provided, the remaining liquid increases. There was a tendency to.

本発明において、容器とは、上部が開口したまたは開口しうる、液体を収容できるものであり、例えばウェル、カップ、セル、試験管、反応槽などと呼ばれる器具等をあげることができる。容器は、単一の収容部をもつものでも、二個、三個と側壁同士が隣接して一体成形された多連容器、マイクロタイタープレート状の容器であってもよい。   In the present invention, the container can contain a liquid whose upper part is open or can be opened, and examples thereof include devices called wells, cups, cells, test tubes, reaction vessels, and the like. The container may be a single container, or may be a multiple container or a microtiter plate container in which two, three, and side walls are integrally formed adjacent to each other.

本発明では、上述の吸引方法による吸引を行った後、容器に液体を添加し、再度上述の吸引方法による吸引を行ってもよい。このように、本発明の吸引方法を複数回繰り返して行う場合、その最後の回の吸引は、それ以前の回と比較して、吸引ノズルが下降する速度を最も小さくすることが好ましい。これは即ち、液体の吸引速度を最も小さくすることを意味するものである。これにより、最後の回以外の吸引ノズルの下降速度は、最後の回より大きく設定して吸引時間を短縮するとともに、最後の回においては、吸引ノズルの下降速度をそれ以前の回と比較して最も小さくする、即ち、液体の吸引速度を最も小さくすることにより、残液量を効果的に減少させることが可能になる。   In the present invention, after performing suction by the above suction method, a liquid may be added to the container, and suction by the above suction method may be performed again. As described above, when the suction method of the present invention is repeatedly performed a plurality of times, it is preferable that the last suction time has the lowest speed at which the suction nozzle descends compared to the previous time. This means that the liquid suction speed is minimized. As a result, the lowering speed of the suction nozzles other than the last time is set larger than the last time to shorten the suction time, and in the last time, the lowering speed of the suction nozzle is compared with the previous times. By making it the smallest, that is, making the liquid suction speed the smallest, it becomes possible to effectively reduce the remaining liquid amount.

本発明の吸引方法は、容器中で固相成分と液相成分とを反応させた後、容器から液相を排出し、次いで容器に液体を注入して固相を洗浄した後に、液体を吸引するときにも利用できる。   In the suction method of the present invention, after the solid phase component and the liquid phase component are reacted in the container, the liquid phase is discharged from the container, and then the liquid is injected into the container to wash the solid phase, and then the liquid is sucked. Can also be used when

固相成分とは、特に限定されるものではないが、例えば試料中の成分分析を行う免疫測定では、固相担体に抗体、抗原等の特異的親和性を有する試薬成分が物理的/化学的に結合した固相結合体、または前記固相結合体に試料液中の分析成分および/または標識試薬中の標識成分が直接もしくは間接的に結合した反応複合体をあげることができる。また液相成分としては、例えば前記固相結合体または前記反応複合体に結合する、試料液中の分析成分または標識試薬中の標識成分等をあげることができる。   The solid phase component is not particularly limited. For example, in immunoassay for analyzing a component in a sample, a reagent component having specific affinity such as an antibody or an antigen is physically / chemically coupled to a solid phase carrier. Or a reaction complex in which an analysis component in a sample solution and / or a label component in a labeling reagent is directly or indirectly bound to the solid phase conjugate. Examples of the liquid phase component include an analysis component in a sample solution or a label component in a labeling reagent that binds to the solid phase conjugate or the reaction complex.

本発明では、上述の洗浄方法において、液体を注入して固相を洗浄した後に上述の(1)の吸引方法によって液体を吸引するという工程を複数回繰り返して行ってもよい。その場合、その最後の回において、それ以前の回と比較して、吸引ノズルが下降する速度を最も小さくすることが好ましい。これは即ち、液体の吸引速度を最も小さくすることを意味するものである。これにより、最後の回以外の吸引ノズルの下降速度は、最後の回より大きく設定して吸引時間を短縮するとともに、最後の回においては、吸引ノズルの下降速度をそれ以前の回と比較して最も小さくする、即ち、液体の吸引速度を最も小さくすることにより、残液量を効果的に減少させることが可能になる。   In the present invention, in the cleaning method described above, the step of sucking the liquid by the suction method (1) described above after injecting the liquid and cleaning the solid phase may be repeated a plurality of times. In that case, it is preferable to make the speed at which the suction nozzle descends the smallest in the last round compared to the previous round. This means that the liquid suction speed is minimized. As a result, the lowering speed of the suction nozzles other than the last time is set larger than the last time to shorten the suction time, and in the last time, the lowering speed of the suction nozzle is compared with the previous times. By making it the smallest, that is, making the liquid suction speed the smallest, it becomes possible to effectively reduce the remaining liquid amount.

このように、本発明の洗浄方法は、試料中の成分分析を行う場合のB/F分離又はB/F洗浄として用いることができる。   Thus, the cleaning method of the present invention can be used as B / F separation or B / F cleaning when component analysis in a sample is performed.

以下に本発明を、試料中の成分分析を行う免疫測定に用いた場合を例にして説明する。   The case where the present invention is used for immunoassay for analyzing components in a sample will be described below as an example.

固相成分を構成する固相担体については、反応容器に収容できるものであり、材質、大きさ、形のいずれに関しても特段の制限はないが、B/F分離のために磁力、重力等の外力により反応容器内の底面隅部または側壁に局在させることに適したものが好ましい。また、反応容器の内壁自体を固相担体として使用することもできる。たとえば容積が0.5mLから1mL程度のカップ状容器に対して、粒径0.01μm程度の微粒子から粒径1mm程度のビーズに至る大きさの固相担体が使用できる。なかでも、固相成分と液相成分との反応効率を上げ、B/F分離の際、容器外部からの磁力により容器側壁部に集めるのに適した0.1〜10μmの磁性微粒子を用いるのが好ましい。   The solid phase carrier constituting the solid phase component can be accommodated in the reaction vessel, and there is no particular limitation on any of the material, size, and shape, but magnetic force, gravity, etc. for B / F separation. What is suitable for localizing in the bottom corner part or side wall in a reaction container by external force is preferable. In addition, the inner wall of the reaction vessel itself can be used as a solid phase carrier. For example, for a cup-shaped container having a volume of about 0.5 mL to 1 mL, a solid phase carrier having a size ranging from fine particles having a particle size of about 0.01 μm to beads having a particle size of about 1 mm can be used. Among them, use is made of 0.1 to 10 μm magnetic fine particles suitable for increasing the reaction efficiency between the solid phase component and the liquid phase component and for collecting on the side wall of the container by the magnetic force from the outside of the container at the time of B / F separation. Is preferred.

洗浄液としては、特に限定されるものではないが、前記固相結合体、前記反応複合体、またはさらに標識成分が結合した前記反応複合体が解離することなく、未反応の試料および標識試薬を効果的に洗浄できるような電解質濃度、pH、界面活性剤の種類や濃度等を選択すればよい。   The washing solution is not particularly limited, but the unreacted sample and the labeling reagent can be effectively used without dissociating the solid-phase conjugate, the reaction complex, or the reaction complex further bound with the labeling component. What is necessary is just to select the electrolyte concentration, pH, type and concentration of the surfactant, etc. that can be cleaned cleanly.

本発明によれば、液体を吸引した時に、その残液量を効果的に減少させることが可能になる。また、吸引ノズルは液面より下に深く浸漬することはないので、ノズル外表面への液体の付着を抑制することができる。   According to the present invention, when the liquid is sucked, the amount of the remaining liquid can be effectively reduced. Moreover, since the suction nozzle does not immerse deeply below the liquid surface, it is possible to suppress the adhesion of the liquid to the outer surface of the nozzle.

BF洗浄装置および反応容器を示す図である。It is a figure which shows BF washing | cleaning apparatus and reaction container. 吸引管先端形状を示す図である。It is a figure which shows the suction pipe front-end | tip shape.

図1に、本発明を実施するのに好適な、吸引ノズル1および吐出ノズル2が、少なくとも昇降可能な駆動手段(不図示)に接続された支持部5に一体化した構成の洗浄装置および反応容器6を示す。吸引ノズル1は、基端部側が廃液手段(不図示)を介して真空ポンプ(不図示)に接続された吸引管3に接続されている。吐出ノズル2は、前記洗浄水の供給元からシリンジポンプ等の制御可能な送液手段に吐出配管4を介して接続されている。前記昇降可能な駆動手段は、好ましくはステッピングモータによりプログラム制御され、吸引工程においては容器中の液体を可能な限り吸引するため、吸引ノズル先端を容器底面に接触するまで下降させる。このため、吸引ノズル1の先端が容器6内の底面に衝突したときの緩衝手段を備えていることが望ましい。   FIG. 1 shows a cleaning apparatus and reaction in which a suction nozzle 1 and a discharge nozzle 2 suitable for carrying out the present invention are integrated with a support portion 5 connected to at least a drive means (not shown) capable of moving up and down. The container 6 is shown. The suction nozzle 1 is connected to a suction pipe 3 whose base end is connected to a vacuum pump (not shown) via a waste liquid means (not shown). The discharge nozzle 2 is connected to a controllable liquid feeding means such as a syringe pump from a supply source of the cleaning water via a discharge pipe 4. The raising and lowering drive means is preferably programmed and controlled by a stepping motor, and in the suction process, the suction nozzle tip is lowered until it contacts the bottom of the container in order to suck the liquid in the container as much as possible. For this reason, it is desirable to provide a buffer means when the tip of the suction nozzle 1 collides with the bottom surface in the container 6.

表1に、磁性微粒子を固相とする2ステップイムノアッセイを自動装置で実施する場合のB/F洗浄方法の一例を示す。表中、第1B/F洗浄とは、反応容器に固相試薬と試料を注入して反応させたのちに未反応の試料を分離・洗浄するために行なう洗浄工程のことである。第2B/F洗浄とは、第1B/F洗浄の済んだ固相成分に標識試薬を加えて反応させたのち未反応の標識試薬を分離・洗浄するために行なう洗浄工程のことである。表1の例では第2B/F分離として、標識試薬−固相成分複合体(Bound)と、未反応の標識試薬(Free)との分離洗浄を3回に分けて行なう。3回に分けて行なうのは、検出感度に直接影響する標識試薬の洗浄を徹底させるために、磁性微粒子の完全分散(集磁状態を解除後、洗浄液を吐出することで磁性微粒子を反応容器中の液体全体にわたり分散させた状態)を行なった後の集磁操作に長い時間を確保する必要がある一方、シーケンス制御する自動装置のサイクルタイムを過度に増加させないためである。   Table 1 shows an example of a B / F washing method in the case where a two-step immunoassay using magnetic fine particles as a solid phase is performed with an automatic apparatus. In the table, the first B / F cleaning refers to a cleaning step performed to separate and clean an unreacted sample after injecting and reacting a solid phase reagent and the sample into a reaction vessel. The second B / F washing is a washing step performed to separate and wash the unreacted labeling reagent after adding the labeling reagent to the solid phase component after the first B / F washing and causing the reaction. In the example of Table 1, as the second B / F separation, separation and washing of the labeling reagent-solid phase component complex (Bound) and the unreacted labeling reagent (Free) are performed in three steps. In order to thoroughly clean the labeling reagent that directly affects the detection sensitivity, the magnetic fine particles are completely dispersed in the reaction vessel by discharging the cleaning liquid after releasing the magnetically collected state. This is because it is necessary to secure a long time for the magnetic flux collecting operation after the liquid is dispersed over the entire liquid, while the cycle time of the automatic device for sequence control is not excessively increased.

第1B/F洗浄においては、吸引ノズルを90mm/sの速度で下降させつつ、0.4秒かけて固相試薬と試料とによる反応液を吸引し吸引配管を通じて廃棄する。ここで、吸引ノズルの下降速度90mm/sとは、この吸引ノズルを同形容器中の洗浄液に浸漬して液体を吸引したときに液位が下降する速度約100mm/sより小さい速度であり、吸引ノズルが液面と接触して、液体と雰囲気ガスを吸引しながら、その接触状態を維持する速度で容器底部まで下降することを意味する。なお、この例で使用した容器は、底面径φ約5mm、高さ約20mmのポリプロピレン製平底円筒状容器である。   In the first B / F cleaning, the reaction solution of the solid phase reagent and the sample is sucked over 0.4 seconds and discarded through the suction pipe while lowering the suction nozzle at a speed of 90 mm / s. Here, the lowering speed of the suction nozzle of 90 mm / s is a speed lower than about 100 mm / s at which the liquid level descends when the suction nozzle is immersed in the cleaning liquid in the same shape container to suck the liquid. This means that the nozzle comes into contact with the liquid surface and descends to the bottom of the container at a speed that maintains the contact state while sucking the liquid and the atmospheric gas. The container used in this example is a polypropylene flat bottom cylindrical container having a bottom diameter of about 5 mm and a height of about 20 mm.

この吸引工程以降、反応容器の外側面に磁石を近接させて磁性微粒子を容器内側面に集磁させておく。ただし、第2B/F洗浄2回目の洗浄液吐出時には上記の完全分散を行なうため、磁石を容器から遠ざけ集磁状態を解除する。   After this suction step, a magnet is brought close to the outer surface of the reaction vessel to collect magnetic fine particles on the inner surface of the vessel. However, when the cleaning liquid is discharged for the second time in the second B / F cleaning, the magnet is moved away from the container to release the magnetism collecting state in order to perform the above complete dispersion.

上記のように第1B/F洗浄において反応液を吸引した後、吸引ノズルを上昇させる。このとき、吸引ノズルは、後工程で洗浄液が最大の400μL吐出された後の液面より高い位置まで上昇させるのが好ましい。つぎにこの位置において、吐出ノズルから洗浄液を250μL吐出する。所定時間(数秒)後、上記反応液の吸引と同様に、吸引ノズルを速度90mm/sで下降させつつ、0.4秒かけて残留反応液と洗浄液の混合液を吸引し吸引配管を通じて廃棄する。つぎに吸引ノズルを上昇させ、吐出ノズルから洗浄液を400μL吐出する。ついで、第1B/F洗浄の最後の吸引工程として、吸引ノズルを速度45mm/sで下降させつつ、0.5秒かけて洗浄液体を吸引する。   After sucking the reaction liquid in the first B / F cleaning as described above, the suction nozzle is raised. At this time, it is preferable that the suction nozzle is raised to a position higher than the liquid level after the maximum 400 μL of the cleaning liquid is discharged in the subsequent process. Next, at this position, 250 μL of the cleaning liquid is discharged from the discharge nozzle. After a predetermined time (several seconds), as in the case of the above-mentioned reaction liquid suction, while the suction nozzle is lowered at a speed of 90 mm / s, the mixed liquid of the remaining reaction liquid and the cleaning liquid is sucked over 0.4 seconds and discarded through the suction pipe. . Next, the suction nozzle is raised, and 400 μL of the cleaning liquid is discharged from the discharge nozzle. Next, as the final suction step of the first B / F cleaning, the cleaning liquid is sucked over 0.5 seconds while the suction nozzle is lowered at a speed of 45 mm / s.

第2B/F洗浄においても、吸引ノズル・吐出ノズルの動作自体は基本的に第1B/F洗浄と同様である。第2B/F洗浄1回目においては、第1B/F洗浄の反応液吸引と同様に、未反応の反応試薬(標識試薬)を、90mm/sの速度で下降させる吸引ノズルにより0.4秒かけて吸引し吸引配管を通じて廃棄する。つぎに吸引ノズル・吐出ノズルを上昇させ、吐出ノズルから洗浄液を100μL吐出する。吐出量が100μLと、250μLより少なくしたのは、標識試薬の容器への吸着による汚染を最小限にとどめるためである。洗浄液100μLの吐出後は、0.4秒かけて残留反応試薬と洗浄液の混合液を吸引し廃棄する。さらに洗浄液400μLを吐出し、0.5秒かけて吸引する工程を2回繰り返した後、洗浄液を400μL吐出したところで第2洗浄1回目を終了する。   Also in the second B / F cleaning, the operations of the suction nozzle and the discharge nozzle are basically the same as those in the first B / F cleaning. In the first second B / F washing, as in the case of the first B / F washing reaction liquid suction, it takes 0.4 seconds by the suction nozzle that lowers the unreacted reaction reagent (labeling reagent) at a speed of 90 mm / s. Suction and discard through suction pipe. Next, the suction nozzle / discharge nozzle is raised, and 100 μL of the cleaning liquid is discharged from the discharge nozzle. The reason why the discharge amount is 100 μL and less than 250 μL is to minimize contamination due to adsorption of the labeling reagent to the container. After discharging 100 μL of the cleaning solution, the mixed solution of the residual reaction reagent and the cleaning solution is aspirated and discarded over 0.4 seconds. Further, after the process of discharging 400 μL of the cleaning liquid and sucking it for 0.5 seconds was repeated twice, when the cleaning liquid was discharged by 400 μL, the first second cleaning was completed.

自動装置の次のサイクル(サイクル時間65秒)において、第2B/F洗浄2回目を行なう。第2B/F洗浄1回目の最後に吐出した400μLの洗浄液を0.5秒かけて吸引した後、集磁状態を解除して洗浄液を150μL吐出し、磁性微粒子成分を洗浄する。集磁操作を開始して所定時間(約30秒)経過後、洗浄液150μLを0.4秒かけて吸引し、再び集磁状態を解除して洗浄液を150μL吐出したところで第2洗浄2回目を終了する。   In the next cycle of the automatic apparatus (cycle time 65 seconds), the second B / F cleaning is performed for the second time. After 400 μL of the cleaning liquid discharged at the end of the second B / F cleaning is sucked for 0.5 seconds, the magnetic flux collection state is canceled and 150 μL of cleaning liquid is discharged to clean the magnetic fine particle component. After a predetermined time (about 30 seconds) has elapsed since the start of the magnetic flux collection operation, 150 μL of the cleaning liquid is sucked in over 0.4 seconds, the magnetic flux collection state is released again, and when the cleaning liquid is discharged by 150 μL, the second cleaning is completed. To do.

さらに自動装置の次のサイクルにおいて、第2B/F洗浄3回目を行なう。第2B/F洗浄2回目の最後に吐出した150μLの洗浄液を0.4秒かけて吸引した後、洗浄液を400μL吐出し、0.5秒かけて再び吸引したところで第2B/F洗浄を終了する。この装置では第2B/F洗浄の最後の吸引のとき、吸引ノズルの下降速度を90mm/sまたはその半分の速度45mm/sで下降させることができるが、下記実施例1,2により下降速度を45mm/sとするのが好適であることが示される。   Further, in the next cycle of the automatic apparatus, the second B / F cleaning is performed for the third time. After 150 μL of the cleaning liquid discharged at the end of the second B / F cleaning is sucked for 0.4 seconds, 400 μL of the cleaning liquid is discharged and then sucked again for 0.5 seconds, and then the second B / F cleaning is finished. . In this apparatus, at the time of the last suction of the second B / F cleaning, the lowering speed of the suction nozzle can be lowered at 90 mm / s or a half speed of 45 mm / s. It is shown that it is preferable to be 45 mm / s.

[実施例1]
図1に示したB/F洗浄装置を用い、表1に示した条件で、B/F洗浄の吸引・吐出動作を行ない、洗浄液の残留量を秤量した。ここでは洗浄液の残留量を比較するため、磁性微粒子の入っていない空容器を使用し、試料、標識試薬のいずれも加えずに洗浄液の吸引・吐出動作を行なった。なお、吸引ノズル1には内径0.92mmのステンレス管を使用し、吸引配管3は内径1.5mmのポリテトラフルオロエチレン管を使用した。洗浄液には塩化ナトリウムおよび界面活性剤を含むトリス緩衝液(pH8)を使用した。
[Example 1]
Using the B / F cleaning apparatus shown in FIG. 1, B / F cleaning suction and discharge operations were performed under the conditions shown in Table 1, and the remaining amount of the cleaning liquid was weighed. Here, in order to compare the remaining amount of the cleaning liquid, an empty container without magnetic fine particles was used, and the suction / discharge operation of the cleaning liquid was performed without adding any sample or labeling reagent. The suction nozzle 1 was a stainless steel tube having an inner diameter of 0.92 mm, and the suction pipe 3 was a polytetrafluoroethylene tube having an inner diameter of 1.5 mm. As the washing solution, Tris buffer (pH 8) containing sodium chloride and a surfactant was used.

表2に結果を示す。最後に実行する吸引工程における吸引ノズルの下降速度を90mm/sとすると、洗浄液の残留量の10回の平均値が0.0033gであるのに対して、下降速度を45mm/sとすると0.0005gと、1/6以下に減少した。   Table 2 shows the results. If the lowering speed of the suction nozzle in the suction step to be executed last is 90 mm / s, the average value of the remaining amount of the cleaning liquid 10 times is 0.0033 g, whereas if the lowering speed is 45 mm / s, it is 0. 0005 g, decreased to 1/6 or less.

上記の実験においては、図2に示す吸引ノズル1先端の長方形のスリット部の幅を0.30mmとし、スリットの高さは0.55mmとした。このスリット高さを1.0mmとし、最後に実行する吸引工程における吸引ノズルの下降速度を45mm/sとしたときの、洗浄液の残留量(10回測定の平均値)を測定したところ0.0012gとなり、スリット高さ0.55mmの条件に比べて2倍以上の残留量を示した。表3に結果を示す。   In the above experiment, the width of the rectangular slit at the tip of the suction nozzle 1 shown in FIG. 2 was 0.30 mm, and the height of the slit was 0.55 mm. When the slit height was 1.0 mm and the lowering speed of the suction nozzle in the last suction step was 45 mm / s, the residual amount of cleaning liquid (average value of 10 measurements) was measured to be 0.0012 g Thus, the residual amount was more than twice as long as the slit height of 0.55 mm. Table 3 shows the results.

[実施例2]
実施例1と同様の装置、条件においてTSH(甲状腺刺激ホルモン)の酵素免疫測定を実施した。すなわち、図1に示したB/F洗浄装置を用い、表1に示した条件でB/F洗浄の吸引・吐出動作を行ない、酵素免疫測定を実施して測定値の再現性を比較した。試料は、TSHの標準品を希釈して約10μIU/mLの濃度に調製した。測定は概略常法に従い、粒径約2.5μmの磁性微粒子に抗TSHモノクローナル抗体を固定した固相試薬と試料とを反応させた後、第1B/F洗浄し、アルカリ性ホスファターゼ標識抗TSHモノクローナル抗体を反応させた後、第2B/F洗浄し、ジオキセタン系発光基質を作用させて化学発光強度を測定した。
[Example 2]
An enzyme immunoassay for TSH (thyroid stimulating hormone) was performed under the same apparatus and conditions as in Example 1. That is, using the B / F cleaning apparatus shown in FIG. 1, the suction / discharge operation of B / F cleaning was performed under the conditions shown in Table 1, enzyme immunoassay was performed, and the reproducibility of the measured values was compared. Samples were prepared by diluting TSH standards to a concentration of about 10 μIU / mL. The measurement is carried out in accordance with a conventional method. After reacting a sample with a solid phase reagent in which anti-TSH monoclonal antibody is immobilized on magnetic fine particles having a particle size of about 2.5 μm, the 1B / F washing is performed, and an alkaline phosphatase-labeled anti-TSH monoclonal antibody is obtained. After the reaction, the second B / F was washed, and a dioxetane luminescent substrate was allowed to act to measure the chemiluminescence intensity.

その結果、最後に実行する吸引工程における吸引ノズルの下降速度を90mm/sとすると、10回の測定値に基づく変動係数(CV)が2.65%であるのに対して、下降速度を45mm/sとするとCV1.46%まで減少した。   As a result, when the lowering speed of the suction nozzle in the last suction step to be executed is 90 mm / s, the coefficient of variation (CV) based on the 10 measurements is 2.65%, while the lowering speed is 45 mm. / S, CV decreased to 1.46%.

以上のことから、本発明の方法によれば、洗浄液の残液量を効果的に減少させることが可能になり、特に最後の回の吸引ノズルの下降速度(45mm/s)を、それ以前の回の吸引ノズルの下降速度(90mm/s)より小さく設定することにより、最後の吸引工程における洗浄液の残液量をより一層効果的に減少させることが可能になり、かつそのことが酵素免疫測定の再現性を高めるということがわかった。   From the above, according to the method of the present invention, it becomes possible to effectively reduce the remaining amount of the cleaning liquid, and in particular, the lowering speed (45 mm / s) of the last suction nozzle can be reduced. By setting it lower than the lowering speed of the suction nozzle (90 mm / s), it becomes possible to more effectively reduce the remaining amount of the cleaning liquid in the last suction process, and this is the enzyme immunoassay. It was found to improve the reproducibility of.

Figure 2014070915
Figure 2014070915

Figure 2014070915
Figure 2014070915

Figure 2014070915
Figure 2014070915

1:吸引ノズル
2:吐出ノズル
3:吸引配管
4:吐出配管
5:支持部
6:反応容器
7:吸引ノズル先端スリット部
1: Suction nozzle 2: Discharge nozzle 3: Suction pipe 4: Discharge pipe 5: Support part 6: Reaction vessel 7: Slit nozzle tip slit part

Claims (4)

吸引ノズルを下降させながら容器内の液体を吸引する方法であって、吸引ノズルが、液面と接触して、液体と雰囲気ガスを吸引しながら、その接触状態を維持する速度で容器底部まで下降することを特徴とする、液体の吸引方法。 A method of sucking the liquid in the container while lowering the suction nozzle, and the suction nozzle descends to the bottom of the container at a speed that maintains the contact state while contacting the liquid surface and sucking the liquid and atmospheric gas. A method for sucking a liquid. 請求項1に記載の方法において、請求項1に記載の吸引方法を複数回行い、その最後の回において、それ以前の回と比較して、吸引ノズルが下降する速度を最も小さくする、液体の吸引方法。 The method according to claim 1, wherein the suction method according to claim 1 is performed a plurality of times, and at the last time, the speed at which the suction nozzle descends is minimized as compared with the previous time. Suction method. 容器中で固相成分と液相成分とを反応させた後、容器から液相を排出し、次いで容器に液体を注入して固相を洗浄した後に、請求項1に記載の方法により液体を吸引することを特徴とする、固相の洗浄方法。 After the solid phase component and the liquid phase component are reacted in the container, the liquid phase is discharged from the container, then the liquid is injected into the container to wash the solid phase, and then the liquid is discharged by the method according to claim 1. A method for washing a solid phase, comprising sucking. 請求項3に記載の方法において、容器に液体を注入して固相を洗浄した後に請求項1に記載の方法によって液体を吸引するという工程を複数回行い、その最後の回において、それ以前の回と比較して、吸引ノズルが下降する速度を最も小さくする、固相の洗浄方法。 4. The method according to claim 3, wherein the step of injecting the liquid into the container to wash the solid phase and then sucking the liquid by the method according to claim 1 is performed a plurality of times. The solid phase cleaning method minimizes the speed at which the suction nozzle descends compared to the first time.
JP2012214781A 2012-09-27 2012-09-27 Liquid sucking method, and solid phase washing method using the same Pending JP2014070915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214781A JP2014070915A (en) 2012-09-27 2012-09-27 Liquid sucking method, and solid phase washing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214781A JP2014070915A (en) 2012-09-27 2012-09-27 Liquid sucking method, and solid phase washing method using the same

Publications (1)

Publication Number Publication Date
JP2014070915A true JP2014070915A (en) 2014-04-21

Family

ID=50746270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214781A Pending JP2014070915A (en) 2012-09-27 2012-09-27 Liquid sucking method, and solid phase washing method using the same

Country Status (1)

Country Link
JP (1) JP2014070915A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230181A (en) * 2014-06-03 2015-12-21 東ソー株式会社 Suction/discharge nozzle for use in analyzer
JP2016070864A (en) * 2014-10-01 2016-05-09 東ソー株式会社 Liquid discharge nozzle
WO2019159626A1 (en) * 2018-02-16 2019-08-22 株式会社日立ハイテクノロジーズ Automated analysis device, automated analysis system, and analysis method
WO2019163431A1 (en) * 2018-02-20 2019-08-29 株式会社日立ハイテクノロジーズ Automated analysis device
CN114515733A (en) * 2022-01-29 2022-05-20 厦门先明生物技术有限公司 Hair washing device of solid-phase microporous reactor and using method
WO2023032269A1 (en) * 2021-09-01 2023-03-09 株式会社島津製作所 Pretreatment device and pretreatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223760A (en) * 1982-06-22 1983-12-26 Union Giken:Kk Driving method of flushing nozzle
JPH0862215A (en) * 1994-08-24 1996-03-08 Toshiba Corp Sucking apparatus in b/f separation
JPH1138017A (en) * 1997-07-17 1999-02-12 Aloka Co Ltd Nozzle mechanism
JP2004184407A (en) * 2002-11-14 2004-07-02 Ortho Clinical Diagnostics Inc Cleaning method for removing unwanted element in analytical sample
WO2008035777A1 (en) * 2006-09-22 2008-03-27 Fujifilm Corporation Liquid suction device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223760A (en) * 1982-06-22 1983-12-26 Union Giken:Kk Driving method of flushing nozzle
JPH0862215A (en) * 1994-08-24 1996-03-08 Toshiba Corp Sucking apparatus in b/f separation
JPH1138017A (en) * 1997-07-17 1999-02-12 Aloka Co Ltd Nozzle mechanism
JP2004184407A (en) * 2002-11-14 2004-07-02 Ortho Clinical Diagnostics Inc Cleaning method for removing unwanted element in analytical sample
WO2008035777A1 (en) * 2006-09-22 2008-03-27 Fujifilm Corporation Liquid suction device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230181A (en) * 2014-06-03 2015-12-21 東ソー株式会社 Suction/discharge nozzle for use in analyzer
JP2016070864A (en) * 2014-10-01 2016-05-09 東ソー株式会社 Liquid discharge nozzle
WO2019159626A1 (en) * 2018-02-16 2019-08-22 株式会社日立ハイテクノロジーズ Automated analysis device, automated analysis system, and analysis method
WO2019163431A1 (en) * 2018-02-20 2019-08-29 株式会社日立ハイテクノロジーズ Automated analysis device
JP2019144095A (en) * 2018-02-20 2019-08-29 株式会社日立ハイテクノロジーズ Autoanalyzer
US11761972B2 (en) 2018-02-20 2023-09-19 Hitachi High-Tech Corporation Automated analysis device
WO2023032269A1 (en) * 2021-09-01 2023-03-09 株式会社島津製作所 Pretreatment device and pretreatment method
CN114515733A (en) * 2022-01-29 2022-05-20 厦门先明生物技术有限公司 Hair washing device of solid-phase microporous reactor and using method
CN114515733B (en) * 2022-01-29 2023-07-07 厦门先明生物技术有限公司 Hair washing device of solid-phase micropore reactor and use method

Similar Documents

Publication Publication Date Title
JP3115501B2 (en) Method for controlling desorption of magnetic material using dispenser and various devices processed by this method
JP2014070915A (en) Liquid sucking method, and solid phase washing method using the same
CN101324631B (en) Sample analyzer and sample analyzing method
JP4938082B2 (en) Cleaning device, suction nozzle clogging detection method, and automatic analyzer
CA2737955A1 (en) Automated diagnostic analyzer and method
US20090009757A1 (en) Cuvette
US20080206099A1 (en) Magnetic separator and analyzer using the same
JP4938083B2 (en) Cleaning device, cleaning nozzle clogging detection method, and automatic analyzer
CN107206382B (en) Method and apparatus for providing reduced carryover during pipetting operations
JP2012083227A (en) Specimen analyzer
JP2013145211A (en) Analyzer
JP2011013043A (en) Magnetic particle transfer device and magnetic particle transfer method
WO2014088004A1 (en) Automatic analysis device
JP2012127756A (en) Analyzer and analysis method
CN210293858U (en) Magnetic separation cleaning device
CN107206383B (en) Pipette cleaning method and apparatus, neutralizing liquid container, and method of reducing residue
JP4422658B2 (en) Liquid dispensing device
JP3853407B2 (en) Automatic immunological analyzer
JP4509473B2 (en) Liquid dispensing method and apparatus
JP2013217882A (en) Reagent stirring mechanism and autoanalyzer
JP3739953B2 (en) Qualitative / quantitative analysis method using dispenser and various devices processed by this method
US9664675B2 (en) Automated analyzer
JP4060468B2 (en) Magnetic body desorption control method using a dispenser and various devices processed by this method
JP2011137785A (en) Analyzer
JPH0829424A (en) Immunological analyzing method and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404