JP2014065699A - Method for producing cyclic siloxane compound, and disiloxane compound - Google Patents

Method for producing cyclic siloxane compound, and disiloxane compound Download PDF

Info

Publication number
JP2014065699A
JP2014065699A JP2012252735A JP2012252735A JP2014065699A JP 2014065699 A JP2014065699 A JP 2014065699A JP 2012252735 A JP2012252735 A JP 2012252735A JP 2012252735 A JP2012252735 A JP 2012252735A JP 2014065699 A JP2014065699 A JP 2014065699A
Authority
JP
Japan
Prior art keywords
general formula
divinyldisiloxane
acid
compound
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012252735A
Other languages
Japanese (ja)
Other versions
JP6131575B2 (en
Inventor
Teppei Hayakawa
哲平 早川
Kazuhisa Kono
和久 河野
Yoichi Chiba
洋一 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012252735A priority Critical patent/JP6131575B2/en
Publication of JP2014065699A publication Critical patent/JP2014065699A/en
Application granted granted Critical
Publication of JP6131575B2 publication Critical patent/JP6131575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently producing, from dialkoxy alkyl vinyl silane compounds, cyclic tetramers, particularly, 2,4,6,8-tetraalkyl-2,4,6,8-tetravinylcyclotetrasiloxane.SOLUTION: A cyclic siloxane compound represented by the specified general formula (3) is produced by reacting a dialkoxy alkyl vinyl silane compound with water in the coexistence of an acid or a base to produce a disiloxane compound, and then reacting it in the coexistence of an acid or a base.

Description

本発明は、効率よく製造できる環状シロキサン化合物の製造方法および該製造方法における中間体であるジシロキサン化合物に関するものである。   The present invention relates to a method for producing a cyclic siloxane compound that can be produced efficiently, and a disiloxane compound that is an intermediate in the production method.

近年の半導体素子の高集積化に伴い、LSI配線として従来のAlから低抵抗でマイグレーション耐性に優れるCuが用いられるようになり、一方で層間絶縁膜としては従来の酸化シリコン膜(SiO膜)から、より低誘電率の層関絶縁膜(Low−k膜)が検討されている。 With the recent high integration of semiconductor elements, Cu, which has low resistance and excellent migration resistance, has been used as an LSI wiring from conventional Al, while a conventional silicon oxide film (SiO 2 film) is used as an interlayer insulating film. Therefore, a layered dielectric film (Low-k film) having a lower dielectric constant has been studied.

現在、層間絶縁膜の形成方法としては、プラズマ化学気相成長法(PECVD法)が主に用いられている。これまでに環状シロキサンを、分子内ポアを有する前駆体(プレカーサー)として用いて、低k値の膜を成膜する検討がなされている。例えば蒸気圧が低い環状シロキサン化合物に、重合基であるビニル基を結合させることで、成膜速度を速くすることに成功している(例えば特許文献1参照)。   At present, plasma chemical vapor deposition (PECVD) is mainly used as a method for forming an interlayer insulating film. So far, studies have been made to form a film having a low k value using cyclic siloxane as a precursor (precursor) having an intramolecular pore. For example, it has succeeded in increasing the film-forming speed | rate by combining the vinyl group which is a polymeric group with the cyclic siloxane compound with a low vapor pressure (for example, refer patent document 1).

前述の環状シロキサン化合物において、PECVD法のプレカーサーとして最適な環サイズは、低k値を達成できること、および蒸気圧を考慮すると6員環または8員環である。蒸気圧の面では分子量の小さい6員環が好ましいが、低k値に寄与する分子内ポアの大きさを考慮すると8員環が好ましい。特許文献1においてジアルコキシアルキルビニルシラン化合物を原料とし、6員環の環状シロキサン化合物を得る方法は記載されているが、効率よく製造できる8員環の環状シロキサン化合物の製造方法については見出されていない。   In the cyclic siloxane compound described above, the optimum ring size as a precursor for the PECVD method is a 6-membered ring or an 8-membered ring in consideration of the ability to achieve a low k value and vapor pressure. In terms of vapor pressure, a 6-membered ring having a small molecular weight is preferable, but an 8-membered ring is preferable in consideration of the size of an intramolecular pore contributing to a low k value. Patent Document 1 describes a method of obtaining a 6-membered cyclic siloxane compound using a dialkoxyalkylvinylsilane compound as a raw material, but has found a method for producing an 8-membered cyclic siloxane compound that can be efficiently produced. Absent.

特開2005−51192号公報JP 2005-51192 A

本発明はジアルコキシアルキルビニルシラン化合物から8員環環状シロキサン、特に2,4,6,8−テトラアルキル−2,4,6,8−テトラビニルシクロテトラシロキサンを効率的に製造する方法を提供することを目的とする。   The present invention provides a method for efficiently producing 8-membered cyclic siloxanes, especially 2,4,6,8-tetraalkyl-2,4,6,8-tetravinylcyclotetrasiloxane, from dialkoxyalkylvinylsilane compounds. For the purpose.

本発明者らは、ジアルコキシアルキルビニルシラン化合物を酸または塩基共存下、水と反応させることで一旦ジシロキサン化合物を製造し、次いで水層を除去して非水条件下としたのち、酸または塩基を添加し反応させることで、目的のシクロテトラシロキサン化合物が効率的に得られることを見出し、本発明を完成するにいたった。   The inventors of the present invention once produced a disiloxane compound by reacting a dialkoxyalkylvinylsilane compound with water in the presence of an acid or a base, and then removed the aqueous layer to obtain non-aqueous conditions. It was found that the target cyclotetrasiloxane compound can be efficiently obtained by adding and reacting, and the present invention was completed.

すなわち本発明は、以下のとおりである。
[1]下記一般式(1)
That is, the present invention is as follows.
[1] The following general formula (1)

Figure 2014065699
Figure 2014065699

(式中、R、Rは炭素数1〜3の直鎖または分岐鎖のアルキル基を示す。)で表されるジアルコキシアルキルビニルシラン化合物を、酸または塩基の共存下、水と反応させることにより、下記一般式(2) (Wherein R 1 and R 2 represent a linear or branched alkyl group having 1 to 3 carbon atoms), and the dialkoxyalkylvinylsilane compound represented by the above is reacted with water in the presence of an acid or a base. The following general formula (2)

Figure 2014065699
Figure 2014065699

(式中、Rは一般式(1)に同じ。R、Rは一般式(1)のRに同じかまたは水素原子を示す。)で表されるジシロキサン化合物を製造し、次いで、いったん水層を除去した後、一般式(2)で表されるジシロキサン化合物を酸または塩基の共存下、反応させることを特徴とする、下記一般式(3) (Wherein R 1 is the same as in general formula (1). R 3 and R 4 are the same as or in the hydrogen atom in R 2 of general formula (1)). Next, once the aqueous layer is removed, the disiloxane compound represented by the general formula (2) is reacted in the presence of an acid or a base, and the following general formula (3)

Figure 2014065699
Figure 2014065699

(式中、Rは一般式(1)に同じ。)で表される環状シロキサン化合物の製造方法。
[2]一般式(1)で表されるジアルコキシアルキルビニルシラン化合物を酸または塩基の共存下、水と反応させる際の反応温度が−50〜25℃であることを特徴とする上述の[1]に記載の製造方法。
[3]一般式(2)で表されるジシロキサン化合物を酸または塩基の共存下、反応させる反応時間が30分(0.5時間)以上、1ヶ月(720時間)以下であることを特徴とする上述の[1]または[2]に記載の製造方法。
[4]酸として硫酸の共存下に反応を行うことを特徴とする上述の[1]〜[3]のいずれかに記載の製造方法。
[5]Rがイソプロピル基、Rがメチル基、RおよびRがメチル基または水素原子であることを特徴とする上述の[1]〜[4]のいずれかに記載の製造方法。
[6]上述の[1]〜[5]のいずれかに記載の製造方法により製造された環状シロキサン化合物を材料として用いることを特徴とする絶縁膜。
[7]下記一般式(2)で表されることを特徴とするジシロキサン化合物。
(Wherein R 1 is the same as in general formula (1)).
[2] The above-mentioned [1], wherein the reaction temperature when the dialkoxyalkylvinylsilane compound represented by the general formula (1) is reacted with water in the presence of an acid or a base is −50 to 25 ° C. ] The manufacturing method of description.
[3] The reaction time for reacting the disiloxane compound represented by the general formula (2) in the presence of an acid or a base is 30 minutes (0.5 hours) or longer and 1 month (720 hours) or shorter. The production method according to [1] or [2] above.
[4] The production method according to any one of [1] to [3], wherein the reaction is performed in the presence of sulfuric acid as an acid.
[5] The production method according to any one of the above [1] to [4], wherein R 1 is an isopropyl group, R 2 is a methyl group, R 3 and R 4 are a methyl group or a hydrogen atom. .
[6] An insulating film characterized in that a cyclic siloxane compound produced by the production method according to any one of [1] to [5] above is used as a material.
[7] A disiloxane compound represented by the following general formula (2).

Figure 2014065699
Figure 2014065699

(式中、Rは一般式(1)に同じ。R、Rは一般式(1)のRに同じかまたは水素原子を示す。)
以下、本発明をさらに詳細に説明する。
(In the formula, R 1 is the same as in general formula (1). R 3 and R 4 are the same as R 2 in general formula (1) or a hydrogen atom.)
Hereinafter, the present invention will be described in more detail.

本発明において、一般式(1)におけるR、Rは炭素数1〜3の直鎖または分岐鎖のアルキル基を示し、具体的には例えばメチル基、エチル基、ノルマルプロピル基、イソプロピル基等が挙げられる。また、R、Rは上記Rと同じかまたは水素原子を示す。これらの中でも、最終目的物である一般式(3)で表される環状シロキサン化合物の収率の観点から、好ましくはRがイソプロピル基、Rがメチル基、R、Rはメチル基または水素原子である。 In the present invention, R 1 and R 2 in the general formula (1) represent a linear or branched alkyl group having 1 to 3 carbon atoms, and specifically include, for example, a methyl group, an ethyl group, a normal propyl group, and an isopropyl group. Etc. R 3 and R 4 are the same as R 2 or a hydrogen atom. Among these, from the viewpoint of the yield of the cyclic siloxane compound represented by the general formula (3), which is the final target product, R 1 is preferably an isopropyl group, R 2 is a methyl group, R 3 and R 4 are methyl groups. Or it is a hydrogen atom.

具体的な一般式(1)で表されるジアルコキシアルキルビニルシラン化合物としては、例えばジメトキシメチルビニルシラン、ジメトキシエチルビニルシラン、ジメトキシプロピルビニルシラン、ジメトキシイソプロピルビニルシラン、ジエトキシメチルビニルシラン、ジエトキシエチルビニルシラン、ジエトキシプロピルビニルシラン、ジエトキシイソプロピルビニルシラン、ジプロポキシメチルビニルシラン、ジプロポキシエチルビニルシラン、ジプロポキシプロピルビニルシラン、ジプロポキシイソプロピルビニルシラン、ジイソプロポキシメチルビニルシラン、ジイソプロポキシエチルビニルシラン、ジイソプロポキシプロピルビニルシラン、ジイソプロポキシイソプロピルビニルシラン等が挙げられる。   Specific examples of the dialkoxyalkylvinylsilane compound represented by the general formula (1) include dimethoxymethylvinylsilane, dimethoxyethylvinylsilane, dimethoxypropylvinylsilane, dimethoxyisopropylvinylsilane, diethoxymethylvinylsilane, diethoxyethylvinylsilane, diethoxypropyl. Vinylsilane, diethoxyisopropylvinylsilane, dipropoxymethylvinylsilane, dipropoxyethylvinylsilane, dipropoxypropylvinylsilane, dipropoxyisopropylvinylsilane, diisopropoxymethylvinylsilane, diisopropoxyethylvinylsilane, diisopropoxypropylvinylsilane, diisopropoxyisopropylvinylsilane Etc.

上記一般式(1)で表されるジアルコキシアルキルビニルシラン化合物を酸または塩基の共存下、水と反応させて、下記一般式(2)で表されるジシロキサン化合物を製造する。   The dialkoxyalkylvinylsilane compound represented by the general formula (1) is reacted with water in the presence of an acid or a base to produce a disiloxane compound represented by the following general formula (2).

Figure 2014065699
Figure 2014065699

(式中、Rは一般式(1)に同じ。R、Rは一般式(1)のRに同じかまたは水素原子を示す。)
一般式(2)におけるRは一般式(1)に同じであり、R、Rは一般式(1)のRに同じかまたは水素原子を示し、好ましくはRがイソプロピル基、R、Rはメチル基または水素原子である。
(In the formula, R 1 is the same as in general formula (1). R 3 and R 4 are the same as R 2 in general formula (1) or a hydrogen atom.)
R 1 in the general formula (2) is the same as that in the general formula (1), R 3 and R 4 are the same as R 2 in the general formula (1) or a hydrogen atom, and preferably R 1 is an isopropyl group, R 3 and R 4 are a methyl group or a hydrogen atom.

具体的な一般式(2)で表される化合物としては、例えば1,3−ジヒドロキシ−1,3−ジメチル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−メトキシ−1,3−ジメチル−1,3−ジビニルジシロキサン、1−エトキシ−3−ヒドロキシ−1,3−ジメチル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−プロポキシ−1,3−ジメチル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−イソプロポキシ−1,3−ジメチル−1,3−ジビニルジシロキサン、1,3−ジメトキシ−1,3−ジメチル−1,3−ジビニルジシロキサン、1,3−ジエトキシ−1,3−ジメチル−1,3−ジビニルジシロキサン、1,3−ジプロポキシ−1,3−ジメチル−1,3−ジビニルジシロキサン、1,3−ジイソプロポキシ−1,3−ジメチル−1,3−ジビニルジシロキサン、1,3−ジヒドロキシ−1,3−ジエチル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−メトキシ−1,3−ジエチル−1,3−ジビニルジシロキサン、1−エトキシ−3−ヒドロキシ−1,3−ジエチル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−プロポキシ−1,3−ジエチル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−イソプロポキシ−1,3−ジエチル−1,3−ジビニルジシロキサン、1,3−ジメトキシ−1,3−ジエチル−1,3−ジビニルジシロキサン、1,3−ジエトキシ−1,3−ジエチル−1,3−ジビニルジシロキサン、1,3−ジプロポキシ−1,3−ジエチル−1,3−ジビニルジシロキサン、1,3−ジイソプロポキシ−1,3−ジエチル−1,3−ジビニルジシロキサン、1,3−ジヒドロキシ−1,3−ジプロピル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−メトキシ−1,3−ジプロピル−1,3−ジビニルジシロキサン、1−エトキシ−3−ヒドロキシ−1,3−ジプロピル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−プロポキシ−1,3−ジ−n−プロピル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−イソプロポキシ−1,3−ジプロピル−1,3−ジビニルジシロキサン、1,3−ジメトキシ−1,3−ジプロピル−1,3−ジビニルジシロキサン、1,3−ジエトキシ−1,3−ジプロピル−1,3−ジビニルジシロキサン、1,3−ジプロポキシ−1,3−ジプロピル−1,3−ジビニルジシロキサン、1,3−ジイソプロポキシ−1,3−ジプロピル−1,3−ジビニルジシロキサン、1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−メトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1−エトキシ−3−ヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−プロポキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1−ヒドロキシ−3−イソプロポキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1,3−ジメトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1,3−ジエトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1,3−ジプロポキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1,3−ジイソプロポキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン等が挙げられる。   Specific examples of the compound represented by the general formula (2) include 1,3-dihydroxy-1,3-dimethyl-1,3-divinyldisiloxane and 1-hydroxy-3-methoxy-1,3-dimethyl. -1,3-divinyldisiloxane, 1-ethoxy-3-hydroxy-1,3-dimethyl-1,3-divinyldisiloxane, 1-hydroxy-3-propoxy-1,3-dimethyl-1,3-divinyl Disiloxane, 1-hydroxy-3-isopropoxy-1,3-dimethyl-1,3-divinyldisiloxane, 1,3-dimethoxy-1,3-dimethyl-1,3-divinyldisiloxane, 1,3- Diethoxy-1,3-dimethyl-1,3-divinyldisiloxane, 1,3-dipropoxy-1,3-dimethyl-1,3-divinyldisiloxane, 1,3-diisopropyl Xi-1,3-dimethyl-1,3-divinyldisiloxane, 1,3-dihydroxy-1,3-diethyl-1,3-divinyldisiloxane, 1-hydroxy-3-methoxy-1,3-diethyl- 1,3-divinyldisiloxane, 1-ethoxy-3-hydroxy-1,3-diethyl-1,3-divinyldisiloxane, 1-hydroxy-3-propoxy-1,3-diethyl-1,3-divinyldi Siloxane, 1-hydroxy-3-isopropoxy-1,3-diethyl-1,3-divinyldisiloxane, 1,3-dimethoxy-1,3-diethyl-1,3-divinyldisiloxane, 1,3-diethoxy -1,3-diethyl-1,3-divinyldisiloxane, 1,3-dipropoxy-1,3-diethyl-1,3-divinyldisiloxane, 1,3-diiso Roxy-1,3-diethyl-1,3-divinyldisiloxane, 1,3-dihydroxy-1,3-dipropyl-1,3-divinyldisiloxane, 1-hydroxy-3-methoxy-1,3-dipropyl- 1,3-divinyldisiloxane, 1-ethoxy-3-hydroxy-1,3-dipropyl-1,3-divinyldisiloxane, 1-hydroxy-3-propoxy-1,3-di-n-propyl-1, 3-divinyldisiloxane, 1-hydroxy-3-isopropoxy-1,3-dipropyl-1,3-divinyldisiloxane, 1,3-dimethoxy-1,3-dipropyl-1,3-divinyldisiloxane, , 3-Diethoxy-1,3-dipropyl-1,3-divinyldisiloxane, 1,3-dipropoxy-1,3-dipropyl-1,3-divinyldisi Loxane, 1,3-diisopropoxy-1,3-dipropyl-1,3-divinyldisiloxane, 1,3-dihydroxy-1,3-diisopropyl-1,3-divinyldisiloxane, 1-hydroxy-3- Methoxy-1,3-diisopropyl-1,3-divinyldisiloxane, 1-ethoxy-3-hydroxy-1,3-diisopropyl-1,3-divinyldisiloxane, 1-hydroxy-3-propoxy-1,3- Diisopropyl-1,3-divinyldisiloxane, 1-hydroxy-3-isopropoxy-1,3-diisopropyl-1,3-divinyldisiloxane, 1,3-dimethoxy-1,3-diisopropyl-1,3-divinyl Disiloxane, 1,3-diethoxy-1,3-diisopropyl-1,3-divinyldisiloxane, 1,3-dip Epoxy-1,3-diisopropyl-1,3-divinyl disiloxane, 1,3-diisopropoxy-1,3-diisopropyl-1,3-divinyl disiloxane and the like.

反応の際、一般式(1)で表されるジアルコキシアルキルビニルシラン化合物の反応溶媒中の濃度は特に限定されるものではなく、水層との分層性および製造効率を考慮すると0.01mol/l以上が好ましく、0.1〜10mol/lが特に好ましい。   During the reaction, the concentration of the dialkoxyalkylvinylsilane compound represented by the general formula (1) in the reaction solvent is not particularly limited, and is 0.01 mol / in consideration of the separation property with the aqueous layer and the production efficiency. l or more is preferable, and 0.1-10 mol / l is especially preferable.

用いる酸または塩基は特に限定されるものではなく、例えば、塩酸、硫酸、硝酸等の無機酸;トルエンスルホン酸等の有機酸;水酸化カリウム、水酸化ナトリウム等の無機塩基;ジエチルアミン等の有機塩基を用いることができる。これらの中でも、最終目的物である一般式(3)で表される環状シロキサン化合物の収率の観点から、無機酸が好ましく特に硫酸が好ましい。   The acid or base to be used is not particularly limited. For example, inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; organic acids such as toluenesulfonic acid; inorganic bases such as potassium hydroxide and sodium hydroxide; organic bases such as diethylamine Can be used. Among these, from the viewpoint of the yield of the cyclic siloxane compound represented by the general formula (3) which is the final target product, an inorganic acid is preferable, and sulfuric acid is particularly preferable.

酸または塩基の添加量は、特に限定されるものではなく、収率の観点からジアルコキシアルキルビニルシラン化合物1モルに対し0.01〜10mol当量が好ましく、0.1〜1mol当量が特に好ましい。   The addition amount of the acid or base is not particularly limited, and is preferably 0.01 to 10 mol equivalents and particularly preferably 0.1 to 1 mol equivalents with respect to 1 mol of the dialkoxyalkylvinylsilane compound from the viewpoint of yield.

反応温度は、一般式(1)で表されるジアルコキシアルキルビニルシラン化合物の濃度との兼ね合いによるので特に限定されるものではなく、−50〜25℃の範囲が好ましく、−20〜0℃の範囲が特に好ましい。   The reaction temperature is not particularly limited because it depends on the concentration of the dialkoxyalkylvinylsilane compound represented by the general formula (1), and is preferably in the range of −50 to 25 ° C., and in the range of −20 to 0 ° C. Is particularly preferred.

反応時間は上述の酸または塩基の添加量および反応温度との兼ね合いにより、特に限定されるものではなく、0.5〜10時間が好ましく、0.5〜6時間が特に好ましい。   The reaction time is not particularly limited depending on the balance between the amount of acid or base added and the reaction temperature, and is preferably 0.5 to 10 hours, particularly preferably 0.5 to 6 hours.

反応の際に、反応溶媒を使用してもよく、または使用せずに無溶媒系でもよい。反応溶媒を使用する場合、その種類は特に限定されるものではなく、例えばn−ペンタン、i−ペンタン、n−ヘキサン、シクロヘキサン、n−ヘプタン、n−デカン等の飽和炭化水素類;トルエン、キシレン、デセン等の不飽和炭化水素類;ジエチルエーテル、ジプロピルエーテル、tert−ブチルメチルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル等のエーテル類;またはこれらの混合溶媒も使用することができる。これらの中でも水層との分層性を考慮すると飽和炭化水素類が望ましい。   In the reaction, a reaction solvent may be used, or a solventless system may be used without using it. When using a reaction solvent, the kind is not specifically limited, For example, saturated hydrocarbons, such as n-pentane, i-pentane, n-hexane, cyclohexane, n-heptane, n-decane; Toluene, xylene , Unsaturated hydrocarbons such as decene; ethers such as diethyl ether, dipropyl ether, tert-butyl methyl ether, dibutyl ether, cyclopentyl methyl ether; or a mixed solvent thereof can also be used. Among these, saturated hydrocarbons are desirable in view of the layer separation with the aqueous layer.

次に、一般式(2)で表されるジシロキサン化合物を製造した後、いったん水層を除去した後、一般式(2)で表されるジシロキサン化合物を酸または塩基の共存下、反応させ下記一般式(3)で表される環状シロキサン化合物を製造する。   Next, after manufacturing the disiloxane compound represented by the general formula (2), once removing the aqueous layer, the disiloxane compound represented by the general formula (2) is reacted in the presence of an acid or a base. A cyclic siloxane compound represented by the following general formula (3) is produced.

Figure 2014065699
Figure 2014065699

(式中、Rは一般式(1)に同じ。)
一般式(3)におけるRは一般式(1)に同じであり、好ましくはRがイソプロピル基である。
(In the formula, R 1 is the same as in general formula (1).)
R 1 in the general formula (3) is the same as that in the general formula (1), and preferably R 1 is an isopropyl group.

具体的な一般式(3)で表される化合物としては、例えば2,4,6,8−テトラメチル−2,4,6,8−テトラビニルシクロテトラシロキサン、2,4,6,8−テトラエチル−2,4,6,8−テトラビニルシクロテトラシロキサン、2,4,6,8−テトラプロピル−2,4,6,8−テトラビニルシクロテトラシロキサン、2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサン等が挙げられる。   Specific examples of the compound represented by the general formula (3) include 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6,8- Tetraethyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6,8-tetrapropyl-2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6,8-tetra Examples include isopropyl-2,4,6,8-tetravinylcyclotetrasiloxane.

一般式(2)で表される化合物の濃度は、0.01mol/l以上が好ましく、0.1〜10mol/lが特に好ましい。   The concentration of the compound represented by the general formula (2) is preferably 0.01 mol / l or more, particularly preferably 0.1 to 10 mol / l.

用いられる酸または塩基は、前述の一般式(2)で表されるジシロキサン化合物製造に用いられる酸または塩基と同様のものを例示することができる。   Examples of the acid or base used include the same acids or bases used for producing the disiloxane compound represented by the general formula (2).

酸または塩基の濃度は、特に限定されるものではなく、収率の観点からジアルコキシアルキルビニルシラン化合物に対し0.01〜10mol当量が好ましく、0.1〜0.5mol当量が特に好ましい。   The concentration of the acid or base is not particularly limited, and is preferably 0.01 to 10 mol equivalents, particularly preferably 0.1 to 0.5 mol equivalents with respect to the dialkoxyalkylvinylsilane compound from the viewpoint of yield.

また、反応温度は10〜200℃の範囲が好ましく、反応時間は30分(0.5時間)以上、1ヶ月(720時間)以下が好ましく、特に好ましくは1時間以上、24時間以下である。   The reaction temperature is preferably in the range of 10 to 200 ° C., and the reaction time is preferably 30 minutes (0.5 hours) or longer and 1 month (720 hours) or shorter, particularly preferably 1 hour or longer and 24 hours or shorter.

反応溶媒は前述の一般式(2)で表されるジシロキサン化合物製造に用いられる溶媒と同様のものを例示することができる。   Examples of the reaction solvent include the same solvents as those used in the production of the disiloxane compound represented by the general formula (2).

このようにして得られた環状シロキサン化合物は、絶縁膜等の分子内ポア前駆体プロセスプリカーサーとして好適である。   The cyclic siloxane compound thus obtained is suitable as an intramolecular pore precursor process precursor for an insulating film or the like.

絶縁膜の製造方法としては、例えばCVD法により環状シロキサン化合物を原料として基板上に薄膜を製造することができる。その場合、環状シロキサン化合物の供給方法としては、加熱した環状シロキサン化合物に不活性キャリアガスを導入し、キャリアガスに同伴させて基板の置かれた反応槽に導く方法、環状シロキサン化合物または有機溶媒に環状シロキサン化合物を溶かした溶液を気化器に送って気化器内でガス化して基板の置かれた反応槽に導く方法等がある。   As a method for manufacturing the insulating film, for example, a thin film can be manufactured on a substrate by using a cyclic siloxane compound as a raw material by a CVD method. In that case, as a method for supplying the cyclic siloxane compound, an inert carrier gas is introduced into the heated cyclic siloxane compound, and the carrier gas is entrained in the reaction vessel where the substrate is placed. There is a method in which a solution in which a cyclic siloxane compound is dissolved is sent to a vaporizer, gasified in the vaporizer, and led to a reaction vessel on which a substrate is placed.

有機溶媒に溶かして溶液として用いる場合、有機溶媒としては、例えば、メタノール、エタノール、イソプロパノ−ル等のアルコール類;酢酸エチル、酢酸ブチル、酢酸イソアミル等のエステル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類;グライム、ジグライム、トリグライム、テトラヒドロフラン等のエーテル類;メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類;等が挙げられ、特に限定されるものではない。   When used as a solution by dissolving in an organic solvent, examples of the organic solvent include alcohols such as methanol, ethanol and isopropanol; esters such as ethyl acetate, butyl acetate and isoamyl acetate; ethylene glycol monomethyl ether and ethylene glycol mono Glycol ethers such as ethyl ether and ethylene glycol monobutyl ether; ethers such as glyme, diglyme, triglyme and tetrahydrofuran; methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, etc. Ketones; hydrocarbons such as hexane, cyclohexane, heptane, octane, toluene, xylene; and the like, and the like are not particularly limited.

また、CVD法としては熱CVD、プラズマCVD、光CVD等一般に使用されるCVD法であれば特に限定されない。塗布熱分解法の原料塗布方法としては例えばスピンコート法、ディップ法、噴霧法等が挙げられ、加熱方法としてはオーブン、ホットプレート等が使用できるが、塗布方法、加熱方法およびその組み合せは特に限定されない。   The CVD method is not particularly limited as long as it is a commonly used CVD method such as thermal CVD, plasma CVD, or photo CVD. Examples of the raw material coating method of the coating pyrolysis method include a spin coating method, a dip method, a spraying method, and the like. As a heating method, an oven, a hot plate, or the like can be used. Not.

このように得られた絶縁膜は、層間絶縁膜(Low−k膜)として優れたものであり、k値は2〜3が好ましく、特に好ましくは2.5〜2.9である。   The insulating film thus obtained is excellent as an interlayer insulating film (Low-k film), and the k value is preferably 2 to 3, particularly preferably 2.5 to 2.9.

本発明により、特に8員環構造を有する2,4,6,8−テトラアルキル−2,4,6,8−テトラビニルシクロテトラシロキサン化合物を、ジアルコキシアルキルビニルシランを原料に用いて、効率的に製造することができる。この8員環構造を有する環状シロキサン化合物は、分子内ポア前駆体プロセスのプレカーサーとして有用である、   According to the present invention, a 2,4,6,8-tetraalkyl-2,4,6,8-tetravinylcyclotetrasiloxane compound having an 8-membered ring structure can be efficiently produced using dialkoxyalkylvinylsilane as a raw material. Can be manufactured. The cyclic siloxane compound having this 8-membered ring structure is useful as a precursor for an intramolecular pore precursor process.

実施例2における2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンへの転換率の経時変化を示す図である。FIG. 3 is a graph showing the change over time in the conversion rate to 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane in Example 2. 実施例2における2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンの収率の経時変化を示す図である。FIG. 4 is a graph showing the change over time in the yield of 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane in Example 2. 実施例3における2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンへの転換率の経時変化を示す図である。6 is a graph showing the change over time in the conversion rate to 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane in Example 3. FIG. 実施例3における2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンの収率の経時変化を示す図である。FIG. 4 is a graph showing the change over time in the yield of 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane in Example 3. 実施例4の膜を製造した装置Apparatus for producing the membrane of Example 4 実施例5で得られた1,3−ジメトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンのマススペクトル測定結果である。4 is a mass spectrum measurement result of 1,3-dimethoxy-1,3-diisopropyl-1,3-divinyldisiloxane obtained in Example 5. FIG. 実施例5で得られた1−メトキシ−3−ヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンのマススペクトル測定結果である。4 is a mass spectrum measurement result of 1-methoxy-3-hydroxy-1,3-diisopropyl-1,3-divinyldisiloxane obtained in Example 5. FIG. 実施例5で得られた1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンのマススペクトル測定結果である。4 is a mass spectrum measurement result of 1,3-dihydroxy-1,3-diisopropyl-1,3-divinyldisiloxane obtained in Example 5. FIG.

以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these.

(実施例1)
[1,3−ジアルコキシジシロキサンの合成]
不活性雰囲気下、攪拌装置、温度計を備えた100mLの3つ口フラスコに、ジメトキシイソプロピルビニルシラン(一般式(1)の化合物)5.0g(31.4mmol)とヘキサン25mlを仕込み、ドライアイス/エタノールにより内温を−15℃に冷却した。硫酸3.1g(31.4mmol)および水1.7g(94.4mmol)を、内温を−10℃以下に保ったまま滴下し、その後30分間撹拌し、目的の1,3−ジメトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1−メトキシ−3−ヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンおよび1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン(一般式(2)の化合物)が生成していることをGC/MS(EI)で確認した。反応液をGC/MS(EI)で分析した結果は以下の通りであった。
1,3−ジメトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン(C1226Si) m/z:231(イソプロピル基脱離)、
1−メトキシ−3−ヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン(C1124Si) m/z:217(イソプロピル基脱離)、
1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン(C1022Si) m/z:203(イソプロピル基脱離)
1,3−ジメトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1−メトキシ−3−ヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンおよび1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンは単離せず、次工程へ進んだ。
Example 1
[Synthesis of 1,3-dialkoxydisiloxane]
Under an inert atmosphere, a 100 mL three-necked flask equipped with a stirrer and a thermometer was charged with 5.0 g (31.4 mmol) of dimethoxyisopropylvinylsilane (compound of general formula (1)) and 25 ml of hexane, and dried ice / The internal temperature was cooled to -15 ° C with ethanol. 3.1 g (31.4 mmol) of sulfuric acid and 1.7 g (94.4 mmol) of water were added dropwise while maintaining the internal temperature at −10 ° C. or lower, and then stirred for 30 minutes to obtain the desired 1,3-dimethoxy-1 , 3-Diisopropyl-1,3-divinyldisiloxane, 1-methoxy-3-hydroxy-1,3-diisopropyl-1,3-divinyldisiloxane and 1,3-dihydroxy-1,3-diisopropyl-1,3 -It confirmed with GC / MS (EI) that the divinyl disiloxane (compound of General formula (2)) was producing | generating. The result of analyzing the reaction solution by GC / MS (EI) was as follows.
1,3-dimethoxy-1,3-diisopropyl-1,3-divinyldisiloxane (C 12 H 26 O 3 Si 2 ) m / z: 231 (isopropyl group elimination),
1-methoxy-3-hydroxy-1,3-diisopropyl-1,3-divinyldisiloxane (C 11 H 24 O 3 Si 2 ) m / z: 217 (isopropyl group elimination),
1,3-dihydroxy-1,3-diisopropyl-1,3-divinyldisiloxane (C 10 H 22 O 3 Si 2 ) m / z: 203 (isopropyl group elimination)
1,3-dimethoxy-1,3-diisopropyl-1,3-divinyldisiloxane, 1-methoxy-3-hydroxy-1,3-diisopropyl-1,3-divinyldisiloxane and 1,3-dihydroxy-1, The 3-diisopropyl-1,3-divinyldisiloxane was not isolated and proceeded to the next step.

[シクロテトラシロキサンの合成]
上記反応液を分層して水層を除去したのち、硫酸1.5g(0.16mol)を加え、還流条件で1時間撹拌した。反応終了後、硫酸層を除去し、得られた有機層を炭酸水素ナトリウム水溶液で中和し硫酸マグネシウムで乾燥した。ロータリーエバポレーターで溶媒留去したのち、減圧蒸留にて目的の2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサン(一般式(3)の化合物)が主成分(GC面積%:54.0%)の液体が2.6g(2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンの収量:1.4g=2.6g×0.54)得られた。一般式(3)の化合物の収率は39.7%であった。この蒸留精製物をGC/MS(EI)で分析した結果は以下の通りであった。
[Synthesis of cyclotetrasiloxane]
After separating the reaction solution and removing the aqueous layer, 1.5 g (0.16 mol) of sulfuric acid was added, and the mixture was stirred for 1 hour under reflux conditions. After completion of the reaction, the sulfuric acid layer was removed, and the obtained organic layer was neutralized with an aqueous sodium hydrogen carbonate solution and dried over magnesium sulfate. After distilling off the solvent with a rotary evaporator, the desired 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane (compound of general formula (3)) is mainly produced by distillation under reduced pressure. 2.6 g of liquid of component (GC area%: 54.0%) (yield of 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane: 1.4 g = 2) .6 g × 0.54). The yield of the compound of general formula (3) was 39.7%. The results of analysis of this distilled and purified product by GC / MS (EI) were as follows.

2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサン(C2040Si) m/z:370(イソプロピル基2個脱離)
(比較例1)
実施例1において、シクロテトラシロキサンの合成工程で分層・水層除去作業を行わないこと以外は、実施例1と同様の実験を行った。蒸留精製物(液体)は、収量2.6g、目的の2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンは、GC面積%が2.4%であり、極微量しか(2.6g×0.024=0.062g、収率1.7%)生成しなかった。
2,4,6,8 tetraisopropyl 2,4,6,8 tetravinylcyclotetrasiloxane (C 20 H 40 O 4 Si 4) m / z: 370 (2 pieces leaving isopropyl)
(Comparative Example 1)
In Example 1, the same experiment as in Example 1 was performed except that the separation / aqueous layer removal operation was not performed in the cyclotetrasiloxane synthesis step. Distilled purified product (liquid) has a yield of 2.6 g, and the desired 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane has a GC area percentage of 2.4%. There was only a very small amount (2.6 g × 0.024 = 0.062 g, yield 1.7%).

(実施例2)
[シクロテトラシロキサン選択率の向上]
実施例1において、シクロテトラシロキサンの合成工程での反応を、還流条件で6時間撹拌に変更した以外は、実施例1と同様の実験を行った。目的の2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンへの転換率の経時変化をGC分析により確認した。反応終了後、実施例1と同様に処理を行った。一般式(3)の化合物の収率は69.2%であった。結果を図1および図2に示す。
(Example 2)
[Improvement of cyclotetrasiloxane selectivity]
In Example 1, the same experiment as in Example 1 was performed except that the reaction in the synthesis process of cyclotetrasiloxane was changed to stirring for 6 hours under reflux conditions. The time-dependent change in the conversion rate to the desired 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane was confirmed by GC analysis. After completion of the reaction, the same treatment as in Example 1 was performed. The yield of the compound of general formula (3) was 69.2%. The results are shown in FIG. 1 and FIG.

(実施例3)
[シクロテトラシロキサン選択率の向上、室温(25℃)1ヶ月(720時間)]
実施例1において、シクロテトラシロキサンの合成工程での反応を、還流条件で30分撹拌後さらに室温で1ヶ月撹拌に変更した以外は、実施例1と同様の実験を行った。目的の2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンへの転換率の経時変化をGC分析により確認した。反応終了後、実施例1と同様に処理を行った。一般式(3)の化合物の収率は77.0%であった。結果を図3および図4に示す。
(Example 3)
[Improvement of cyclotetrasiloxane selectivity, room temperature (25 ° C.) 1 month (720 hours)]
The same experiment as in Example 1 was performed except that the reaction in the synthesis process of cyclotetrasiloxane in Example 1 was changed to stirring for 1 month at room temperature after stirring for 30 minutes under reflux conditions. The time-dependent change in the conversion rate to the desired 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane was confirmed by GC analysis. After completion of the reaction, the same treatment as in Example 1 was performed. The yield of the compound of general formula (3) was 77.0%. The results are shown in FIG. 3 and FIG.

(実施例4)
[2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンを用いた絶縁膜の製造]
実施例1で得た2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサン(一般式(3)の化合物)が主成分の液体を蒸留精製した2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンを原料として、図5の装置を用いて、原料温度120℃、キャリアガス(He)流量100sccm、原料容器内圧力22Torr、基板温度150℃、反応室内圧力100Paで、電源周波数13.56MHzのRF電源の出力を25Wに設定したPECVD法により、Si基板上に2分成膜を行った。成膜した絶縁膜について日本分光株式会社製のエリプソメーター(型式:MEL−30S)を用いて膜厚を測定したところ約150nmであった。この絶縁膜上に、アルミ電極を蒸着法によって成膜した後、Agilent社製の4284AプレシジョンLCRメータにより25℃、周波数1kHzの静電容量と誘電損失を測定し、比誘電率を計算したところ、k 2.69、tanδ=0.0004であった。測定部分の誘電体の面積は1.01×10−8であった。また、直流電流+40Vの条件でのリーク電流を測定したところ、8.8×10−10A/cmの電流密度であった。
Example 4
[Production of insulating film using 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane]
2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane (compound of general formula (3)) obtained in Example 1 was purified by distillation. Using 4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane as a raw material, using the apparatus of FIG. A film was formed on the Si substrate for 2 minutes by PECVD with a pressure of 22 Torr, a substrate temperature of 150 ° C., a reaction chamber pressure of 100 Pa, and an output of an RF power supply with a power supply frequency of 13.56 MHz set to 25 W. When the film thickness of the formed insulating film was measured using an ellipsometer (model: MEL-30S) manufactured by JASCO Corporation, it was about 150 nm. After forming an aluminum electrode on this insulating film by vapor deposition, the capacitance and dielectric loss at 25 ° C. and a frequency of 1 kHz were measured with an Agilent 4284A Precision LCR meter, and the relative dielectric constant was calculated. k 2.69 and tan δ = 0.0004. The area of the dielectric in the measurement part was 1.01 × 10 −8 m 2 . Further, when the leakage current was measured under the condition of DC current + 40V, the current density was 8.8 × 10 −10 A / cm 2 .

(実施例5)
[1,3−ジメトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1−メトキシ−3−ヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンおよび1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンの合成]
不活性雰囲気下、攪拌装置、温度計を備えた200mLの3つ口フラスコに、ジメトキシイソプロピルビニルシラン15.0g(93.6mmol)、ヘキサン90mlを仕込み、ドライアイス/エタノールにより内温を−20℃に冷却した。硫酸0.97g(9.9mmol)を添加し、水3.51g(195mmol)を内温−15℃以下に保ち30分かけて滴下した。内温を−10℃に保持したまま5時間撹拌後、トリエチルアミン2.7g(26.7mmol)を添加し、水層を除去し有機層を硫酸マグネシウムで乾燥した。ろ過後、ロータリーエバポレーターで溶媒留去したのち、減圧蒸留にて目的の1,3−ジメトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン、1−メトキシ−3−ヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンおよび1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンの混合物である液体2.7gが得られた。この混合物をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=9/1)により精製し、目的化合物である1,3−ジメトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンを0.51g、収率4.0%、1−メトキシ−3−ヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンを1.78g、収率14.6%、1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサンを0.31g、収率2.7%で得た。それぞれの化合物をGC/MS(EI)(図6−8)およびH−NMRで分析した結果は以下の通りであった。
(Example 5)
[1,3-dimethoxy-1,3-diisopropyl-1,3-divinyldisiloxane, 1-methoxy-3-hydroxy-1,3-diisopropyl-1,3-divinyldisiloxane and 1,3-dihydroxy-1 Of 3,3-diisopropyl-1,3-divinyldisiloxane]
In an inert atmosphere, a 200 mL three-necked flask equipped with a stirrer and a thermometer was charged with 15.0 g (93.6 mmol) of dimethoxyisopropylvinylsilane and 90 ml of hexane, and the internal temperature was adjusted to −20 ° C. with dry ice / ethanol. Cooled down. 0.97 g (9.9 mmol) of sulfuric acid was added, and 3.51 g (195 mmol) of water was added dropwise over 30 minutes while maintaining the internal temperature at −15 ° C. or lower. After stirring for 5 hours while maintaining the internal temperature at −10 ° C., 2.7 g (26.7 mmol) of triethylamine was added, the aqueous layer was removed, and the organic layer was dried over magnesium sulfate. After filtration, the solvent was distilled off with a rotary evaporator, and then the desired 1,3-dimethoxy-1,3-diisopropyl-1,3-divinyldisiloxane, 1-methoxy-3-hydroxy-1,3- There were obtained 2.7 g of a liquid which was a mixture of diisopropyl-1,3-divinyldisiloxane and 1,3-dihydroxy-1,3-diisopropyl-1,3-divinyldisiloxane. This mixture was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 9/1), and 1,3-dimethoxy-1,3-diisopropyl-1,3-divinyldisiloxane, which is the target compound, was reduced to a concentration of 0. 51 g, 4.0% yield, 1.78 g 1-methoxy-3-hydroxy-1,3-diisopropyl-1,3-divinyldisiloxane, 14.6% yield, 1,3-dihydroxy-1, 0.31 g of 3-diisopropyl-1,3-divinyldisiloxane was obtained with a yield of 2.7%. The result of having analyzed each compound by GC / MS (EI) (FIGS. 6-8) and 1 H-NMR was as follows.

GC/MS(EI)
1,3−ジメトキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン(C1226Si) m/z:231(イソプロピル基脱離)
1−メトキシ−3−ヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン(C1124Si) m/z:217(イソプロピル基脱離)
1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン(C1022Si) m/z:203(イソプロピル基脱離)
H−NMR(500MHz,CDCl,δppm)
1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン
6.13−5.92(m,6H)、3.53(s,6H)、1.01(d,J=6.5Hz,12H)、0.94−0.87(m,2H)
1−メトキシ−3−ヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン
6.13−5.90(m,6H)、3.52(s,3H)、2.31(s,1H)、1.00(dd,J=6Hz,J=2.5Hz,6H)、1.03(d,J=6Hz,6H)、0.96−0.88(m,2H)
1,3−ジヒドロキシ−1,3−ジイソプロピル−1,3−ジビニルジシロキサン
6.10−5.91(m,6H)、2.40(s,2H)、1.01(d,J=7.5Hz,12H)、0.97−0.89(m,2H)
(参考例1)
[2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンを用いた絶縁膜の製造]
2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンを原料として、図5の装置を用いて、原料温度83℃、キャリアガス(He)流量100sccm、原料容器内圧力22Torr、基板温度150℃、反応室内圧力100Paで、電源周波数13.56MHzのRF電源の出力を25Wに設定したPECVD法により、Si基板上に3分成膜を行った。成膜した絶縁膜について日本分光株式会社製のエリプソメーター(型式:MEL−30S)を用いて膜厚を測定したところ約210nmであった。この絶縁膜上に、アルミ電極を蒸着法によって成膜した後、Agilent社製の4284AプレシジョンLCRメータにより25℃、周波数1kHzの静電容量と誘電損失を測定し、比誘電率を計算したところ、k 2.74、tanδ=0.01であった。測定部分の誘電体の面積は9.88×10−7であった。また、直流電流+40Vの条件でのリーク電流を測定したところ、2.0×10−9A/cmの電流密度であった。
GC / MS (EI)
1,3-dimethoxy-1,3-diisopropyl-1,3-divinyldisiloxane (C 12 H 26 O 3 Si 2 ) m / z: 231 (isopropyl group elimination)
1-methoxy-3-hydroxy-1,3-diisopropyl-1,3-divinyldisiloxane (C 11 H 24 O 3 Si 2 ) m / z: 217 (isolation of isopropyl group)
1,3-dihydroxy-1,3-diisopropyl-1,3-divinyldisiloxane (C 10 H 22 O 3 Si 2 ) m / z: 203 (isopropyl group elimination)
1 H-NMR (500 MHz, CDCl 3 , δ ppm)
1,3-dihydroxy-1,3-diisopropyl-1,3-divinyldisiloxane 6.13-5.92 (m, 6H), 3.53 (s, 6H), 1.01 (d, J = 6 .5Hz, 12H), 0.94-0.87 (m, 2H)
1-methoxy-3-hydroxy-1,3-diisopropyl-1,3-divinyldisiloxane 6.13-5.90 (m, 6H), 3.52 (s, 3H), 2.31 (s, 1H ), 1.00 (dd, J = 6 Hz, J = 2.5 Hz, 6H), 1.03 (d, J = 6 Hz, 6H), 0.96-0.88 (m, 2H)
1,3-dihydroxy-1,3-diisopropyl-1,3-divinyldisiloxane 6.10-5.91 (m, 6H), 2.40 (s, 2H), 1.01 (d, J = 7 .5Hz, 12H), 0.97-0.89 (m, 2H)
(Reference Example 1)
[Production of insulating film using 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane]
Using 2,4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane as a raw material, using the apparatus of FIG. 5, the raw material temperature is 83 ° C., the carrier gas (He) flow rate is 100 sccm, and the raw material container pressure is 22 Torr. A film was formed on the Si substrate for 3 minutes by PECVD with a substrate temperature of 150 ° C., a reaction chamber pressure of 100 Pa, and an RF power output of 13.56 MHz set to 25 W. When the film thickness of the formed insulating film was measured using an ellipsometer (model: MEL-30S) manufactured by JASCO Corporation, it was about 210 nm. After forming an aluminum electrode on this insulating film by vapor deposition, the capacitance and dielectric loss at 25 ° C. and a frequency of 1 kHz were measured with an Agilent 4284A Precision LCR meter, and the relative dielectric constant was calculated. k 2.74, tan δ = 0.01. The area of the dielectric in the measurement portion was 9.88 × 10 −7 m 2 . Further, when the leakage current was measured under the condition of direct current +40 V, it was a current density of 2.0 × 10 −9 A / cm 2 .

実施例4の環状8員環である2,4,6,8−テトライソプロピル−2,4,6,8−テトラビニルシクロテトラシロキサンからなる膜は、参考例1の環状6員環である2,4,6−トリイソプロピル−2,4,6−トリビニルシクロトリシロキサンからなる膜よりも、よりk値が小さく、絶縁膜として好適である。   A film made of 2,4,6,8-tetraisopropyl-2,4,6,8-tetravinylcyclotetrasiloxane, which is a cyclic 8-membered ring of Example 4, is a cyclic 6-membered ring of Reference Example 2 , 4,6-triisopropyl-2,4,6-trivinylcyclotrisiloxane has a smaller k value and is suitable as an insulating film.

1.PECVDチャンバー
2.基板
3.上部電極
4.下部電極
5.恒温槽
6.原料容器
7.真空ポンプ
8.マッチング回路
9.RF電源
10.アース
11.ヒーター
12.マスフローコントローラー
13.ヘリウムガス
1. PECVD chamber Substrate 3. Upper electrode 4. Lower electrode 5. Thermostatic bath 6. 6. Raw material container Vacuum pump 8. 8. Matching circuit RF power supply 10. Earth 11. Heater 12. Mass flow controller 13. Helium gas

Claims (7)

下記一般式(1)
Figure 2014065699
(式中、R、Rは炭素数1〜3の直鎖または分岐鎖のアルキル基を示す。)で表されるジアルコキシアルキルビニルシラン化合物を、酸または塩基の共存下、水と反応させることにより、下記一般式(2)
Figure 2014065699
(式中、Rは一般式(1)に同じ。R、Rは一般式(1)のRに同じかまたは水素原子を示す。)で表されるジシロキサン化合物を製造し、次いで、いったん水層を除去した後、一般式(2)で表されるジシロキサン化合物を酸または塩基の共存下、反応させることを特徴とする、下記一般式(3)
Figure 2014065699
(式中、Rは一般式(1)に同じ。)で表される環状シロキサン化合物の製造方法。
The following general formula (1)
Figure 2014065699
(Wherein R 1 and R 2 represent a linear or branched alkyl group having 1 to 3 carbon atoms), and the dialkoxyalkylvinylsilane compound represented by the above is reacted with water in the presence of an acid or a base. The following general formula (2)
Figure 2014065699
(Wherein R 1 is the same as in general formula (1). R 3 and R 4 are the same as or in the hydrogen atom in R 2 of general formula (1)). Next, once the aqueous layer is removed, the disiloxane compound represented by the general formula (2) is reacted in the presence of an acid or a base, and the following general formula (3)
Figure 2014065699
(Wherein R 1 is the same as in general formula (1)).
一般式(1)で表されるジアルコキシアルキルビニルシラン化合物を酸または塩基の共存下、水と反応させる際の反応温度が−50〜25℃であることを特徴とする請求項1に記載の製造方法。 2. The production according to claim 1, wherein the reaction temperature when the dialkoxyalkylvinylsilane compound represented by the general formula (1) is reacted with water in the presence of an acid or a base is -50 to 25 ° C. Method. 一般式(2)で表されるジシロキサン化合物を酸または塩基の共存下、反応させる反応時間が30分(0.5時間)以上、1ヶ月(720時間)以下であることを特徴とする請求項1又は2に記載の製造方法。 A reaction time for reacting the disiloxane compound represented by the general formula (2) in the presence of an acid or a base is 30 minutes (0.5 hours) or longer and 1 month (720 hours) or shorter. Item 3. The method according to Item 1 or 2. 酸として硫酸の共存下に反応を行うことを特徴とする請求項1〜3のいずれかに記載の製造方法。 The process according to any one of claims 1 to 3, wherein the reaction is carried out in the presence of sulfuric acid as an acid. がイソプロピル基、Rがメチル基、RおよびRがメチル基または水素原子であることを特徴とする請求項1〜4のいずれかに記載の製造方法。 The production method according to claim 1, wherein R 1 is an isopropyl group, R 2 is a methyl group, R 3 and R 4 are a methyl group or a hydrogen atom. 請求項1〜5のいずれかに記載の製造方法により製造された環状シロキサン化合物を材料として用いることを特徴とする絶縁膜。 An insulating film comprising a cyclic siloxane compound produced by the production method according to claim 1 as a material. 下記一般式(2)で表されることを特徴とするジシロキサン化合物。
Figure 2014065699
(式中、Rは一般式(1)に同じ。R、Rは一般式(1)のRに同じかまたは水素原子を示す。)
A disiloxane compound represented by the following general formula (2):
Figure 2014065699
(In the formula, R 1 is the same as in general formula (1). R 3 and R 4 are the same as R 2 in general formula (1) or a hydrogen atom.)
JP2012252735A 2011-12-22 2012-11-16 Method for producing cyclic siloxane compound and disiloxane compound Active JP6131575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012252735A JP6131575B2 (en) 2011-12-22 2012-11-16 Method for producing cyclic siloxane compound and disiloxane compound

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011281382 2011-12-22
JP2011281382 2011-12-22
JP2012198615 2012-09-10
JP2012198615 2012-09-10
JP2012252735A JP6131575B2 (en) 2011-12-22 2012-11-16 Method for producing cyclic siloxane compound and disiloxane compound

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016213486A Division JP6202179B2 (en) 2011-12-22 2016-10-31 Disiloxane compound

Publications (2)

Publication Number Publication Date
JP2014065699A true JP2014065699A (en) 2014-04-17
JP6131575B2 JP6131575B2 (en) 2017-05-24

Family

ID=48668318

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012252735A Active JP6131575B2 (en) 2011-12-22 2012-11-16 Method for producing cyclic siloxane compound and disiloxane compound
JP2016213486A Active JP6202179B2 (en) 2011-12-22 2016-10-31 Disiloxane compound

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016213486A Active JP6202179B2 (en) 2011-12-22 2016-10-31 Disiloxane compound

Country Status (3)

Country Link
JP (2) JP6131575B2 (en)
TW (1) TW201341393A (en)
WO (1) WO2013094421A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941254B2 (en) 2017-01-18 2021-03-09 Sumitomo Chemical Company, Limited Molded article and method of producing the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878300A (en) * 1971-12-30 1973-10-20
JPS4888199A (en) * 1972-02-04 1973-11-19
JPS49124067A (en) * 1973-03-31 1974-11-27
JPH07285974A (en) * 1994-04-18 1995-10-31 Shin Etsu Chem Co Ltd Production of cyclotetrasiloxane
JPH08113649A (en) * 1994-08-25 1996-05-07 Shin Etsu Chem Co Ltd Production of low-molecular-weight silanolated organosiloxane
JPH08239476A (en) * 1995-03-06 1996-09-17 Shin Etsu Chem Co Ltd Production of low-molecular-weight organosilane or siloxane having silanol group
JPH0940681A (en) * 1995-08-01 1997-02-10 Shin Etsu Chem Co Ltd Production of alkoxysiloxane
US6037092A (en) * 1999-08-17 2000-03-14 Xerox Corporation Stabilized fluorosilicone fuser members
JP2005051192A (en) * 2002-11-28 2005-02-24 Tosoh Corp Material for insulating film containing organic silane and organic siloxane compounds, manufacturing method thereof, and semiconductor device
JP2005097443A (en) * 2003-09-25 2005-04-14 Jsr Corp Method for producing film-forming composition, film-forming composition and insulated film-forming material
JP2005120355A (en) * 2003-09-25 2005-05-12 Jsr Corp Composition for forming film, method for forming film, and silica-based film
JP2005120354A (en) * 2003-09-25 2005-05-12 Jsr Corp Manufacturing method of composition for forming film, composition for forming film, and material for forming insulating film
WO2008010591A1 (en) * 2006-07-21 2008-01-24 Nec Corporation Method for forming porous insulating film
JP2008274365A (en) * 2007-05-01 2008-11-13 Shin Etsu Chem Co Ltd MATERIAL FOR FORMING Si-CONTAINING FILM, Si-CONTAINING FILM, MANUFACTURING METHOD THEREFOR, AND SEMICONDUCTOR DEVICE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497812B2 (en) * 2000-10-30 2004-02-16 株式会社デンソー Non-aqueous electrolyte secondary battery using non-aqueous electrolyte

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878300A (en) * 1971-12-30 1973-10-20
JPS4888199A (en) * 1972-02-04 1973-11-19
JPS49124067A (en) * 1973-03-31 1974-11-27
JPH07285974A (en) * 1994-04-18 1995-10-31 Shin Etsu Chem Co Ltd Production of cyclotetrasiloxane
JPH08113649A (en) * 1994-08-25 1996-05-07 Shin Etsu Chem Co Ltd Production of low-molecular-weight silanolated organosiloxane
JPH08239476A (en) * 1995-03-06 1996-09-17 Shin Etsu Chem Co Ltd Production of low-molecular-weight organosilane or siloxane having silanol group
JPH0940681A (en) * 1995-08-01 1997-02-10 Shin Etsu Chem Co Ltd Production of alkoxysiloxane
US6037092A (en) * 1999-08-17 2000-03-14 Xerox Corporation Stabilized fluorosilicone fuser members
JP2005051192A (en) * 2002-11-28 2005-02-24 Tosoh Corp Material for insulating film containing organic silane and organic siloxane compounds, manufacturing method thereof, and semiconductor device
JP2005097443A (en) * 2003-09-25 2005-04-14 Jsr Corp Method for producing film-forming composition, film-forming composition and insulated film-forming material
JP2005120355A (en) * 2003-09-25 2005-05-12 Jsr Corp Composition for forming film, method for forming film, and silica-based film
JP2005120354A (en) * 2003-09-25 2005-05-12 Jsr Corp Manufacturing method of composition for forming film, composition for forming film, and material for forming insulating film
WO2008010591A1 (en) * 2006-07-21 2008-01-24 Nec Corporation Method for forming porous insulating film
JP2008274365A (en) * 2007-05-01 2008-11-13 Shin Etsu Chem Co Ltd MATERIAL FOR FORMING Si-CONTAINING FILM, Si-CONTAINING FILM, MANUFACTURING METHOD THEREFOR, AND SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
JP6202179B2 (en) 2017-09-27
JP2017019872A (en) 2017-01-26
TW201341393A (en) 2013-10-16
JP6131575B2 (en) 2017-05-24
WO2013094421A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
US6572923B2 (en) Asymmetric organocyclosiloxanes and their use for making organosilicon polymer low-k dielectric film
US6440876B1 (en) Low-K dielectric constant CVD precursors formed of cyclic siloxanes having in-ring SI—O—C, and uses thereof
JP5353845B2 (en) Cyclic siloxane compound
JP2008274365A (en) MATERIAL FOR FORMING Si-CONTAINING FILM, Si-CONTAINING FILM, MANUFACTURING METHOD THEREFOR, AND SEMICONDUCTOR DEVICE
JP2009514189A (en) Method for producing low-k dielectric film
WO2012144480A1 (en) Siloxane compound and cured product thereof
WO2004049422A1 (en) Insulating film material containing organic silane or organic siloxane compound, method for producing same, and semiconductor device
JP2017511308A (en) Organic germanium amine compound and thin film deposition method using the same
JP6202179B2 (en) Disiloxane compound
JP4957037B2 (en) Organosilane compound, Si-containing film-forming material containing the same, production method and use
KR20200068734A (en) Aromatic amino siloxane functionalized material for use in capping porous dielectrics
JP5019742B2 (en) Cyclic siloxane compound, Si-containing film forming material, and use thereof
JP4479190B2 (en) Insulating film material comprising alkenyl group-containing organosilane compound, insulating film and semiconductor device using the same
JP2011111399A (en) Spiro type cyclotrisiloxane derivative, method for producing the same, film production method using the same and film
JP4333480B2 (en) Si-containing film forming material and use thereof
TWI707861B (en) Method for producing silicon compound, and silicon compound
JP2011153213A (en) Method for producing cage silsesquioxane compound
JP6862049B2 (en) Cyclic siloxane compound, its production method, production method and film of electrically insulating film using it
KR102251040B1 (en) Aminosilane Precursor Compound and Thin Film Forming Method Using The Same
JP5040162B2 (en) Si-containing film forming material comprising alkenyl group-containing organosilane compound and use thereof
KR101735372B1 (en) composition comprising boron-containing compound, boron-containing thin film and method for manufacturing boron-containing thin film
JP2011116758A (en) ORGANOSILANE COMPOUND, METHOD FOR PRODUCING THE SAME, Si-CONTAINING FILM-FORMING MATERIAL CONTAINING THE SAME AND METHOD FOR FORMING FILM
KR20230086947A (en) Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same
JP4259217B2 (en) Insulating film material comprising an ester group-containing organosilane compound and insulating film using the same
KR20150108664A (en) precursor compounds and thin film deposition method using the precusor compoumds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R151 Written notification of patent or utility model registration

Ref document number: 6131575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151