JP2011111399A - Spiro type cyclotrisiloxane derivative, method for producing the same, film production method using the same and film - Google Patents

Spiro type cyclotrisiloxane derivative, method for producing the same, film production method using the same and film Download PDF

Info

Publication number
JP2011111399A
JP2011111399A JP2009267358A JP2009267358A JP2011111399A JP 2011111399 A JP2011111399 A JP 2011111399A JP 2009267358 A JP2009267358 A JP 2009267358A JP 2009267358 A JP2009267358 A JP 2009267358A JP 2011111399 A JP2011111399 A JP 2011111399A
Authority
JP
Japan
Prior art keywords
cyclotrisiloxane
film
derivative
spiro
solid line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009267358A
Other languages
Japanese (ja)
Inventor
Eiichi Akiyama
映一 秋山
Ryoji Tanaka
陵二 田中
Kensho Oshima
憲昭 大島
Kazuhisa Kono
和久 河野
Teppei Hayakawa
哲平 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Tosoh Corp filed Critical Sagami Chemical Research Institute
Priority to JP2009267358A priority Critical patent/JP2011111399A/en
Publication of JP2011111399A publication Critical patent/JP2011111399A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spiro type cyclotrisiloxane derivative useful as a precursor for producing electrically insulated films having low dielectric constants and excellent mechanical strengths. <P>SOLUTION: A film formed from a cyclotrisiloxane compound represented by formula (1) (wherein R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>, and R<SP>4</SP>are each independently H or a 1 to 3C alkyl, wherein R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>, and R<SP>4</SP>are simultaneously not H; the solid line having the broken line represents a single bond or a double bond) is an electrically insulated film having a desired low dielectric constant and excellent in a mechanical strength. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、特にプラズマ促進化学気相蒸着(PECVD)法による製膜プロセスに有用なスピロ型シクロトリシロキサン誘導体及びその製造方法に関する。さらに本発明は、スピロ型シクロトリシロキサン誘導体を用いて製膜して得られる、機械的強度に優れた膜に関する。   The present invention relates to a spiro-type cyclotrisiloxane derivative particularly useful for a film formation process by a plasma enhanced chemical vapor deposition (PECVD) method and a method for producing the same. Furthermore, this invention relates to the film | membrane excellent in mechanical strength obtained by forming into a film using a spiro type | mold cyclotrisiloxane derivative.

有機ケイ素化合物をPECVD法などで基板上に堆積させた絶縁膜は、一般に化学構造が明確でないが、その構成元素から、SiOCH膜と呼ぶことがある。シクロトリシロキサン誘導体を原料に用いてPECVD法によってSiOCH膜を作製した例としては、特許文献1および2をあげることができる。更にこれらSiOCH膜は比較的低い誘電率を有する絶縁膜として利用できることが示されている。   An insulating film in which an organosilicon compound is deposited on a substrate by a PECVD method or the like is generally not clear in chemical structure, but is sometimes called a SiOCH film because of its constituent elements. Patent Documents 1 and 2 can be cited as examples of producing a SiOCH film by PECVD using a cyclotrisiloxane derivative as a raw material. Furthermore, it has been shown that these SiOCH films can be used as insulating films having a relatively low dielectric constant.

スピロ型シクロトリシロキサン誘導体の報告例として非特許文献1および2を挙げることができる。非特許文献1には2,2,4,4,6,6−トリ(1,4−ブタンジイル)シクロトリシロキサン及び2,2,4,4,6,6−トリ(1,5−ペンタンジイル)シクロトリシロキサンの合成について記載がある。また非特許文献2には2,2,4,4,6,6−トリ(2−ブテン−1,4−ジイル)シクロトリシロキサンが反応混合物中に存在していることを示されているものの、このものの単離精製は行われていない。これら非特許文献中では、いずれの化合物についても製膜材料としての提案および材料物性についての記載は無い。さらに先に挙げた特許文献2ではスピロ型シクロトリシロキサン誘導体として2,2−(ブタン−1,4−ジイル)−4,4,6,6−テトラメチルシクロトリシロキサン及び2,2−(ブタン−1,4−ジイル)−4,6−ジメチルシクロトリシロキサンの合成についての記載がある。しかしながら、いずれのスピロ型シクロトリシロキサン誘導体も、同一ケイ素原子上に結合しているアルキレン基またはアルケニレン基の炭素原子上に水素のみが結合しており、このアルキレン基またはアルケニレン基の炭素原子上に炭化水素基が結合したスピロ型シクロトリシロキサン誘導体の合成例は無い。   Non-patent documents 1 and 2 can be cited as examples of reports of spiro-type cyclotrisiloxane derivatives. Non-Patent Document 1 includes 2,2,4,4,6,6-tri (1,4-butanediyl) cyclotrisiloxane and 2,2,4,4,6,6-tri (1,5-pentanediyl). There is a description of the synthesis of cyclotrisiloxane. Non-Patent Document 2 shows that 2,2,4,4,6,6-tri (2-butene-1,4-diyl) cyclotrisiloxane is present in the reaction mixture. This product has not been isolated and purified. In these non-patent documents, there is no proposal as a film forming material and no description of material properties for any compound. Further, in Patent Document 2 mentioned above, 2,2- (butane-1,4-diyl) -4,4,6,6-tetramethylcyclotrisiloxane and 2,2- (butane) are used as spiro-type cyclotrisiloxane derivatives. There is a description of the synthesis of -1,4-diyl) -4,6-dimethylcyclotrisiloxane. However, in any spiro cyclotrisiloxane derivative, only hydrogen is bonded to the carbon atom of the alkylene group or alkenylene group bonded to the same silicon atom, and the carbon atom of the alkylene group or alkenylene group is bonded to the carbon atom. There is no synthesis example of a spiro-type cyclotrisiloxane derivative to which a hydrocarbon group is bonded.

然るにシクロトリシロキサンのすべてのケイ素原子上に、一つ以上のアルキル基で置換された1,4−ブタンジイル基または2−ブテン−1,4−ジイル基を導入したスピロ型シクロトリシロキサン誘導体が合成された例は無く、ましてやこれを用いて電気絶縁膜を作製した例も一切無い。   However, a spiro-type cyclotrisiloxane derivative in which 1,4-butanediyl group or 2-butene-1,4-diyl group substituted with one or more alkyl groups is introduced on all silicon atoms of cyclotrisiloxane is synthesized. There is no example, and no electrical insulation film is produced using this.

特開2007−96237号公報JP 2007-96237 A 米国特許第6572923号明細書US Pat. No. 6,572,923

Francis J. Bajerら、Journal of Organic Chemistry,28巻(7号),1941ー1942頁(1963年)。Francis J. et al. Bajer et al., Journal of Organic Chemistry, 28 (7), 1941-1942 (1963).

A.N.Polivanovら、Zhurnal Obshchei Khimii,48巻(7号),1662頁(1978年)。A. N. Polivanov et al., Zhurnal Obshchei Kimii, 48 (7), 1662 (1978).

本発明の課題は、所望の低い誘電率を有し、機械強度に優れた電気絶縁膜を形成可能なプレカーサーとしてのスピロ型シクロトリシロキサン誘導体及びその製造方法を提供することにある。さらにスピロ型シクロトリシロキサン誘導体を用いて製造される膜及びその製造方法を提供することにある。   An object of the present invention is to provide a spiro-type cyclotrisiloxane derivative as a precursor capable of forming an electrical insulating film having a desired low dielectric constant and excellent mechanical strength, and a method for producing the same. Furthermore, it is providing the film | membrane manufactured using a spiro type | mold cyclotrisiloxane derivative, and its manufacturing method.

本発明者等は上記の課題を解決すべく鋭意検討した結果、シクロトリシロキサンのすべてのケイ素原子上に、アルキル基が置換されている1,4−ブタンジイル基または2−ブテン−1,4−ジイル基を導入したスピロ型シクロトリシロキサン誘導体が、上記課題を解決し得る性能を有する化合物であることを見いだし、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that 1,4-butanediyl group or 2-butene-1,4- in which alkyl groups are substituted on all silicon atoms of cyclotrisiloxane. The present inventors have found that a spiro-type cyclotrisiloxane derivative having a diyl group introduced therein is a compound having performance capable of solving the above-mentioned problems, and completed the present invention.

すなわち本発明は、一般式(1)   That is, the present invention relates to the general formula (1)

Figure 2011111399
(式中、R、R、R及びRはそれぞれ独立に水素原子又は炭素数が1乃至3のアルキル基を表す。但し、R、R、R及びRは同時に水素原子ではない。また破線を伴う実線は単結合又は二重結合を表す。)で表されることを特徴とする、スピロ型シクロトリシロキサン誘導体である。
Figure 2011111399
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, provided that R 1 , R 2 , R 3 and R 4 are simultaneously hydrogen. It is not an atom, and a solid line with a broken line represents a single bond or a double bond.) This is a spiro-type cyclotrisiloxane derivative.

また本発明は、一般式(2)   The present invention also provides a general formula (2)

Figure 2011111399
(式中、R、R、R及びRはそれぞれ独立に水素原子又は炭素数が1乃至3のアルキル基を表す。但し、R、R、R及びRは同時に水素原子ではない。また破線を伴う実線は単結合又は二重結合を表し、Xはそれぞれ独立に塩素原子、メトキシ基又はエトキシ基を表す。)で表されるシラン誘導体を環化剤の存在下に反応させることを特徴とする、一般式(1)で表されるスピロ型シクロトリシロキサン誘導体の製造方法である。
Figure 2011111399
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, provided that R 1 , R 2 , R 3 and R 4 are simultaneously hydrogen. In addition, a solid line with a broken line represents a single bond or a double bond, and X represents a chlorine atom, a methoxy group, or an ethoxy group, respectively, in the presence of a cyclizing agent. It is a method for producing a spiro-type cyclotrisiloxane derivative represented by the general formula (1), characterized by reacting.

さらに本発明は、一般式(1)で表されるスピロ型シクロトリシロキサン誘導体を原料として用いて製膜することを特徴とする、膜の製造法である。また本発明は、上述の製造法により製造されることを特徴とする膜である。さらに本発明は、上述の膜から成ることを特徴とする、電気絶縁膜である。また本発明は、上述の電気絶縁膜を配してなることを特徴とする、半導体電子デバイスである。   Furthermore, the present invention is a film manufacturing method characterized in that a film is formed using a spiro-type cyclotrisiloxane derivative represented by the general formula (1) as a raw material. Moreover, this invention is a film | membrane characterized by being manufactured by the above-mentioned manufacturing method. Furthermore, the present invention is an electrical insulating film comprising the above-described film. According to another aspect of the present invention, there is provided a semiconductor electronic device comprising the above-described electrical insulating film.

以下に本発明をさらに詳細に説明する。一般式(1)及び(2)並びに後述の一般式(2a)で表される化合物の置換基R、R、R及びRはそれぞれ独立に水素原子又は炭素数が1乃至3のアルキル基を表すが、R、R、R及びRは同時に水素原子ではない。また、炭素数が1乃至3のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基を挙げることができる。PECVD法による製膜プロセスに一般式(1)で表されるスピロ型シクロトリシロキサン誘導体を用いる場合、蒸気圧の観点からR、R、R又はRのうち一つもしくは二つがメチル基で残りが水素原子、またはR、R、R又はRのうち一つがエチル基で三つが水素原子であることが望ましく、原料の入手の容易さなどからR、R及びRが水素原子、Rがメチル基であり、破線を伴う実線が単結合であるか、R、R及びRが水素原子、Rがメチル基であり、破線を伴う実線が単結合であるか、又は、R、R及びRが水素原子、Rがメチル基であり、破線を伴う実線が二重結合であることがさらに望ましい。 The present invention is described in further detail below. The substituents R 1 , R 2 , R 3 and R 4 of the compounds represented by the general formulas (1) and (2) and the general formula (2a) described later are each independently a hydrogen atom or a carbon number of 1 to 3 Although it represents an alkyl group, R 1 , R 2 , R 3 and R 4 are not hydrogen atoms at the same time. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a cyclopropyl group. When the spiro-type cyclotrisiloxane derivative represented by the general formula (1) is used in the PECVD method, one or two of R 1 , R 2 , R 3 or R 4 are methyl from the viewpoint of vapor pressure. It is preferable that the remaining is a hydrogen atom, or one of R 1 , R 2 , R 3, or R 4 is an ethyl group and three are hydrogen atoms, and R 2 , R 3 and R 4 is a hydrogen atom, R 1 is a methyl group, and a solid line with a broken line is a single bond, or R 1 , R 3 and R 4 are a hydrogen atom, R 2 is a methyl group, and a solid line with a broken line is More preferably, it is a single bond, or R 1 , R 3 and R 4 are hydrogen atoms, R 2 is a methyl group, and the solid line with a broken line is a double bond.

一般式(2)で表されるシラン誘導体を環化剤存在下に反応させることによって一般式(1)で表されるスピロ型シクロトリシロキサン誘導体の製造が可能である。このとき用いることのできる環化剤としては、一般式(2)で表されるシラン誘導体を環化させることができるものであれば特に限定はないが、例えばスルホキシド化合物、金属酸化物、水、または酸性水溶液等を挙げることができる。   A spiro-type cyclotrisiloxane derivative represented by the general formula (1) can be produced by reacting the silane derivative represented by the general formula (2) in the presence of a cyclizing agent. The cyclizing agent that can be used at this time is not particularly limited as long as it can cyclize the silane derivative represented by the general formula (2). For example, sulfoxide compounds, metal oxides, water, Or acidic aqueous solution etc. can be mentioned.

Xが塩素原子であるシラン誘導体(2)を用いて対応するスピロ型シクロトリシロキサン誘導体(1)を製造する際、環化剤としてスルホキシド化合物が好適に用いられる。用いることのできるスルホキシド化合物として、反応が進行すれば特に制限は無いが、ジメチルスルホキシド、テトラメチレンスルホキシド、ジオクチルスルホキシド、ジベンジルスルホキシド、ジフェニルスルホキシド、ジ−p−トリルスルホキシド、ジ−p−クロロフェニルスルホキシドなどを例示できる。反応が速やかに進行する点でジメチルスルホキシド、テトラメチレンスルホキシド、ジオクチルスルホキシドが好ましく、安価である点でジメチルスルホキシドが更に好ましい。スルホキシド化合物の添加量は特に制限は無いが、収率、効率の点でジクロロシラン化合物に対して2〜4当量加えることが望ましい。   When producing the corresponding spiro-type cyclotrisiloxane derivative (1) using the silane derivative (2) where X is a chlorine atom, a sulfoxide compound is preferably used as the cyclizing agent. The sulfoxide compound that can be used is not particularly limited as long as the reaction proceeds, but dimethyl sulfoxide, tetramethylene sulfoxide, dioctyl sulfoxide, dibenzyl sulfoxide, diphenyl sulfoxide, di-p-tolyl sulfoxide, di-p-chlorophenyl sulfoxide, etc. Can be illustrated. Dimethyl sulfoxide, tetramethylene sulfoxide, and dioctyl sulfoxide are preferable in that the reaction proceeds rapidly, and dimethyl sulfoxide is more preferable in that it is inexpensive. The addition amount of the sulfoxide compound is not particularly limited, but it is desirable to add 2 to 4 equivalents with respect to the dichlorosilane compound in terms of yield and efficiency.

反応は有機溶媒中で行なうことができる。用いることのできる有機溶媒としてはシラン誘導体(2)やスルホキシド化合物と反応したり、溶解性が低かったりして所望の環化反応が阻害されなければ特に制限は無く、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素系有機溶媒、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル系有機溶媒、酢酸エチル、アセトン、アセトニトリル、メチルエチルケトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどの非プロトン性の極性有機溶媒、四塩化炭素、クロロホルム、ジクロロメタン、1,2−ジクロロエタンなどのハロゲン系有機溶媒などを例示できるが、収率の点で炭化水素系有機溶媒、エーテル系有機溶媒およびハロゲン系有機溶媒が好適に用いられる。   The reaction can be carried out in an organic solvent. The organic solvent that can be used is not particularly limited as long as it does not interfere with the desired cyclization reaction because it reacts with the silane derivative (2) or the sulfoxide compound, or the solubility is low. Hexane, cyclohexane, heptane, benzene , Hydrocarbon organic solvents such as toluene and xylene, ether organic solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane, ethyl acetate, acetone, acetonitrile, methyl ethyl ketone, N, N-dimethylformamide, N, N-dimethyl Examples include aprotic polar organic solvents such as acetamide, and halogen-based organic solvents such as carbon tetrachloride, chloroform, dichloromethane, and 1,2-dichloroethane, but hydrocarbon organic solvents and ether-based organics in terms of yield. Solvents and halogenated organic solvents are preferred It is needed.

またシラン誘導体(2)とスルホキシド化合物の添加の方法は、スルホキシド化合物にシラン誘導体(2)を加えても、シラン誘導体(2)にスルホキシド化合物を加えても良い。反応温度はシラン誘導体(2)とスルホキシド化合物を混合できれば特に制限は無いが、−50〜100℃の範囲に、好ましくは−20℃〜50℃の範囲に制御して、反応を行なうことが好ましい。反応が30分間から1日程度で終了するように有機溶媒の種類や量、撹拌効率を制御すると良い。反応混合物から目的のスピロ構造を有するシクロトリシロキサン化合物は、水洗浄、カラムクロマトグラフィー、蒸留などを組み合わせて精製することができるが、反応で副生するスルフィド化合物由来の臭いがこれらの精製工程において除くことができない場合は、適宜活性炭処理、酸化剤の添加処理などを行なうと良い。   The silane derivative (2) and the sulfoxide compound may be added by adding the silane derivative (2) to the sulfoxide compound or adding the sulfoxide compound to the silane derivative (2). The reaction temperature is not particularly limited as long as the silane derivative (2) and the sulfoxide compound can be mixed, but the reaction is preferably performed within the range of −50 to 100 ° C., preferably within the range of −20 ° C. to 50 ° C. . The type and amount of the organic solvent and the stirring efficiency are preferably controlled so that the reaction is completed in about 30 minutes to 1 day. The cyclotrisiloxane compound having the target spiro structure can be purified from the reaction mixture by a combination of water washing, column chromatography, distillation, etc., but the odor derived from the sulfide compound produced as a by-product in the reaction is present in these purification steps. If it cannot be removed, an activated carbon treatment, an oxidizing agent addition treatment, or the like is appropriately performed.

Xが塩素原子であるシラン誘導体(2)を用いて対応するスピロ型シクロトリシロキサン誘導体(1)を製造する際、環化剤として金属酸化物も好適に用いられる。用いることのできる金属酸化物として、反応が進行すれば特に制限は無いが、副生物が少なく、所望の形状の金属酸化物の入手の容易さ、収率の点で、酸化亜鉛、酸化銅(II)及び酸化マグネシウムが好適に用いられる。環化剤として用いることのできる金属酸化物の形状として、反応が進行すれば特に制限は無いが、反応が速やかに進行する点で粉末状が望ましく、粒径1mm程度より細かい粉末が好適に用いられる。金属酸化物の添加量は特に制限は無いが、収率や効率の点でシラン誘導体(2)に対して1〜2当量加えることが望ましい。   When the corresponding spiro-type cyclotrisiloxane derivative (1) is produced using the silane derivative (2) where X is a chlorine atom, a metal oxide is also preferably used as a cyclizing agent. The metal oxide that can be used is not particularly limited as long as the reaction proceeds, but there are few by-products, and zinc oxide, copper oxide ( II) and magnesium oxide are preferably used. The shape of the metal oxide that can be used as the cyclizing agent is not particularly limited as long as the reaction proceeds. However, a powder form is desirable in that the reaction proceeds rapidly, and a powder having a particle size smaller than about 1 mm is preferably used. It is done. The amount of metal oxide added is not particularly limited, but it is desirable to add 1 to 2 equivalents relative to the silane derivative (2) in terms of yield and efficiency.

反応は有機溶媒中で行なうことができる。用いることのできる有機溶媒としてはシラン誘導体(2)や金属酸化物と反応したり、溶解性が低かったりして所望の環化反応が阻害されなければ特に制限は無く、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素系有機溶媒、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル系有機溶媒、酢酸エチル、アセトン、アセトニトリル、メチルエチルケトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどの非プロトン性の極性有機溶媒、四塩化炭素、クロロホルム、ジクロロメタン、1,2−ジクロロエタンなどのハロゲン系有機溶媒などを例示できる。反応温度はシラン誘導体(2)と金属酸化物を混合できれば特に制限は無いが、−80〜150℃の範囲で行なうことができる。生産性や、反応制御のしやすさを考慮すると、例えば酸化亜鉛を用いた場合は、−50℃〜50℃の範囲で反応を行なうことが好ましく、酸化銅(II)又は酸化マグネシウムを用いた場合は、室温〜150℃の範囲で行なうことが好ましい。反応が30分間から1日程度で終了するように有機溶媒の種類や量、撹拌効率を制御すると良い。反応混合物から目的のシクロトリシロキサン化合物は、ろ過、水洗浄、カラムクロマトグラフィー、蒸留などを組み合わせて精製することができる。   The reaction can be carried out in an organic solvent. The organic solvent that can be used is not particularly limited as long as it does not interfere with the desired cyclization reaction by reacting with the silane derivative (2) or the metal oxide, or having low solubility, such as hexane, cyclohexane, heptane, Hydrocarbon organic solvents such as benzene, toluene and xylene, ether organic solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane, ethyl acetate, acetone, acetonitrile, methyl ethyl ketone, N, N-dimethylformamide, N, N- Examples include aprotic polar organic solvents such as dimethylacetamide, and halogen-based organic solvents such as carbon tetrachloride, chloroform, dichloromethane, and 1,2-dichloroethane. Although there will be no restriction | limiting in particular if reaction temperature can mix a silane derivative (2) and a metal oxide, It can carry out in -80-150 degreeC. Considering productivity and ease of reaction control, for example, when zinc oxide is used, the reaction is preferably performed in the range of −50 ° C. to 50 ° C., and copper (II) oxide or magnesium oxide is used. In the case, it is preferable to carry out in the range of room temperature to 150 ° C. The type and amount of the organic solvent and the stirring efficiency are preferably controlled so that the reaction is completed in about 30 minutes to 1 day. The target cyclotrisiloxane compound can be purified from the reaction mixture by a combination of filtration, water washing, column chromatography, distillation and the like.

さらに本発明のスピロ型シクロトリシロキサン誘導体(1)は、シラン誘導体(2)に水または酸性水溶液を環化剤として作用させることによっても製造することができる。使用可能な酸としては塩酸、硫酸などの無機酸、p−トルエンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸などの有機酸などを例示できる。シラン誘導体(2)のXが塩素原子の場合は加水分解によって塩酸が発生するので、水を環化剤として加えることにより、スピロ型シクロトリシロキサン誘導体(1)を得ることもできる。この際、水の量は特に制限は無いがシラン誘導体(2)に対し1当量以上あれば良い。Xがメトキシ基あるいはエトキシ基の場合は、酸性水溶液を環化剤として作用させることにより、本発明のスピロ型シクロトリシロキサン誘導体(1)を得ることができる。使用可能な酸としては塩酸、硫酸などの無機酸、p−トルエンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸などの有機酸などを例示でき、これらの水溶液を環化剤として用いることができる。収率、取扱の容易さ、経済性などの観点から硫酸が好適に用いられる。加える酸の量に制限はなく、シラン誘導体(2)に対し0.01当量程度の触媒量でも大過剰量でも収率よくスピロ型シクロトリシロキサン誘導体(1)を得ることができる。酸性水溶液の使用量に特に制限はないが、反応液中の水がシラン誘導体(2)に対し1当量以上になるように使用することが好ましい。   Furthermore, the spiro-type cyclotrisiloxane derivative (1) of the present invention can also be produced by allowing water or an acidic aqueous solution to act as a cyclizing agent on the silane derivative (2). Examples of usable acids include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as p-toluenesulfonic acid, trifluoroacetic acid, and trifluoromethanesulfonic acid. When X of the silane derivative (2) is a chlorine atom, hydrochloric acid is generated by hydrolysis. Therefore, the spiro cyclotrisiloxane derivative (1) can also be obtained by adding water as a cyclizing agent. At this time, the amount of water is not particularly limited, but may be 1 equivalent or more with respect to the silane derivative (2). When X is a methoxy group or an ethoxy group, the spiro-type cyclotrisiloxane derivative (1) of the present invention can be obtained by allowing an acidic aqueous solution to act as a cyclizing agent. Examples of usable acids include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as p-toluenesulfonic acid, trifluoroacetic acid and trifluoromethanesulfonic acid, and these aqueous solutions can be used as a cyclizing agent. Sulfuric acid is preferably used from the viewpoints of yield, ease of handling, economy, and the like. There is no restriction | limiting in the quantity of the acid to add, Spiro-type cyclotrisiloxane derivative (1) can be obtained with a sufficient yield even if it is about 0.01 equivalent catalyst amount with respect to silane derivative (2), or a large excess amount. Although there is no restriction | limiting in particular in the usage-amount of acidic aqueous solution, It is preferable to use so that the water in a reaction liquid may become 1 equivalent or more with respect to a silane derivative (2).

これらいずれの反応も有機溶媒を用いて行なうことができ、例えばヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素系有機溶媒、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル系有機溶媒、四塩化炭素、クロロホルム、ジクロロメタン、1,2−ジクロロエタンなどのハロゲン系有機溶媒などを例示できる。反応温度は0℃以上で、有機溶媒の沸点および原料のシラン化合物の沸点や反応速度を考慮して決めれば良い。反応混合物から目的のスピロ型シクロトリシロキサン誘導体(1)は、水洗浄、カラムクロマトグラフィー、蒸留などを組み合わせて精製することができる。   Any of these reactions can be carried out using an organic solvent, for example, a hydrocarbon organic solvent such as hexane, cyclohexane, heptane, benzene, toluene, xylene, an ether organic such as diethyl ether, tetrahydrofuran, 1,4-dioxane, etc. Examples thereof include halogenated organic solvents such as a solvent, carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane. The reaction temperature is 0 ° C. or higher, and may be determined in consideration of the boiling point of the organic solvent, the boiling point of the raw material silane compound, and the reaction rate. The target spiro-type cyclotrisiloxane derivative (1) can be purified from the reaction mixture by a combination of water washing, column chromatography, distillation and the like.

一般式(2a)   General formula (2a)

Figure 2011111399
(式中、R、R、R及びRはそれぞれ独立に水素原子又は炭素数が1乃至3のアルキル基を表す。但し、R、R、R及びRは同時に水素原子ではない。また破線を伴う実線は単結合又は二重結合を表す。)で表されるジクロロシラン誘導体に、メタノール又はエタノールを反応させてXがメトキシ基又はエトキシ基であるシラン誘導体(2)を得た(工程1)後、前述の水や酸性水溶液を環化剤として作用させる(工程2)ことにより、スピロ型シクロトリシロキサン誘導体(1)を得ることができる。工程1において、ジクロロシラン誘導体(2a)に、メタノール又はエタノールを反応させる際、トリエチルアミンやピリジンなどの有機塩基で副生する塩化水素を中和することができる。加えるメタノール又はエタノールの量はジクロロシラン誘導体(2a)に対して任意の量で良く、好ましくは2当量以上の過剰量を用いることにより収率良くXがメトキシ基又はエトキシ基であるシラン誘導体(2)を得ることができるが、必ずしもすべてのXをメトキシ基又はエトキシ基に変換しなくてもよい。工程1において反応終了後、蒸留精製によって2つのXが共にメトキシ基又はエトキシ基であるシラン誘導体(2)を分離することができるが、あえて分離する必要はなく、ジクロロシラン誘導体(2a)や、1つのXが塩素原子、もう1つのXがメトキシ基又はエトキシ基であるシラン誘導体(2)が混在していてもそのまま工程2に用いることができる。工程1と工程2は連続して行なっても良い。工程1で有機塩基を用いた場合は、工程2において液性が酸性になるように酸性水溶液を加えることによって、収率良くスピロ型シクロトリシロキサン誘導体(1)を得ることができる。
Figure 2011111399
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, provided that R 1 , R 2 , R 3 and R 4 are simultaneously hydrogen. Silane derivative (2) wherein X is a methoxy group or an ethoxy group by reacting methanol or ethanol with a dichlorosilane derivative represented by a solid line with a broken line represents a single bond or a double bond. (Step 1), the above-described water or acidic aqueous solution is allowed to act as a cyclizing agent (Step 2), whereby the spiro-type cyclotrisiloxane derivative (1) can be obtained. In step 1, when methanol or ethanol is reacted with the dichlorosilane derivative (2a), hydrogen chloride by-produced with an organic base such as triethylamine or pyridine can be neutralized. The amount of methanol or ethanol to be added may be any amount relative to the dichlorosilane derivative (2a), and preferably a silane derivative (2) in which X is a methoxy group or an ethoxy group in good yield by using an excess amount of 2 equivalents or more. ) Can be obtained, but not all X need be converted to methoxy or ethoxy groups. After completion of the reaction in Step 1, the silane derivative (2) in which two Xs are both a methoxy group or an ethoxy group can be separated by distillation purification, but it is not necessary to separate the silane derivative (2a), Even if a silane derivative (2) in which one X is a chlorine atom and the other X is a methoxy group or an ethoxy group is mixed, it can be used in the step 2 as it is. Step 1 and step 2 may be performed continuously. When an organic base is used in step 1, the spiro-type cyclotrisiloxane derivative (1) can be obtained with good yield by adding an acidic aqueous solution so that the liquidity becomes acidic in step 2.

本発明のスピロ型シクロトリシロキサン誘導体(1)を原料として用いて製膜することにより、膜を製造することができる。この膜は電気絶縁膜として使用することができ、半導体電子デバイスに配して用いることができる。膜は、スピンキャスト法、化学気相蒸着(CVD)法などにより製造することができるが、本発明の所望の低い誘電率を示し機械的強度に優れた絶縁膜を製造するためにPECVD法が好適に用いられる。その後、紫外線照射処理、オゾン処理などの硬化工程を行うことができる。   A film can be manufactured by forming a film using the spiro-type cyclotrisiloxane derivative (1) of the present invention as a raw material. This film can be used as an electrical insulating film, and can be used in a semiconductor electronic device. The film can be manufactured by a spin cast method, a chemical vapor deposition (CVD) method, or the like. In order to manufacture an insulating film exhibiting a desired low dielectric constant and excellent mechanical strength according to the present invention, the PECVD method is used. Preferably used. Thereafter, a curing step such as ultraviolet irradiation treatment or ozone treatment can be performed.

スピロ型シクロトリシロキサン誘導体(1)は室温で固体または液体である。固体の場合、減圧下で昇華させてガスとしてPECVDプロセスに供することができる。また、融点以上に加熱することによって液体としたのち、気化させて原料ガスの供給系に導入することができる。スピロ型シクロトリシロキサン誘導体(1)は、例えば特許文献1で開示されている環状シロキサン化合物、2,4,6,8−テトラメチルシクロテトラシロキサン、テトラエトキシシランなどの、PECVD法で絶縁膜を製造可能な含ケイ素化合物と混合して原料ガスの供給系に導入することもできる。混合の割合は均一に混合できれば特に制限は無く、例えば、スピロ型シクロトリシロキサン誘導体(1)と特許文献1で開示されている環状シロキサン化合物やPECVD法で絶縁膜を製造可能な含ケイ素化合物とを重量パーセントで99対1〜10対90の割合で混合することが可能である。スピロ型シクロトリシロキサン誘導体(1)が室温で液体である場合、またはスピロ型シクロトリシロキサン誘導体(1)とPECVD法で絶縁膜を製造可能な含ケイ素化合物との混合物が液体である場合、ガスインジェクション法、リキッドインジェクション法のいずれを用いてPECVDプロセスに供しても良い。   Spiro-type cyclotrisiloxane derivative (1) is solid or liquid at room temperature. In the case of a solid, it can be sublimed under reduced pressure and used as a gas for the PECVD process. In addition, after heating to the melting point or higher, the liquid can be formed and then vaporized and introduced into the source gas supply system. The spiro-type cyclotrisiloxane derivative (1) is obtained by forming an insulating film by PECVD, such as a cyclic siloxane compound disclosed in Patent Document 1, 2,4,6,8-tetramethylcyclotetrasiloxane, tetraethoxysilane, or the like. It can also be mixed with a manufacturable silicon-containing compound and introduced into the raw material gas supply system. The mixing ratio is not particularly limited as long as it can be uniformly mixed. For example, a spiro-type cyclotrisiloxane derivative (1) and a cyclic siloxane compound disclosed in Patent Document 1 or a silicon-containing compound capable of producing an insulating film by PECVD are used. Can be mixed in a weight percent ratio of 99: 1 to 10:90. When the spiro-type cyclotrisiloxane derivative (1) is liquid at room temperature, or when the mixture of the spiro-type cyclotrisiloxane derivative (1) and a silicon-containing compound capable of producing an insulating film by PECVD is liquid Either the injection method or the liquid injection method may be used for the PECVD process.

本発明によるスピロ型シクロトリシロキサン誘導体(1)を原料として用いて製膜することができる。得られた膜は、比誘電率2.5以下の低い値を示し、且つ弾性率が概ね10GPa以上、硬度が概ね1GPa以上である機械的強度に優れた電気絶縁膜であり、半導体電子デバイスに用いることができる。   The spiro-type cyclotrisiloxane derivative (1) according to the present invention can be used to form a film. The obtained film is an electrical insulating film having a low dielectric constant of 2.5 or less, an elastic modulus of approximately 10 GPa or more, and a hardness of approximately 1 GPa or more and excellent mechanical strength. Can be used.

実施例ー16〜27、比較例ー1〜4で用いたPECVD製膜装置の概略図である。It is the schematic of the PECVD film forming apparatus used in Examples-16-27 and Comparative Examples 1-4.

以下、参考例、実施例及び試験例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Reference Examples, Examples, and Test Examples, but the present invention is not limited to these.

参考例−1
ジムロート冷却管、磁気撹拌子および滴下ロート(200mL)を備えた3口フラスコ(1000mL)をアルゴンで置換し、マグネシウム24.98g(1.028mol)および脱水ジエチルエーテル580mLを収め、滴下ロートから1,4−ジブロモペンタン100.7g(437.9mmol)をゆっくりと加えながら室温で12時間撹拌し、ジグリニャール試薬を調製した。別に、ジムロート冷却管、磁気撹拌子および滴下ロート(300mL)を備えた3口フラスコ(1000mL)を用意し、アルゴン雰囲気下、四塩化ケイ素74.55g(438.8mmol)のジエチルエーテル50mL溶液を収め、−78℃に冷却した。ここに、先に調製したジグリニャール試薬のエーテル溶液を滴下ロートからゆっくりと滴下し、12時間撹拌した。この混合物を更に室温で一日撹拌した。反応混合物をろ過後、ろ液を濃縮し、得られた粗生成物を減圧蒸留(沸点:45℃/1.6kPa)することにより、1,1−ジクロロ−2−メチル−1−シラシクロペンタンを無色液体として40.66g(収率:54.90%、GC純度:98%)得た。EI−MS(70eV),m/z(相対強度):168([M],27),140(100),127(53)。H−NMR,δ(250MHz,CDCl,ppm):1.117(d,3H,J=6.3Hz),1.20〜1.41(m,4H),1.41〜1.70(m,2H),1.83〜2.03(m,1H)。
Reference Example-1
A three-necked flask (1000 mL) equipped with a Dimroth condenser, magnetic stir bar, and dropping funnel (200 mL) was replaced with argon, and 24.98 g (1.028 mol) of magnesium and 580 mL of dehydrated diethyl ether were placed. While slowly adding 100.7 g (437.9 mmol) of 4-dibromopentane, the mixture was stirred at room temperature for 12 hours to prepare a diglynar reagent. Separately, prepare a three-necked flask (1000 mL) equipped with a Dimroth condenser, a magnetic stir bar, and a dropping funnel (300 mL), and store a solution of 74.55 g (438.8 mmol) of silicon tetrachloride in 50 mL of diethyl ether under an argon atmosphere. , Cooled to -78 ° C. The ether solution of the diglynar reagent prepared previously was slowly dropped from the dropping funnel and stirred for 12 hours. The mixture was further stirred at room temperature for 1 day. After filtration of the reaction mixture, the filtrate was concentrated, and the resulting crude product was distilled under reduced pressure (boiling point: 45 ° C./1.6 kPa) to obtain 1,1-dichloro-2-methyl-1-silacyclopentane. Was obtained as a colorless liquid (yield: 54.90%, GC purity: 98%). EI-MS (70 eV), m / z (relative intensity): 168 ([M] + , 27), 140 (100), 127 (53). 1 H-NMR, δ (250 MHz, CDCl 3 , ppm): 1.117 (d, 3H, J = 6.3 Hz), 1.20 to 1.41 (m, 4H), 1.41 to 1.70 (M, 2H), 1.83 to 2.03 (m, 1H).

参考例−2
メチルコハク酸無水物はJournal of Chemical Society,Perkin Transactions 1、1980年、2029頁を参考に合成した。ジムロート冷却管、磁気撹拌子および滴下ロート(300mL)を備えた3口フラスコ(1000mL)に、メチルコハク酸101.2g(766.0mmol)を収め、滴下ロートから塩化アセチル400mLをゆっくり滴下した。この混合溶液を2時間撹拌し、濃縮後減圧蒸留(沸点:82℃/100Pa)することにより、メチルコハク酸無水物を無色液体として83.6g(収率:95.7%)得た。IR,ν(neat,cm−1):2989,2943,1770,1228,1063,991,903,725。
Reference example-2
Methyl succinic anhydride was synthesized with reference to Journal of Chemical Society, Perkin Transactions 1, 1980, page 2029. In a three-necked flask (1000 mL) equipped with a Dimroth condenser, magnetic stir bar, and dropping funnel (300 mL), 101.2 g (766.0 mmol) of methyl succinic acid was placed, and 400 mL of acetyl chloride was slowly added dropwise from the dropping funnel. The mixed solution was stirred for 2 hours, concentrated and then distilled under reduced pressure (boiling point: 82 ° C./100 Pa) to obtain 83.6 g (yield: 95.7%) of methyl succinic anhydride as a colorless liquid. IR, (nu) (neat, cm < -1 >): 2989,2943,1770,1228,1063,991,903,725.

参考例−3
2−メチル−1,4−ブタンジオールはThe Journal of Organic Chemistry、54巻(10号)、2471頁(1989年)を参考に合成した。ジムロート冷却管、磁気撹拌子および滴下ロート(300mL)を備えた3口フラスコ(2000mL)をアルゴンで置換し、水素化リチウムアルミニウム26.3g(705mmol)および脱水テトラヒドロフラン800mLを収めた。これに、メチルコハク酸無水物41.0g(359mmol)の脱水テトラヒドロフラン200mL溶液を滴下ロートより1時間かけて滴下し、2日間撹拌した。滴下ロートからゆっくりと水100mLとテトラヒドロフラン100mLの混合物を滴下し、得られたスラリーにさらにテトラヒドロフラン500mLを加えた。これをろ過し、ろ液をエバポレーターで濃縮後クロロホルム500mLを加えた。これを無水硫酸ナトリウムで乾燥し、ろ過後再度濃縮した。得られた粗生成物を蒸留(沸点:76℃/70Pa)することにより、2−メチル−1,4−ブタンジオールを無色粘稠液体として28.5g(収率:76.2%)得た。IR,ν(neat,cm−1):3280,2924,2873,1458,1381,1059,1005。
Reference example-3
2-Methyl-1,4-butanediol was synthesized with reference to The Journal of Organic Chemistry, 54 (10), 2471 (1989). A three-necked flask (2000 mL) equipped with a Dimroth condenser, magnetic stir bar, and dropping funnel (300 mL) was replaced with argon, and 26.3 g (705 mmol) of lithium aluminum hydride and 800 mL of dehydrated tetrahydrofuran were stored. To this, 200 mL of dehydrated tetrahydrofuran in 41.0 g (359 mmol) of methyl succinic anhydride was added dropwise from an addition funnel over 1 hour and stirred for 2 days. A mixture of 100 mL of water and 100 mL of tetrahydrofuran was slowly added dropwise from the dropping funnel, and 500 mL of tetrahydrofuran was further added to the resulting slurry. This was filtered, and the filtrate was concentrated with an evaporator, and then 500 mL of chloroform was added. This was dried over anhydrous sodium sulfate, filtered and concentrated again. The obtained crude product was distilled (boiling point: 76 ° C./70 Pa) to obtain 28.5 g (yield: 76.2%) of 2-methyl-1,4-butanediol as a colorless viscous liquid. . IR, (nu) (neat, cm < -1 >): 3280,2924,2873,1458,1381,1059,1005.

参考例−4
1,4−ジブロモ−2−メチルブタンはJournal of The American Chemical Society、73巻(8号)、3632頁(1951年)を参考に合成した。リービッヒ冷却管、磁気撹拌子および滴下ロートを備えた3口フラスコ(200mL)に2−メチル−1,4−ブタンジオール28.0g(269mmol)を収め、別のフラスコ中でテトラリンと臭素の反応により発生させた臭化水素ガスを、70℃で3時間吹き込んだ。これを分液ロートに移し、ジエチルエーテルで希釈後に水で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、さらに水素化カルシウムで乾燥した。これを濃縮後減圧蒸留(沸点:82℃/2.4kPa)することにより、1,4−ジブロモ−2−メチルブタンを無色液体として31.6g(収率:51.1%)得た。IR,ν(neat,cm−1):2964,2931,1458,1438,1379,1261,1234,746。
Reference example-4
1,4-Dibromo-2-methylbutane was synthesized with reference to Journal of The American Chemical Society, Vol. 73 (No. 8), page 3632 (1951). In a three-necked flask (200 mL) equipped with a Liebig condenser, a magnetic stir bar, and a dropping funnel, 28.0 g (269 mmol) of 2-methyl-1,4-butanediol was placed, and in a separate flask, the reaction between tetralin and bromine was performed. The generated hydrogen bromide gas was blown at 70 ° C. for 3 hours. This was transferred to a separatory funnel, diluted with diethyl ether and washed with water. The organic layer was dried over anhydrous sodium sulfate and further dried over calcium hydride. This was concentrated and then distilled under reduced pressure (boiling point: 82 ° C./2.4 kPa) to obtain 31.6 g (yield: 51.1%) of 1,4-dibromo-2-methylbutane as a colorless liquid. IR, (nu) (neat, cm < -1 >): 2964,2931,1458,1438,1379,1261,1234,746.

参考例−5
ジムロート冷却管、磁気撹拌子および滴下ロート(200mL)を備えた3口フラスコ(300mL)に削り状マグネシウム8.53g(0.351mol)を収め、アルゴンで置換した。これに脱水ジエチルエーテル50mLを加え、少量の1,2−ジブロモエタンでマグネシウムを活性化させた。これに1時間かけて1,4−ジブロモ−2−メチルブタン25.0g(109mmol)の脱水ジエチルエーテル90mL溶液をゆっくりと滴下し、12時間撹拌してジグリニャール試薬を調製した。別に、ジムロート冷却管、磁気撹拌子および滴下ロート(300mL)を備えた3口フラスコ(500mL)をアルゴンで置換し、四塩化ケイ素20.4g(120mmol)および脱水ジエチルエーテルを収め、先に調製したジグリニャール試薬を滴下した。これを3日間撹拌後、生じた塩をろ過して除いた。ろ液を濃縮後減圧蒸留(沸点:89℃/12kPa)することにより、1,1−ジクロロ−3−メチル−1−シラシクロペンタンを無色液体として6.0g(収率:33%)得た。EI−MS(70eV),m/z(相対強度):168(M,37),153(3),140(100),127(74),125(60),112(28)。H−NMR,δ(500MHz,CDCl,ppm):0.72(dd,1H,J=10.8,15.4),0.80〜0.90(m,1H),1.10(d,3H,J=6.5Hz),1.20〜1.30(m,1H),1.36(ddd,1H,J=2.9,7.2,15.1Hz),1.43(ddd,1H,J=2.0,6.5,15.4Hz),1.88〜1.96(m,1H),1.96〜2.03(m,1H)。13C−NMR,δ(126MHz,CDCl,ppm):18.6,22.8,27.1,33.0,33.6。29Si−NMR,δ(99MHz,CDCl,ppm):44.6。IR,ν(neat,cm−1):2954,2924,2870,1456,1396,1076,820,789,750,735,675。
Reference Example-5
In a three-necked flask (300 mL) equipped with a Dimroth condenser, a magnetic stir bar, and a dropping funnel (200 mL), 8.53 g (0.351 mol) of ground magnesium was placed and replaced with argon. To this was added 50 mL of dehydrated diethyl ether, and magnesium was activated with a small amount of 1,2-dibromoethane. A solution of 25.0 g (109 mmol) of 1,4-dibromo-2-methylbutane in 90 mL of dehydrated diethyl ether was slowly added dropwise over 1 hour and stirred for 12 hours to prepare a diglynar reagent. Separately, a three-necked flask (500 mL) equipped with a Dimroth condenser, a magnetic stir bar, and a dropping funnel (300 mL) was replaced with argon, and 20.4 g (120 mmol) of silicon tetrachloride and dehydrated diethyl ether were placed in advance. Digriginal reagent was added dropwise. After stirring for 3 days, the resulting salt was removed by filtration. The filtrate was concentrated and then distilled under reduced pressure (boiling point: 89 ° C./12 kPa) to obtain 6.0 g (yield: 33%) of 1,1-dichloro-3-methyl-1-silacyclopentane as a colorless liquid. . EI-MS (70 eV), m / z (relative intensity): 168 (M + , 37), 153 (3), 140 (100), 127 (74), 125 (60), 112 (28). 1 H-NMR, δ (500 MHz, CDCl 3 , ppm): 0.72 (dd, 1H, J = 10.8, 15.4), 0.80 to 0.90 (m, 1H), 1.10 (D, 3H, J = 6.5 Hz), 1.20 to 1.30 (m, 1H), 1.36 (ddd, 1H, J = 2.9, 7.2, 15.1 Hz), 1. 43 (ddd, 1H, J = 2.0, 6.5, 15.4 Hz), 1.88 to 1.96 (m, 1H), 1.96 to 2.03 (m, 1H). 13 C-NMR, δ (126 MHz, CDCl 3 , ppm): 18.6, 22.8, 27.1, 33.0, 33.6. 29 Si-NMR, δ (99 MHz, CDCl 3 , ppm): 44.6. IR, (nu) (neat, cm < -1 >): 2954,2924,2870,1456,1396,1076,820,789,750,735,675.

参考例−6
1,1−ジクロロ−3−メチル−1−シラシクロペンタ−3−エンはJournal of Organometallic Chemistry、391巻(1号)、7頁(1990年)を参考に合成した。アルゴン置換したステンレス製オートクレーブ(200mL)に、トリクロロシラン60.1g(444mmol)、イソプレン13.8g(203mmol)およびテトラブチルホスホニウムクロリド2.30g(7.80mmol)を収め、密封後150℃で13時間反応させた。反応終了後大気圧に戻し、得られた反応混合物中の低沸点分を減圧下で留去した。残さを減圧蒸留(沸点:70℃/5.5kPa)し、1,1−ジクロロ−3−メチル−1−シラシクロペンタ−3−エンを無色透明液体として21.1g(収率:62.2%、GC純度:96%)得た。EI−MS(70eV),m/z(相対強度):166(M,44),151(10),138(15),130(100)。IR,ν(neat,cm−1):3016,2964,2914,1598,1390,1159,1024,729。
Reference Example-6
1,1-dichloro-3-methyl-1-silacyclopent-3-ene was synthesized with reference to Journal of Organometallic Chemistry, Vol. 391 (1), page 7 (1990). Argon-substituted stainless steel autoclave (200 mL) was charged with 60.1 g (444 mmol) of trichlorosilane, 13.8 g (203 mmol) of isoprene and 2.30 g (7.80 mmol) of tetrabutylphosphonium chloride and sealed at 150 ° C. for 13 hours. Reacted. After completion of the reaction, the pressure was returned to atmospheric pressure, and the low boiling point component in the obtained reaction mixture was distilled off under reduced pressure. The residue was distilled under reduced pressure (boiling point: 70 ° C./5.5 kPa) to give 21.1 g of 1,1-dichloro-3-methyl-1-silacyclopent-3-ene as a colorless transparent liquid (yield: 62.2). %, GC purity: 96%). EI-MS (70 eV), m / z (relative intensity): 166 (M + , 44), 151 (10), 138 (15), 130 (100). IR, (nu) (neat, cm < -1 >): 3016,2964,2914,1598,1390,1159,1024,729.

参考例−7
ジムロート冷却管および撹拌子を備えた2口フラスコ(100mL)に、10%パラジウム担持炭素粉末730mg(パラジウム:0.686mmol)を収め、減圧下で1時間乾燥した。容器をアルゴンで置換し、1,1−ジクロロ−3−メチル−1−シラシクロペンタ−3−エン7.35g(44.0mmol)を加えた。反応容器を1気圧の水素ガスで置換し、12時間撹拌した。反応混合物を室温、減圧下(0.1kPa)で留去し、留去成分を回収した。これを蒸留精製(沸点:159℃)することにより、1,1−ジクロロ−3−メチル−1−シラシクロペンタンを無色液体として7.33g(収率:98.5%,GC純度:95%)得た。
Reference Example-7
730 mg (palladium: 0.686 mmol) of 10% palladium-supported carbon powder was placed in a two-necked flask (100 mL) equipped with a Dimroth condenser and a stirring bar, and dried under reduced pressure for 1 hour. The vessel was replaced with argon, and 7.35 g (44.0 mmol) of 1,1-dichloro-3-methyl-1-silacyclopent-3-ene was added. The reaction vessel was replaced with 1 atmosphere of hydrogen gas and stirred for 12 hours. The reaction mixture was distilled off at room temperature under reduced pressure (0.1 kPa) to recover the distilled component. This was purified by distillation (boiling point: 159 ° C.) to give 7.33 g of 1,1-dichloro-3-methyl-1-silacyclopentane as a colorless liquid (yield: 98.5%, GC purity: 95%) )Obtained.

参考例−8
1,1−ジクロロ−3,4−ジメチル−1−シラシクロペンタ−3−エンはOrganometallics、22巻(13号)、2551頁(2003年)を参考に合成した。撹拌子を備えたステンレス製オートクレーブ(200mL)をアルゴンで置換し、2,3−ジメチル−1,3−ブタジエン16.4g(200mmol)、トリクロロシラン80.5g(594mmol)および無水テトラブチルホスホニウムクロリド2.70g(9.16mmol)を収め、密閉した。これを激しく撹拌しながら150℃で48時間加熱した。混合物をナスフラスコ(100mL)に移し、減圧下で過剰のトリクロロシランを除いた。残さを減圧蒸留(沸点:78℃/2.8kPa)することにより、1,1−ジクロロ−3,4−ジメチル−1−シラシクロペンタ−3−エン29.6g(収率:81.8%)を無色液体として得た。EI−MS(70eV),m/z(相対強度):180(M,100),165(73),144(59),138(40),129(62)。H−NMR,δ(250MHz,CDCl,ppm):1.751(t,6H,J=1Hz),1.882(m,4H)。IR,ν(neat,cm−1):2983,2914,1441,1392,1173,982,769,752,694。
Reference Example-8
1,1-dichloro-3,4-dimethyl-1-silacyclopent-3-ene was synthesized with reference to Organometallics, Vol. 22 (No. 13), page 2551 (2003). A stainless steel autoclave (200 mL) equipped with a stirrer was replaced with argon, 16.4 g (200 mmol) of 2,3-dimethyl-1,3-butadiene, 80.5 g (594 mmol) of trichlorosilane, and anhydrous tetrabutylphosphonium chloride 2 .70 g (9.16 mmol) was placed and sealed. This was heated at 150 ° C. for 48 hours with vigorous stirring. The mixture was transferred to an eggplant flask (100 mL) and excess trichlorosilane was removed under reduced pressure. The residue was distilled under reduced pressure (boiling point: 78 ° C./2.8 kPa) to give 29.6 g of 1,1-dichloro-3,4-dimethyl-1-silacyclopent-3-ene (yield: 81.8% ) Was obtained as a colorless liquid. EI-MS (70 eV), m / z (relative intensity): 180 (M + , 100), 165 (73), 144 (59), 138 (40), 129 (62). 1 H-NMR, δ (250 MHz, CDCl 3 , ppm): 1.751 (t, 6H, J = 1 Hz), 1.882 (m, 4H). IR, (nu) (neat, cm < -1 >): 2983,2914,1441,1392,1173,982,769,752,694.

実施例−1
アルゴン置換した2口フラスコ(100mL)に脱水トルエン50mLおよび脱水ジメチルスルホキシド8.42g(108mmol)を収め、シリンジより1,1−ジクロロ−2−メチル−1−シラシクロペンタン5.13g(30.3mmol)を1時間かけてゆっくりと滴下した。反応混合物を2時間撹拌し、分液ロートに移して水(50mL)を加えて有機層を抽出した。有機層を濃縮後、クーゲルロールを用いて蒸留(蒸留温度:108℃/5Pa)することにより、2,2,4,4,6,6−トリ(1,4−ペンタンジイル)シクロトリシロキサン(化合物1)の異性体混合物0.97g(収率:28%、異性体混合物のトータルGC純度:99%)を得た。融点:88.3℃.EI−MS(70eV),m/z(相対強度):262(M,16),247(33),234(27),219(27),193(100)。H−NMR,δ(250MHz,CDCl,ppm):0.45〜0.60(m,3H),0.60〜0.80(m,6H),0.95〜1.05(m,9H),1.10〜1.25(m,3H),1.30〜1.50(m,3H),1.70〜1.90(m,3H)。
Example-1
50 mL of dehydrated toluene and 8.42 g (108 mmol) of dehydrated dimethyl sulfoxide were placed in a two-necked flask (100 mL) purged with argon, and 5.13 g (30.3 mmol) of 1,1-dichloro-2-methyl-1-silacyclopentane from a syringe. ) Was slowly added dropwise over 1 hour. The reaction mixture was stirred for 2 hours, transferred to a separatory funnel and water (50 mL) was added to extract the organic layer. The organic layer is concentrated and then distilled using a Kugelrohr (distillation temperature: 108 ° C./5 Pa) to give 2,2,4,4,6,6-tri (1,4-pentanediyl) cyclotrisiloxane (compound 0.97 g (yield: 28%, total GC purity of the isomer mixture: 99%) of 1) was obtained. Melting point: 88.3 ° C. EI-MS (70 eV), m / z (relative intensity): 262 (M + , 16), 247 (33), 234 (27), 219 (27), 193 (100). 1 H-NMR, δ (250 MHz, CDCl 3 , ppm): 0.45 to 0.60 (m, 3H), 0.60 to 0.80 (m, 6H), 0.95 to 1.05 (m 9H), 1.10 to 1.25 (m, 3H), 1.30 to 1.50 (m, 3H), 1.70 to 1.90 (m, 3H).

実施例−2
リービッヒ冷却管および撹拌子を備えた2口ナスフラスコ(200mL)に酸化亜鉛10.09g(124.0mmol)を収め、減圧乾燥後にアルゴンで置換した。反応容器に脱水酢酸エチル140mLを収め、1,1−ジクロロ−2−メチル−1−シラシクロペンタン15.84g(93.66mmol)をシリンジより1時間かけて滴下したのち、混合物を12時間撹拌した。水150mLを加えて、有機層を抽出し、硫酸ナトリウムで乾燥させた。ろ液を濃縮後クーゲルロール蒸留(蒸留温度:110℃/0.5Pa)することにより3.30g(収率:30.8%、異性体混合物のトータルGC純度:99%)の化合物1を無色固体として得た。
Example-2
Zinc oxide (10.09 g, 124.0 mmol) was placed in a 2-neck eggplant flask (200 mL) equipped with a Liebig condenser and a stirrer, and after drying under reduced pressure, the atmosphere was replaced with argon. 140 mL of dehydrated ethyl acetate was placed in a reaction vessel, and 15.84 g (93.66 mmol) of 1,1-dichloro-2-methyl-1-silacyclopentane was added dropwise from a syringe over 1 hour, and then the mixture was stirred for 12 hours. . 150 mL of water was added and the organic layer was extracted and dried over sodium sulfate. The filtrate was concentrated and then subjected to Kugelrohr distillation (distillation temperature: 110 ° C./0.5 Pa) to give 3.30 g (yield: 30.8%, total GC purity of isomer mixture: 99%) of Compound 1 colorless. Obtained as a solid.

実施例−3
撹拌子を備えたシュレンク管(100mL)に酸化銅(II)800mg(10.1mmol)、1,1−ジクロロ−2−メチル−1−シラシクロペンタン1.69g(10.0mmol)および脱水テトラヒドロフラン20mLを収めた。これを室温で80時間撹拌した。反応混合物にヘキサン50mLを加え、ろ過し、ロータリーエバポレーターで濃縮した。得られた混合物をクーゲルロール蒸留(蒸留温度145℃/60Pa)することにより、183mg(収率:16.0%、異性体混合物のトータルGC純度:94%)の化合物1を無色結晶性固体として得た。
Example-3
A Schlenk tube (100 mL) equipped with a stir bar was charged with 800 mg (10.1 mmol) of copper (II) oxide, 1.69 g (10.0 mmol) of 1,1-dichloro-2-methyl-1-silacyclopentane and 20 mL of dehydrated tetrahydrofuran. Was stored. This was stirred at room temperature for 80 hours. Hexane 50mL was added to the reaction mixture, it filtered, and concentrated by the rotary evaporator. The obtained mixture was subjected to Kugelrohr distillation (distillation temperature: 145 ° C./60 Pa) to obtain 183 mg (yield: 16.0%, total GC purity of the isomer mixture: 94%) of Compound 1 as a colorless crystalline solid. Obtained.

実施例−4
ジムロート冷却管、撹拌子および滴下ロート(50mL)を備えた3口フラスコ(300mL)にジエチルエーテル250mL、トリエチルアミン6.10g(60.2mmol)および1,1−ジクロロ−2−メチル−1−シラシクロペンタン4.99g(29.5mmol)を収めた。混合物を0℃に冷却し、滴下ロートから蒸留水540mg(30.0mmol)のテトラヒドロフラン50mL溶液をゆっくり加えた。これを室温に戻し、14時間撹拌した。反応混合物を分液ロートに移し、水300mLを加えて、有機層を抽出した。有機層を無水硫酸ナトリウムで乾燥後、ロータリーエバポレーターで濃縮した。得られた混合物をクーゲルロール蒸留(蒸留温度:140℃/50Pa)することにより、543mg(収率:16.1%、異性体混合物のトータルGC純度:93%)の化合物1を無色結晶性固体として得た。
Example-4
A three-necked flask (300 mL) equipped with a Dimroth condenser, stirrer and dropping funnel (50 mL) was added 250 mL of diethyl ether, 6.10 g (60.2 mmol) of triethylamine and 1,1-dichloro-2-methyl-1-silacyclo. It contained 4.99 g (29.5 mmol) of pentane. The mixture was cooled to 0 ° C., and a solution of 540 mg (30.0 mmol) of distilled water in 50 mL of tetrahydrofuran was slowly added from the dropping funnel. This was returned to room temperature and stirred for 14 hours. The reaction mixture was transferred to a separatory funnel and 300 mL of water was added to extract the organic layer. The organic layer was dried over anhydrous sodium sulfate and concentrated using a rotary evaporator. The obtained mixture was subjected to Kugelrohr distillation (distillation temperature: 140 ° C./50 Pa) to obtain 543 mg (yield: 16.1%, total GC purity of isomer mixture: 93%) of Compound 1 as a colorless crystalline solid. Got as.

実施例−5
ジムロート冷却管および撹拌子を備えた2口フラスコ(100mL)をアルゴンで置換し、脱水ベンゼン24mLおよび脱水ジメチルスルホキシド2.77g(35.5mmol)を収めた。シリンジより1,1−ジクロロ−3−メチル−1−シラシクロペンタン2.00g(11.8mmol)を滴下し、室温で13時間撹拌した。反応混合物を分液ロートに移し、水(30mL)を加えて有機層を抽出した。有機層を無水硫酸ナトリウムで乾燥し、ろ過後濃縮した。これをクーゲルロールを用いて減圧蒸留(蒸留温度:130℃/50Pa)することにより、2,2,4,4,6,6−トリ(2−メチルブタン−1,4−ジイル)シクロトリシロキサン(化合物2)の異性体混合物311mg(収率:23%、異性体混合物のトータルGC純度:94%)を無色固体として得た。EI−MS(70eV),m/z(相対強度):342(M,25),314(100),300(41),286(35),272(53),244(62)。H−NMR,δ(250MHz,CDCl,ppm):0.05〜0.19(m,3H),0.42〜0.59(m,3H),0.50〜0.90(m,6H),1.00(d,9H,J=6.3Hz),0.92〜1.10(m,3H),1.60〜1.88(m,6H)。IR,ν(neat,cm−1):2947,2922,2865,1454,1255,1074,1002,972,829,757。
Example-5
A two-necked flask (100 mL) equipped with a Dimroth condenser and a stirring bar was replaced with argon, and 24 mL of dehydrated benzene and 2.77 g (35.5 mmol) of dehydrated dimethyl sulfoxide were stored. 1,1-dichloro-3-methyl-1-silacyclopentane (2.00 g, 11.8 mmol) was added dropwise from a syringe, and the mixture was stirred at room temperature for 13 hours. The reaction mixture was transferred to a separatory funnel and water (30 mL) was added to extract the organic layer. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. This was distilled under reduced pressure using a Kugelrohr (distillation temperature: 130 ° C./50 Pa), whereby 2,2,4,4,6,6-tri (2-methylbutane-1,4-diyl) cyclotrisiloxane ( 311 mg (yield: 23%, total GC purity of the isomer mixture: 94%) of the isomer mixture of Compound 2) was obtained as a colorless solid. EI-MS (70 eV), m / z (relative intensity): 342 (M + , 25), 314 (100), 300 (41), 286 (35), 272 (53), 244 (62). 1 H-NMR, δ (250 MHz, CDCl 3 , ppm): 0.05 to 0.19 (m, 3H), 0.42 to 0.59 (m, 3H), 0.50 to 0.90 (m , 6H), 1.00 (d, 9H, J = 6.3 Hz), 0.92 to 1.10 (m, 3H), 1.60 to 1.88 (m, 6H). IR, (nu) (neat, cm < -1 >): 2947,2922,2865,1454,1255,1074,1002,972,829,757.

実施例−6
ジムロート冷却管および撹拌子を備えた3口フラスコ(200mL)に酸化マグネシウム480mg(11.9mmol)、1,1−ジクロロ−3−メチル−1−シラシクロペンタン2.00g(11.8mmol)および脱水テトラヒドロフラン30mLを収めた。混合物を70℃で16時間加熱撹拌した。得られた反応混合物をロータリーエバポレーターで濃縮し、残さにヘキサン50mLを加え、分液ロートに移して水50mLで洗浄した。有機層を無水硫酸マグネシウムで乾燥し、ロータリーエバポレーターで濃縮した。得られた混合物をクーゲルロール蒸留(蒸留温度135℃/50Pa)することにより、215mg(収率:15.9%、異性体混合物のトータルGC純度:99%)の化合物2を無色結晶性固体として得た。
Example-6
In a three-necked flask (200 mL) equipped with a Dimroth condenser and a stir bar, 480 mg (11.9 mmol) of magnesium oxide, 2.00 g (11.8 mmol) of 1,1-dichloro-3-methyl-1-silacyclopentane and dehydration 30 mL of tetrahydrofuran was stored. The mixture was heated and stirred at 70 ° C. for 16 hours. The obtained reaction mixture was concentrated with a rotary evaporator, 50 mL of hexane was added to the residue, and the mixture was transferred to a separatory funnel and washed with 50 mL of water. The organic layer was dried over anhydrous magnesium sulfate and concentrated on a rotary evaporator. The obtained mixture was subjected to Kugelrohr distillation (distillation temperature: 135 ° C./50 Pa), whereby 215 mg (yield: 15.9%, total GC purity of the isomer mixture: 99%) of Compound 2 as a colorless crystalline solid Obtained.

実施例−7
ジムロート冷却管、撹拌子および滴下ロート(100mL)を備えた2口フラスコ(200mL)にジエチルエーテル150mL、トリエチルアミン4.59g(45.4mmol)および1,1−ジクロロ−3−メチル−1−シラシクロペンタン3.64g(21.6mmol)を収めた。混合物を0℃に冷却し、滴下ロートから蒸留水400mg(22.2mmol)のテトラヒドロフラン65mL溶液をゆっくり加えた。滴下後にゆっくりと室温に戻し、4時間撹拌した。反応混合物を分液ロートに移し、水100mLで有機層を2回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、ロータリーエバポレーターで濃縮した。これをクーゲルロール蒸留(蒸留温度:135℃/50Pa)することにより、391mg(収率:15.9%、異性体混合物のトータルGC純度:96%)の化合物2を無色結晶性固体として得た。
Example-7
A two-necked flask (200 mL) equipped with a Dimroth condenser, stirrer and dropping funnel (100 mL) was added 150 mL of diethyl ether, 4.59 g (45.4 mmol) of triethylamine and 1,1-dichloro-3-methyl-1-silacyclo. It contained 3.64 g (21.6 mmol) of pentane. The mixture was cooled to 0 ° C., and a solution of 400 mg (22.2 mmol) of distilled water in 65 mL of tetrahydrofuran was slowly added from the dropping funnel. After the dropwise addition, the temperature was slowly returned to room temperature and stirred for 4 hours. The reaction mixture was transferred to a separatory funnel and the organic layer was washed twice with 100 mL of water. The organic layer was dried over anhydrous sodium sulfate and concentrated using a rotary evaporator. This was subjected to Kugelrohr distillation (distillation temperature: 135 ° C./50 Pa) to obtain 391 mg (yield: 15.9%, total GC purity of isomer mixture: 96%) of Compound 2 as a colorless crystalline solid. .

実施例−8
ベンゼン200mLおよび脱水ジメチルスルホキシド23.4g(300mmol)の混合物中に、1,1−ジクロロ−3−メチル−1−シラシクロペンタ−3−エン16.7g(99.9mmol)の20mLベンゼン溶液をゆっくり滴下した。滴下後混合物を4時間撹拌した。反応混合物を分液ロートに移し、水200mLを加えて有機層を抽出した。有機層を無水塩化カルシウムで乾燥後濃縮し、次いでクーゲルロールを用いて蒸留(蒸留温度:140℃/50Pa)することにより、2,2,4,4,6,6−トリ(2−メチル−2−ブテン−1,4−ジイル)シクロトリシロキサン(化合物3)の異性体混合物5.13g(収率:45.8%、異性体混合物のトータルGC純度:95%)を無色液体として得た。これをシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製し、さらにクーゲルロールを用いて蒸留し、化合物3の異性体混合物1.59g(収率:14.2%、異性体混合物のトータルGC純度:99%)を得た。EI−MS(70eV),m/z(相対強度):336(M,100),308(79),268(32),133(32)。H−NMR,δ(250MHz,CDCl,ppm):1.23(m,6H),1.33(m,6H),1.73(m,9H),5.52(m,3H)。13C−NMR,δ(126MHz,C,ppm):17.27(Si−),20.21(Si−),23.55(−),123.73(−H=C(Me)−),123.79(−H=C(Me)−),123.85(−H=C(Me)−),138.76(−CH=(Me)−),138.82(−CH=(Me)−),138.88(−CH=(Me)−)。29Si−NMR,δ(99MHz,C,ppm):−6.64。IR,ν(neat,cm−1):2962,2914,1437,1377,1159,1030,1012,787,764。
Example-8
In a mixture of 200 mL of benzene and 23.4 g (300 mmol) of dehydrated dimethyl sulfoxide, slowly add a solution of 16.7 g (99.9 mmol) of 1,1-dichloro-3-methyl-1-silacyclopent-3-ene in 20 mL of benzene. It was dripped. After the addition, the mixture was stirred for 4 hours. The reaction mixture was transferred to a separatory funnel, and 200 mL of water was added to extract the organic layer. The organic layer is dried over anhydrous calcium chloride and concentrated, and then distilled using a Kugelrohr (distillation temperature: 140 ° C./50 Pa) to give 2,2,4,4,6,6-tri (2-methyl- An isomer mixture of 2-butene-1,4-diyl) cyclotrisiloxane (compound 3) (5.13 g, yield: 45.8%, total GC purity of isomer mixture: 95%) was obtained as a colorless liquid. . This was purified by silica gel column chromatography (developing solvent: hexane), and further distilled using Kugelrohr, and 1.59 g of compound 3 isomer mixture (yield: 14.2%, total GC purity of isomer mixture) : 99%). EI-MS (70 eV), m / z (relative intensity): 336 (M + , 100), 308 (79), 268 (32), 133 (32). 1 H-NMR, δ (250 MHz, CDCl 3 , ppm): 1.23 (m, 6H), 1.33 (m, 6H), 1.73 (m, 9H), 5.52 (m, 3H) . 13 C-NMR, δ (126 MHz, C 6 D 6 , ppm): 17.27 (Si— C H 2 ), 20.21 (Si— C H 2 ), 23.55 ( —C H 3 ), 123 .73 (- C H = C ( Me) -), 123.79 (- C H = C (Me) -), 123.85 (- C H = C (Me) -), 138.76 (-CH = C (Me)-), 138.82 (-CH = C (Me)-), 138.88 (-CH = C (Me)-). 29 Si-NMR, δ (99 MHz, C 6 D 6 , ppm): −6.64. IR, (nu) (neat, cm < -1 >): 2962,2914,1437,1377,1159,1030,1012,787,764.

実施例−9
ジムロート冷却管および撹拌子を備えた2口フラスコ(100mL)に酸化亜鉛1.95g(24.0mmol)を収め、真空下で乾燥させた。このものに、脱水ジエチルエーテル50mLおよび1,1−ジクロロ−3−メチル−1−シラシクロペンタ−3−エン3.97g(23.9mmol)をアルゴン雰囲気下で加えた。この混合物を室温で14時間撹拌した。反応混合物を分液ロートに移し、水50mLを加えて有機層を抽出した。有機層を無水硫酸ナトリウムで乾燥後、ロータリーエバポレーターで濃縮した。残さをクーゲルロール蒸留(蒸留温度:145℃/60Pa)することにより、261mg(収率:9.8%、異性体混合物のトータルGC純度:98%)の化合物3を無色液体として得た。
Example-9
1.95 g (24.0 mmol) of zinc oxide was placed in a two-necked flask (100 mL) equipped with a Dimroth condenser and a stir bar, and dried under vacuum. To this was added 50 mL of dehydrated diethyl ether and 3.97 g (23.9 mmol) of 1,1-dichloro-3-methyl-1-silacyclopent-3-ene under an argon atmosphere. The mixture was stirred at room temperature for 14 hours. The reaction mixture was transferred to a separatory funnel, and 50 mL of water was added to extract the organic layer. The organic layer was dried over anhydrous sodium sulfate and concentrated using a rotary evaporator. The residue was subjected to Kugelrohr distillation (distillation temperature: 145 ° C./60 Pa) to obtain 261 mg (yield: 9.8%, total GC purity of isomer mixture: 98%) of Compound 3 as a colorless liquid.

実施例−10
ジムロート冷却管、撹拌子および滴下ロート(50mL)を備えた3口フラスコ(200mL)にジエチルエーテル200mL、トリエチルアミン4.99g(49.3mmol)および1,1−ジクロロ−3−メチル−1−シラシクロペンタ−3−エン4.00g(23.9mmol)を収めた。混合物を0℃に冷却し、滴下ロートから蒸留水490mg(27.2mmol)のテトラヒドロフラン40mL溶液をゆっくり加え、徐々に室温に戻し、14時間撹拌した。反応混合物を分液ロートに移し、水200mLを加えて有機層を抽出した。有機層を無水硫酸ナトリウムで乾燥後、ロータリーエバポレーターで濃縮した。これをクーゲルロール蒸留(蒸留温度:135℃/50Pa)することにより、62mg(収率:2.3%、異性体混合物のトータルGC純度:95%)の化合物3を無色液体として得た。
Example-10
A three-necked flask (200 mL) equipped with a Dimroth condenser, stirrer, and dropping funnel (50 mL) was added 200 mL of diethyl ether, 4.99 g (49.3 mmol) of triethylamine and 1,1-dichloro-3-methyl-1-silacyclo. It contained 4.00 g (23.9 mmol) of penta-3-ene. The mixture was cooled to 0 ° C., and a solution of 490 mg (27.2 mmol) of distilled water in 40 mL of tetrahydrofuran was slowly added from the dropping funnel, gradually returned to room temperature, and stirred for 14 hours. The reaction mixture was transferred to a separatory funnel, and 200 mL of water was added to extract the organic layer. The organic layer was dried over anhydrous sodium sulfate and concentrated using a rotary evaporator. This was subjected to Kugelrohr distillation (distillation temperature: 135 ° C./50 Pa) to obtain 62 mg (yield: 2.3%, total GC purity of the isomer mixture: 95%) of Compound 3 as a colorless liquid.

実施例−11
ジムロート冷却管、撹拌子および滴下ロート(50mL)を備えた3口フラスコ(200mL)をアルゴンで置換し、脱水ベンゼン75mLおよび脱水ジメチルスルホキシド11.7g(150mmol)を収めた。この混合物に、滴下ロートから1,1−ジクロロ−3,4−ジメチル−1−シラシクロペンタ−3−エン9.05g(50.0mmol)のベンゼン25mL溶液を30分かけて滴下し、室温で4時間撹拌した。反応混合物を分液ロートに移し、水100mLを加えて有機層を抽出した。有機層を無水塩化カルシウムで乾燥し、ろ過後濃縮した。残さをクーゲルロールを用いて減圧蒸留(蒸留温度:150℃/45Pa)することにより、2,2,4,4,6,6−トリ(2,3−ジメチル−2−ブテン−1,4−ジイル)シクロトリシロキサン2.09g(収率:33.1%、GC純度:99%)を無色結晶として得た。H−NMR,δ(250MHz,CDCl,ppm):1.342(m,12H),1.702(s,18H)。IR,ν(neat,cm−1):2978,2906,2879,1439,1171,1130,1009。
Example-11
A three-necked flask (200 mL) equipped with a Dimroth condenser, stir bar, and dropping funnel (50 mL) was replaced with argon, and 75 mL of dehydrated benzene and 11.7 g (150 mmol) of dehydrated dimethyl sulfoxide were stored. To this mixture, a solution of 9.05 g (50.0 mmol) of 1,1-dichloro-3,4-dimethyl-1-silacyclopent-3-ene in 25 mL of benzene was added dropwise from a dropping funnel over a period of 30 minutes. Stir for 4 hours. The reaction mixture was transferred to a separatory funnel, and 100 mL of water was added to extract the organic layer. The organic layer was dried over anhydrous calcium chloride, filtered and concentrated. The residue was distilled under reduced pressure using a Kugelrohr (distillation temperature: 150 ° C./45 Pa), whereby 2,2,4,4,6,6-tri (2,3-dimethyl-2-butene-1,4- Diyl) cyclotrisiloxane (2.09 g, yield: 33.1%, GC purity: 99%) was obtained as colorless crystals. 1 H-NMR, δ (250 MHz, CDCl 3 , ppm): 1.342 (m, 12H), 1.702 (s, 18H). IR, (nu) (neat, cm < -1 >): 2978,2906,2879,1439,1171,1130,1009.

参考例−9
ジムロート冷却管、撹拌子および滴下ロート(200mL)を備えた3口フラスコ(1000mL)に、アルゴン雰囲気下で脱水ジエチルエーテル900mL、1,1−ジクロロ−2−メチル−1−シラシクロペンタン20.3g(0.120mol)および脱水トリエチルアミン24.3g(0.240mol)を収めた。この混合物に滴下ロートから脱水エタノール11.1g(0.240mol)の脱水ジエチルエーテル100mL溶液を2時間かけて滴下した後、室温で16時間撹拌し、生じたアミン塩酸塩をろ過により除き、ろ液を減圧濃縮した。残さを減圧蒸留(沸点:70℃/1.7kPa)することにより、1,1−ジエトキシ−2−メチル−1−シラシクロペンタン10.8g(収率:48.0%、GC純度95%)を無色液体として得た。EI−MS(70eV),m/z(相対強度):188(M,38),160(82),145(51),132(29),131(28),118(100),103(60)。H−NMR,δ(500MHz,CDCl,ppm):0.45〜0.53(m,1H),0.58〜0.65(m,1H),0.76〜0.85(m,1H),1.01(d,3H,J=7.5Hz),1.12〜1.18(m,1H),1.20(t,6H,J=7.0Hz),1.36〜1.42(m,1H),1.33〜1.44(m,1H),1.71〜1.84(m,2H),3.76(q,3H,J=7.0Hz),3.80(q,3H,J=7.0Hz)。13C−NMR,δ(126MHz,CDCl,ppm):8.5,14.2,17.0,18.3,18.4,22.5,35.2,58.7,58.8。29Si−NMR,δ(99MHz,CDCl,ppm):7.3。IR,ν(neat,cm−1):2972,2925,2866,1389,1101,1076,949,789,760。
Reference Example-9
In a three-necked flask (1000 mL) equipped with a Dimroth condenser, stirrer and dropping funnel (200 mL), 900 mL of dehydrated diethyl ether and 20.3 g of 1,1-dichloro-2-methyl-1-silacyclopentane in an argon atmosphere (0.120 mol) and 24.3 g (0.240 mol) of dehydrated triethylamine were stored. To this mixture, a solution of 11.1 g (0.240 mol) of dehydrated ethanol in 100 mL of dehydrated diethyl ether was added dropwise from a dropping funnel over 2 hours, followed by stirring at room temperature for 16 hours. The resulting amine hydrochloride was removed by filtration, and the filtrate was filtered. Was concentrated under reduced pressure. The residue was distilled under reduced pressure (boiling point: 70 ° C./1.7 kPa) to give 10.8 g of 1,1-diethoxy-2-methyl-1-silacyclopentane (yield: 48.0%, GC purity 95%). Was obtained as a colorless liquid. EI-MS (70 eV), m / z (relative intensity): 188 (M + , 38), 160 (82), 145 (51), 132 (29), 131 (28), 118 (100), 103 ( 60). 1 H-NMR, δ (500 MHz, CDCl 3 , ppm): 0.45 to 0.53 (m, 1H), 0.58 to 0.65 (m, 1H), 0.76 to 0.85 (m , 1H), 1.01 (d, 3H, J = 7.5 Hz), 1.12 to 1.18 (m, 1H), 1.20 (t, 6H, J = 7.0 Hz), 1.36 -1.42 (m, 1H), 1.33-1.44 (m, 1H), 1.71-1.84 (m, 2H), 3.76 (q, 3H, J = 7.0 Hz) , 3.80 (q, 3H, J = 7.0 Hz). 13 C-NMR, δ (126 MHz, CDCl 3 , ppm): 8.5, 14.2, 17.0, 18.3, 18.4, 22.5, 35.2, 58.7, 58.8 . 29 Si-NMR, δ (99 MHz, CDCl 3 , ppm): 7.3. IR, (nu) (neat, cm < -1 >): 2972,2925,2866,1389,1101,1076,949,789,760.

参考例−10
ジムロート冷却管、撹拌子および滴下ロート(100mL)を備えた3口フラスコ(200mL)をアルゴン置換し、脱水ジエチルエーテル100mL、1,1−ジクロロ−2−メチル−1−シラシクロペンタン5.89g(34.8mmol)および脱水トリエチルアミン7.50g(74.1mmol)を収めた。この混合物に、滴下ロートから脱水メタノール2.27g(70.8mmol)の脱水テトラヒドロフラン80mL溶液を1時間かけて滴下し、室温で12時間撹拌し、生じたアミン塩酸塩をろ過により除き、ろ液を濃縮した。濃縮物を減圧蒸留(沸点:81℃/5.8kPa)することにより、1,1−ジメトキシ−2−メチル−1−シラシクロペンタン4.93g(収率:88.3%、GC純度:94%)を無色液体として得た。EI−MS(70eV),m/z(相対強度):160(M,33),132(100),118(62),117(54),104(45)。H−NMR,δ(500MHz,CDCl,ppm):0.52(ddd,1H,J=8.4,9.5,15.3Hz),0.62〜0.69(m,1H),0.82〜0.90(m,1H),1.06(d,3H,J=7.5Hz),1.15〜1.24(m,1H),1.38〜1.47(m,1H),1.75〜1.89(m,2H),3.55(s,3H),3.58(s,3H)。13C−NMR,δ(126MHz,CDCl,ppm):7.6,14.1,16.7,22.5,35.1,50.7,50.9。29Si−NMR,δ(99MHz,CDCl,ppm):10.9。IR,ν(neat,cm−1):2937,2835,1454,1188,1076,800,773,731。
Reference Example-10
A three-necked flask (200 mL) equipped with a Dimroth condenser, stirrer and dropping funnel (100 mL) was replaced with argon, dehydrated diethyl ether 100 mL, 1,1-dichloro-2-methyl-1-silacyclopentane 5.89 g ( 34.8 mmol) and 7.50 g (74.1 mmol) dehydrated triethylamine. To this mixture, a solution of 2.27 g (70.8 mmol) of dehydrated methanol in 80 mL of dehydrated tetrahydrofuran was added dropwise from a dropping funnel over 1 hour, stirred at room temperature for 12 hours, the resulting amine hydrochloride was removed by filtration, and the filtrate was removed. Concentrated. The concentrate was distilled under reduced pressure (boiling point: 81 ° C./5.8 kPa) to give 4.93 g of 1,1-dimethoxy-2-methyl-1-silacyclopentane (yield: 88.3%, GC purity: 94 %) As a colorless liquid. EI-MS (70 eV), m / z (relative intensity): 160 (M + , 33), 132 (100), 118 (62), 117 (54), 104 (45). 1 H-NMR, δ (500 MHz, CDCl 3 , ppm): 0.52 (ddd, 1H, J = 8.4, 9.5, 15.3 Hz), 0.62 to 0.69 (m, 1H) , 0.82 to 0.90 (m, 1H), 1.06 (d, 3H, J = 7.5 Hz), 1.15 to 1.24 (m, 1H), 1.38 to 1.47 ( m, 1H), 1.75 to 1.89 (m, 2H), 3.55 (s, 3H), 3.58 (s, 3H). 13 C-NMR, δ (126 MHz, CDCl 3 , ppm): 7.6, 14.1, 16.7, 22.5, 35.1, 50.7, 50.9. 29 Si-NMR, δ (99 MHz, CDCl 3 , ppm): 10.9. IR, (nu) (neat, cm < -1 >): 2937,2835,1454,1188,1076,800,773,731.

参考例−11
ジムロート冷却管、撹拌子および滴下ロート(200mL)を備えた3口フラスコ(500mL)に、アルゴン雰囲気下で脱水ジエチルエーテル300mL、1,1−ジクロロ−3−メチル−1−シラシクロペンタン17.0g(0.101mol)および脱水トリエチルアミン20.7g(0.204mol)を収めた。この混合物に、滴下ロートから脱水エタノール9.50g(0.206mol)の脱水テトラヒドロフラン200mL溶液を1時間かけて滴下した後、室温で3時間撹拌した。生じたアミン塩酸塩をろ過により除き、ろ液を濃縮した。濃縮物を減圧蒸留(沸点:74℃/2.5kPa)することにより、1,1−ジエトキシ−3−メチル−1−シラシクロペンタン15.4g(収率:81.5%、GC純度97%)を無色液体として得た。EI−MS(70eV),m/z(相対強度):188(M,17),160(63),146(32),145(28),131(20),118(100),103(51)。H−NMR,δ(500MHz,CDCl,ppm):0.12(dd,1H,J=11.0,15.0Hz),0.49〜0.56(m,1H),0.75〜0.81(m,1H),0.83〜0.89(m,2H),1.03(d,3H,J=6.5Hz),1.23(t,3H,J=7.0Hz),1.24(t,3H,J=7.0Hz),1.65〜1.73(m,1H),1.82〜1.89(m,1H),3.79(q,3H,J=7.0Hz).3.80(q,3H,J=7.0Hz)。13C−NMR,δ(126MHz,CDCl,ppm)9.5,18.3,18.4,23.8,33.2,33.3,58.7,58.8。29Si−NMR,δ(99MHz,CDCl,ppm)11.4。IR,ν(neat,cm−1)2949,2924,1389,1101,1074,949,822,771。
Reference Example-11
Into a three-necked flask (500 mL) equipped with a Dimroth condenser, stirrer and dropping funnel (200 mL), 300 mL of dehydrated diethyl ether and 17.0 g of 1,1-dichloro-3-methyl-1-silacyclopentane in an argon atmosphere (0.101 mol) and 20.7 g (0.204 mol) of dehydrated triethylamine were stored. To this mixture, 200 mL of dehydrated tetrahydrofuran in 9.50 g (0.206 mol) of dehydrated ethanol was added dropwise from a dropping funnel over 1 hour, followed by stirring at room temperature for 3 hours. The resulting amine hydrochloride was removed by filtration and the filtrate was concentrated. The concentrate was distilled under reduced pressure (boiling point: 74 ° C./2.5 kPa) to give 15.4 g of 1,1-diethoxy-3-methyl-1-silacyclopentane (yield: 81.5%, GC purity 97% ) Was obtained as a colorless liquid. EI-MS (70 eV), m / z (relative intensity): 188 (M + , 17), 160 (63), 146 (32), 145 (28), 131 (20), 118 (100), 103 ( 51). 1 H-NMR, δ (500 MHz, CDCl 3 , ppm): 0.12 (dd, 1H, J = 11.0, 15.0 Hz), 0.49 to 0.56 (m, 1H), 0.75 To 0.81 (m, 1H), 0.83 to 0.89 (m, 2H), 1.03 (d, 3H, J = 6.5 Hz), 1.23 (t, 3H, J = 7. 0 Hz), 1.24 (t, 3H, J = 7.0 Hz), 1.65 to 1.73 (m, 1H), 1.82 to 1.89 (m, 1H), 3.79 (q, 3H, J = 7.0 Hz). 3.80 (q, 3H, J = 7.0 Hz). 13 C-NMR, δ (126 MHz, CDCl 3 , ppm) 9.5, 18.3, 18.4, 23.8, 33.2, 33.3, 58.7, 58.8. 29 Si-NMR, δ (99 MHz, CDCl 3 , ppm) 11.4. IR, (nu) (neat, cm < -1 >) 2949,2924,1389,1101,1074,949,822,771.

参考例−12
ジムロート冷却管、撹拌子および滴下ロート(200mL)を備えた3口フラスコ(500mL)に、アルゴン雰囲気下で脱水ジエチルエーテル300mL、1,1−ジクロロ−3−メチル−1−シラシクロペンタ−3−エン18.3g(0.110mol)および脱水トリエチルアミン32.1g(0.317mol)を収めた。混合物に滴下ロートから脱水エタノール13.5g(0.293mol)の脱水テトラヒドロフラン200mL溶液を1時間かけて滴下した後、室温で3時間撹拌した。生じたアミン塩酸塩をろ過により除き、ろ液を濃縮した。濃縮物を減圧蒸留(沸点:73℃/1.4kPa)することにより、1,1−ジエトキシ−3−メチル−1−シラシクロペンタ−3−エン15.8g(収率:77.1%、GC純度:97%)を無色液体として得た。EI−MS(70eV),m/z(相対強度):186(M,57),157(18),140(100),113(47),103(36)。H−NMR,δ(500MHz,CDCl,ppm):1.20(s,br,1H),1.24(t,6H,J=7.0Hz),1.30(s,br,2H),1.76(s,br,3H),3.82(q,4H,J=7.0Hz),5.56〜5.57(m,1H)。13C−NMR,δ(126MHz,CDCl,ppm):14.3,17.7,18.3,23.5,58.9,123.7,139.0。29Si−NMR,δ(99MHz,CDCl,ppm):8.4。IR,ν(neat,cm−1):2972,2885,1390,1157,1074,949,773,750。
Reference Example-12
To a three-necked flask (500 mL) equipped with a Dimroth condenser, stirrer, and dropping funnel (200 mL) was added 300 mL of dehydrated diethyl ether and 1,1-dichloro-3-methyl-1-silacyclopent-3-yl under an argon atmosphere. 18.3 g (0.110 mol) of ene and 32.1 g (0.317 mol) of dehydrated triethylamine were stored. A solution of 13.5 g (0.293 mol) of dehydrated ethanol in 200 mL of dehydrated tetrahydrofuran was added dropwise to the mixture over 1 hour, followed by stirring at room temperature for 3 hours. The resulting amine hydrochloride was removed by filtration and the filtrate was concentrated. The concentrate was distilled under reduced pressure (boiling point: 73 ° C./1.4 kPa) to give 15.8 g of 1,1-diethoxy-3-methyl-1-silacyclopent-3-ene (yield: 77.1%, GC purity: 97%) was obtained as a colorless liquid. EI-MS (70 eV), m / z (relative intensity): 186 (M + , 57), 157 (18), 140 (100), 113 (47), 103 (36). 1 H-NMR, δ (500 MHz, CDCl 3 , ppm): 1.20 (s, br, 1H), 1.24 (t, 6H, J = 7.0 Hz), 1.30 (s, br, 2H) ), 1.76 (s, br, 3H), 3.82 (q, 4H, J = 7.0 Hz), 5.56-5.57 (m, 1H). 13 C-NMR, δ (126 MHz, CDCl 3 , ppm): 14.3, 17.7, 18.3, 23.5, 58.9, 123.7, 139.0. 29 Si-NMR, δ (99 MHz, CDCl 3 , ppm): 8.4. IR, (nu) (neat, cm < -1 >): 2972, 2885,1390,1157,1074,949,773,750.

実施例−12
ジムロート冷却管および撹拌子を備えた2口フラスコ(50mL)にジエチルエーテル10mL、蒸留水2.30g(128mmol)および硫酸10.5g(107mmol)を収めた。これを0℃に冷却し、1,1−ジエトキシ−2−メチル−1−シラシクロペンタン3.49g(18.5mmol)をゆっくり加えた。混合物をゆっくりと室温に戻し、24時間撹拌した。ジムロート冷却管をト字管に付け替え、80℃まで昇温して低沸点溶媒を留去した。残さを分液ロートに移し、ヘキサン50mLを加え、水50mLで有機層を3回洗浄した。有機層を無水硫酸マグネシウムで乾燥後、ロータリーエバポレーターで濃縮した。残さをクーゲルロール蒸留(蒸留温度:130℃/50Pa)することにより、1.11g(収率:52.3%、異性体混合物のトータルGC純度:97%)の化合物1を無色結晶性固体として得た。
Example-12
A two-necked flask (50 mL) equipped with a Dimroth condenser and a stirring bar was charged with 10 mL of diethyl ether, 2.30 g (128 mmol) of distilled water and 10.5 g (107 mmol) of sulfuric acid. This was cooled to 0 ° C. and 3.49 g (18.5 mmol) of 1,1-diethoxy-2-methyl-1-silacyclopentane was slowly added. The mixture was slowly warmed to room temperature and stirred for 24 hours. The Dimroth condenser was replaced with a toroidal tube, and the temperature was raised to 80 ° C. to distill off the low boiling point solvent. The residue was transferred to a separatory funnel, 50 mL of hexane was added, and the organic layer was washed 3 times with 50 mL of water. The organic layer was dried over anhydrous magnesium sulfate and concentrated using a rotary evaporator. The residue was subjected to Kugelrohr distillation (distillation temperature: 130 ° C./50 Pa) to obtain 1.11 g (yield: 52.3%, total GC purity of isomer mixture: 97%) of Compound 1 as a colorless crystalline solid Obtained.

実施例−13
ジムロート冷却管および撹拌子を備えた2口フラスコ(50mL)に蒸留水4.13g(229mmol)、硫酸7.14g(72.8mmol)およびジエチルエーテル25mLを収めた。これを0℃に冷却し、1,1−ジメトキシ−2−メチル−1−シラシクロペンタン1.71g(10.6mmol)をゆっくり加えた。混合物を室温に戻し、12時間撹拌した。反応混合物を分液ロートに移し、ヘキサン50mLを加え、水50mLで有機層を3回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、ロータリーエバポレーターで濃縮した。残さをクーゲルロール蒸留(蒸留温度125℃/40Pa)することにより、564mg(収率:46.4%、異性体混合物のトータルGC純度:99%)の化合物1を無色結晶性固体として得た。
Example-13
A two-necked flask (50 mL) equipped with a Dimroth condenser and a stirring bar was charged with 4.13 g (229 mmol) of distilled water, 7.14 g (72.8 mmol) of sulfuric acid and 25 mL of diethyl ether. This was cooled to 0 ° C., and 1.71 g (10.6 mmol) of 1,1-dimethoxy-2-methyl-1-silacyclopentane was slowly added. The mixture was allowed to warm to room temperature and stirred for 12 hours. The reaction mixture was transferred to a separatory funnel, 50 mL of hexane was added, and the organic layer was washed 3 times with 50 mL of water. The organic layer was dried over anhydrous sodium sulfate and concentrated using a rotary evaporator. The residue was subjected to Kugelrohr distillation (distillation temperature 125 ° C./40 Pa) to obtain 564 mg (yield: 46.4%, total GC purity of isomer mixture: 99%) of Compound 1 as a colorless crystalline solid.

実施例−14
ジムロート冷却管および撹拌子を備えた2口フラスコ(50mL)にジエチルエーテル25mL、蒸留水3.09g(172mmol)および硫酸2.51g(25.6mmol)を収めた。この混合物をを0℃に冷却し、1,1−ジエトキシ−3−メチル−1−シラシクロペンタン4.74g(25.1mmol)をゆっくり加え、徐々に室温に戻した後、さらに40時間撹拌した。ジムロート冷却管をト字管に付け替え、80℃まで昇温して低沸点成分を溜去した。残査を分液ロートに移し、ヘキサン50mLを加え、水50mLで有機層を3回洗浄した。有機層を無水硫酸マグネシウムで乾燥後、ロータリーエバポレーターで濃縮した。残査をクーゲルロール蒸留(蒸留温度:140℃/50Pa)することにより、384mg(収率:13.4%、異性体混合物のトータルGC純度:93%)の化合物2を無色結晶性固体として得た。
Example-14
A two-necked flask (50 mL) equipped with a Dimroth condenser and a stirring bar was charged with 25 mL of diethyl ether, 3.09 g (172 mmol) of distilled water and 2.51 g (25.6 mmol) of sulfuric acid. The mixture was cooled to 0 ° C., 4.74 g (25.1 mmol) of 1,1-diethoxy-3-methyl-1-silacyclopentane was slowly added, the temperature was gradually returned to room temperature, and the mixture was further stirred for 40 hours. . The Dimroth cooling pipe was replaced with a T-shaped pipe, and the temperature was raised to 80 ° C. to distill off low-boiling components. The residue was transferred to a separatory funnel, 50 mL of hexane was added, and the organic layer was washed 3 times with 50 mL of water. The organic layer was dried over anhydrous magnesium sulfate and concentrated using a rotary evaporator. The residue was subjected to Kugelrohr distillation (distillation temperature: 140 ° C./50 Pa) to obtain 384 mg (yield: 13.4%, total GC purity of isomer mixture: 93%) of Compound 2 as a colorless crystalline solid. It was.

実施例−15
ジムロート冷却管および撹拌子を備えた2口フラスコ(50mL)にジエチルエーテル25mL、蒸留水3.04g(169mmol)および硫酸2.52g(25.7mmol)を収めた。この混合物を0℃に冷却し、1,1−ジエトキシ−3−メチル−1−シラシクロペンタ−3−エン3.70g(19.9mmol)をゆっくり加え、徐々に室温に戻した後、さらに18時間撹拌した。反応混合物を分液ロートに移し、ヘキサン50mLを加え、水50mLで有機層を3回洗浄した。有機層を無水硫酸ナトリウムで乾燥後、ロータリーエバポレーターで濃縮した。残査をクーゲルロール蒸留(蒸留温度:140℃/50Pa)することにより、120mg(収率:5.4%、異性体混合物のトータルGC純度:94%)の化合物3を無色液体として得た。
Example-15
A two-necked flask (50 mL) equipped with a Dimroth condenser and a stirring bar was charged with 25 mL of diethyl ether, 3.04 g (169 mmol) of distilled water, and 2.52 g (25.7 mmol) of sulfuric acid. The mixture was cooled to 0 ° C., 3.70 g (19.9 mmol) of 1,1-diethoxy-3-methyl-1-silacyclopent-3-ene was slowly added, and the temperature was gradually returned to room temperature. Stir for hours. The reaction mixture was transferred to a separatory funnel, 50 mL of hexane was added, and the organic layer was washed 3 times with 50 mL of water. The organic layer was dried over anhydrous sodium sulfate and concentrated using a rotary evaporator. The residue was subjected to Kugelrohr distillation (distillation temperature: 140 ° C./50 Pa) to obtain 120 mg (yield: 5.4%, total GC purity of isomer mixture: 94%) of Compound 3 as a colorless liquid.

参考例−13
ステンレス製オートクレーブに撹拌子を入れ、アルゴン置換した。この中に酸化白金100mg、化合物3を396mg(1.18mmol)、および脱水テトラヒドロフラン5mLを収め、水素ガスで内部を置換した。これを90℃で5日間撹拌した。反応混合物をセライトでろ過し、ろ液をロータリーエバポレーターで濃縮した。残査をクーゲルロールで蒸留(蒸留温度:110〜140℃/50Pa)し、化合物2の異性体混合物149mg(収率:36.9%、異性体混合物のトータルGC純度:79%)を無色半固体として得た。
Reference Example-13
A stir bar was placed in a stainless steel autoclave and purged with argon. In this, 100 mg of platinum oxide, 396 mg (1.18 mmol) of compound 3, and 5 mL of dehydrated tetrahydrofuran were placed, and the inside was replaced with hydrogen gas. This was stirred at 90 ° C. for 5 days. The reaction mixture was filtered through celite and the filtrate was concentrated on a rotary evaporator. The residue was distilled with Kugelrohr (distillation temperature: 110-140 ° C./50 Pa), and 149 mg of compound 2 isomer mixture (yield: 36.9%, total GC purity of isomer mixture: 79%) Obtained as a solid.

実施例−16〜27、比較例1〜4
実施例で製造した本発明のスピロ型シクロトリシロキサン誘導体を、試験例−1に示す方法により、初期内圧及び製膜時間を変えて製膜し、得られた膜の膜厚、弾性率、硬度及び比誘電率を試験例−2及び3に示す方法により測定した(実施例−16〜27)。結果を表1に纏めて示した。比較例として市販のヘキサメチルシクロトリシロキサン(HMCTS)およびヘキサエチルシクロトリシロキサン(HECTS)を用いて、試験例1に従い製膜し、得られた膜の膜厚、弾性率、硬度及び比誘電率を試験例−2及び3に示す方法により測定し(比較例−1〜4)、結果を合わせて表1に示した。なお特に温度の表示の無いものはチャンバー内温55℃で製膜を行なった。
Examples-16 to 27, Comparative Examples 1 to 4
The spiro-type cyclotrisiloxane derivative of the present invention produced in the examples was formed by changing the initial internal pressure and the film forming time by the method shown in Test Example 1, and the film thickness, elastic modulus, and hardness of the obtained film were obtained. The relative dielectric constant was measured by the methods shown in Test Examples 2 and 3 (Examples 16 to 27). The results are summarized in Table 1. As a comparative example, using commercially available hexamethylcyclotrisiloxane (HMCTS) and hexaethylcyclotrisiloxane (HECTS), a film was formed according to Test Example 1, and the film thickness, elastic modulus, hardness, and relative dielectric constant of the obtained film were obtained. Were measured by the methods shown in Test Examples 2 and 3 (Comparative Examples-1 to 4), and the results are shown in Table 1. In addition, in the case where there is no indication of temperature, the film was formed at a chamber internal temperature of 55 ° C.

試験例−1(製膜)
図1に示す、50mmの間隔で対向電極を上下に配した平行平板容量結合型PECVD装置を用い、片方の電極に基板として用いたシリコンウェーハを張付け、チャンバー内の所定の位置に本発明のスピロ型シクロトリシロキサン誘導体(約1g)を設置した。チャンバー内を真空ポンプで減圧し、ヒーター加熱により内温を所定温度に保持した。電源周波数13.56MHzのRF電源出力を所定の値にセットし、所定時間製膜を行った。
試験例−2(膜厚および比誘電率測定)
製膜された膜について日本分光株式会社製のエリプソメーター(型式:MEL−30S)を用いて膜厚と屈折率を測定し、屈折率を二乗することによって比誘電率とした。
試験例−3(弾性率および硬度測定)
製膜された膜について、Hysitron社製のTRIBOSCOPEを用いてナノインデンテーション法により弾性率および硬度を測定した。検量線はBerkovich型の圧子を用い、溶融石英を参照サンプルとして作成した。測定は膜の膜厚に対して押し込み深さを10%として測定を行った。
Test example-1 (film formation)
A silicon wafer used as a substrate is attached to one electrode and a spiro of the present invention is placed at a predetermined position in a chamber using a parallel plate capacitively coupled PECVD apparatus shown in FIG. Type cyclotrisiloxane derivative (about 1 g) was placed. The inside of the chamber was depressurized with a vacuum pump, and the internal temperature was maintained at a predetermined temperature by heating the heater. An RF power output with a power frequency of 13.56 MHz was set to a predetermined value, and film formation was performed for a predetermined time.
Test Example-2 (Measurement of film thickness and relative dielectric constant)
The film thickness and refractive index of the film thus formed were measured using an ellipsometer (model: MEL-30S) manufactured by JASCO Corporation, and the relative dielectric constant was obtained by squaring the refractive index.
Test Example-3 (Elastic modulus and hardness measurement)
The elastic modulus and hardness of the formed film were measured by a nanoindentation method using TRIBOSCOPE manufactured by Hystron. A calibration curve was prepared using a Berkovich type indenter and fused quartz as a reference sample. The measurement was carried out with an indentation depth of 10% with respect to the film thickness.

Figure 2011111399
Figure 2011111399

1.PECVDチャンバー
2.基板
3.上部電極
4.下部電極
5.原料ガラス容器
6.原料
7.真空ポンプ
8.マッチング回路
9.RF電源
10.アース
11.ヒーター
1. PECVD chamber Substrate 3. Upper electrode 4. Lower electrode 5. Raw material glass container 6. Raw material 7. Vacuum pump 8. 8. Matching circuit RF power supply 10. Earth 11. heater

Claims (12)

一般式(1)
Figure 2011111399
(式中、R、R、R及びRはそれぞれ独立に水素原子又は炭素数が1乃至3のアルキル基を表す。但し、R、R、R及びRは同時に水素原子ではない。また破線を伴う実線は単結合又は二重結合を表す。)で表されることを特徴とする、スピロ型シクロトリシロキサン誘導体。
General formula (1)
Figure 2011111399
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, provided that R 1 , R 2 , R 3 and R 4 are simultaneously hydrogen. Spiro-type cyclotrisiloxane derivative, which is not an atom, and is represented by a solid line with a broken line represents a single bond or a double bond.
、R及びRが水素原子、Rがメチル基であり、破線を伴う実線が単結合であるか、R、R及びRが水素原子、Rがメチル基であり、破線を伴う実線が単結合であるか、又は、R、R及びRが水素原子、Rがメチル基であり、破線を伴う実線が二重結合である、請求項1に記載のスピロ型シクロトリシロキサン誘導体。 R 2 , R 3 and R 4 are hydrogen atoms, R 1 is a methyl group, the solid line with a broken line is a single bond, or R 1 , R 3 and R 4 are hydrogen atoms, and R 2 is a methyl group The solid line with a broken line is a single bond, or R 1 , R 3 and R 4 are hydrogen atoms, R 2 is a methyl group, and the solid line with a broken line is a double bond. Spiro-type cyclotrisiloxane derivative. 一般式(2)
Figure 2011111399
(式中、R、R、R及びRはそれぞれ独立に水素原子又は炭素数が1乃至3のアルキル基を表す。但し、R、R、R及びRは同時に水素原子ではない。また破線を伴う実線は単結合又は二重結合を表し、Xはそれぞれ独立に塩素原子、メトキシ基又はエトキシ基を表す。)で表されるシラン誘導体を環化剤の存在下に反応させることを特徴とする、一般式(1)
Figure 2011111399
(式中、R、R、R及びRはそれぞれ独立に水素原子又は炭素数が1乃至3のアルキル基を表す。但し、R、R、R及びRは同時に水素原子ではない。また破線を伴う実線は単結合又は二重結合を表す。)で表されるスピロ型シクロトリシロキサン誘導体の製造方法。
General formula (2)
Figure 2011111399
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, provided that R 1 , R 2 , R 3 and R 4 are simultaneously hydrogen. In addition, a solid line with a broken line represents a single bond or a double bond, and X represents a chlorine atom, a methoxy group, or an ethoxy group, respectively, in the presence of a cyclizing agent. It is made to react, General formula (1)
Figure 2011111399
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, provided that R 1 , R 2 , R 3 and R 4 are simultaneously hydrogen. (A solid line with a broken line represents a single bond or a double bond.) A method for producing a spiro-type cyclotrisiloxane derivative represented by:
環化剤がスルホキシド化合物、金属酸化物、水又は酸性水溶液である、請求項3に記載の製造方法。 The manufacturing method of Claim 3 whose cyclizing agent is a sulfoxide compound, a metal oxide, water, or acidic aqueous solution. Xが塩素原子である一般式(2)で表されるシラン誘導体に、環化剤としてジメチルスルホキシド、酸化亜鉛、酸化銅(II)、酸化マグネシウム又は水を作用させる、請求項3又は4に記載の製造方法。 The silane derivative represented by the general formula (2) in which X is a chlorine atom is reacted with dimethyl sulfoxide, zinc oxide, copper (II) oxide, magnesium oxide or water as a cyclizing agent. Manufacturing method. Xがメトキシ基又はエトキシ基である一般式(2)で表されるシラン誘導体に、環化剤として硫酸水溶液を作用させる、請求項3又は4に記載の製造方法。 The manufacturing method of Claim 3 or 4 which makes sulfuric acid aqueous solution act as a cyclizing agent with respect to the silane derivative represented by General formula (2) whose X is a methoxy group or an ethoxy group. 一般式(2a)
Figure 2011111399
(式中、R、R、R及びRはそれぞれ独立に水素原子又は炭素数が1乃至3のアルキル基を表す。但し、R、R、R及びRは同時に水素原子ではない。破線を伴う実線は単結合又は二重結合を表す。)で表されるジクロロシラン誘導体に、メタノール又はエタノールを反応させて得られた、Xがメトキシ基又はエトキシ基である一般式(2)で表されるシラン誘導体を用いる、請求項3、4又は6に記載の製造方法。
General formula (2a)
Figure 2011111399
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, provided that R 1 , R 2 , R 3 and R 4 are simultaneously hydrogen. (A solid line with a broken line represents a single bond or a double bond.) A general formula in which X is a methoxy group or an ethoxy group, obtained by reacting a dichlorosilane derivative represented by The manufacturing method of Claim 3, 4 or 6 using the silane derivative represented by (2).
一般式(1)
Figure 2011111399
(式中、R、R、R及びRはそれぞれ独立に水素原子又は炭素数が1乃至3のアルキル基を表す。但し、R、R、R及びRは同時に水素原子ではない。また破線を伴う実線は単結合又は二重結合を表す。)で表されるスピロ型シクロトリシロキサン誘導体を原料として用いて製膜することを特徴とする、膜の製造法。
General formula (1)
Figure 2011111399
(In the formula, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, provided that R 1 , R 2 , R 3 and R 4 are simultaneously hydrogen. A film is produced using a spiro-type cyclotrisiloxane derivative represented by the following formula: a solid line that is not an atom and a solid line with a broken line represents a single bond or a double bond.
製膜をプラズマ促進化学気相蒸着法により行う、請求項8に記載の製造法。 The manufacturing method according to claim 8, wherein the film formation is performed by a plasma enhanced chemical vapor deposition method. 請求項8または9に記載の製造法により製造されることを特徴とする膜。 A film produced by the production method according to claim 8 or 9. 請求項10に記載の膜から成ることを特徴とする、電気絶縁膜。 An electrically insulating film comprising the film according to claim 10. 請求項11に記載の電気絶縁膜を配してなることを特徴とする、半導体電子デバイス。 A semiconductor electronic device comprising the electrical insulating film according to claim 11.
JP2009267358A 2009-11-25 2009-11-25 Spiro type cyclotrisiloxane derivative, method for producing the same, film production method using the same and film Pending JP2011111399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267358A JP2011111399A (en) 2009-11-25 2009-11-25 Spiro type cyclotrisiloxane derivative, method for producing the same, film production method using the same and film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267358A JP2011111399A (en) 2009-11-25 2009-11-25 Spiro type cyclotrisiloxane derivative, method for producing the same, film production method using the same and film

Publications (1)

Publication Number Publication Date
JP2011111399A true JP2011111399A (en) 2011-06-09

Family

ID=44233995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267358A Pending JP2011111399A (en) 2009-11-25 2009-11-25 Spiro type cyclotrisiloxane derivative, method for producing the same, film production method using the same and film

Country Status (1)

Country Link
JP (1) JP2011111399A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070403A1 (en) * 2010-11-25 2012-05-31 東ソー株式会社 Disiloxane derivative having silacycloalkane structure, method for producing disiloxane derivative, film produced using disiloxane derivative, method for producing this film, and material and electronic device using this film
JP2013118285A (en) * 2011-12-02 2013-06-13 Hitachi Appliances Inc Light emitting diode module and lighting apparatus using the same
WO2019046449A1 (en) * 2017-08-30 2019-03-07 Versum Materials Us, Llc Alkoxysilacyclic or acyloxysilacyclic compounds and methods for depositing films using same
CN110952074A (en) * 2018-08-10 2020-04-03 弗萨姆材料美国有限责任公司 Silicon compound and method for depositing film using the same
JP2021025124A (en) * 2019-08-06 2021-02-22 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Silicon compound and method for depositing film using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070403A1 (en) * 2010-11-25 2012-05-31 東ソー株式会社 Disiloxane derivative having silacycloalkane structure, method for producing disiloxane derivative, film produced using disiloxane derivative, method for producing this film, and material and electronic device using this film
JP2013118285A (en) * 2011-12-02 2013-06-13 Hitachi Appliances Inc Light emitting diode module and lighting apparatus using the same
WO2019046449A1 (en) * 2017-08-30 2019-03-07 Versum Materials Us, Llc Alkoxysilacyclic or acyloxysilacyclic compounds and methods for depositing films using same
CN110952074A (en) * 2018-08-10 2020-04-03 弗萨姆材料美国有限责任公司 Silicon compound and method for depositing film using the same
CN110952074B (en) * 2018-08-10 2023-06-13 弗萨姆材料美国有限责任公司 Silicon compound and method for depositing film using silicon compound
JP2021025124A (en) * 2019-08-06 2021-02-22 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Silicon compound and method for depositing film using the same
JP6993394B2 (en) 2019-08-06 2022-02-21 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Silicon compounds and methods of depositing films using silicon compounds

Similar Documents

Publication Publication Date Title
Fischer et al. Route Si6 revisited
JP2011111399A (en) Spiro type cyclotrisiloxane derivative, method for producing the same, film production method using the same and film
JPS63310893A (en) Production of alkoxysilane
KR20090024827A (en) Novel epoxy compound and process for production thereof
US10590150B2 (en) Preparation of fluorosilicon compounds
KR101742391B1 (en) Indium precursors, preparation method thereof and process for the formation of thin film using the same
JP4332708B2 (en) Chlorosilane compound having bissilylamino group and method for producing the same, and method for producing organooxysilane compound having bissilylamino group
US10858379B2 (en) Metal precursor for making metal oxide
JP2011040629A (en) Film formed by using cyclic siloxane compound having spiro structure, and method of preparing the same
US5130461A (en) 1,3-bis(p-hydroxybenzyl)-1,1,3,3-tetramethyldisiloxane and method for making
JP2004256497A (en) Polysubstituted polycyclic aromatic compound and method for producing the same
JP2018172321A (en) Cyclic siloxane compound, production method thereof, method of producing electric insulating film using the same, and film
Unno et al. Synthesis and crystal structures of silapericyclynes
Poleschner et al. Reactions of RSe–EMe3 (E= Si, Ge, Sn, Pb) with XeF2—RSe–F Equivalents in the Fluoroselenenylation of Acetylenes [1]
JP5057301B2 (en) Dialkylsilanol compound and process for producing the same
Wendler et al. 2, 2-Dihydroxy-methylcyclosiloxanes and other 2, 2-difunctional methylcyclosiloxanes
KR101919755B1 (en) A new organic amino silicon composition and thin film comprising silicon by using the same
WO2012070403A1 (en) Disiloxane derivative having silacycloalkane structure, method for producing disiloxane derivative, film produced using disiloxane derivative, method for producing this film, and material and electronic device using this film
WO2024080237A1 (en) Silicon-containing film precursor, composition for forming silicon-containing film, method for manufacturing sulfur-containing siloxane, and method for manufacturing silicon-containing film
JP2007197347A (en) Method for producing organic silane compound
JP5057309B2 (en) Dialkylsilane compound and method for producing the same
JPH0466588A (en) Production of thexyltrichlorosilane
JP4368243B2 (en) Method for producing branched pentasiloxane
JP4262900B2 (en) Tetra-tertiary alkoxysilane production method
JP3385355B2 (en) Tetrakis (dialkoxysilyl) benzene and method for producing the same