JP4479190B2 - Insulating film material comprising alkenyl group-containing organosilane compound, insulating film and semiconductor device using the same - Google Patents

Insulating film material comprising alkenyl group-containing organosilane compound, insulating film and semiconductor device using the same Download PDF

Info

Publication number
JP4479190B2
JP4479190B2 JP2003298579A JP2003298579A JP4479190B2 JP 4479190 B2 JP4479190 B2 JP 4479190B2 JP 2003298579 A JP2003298579 A JP 2003298579A JP 2003298579 A JP2003298579 A JP 2003298579A JP 4479190 B2 JP4479190 B2 JP 4479190B2
Authority
JP
Japan
Prior art keywords
insulating film
compound
general formula
film
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003298579A
Other languages
Japanese (ja)
Other versions
JP2005071741A (en
Inventor
大治 原
圭介 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003298579A priority Critical patent/JP4479190B2/en
Publication of JP2005071741A publication Critical patent/JP2005071741A/en
Application granted granted Critical
Publication of JP4479190B2 publication Critical patent/JP4479190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Formation Of Insulating Films (AREA)
  • Organic Insulating Materials (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、プラズマ重合用有機シラン化合物を含んでなる絶縁膜材料およびその用途に関するものである。殊にロジックULSIにおける多層配線技術において用いられる低誘電率層間絶縁膜材料に関するものである。   The present invention relates to an insulating film material comprising an organosilane compound for plasma polymerization and its use. In particular, the present invention relates to a low dielectric constant interlayer insulating film material used in multilayer wiring technology in logic ULSI.

電子産業の集積回路分野の製造技術において、高集積化かつ高速化の要求が高まっている。シリコンULSI、殊にロジックULSIにおいては、MOSFETの微細化による性能よりも、それらをつなぐ配線の性能が課題となっている。すなわち、多層配線化に伴う配線遅延の問題を解決する為に配線抵抗の低減と配線間および層間容量の低減が求められている。   In the manufacturing technology of the integrated circuit field of the electronics industry, there is an increasing demand for high integration and high speed. In silicon ULSIs, especially logic ULSIs, the performance of wiring connecting them is a problem rather than the performance due to miniaturization of MOSFETs. That is, in order to solve the wiring delay problem associated with the multilayer wiring, it is required to reduce the wiring resistance and between the wirings and the interlayer capacitance.

これらのことから、現在、集積回路の大部分に使用されているアルミニウム配線に変えて、より電気抵抗が低く、マイグレーション耐性のある銅配線の導入が必須となっており、スパッタリングまたは化学蒸着(以下、CVDと略記)法によるシード形成後、銅メッキを行うプロセスが実用化されつつある。   For these reasons, instead of aluminum wiring, which is currently used in most integrated circuits, it is essential to introduce copper wiring with lower electrical resistance and migration resistance. The process of copper plating after seed formation by the CVD method is being put into practical use.

低誘電率層間絶縁膜材料としては、さまざまな提案がある。従来技術としては、無機系では、二酸化珪素(SiO)、窒化珪素、燐珪酸ガラス、有機系では、ポリイミドが用いられてきたが、最近では、より均一な層間絶縁膜を得る目的で予めテトラエトキシシランモノマーを加水分解、すなわち、重縮合させてSiOを得、Spin on Glass(無機SOG)と呼ぶ塗布材として用いる提案や、有機アルコシキシランモノマーを重縮合させて得たポリシロキサンを有機SOGとして用いる提案がある。 There are various proposals for low dielectric constant interlayer insulating film materials. As the prior art, silicon dioxide (SiO 2 ), silicon nitride, phosphosilicate glass has been used for inorganic systems, and polyimide has been used for organic systems. Recently, however, a tetralayer has been previously prepared for the purpose of obtaining a more uniform interlayer insulating film. Hydrolysis of ethoxysilane monomer, that is, polycondensation to obtain SiO 2 and proposal to use as a coating material called Spin on Glass (inorganic SOG), or polysiloxane obtained by polycondensation of organic alkoxysilane monomer to organic There are proposals for use as SOG.

また、絶縁膜形成方法として絶縁膜ポリマー溶液をスピンコート法等で塗布、成膜を行う塗布型のものと主にプラズマCVD装置中でプラズマ重合させて成膜するCVD法の二つ方法がある。   In addition, there are two methods for forming an insulating film: a coating type in which an insulating film polymer solution is applied by spin coating or the like, and a CVD method in which a film is formed mainly by plasma polymerization in a plasma CVD apparatus. .

PECVD法の提案としては、例えば、特許文献1において、トリメチルシランと酸素とからプラズマCVD法により酸化トリメチルシラン薄膜を形成する方法が、また、特許文献2では、メチル,エチル,n−プロピル等の直鎖状アルキル、ビニル、フェニル等のアルキニル及びアリール基を有するアルコキシシランからPECVD法により酸化アルキルシラン薄膜を形成する方法が提案されている。これら従来のプラズマCVD法材料で形成された絶縁膜は、バリアメタル、配線材料である銅配線材料との密着性が良好な反面、膜の均一性が課題となる場合があった。また、その成膜には、高い成膜速度を実現する為に、高プラズマパワーが必要であり、数千W(ワット)に及ぶ高パワーの高周波電源や成膜を行うチャンバー内に石英等の高価な材料を使用しなければならず、経済面での課題があった。更に高プラズマパワーで成膜することから、生成する薄膜重合体の構造の制御が困難となり、比誘電率が不十分な場合があった。   As a proposal of the PECVD method, for example, in Patent Document 1, a method of forming a trimethylsilane oxide thin film by plasma CVD from trimethylsilane and oxygen, and in Patent Document 2, such as methyl, ethyl, n-propyl, etc. There has been proposed a method of forming an alkyl silane oxide thin film from an alkoxy silane having an alkynyl and aryl group such as linear alkyl, vinyl and phenyl by PECVD. These conventional insulating films formed by plasma CVD method have good adhesion to barrier metal and copper wiring material as wiring material, but there are cases where film uniformity is a problem. In addition, the film formation requires high plasma power in order to realize a high film formation rate, such as high-power high-frequency power supply of several thousand watts (W), quartz or the like in the chamber for film formation. Expensive materials had to be used, and there were economic problems. Furthermore, since the film is formed with a high plasma power, it is difficult to control the structure of the thin film polymer to be produced, and the relative dielectric constant may be insufficient.

そこで安価な装置を用い、低プラズマパワーで、高い成膜速度で低比誘電率絶縁膜を成膜可能な材料が求められている。   Therefore, there is a demand for a material capable of forming a low dielectric constant insulating film at low film power and high film formation speed using an inexpensive apparatus.

一方、塗布型の提案としては、膜の均一性は良好であるものの、塗布、溶媒除去、熱処置の三工程が必要であり、CVD材料より経済的に不利であり、また、バリアメタル、配線材料である銅配線材料との密着性や、微細化している基板構造への塗布液の均一な塗布自体が課題となる場合が多かった。   On the other hand, as a coating type proposal, although the uniformity of the film is good, three steps of coating, solvent removal, and heat treatment are necessary, which is economically disadvantageous than CVD materials, and barrier metal, wiring In many cases, adhesion to the copper wiring material, which is the material, and uniform application of the coating liquid to the miniaturized substrate structure itself are problems.

また、塗布型材料においては、比誘電率が2.5以下、更には、2.0以下のUltra Low−k材を実現する為に多孔質材料とする方法が提案されている。有機系もしくは無機系材料のマトリックスに容易に熱分解する有機成分微粒子を分散させ、熱処理し多孔化する方法、珪素と酸素をガス中蒸発させて形成したSiO超微粒子を蒸着させ、SiO超微粒子薄膜を形成させる方法等がある。 Moreover, in the coating type material, the method of using a porous material in order to implement | achieve the Ultra Low-k material whose relative dielectric constant is 2.5 or less and also 2.0 or less is proposed. Organic or inorganic material matrix readily disperse the thermally decomposed organic component particles in the method of heat treating and pore formation, silicon and oxygen by evaporating SiO 2 ultrafine particles formed by evaporation in a gas, SiO 2 than There is a method of forming a fine particle thin film.

しかしながら、これら多孔質化の方法は、低誘電率化には有効であるものの、機械的強度が低下し、化学的機械的研磨(CMP)が困難となったり、水分の吸収による誘電率の上昇と配線腐食を引き起こす場合があった。   However, although these porous methods are effective for lowering the dielectric constant, the mechanical strength decreases, chemical mechanical polishing (CMP) becomes difficult, and the dielectric constant increases due to moisture absorption. And wiring corrosion could be caused.

従って、市場は、低誘電率、十分な機械的強度、バリアメタルとの密着性、銅拡散防止、耐プラズマアッシング性、耐吸湿性等の全て要求性能を満たすバランスの良い材料を更に求めている。これらの要求性能をある程度バランスさせる方法として、有機シラン系材料において、シランに対する有機置換基の炭素比率を上昇させることによって、有機ポリマーと無機ポリマーの中間的特徴を有する材料が提案されている。   Therefore, the market further seeks well-balanced materials that satisfy all the required performance such as low dielectric constant, sufficient mechanical strength, adhesion to barrier metal, copper diffusion prevention, plasma ashing resistance, moisture absorption resistance, etc. . As a method for balancing these required performances to some extent, a material having an intermediate characteristic between an organic polymer and an inorganic polymer has been proposed in an organic silane material by increasing the carbon ratio of the organic substituent to silane.

例えば、特許文献3では、アダマンチル基を有するシリコン化合物を酸性水溶液共存下、ゾル−ゲル法により加水分解重縮合した塗布溶液を用い、多孔質化せずに比誘電率が2.4以下の層間絶縁膜を得る方法を提案している。   For example, in Patent Document 3, a coating solution obtained by hydrolytic polycondensation of a silicon compound having an adamantyl group in the presence of an acidic aqueous solution by a sol-gel method is used, and an interlayer having a relative dielectric constant of 2.4 or less without being made porous. A method for obtaining an insulating film is proposed.

しかしながら、この材料は、塗布型の材料であり、依然、上述したような塗布型による成膜方法の課題を抱えている。   However, this material is a coating type material, and still has the problem of the film forming method using the coating type as described above.

特開2002−110670号公報JP 2002-110670 A

特開平11−288931号公報JP-A-11-288931 特開2000−302791号公報JP 2000-302791 A

本発明の目的は、新規な低誘電率材料、殊にPECVD装置に適したアルケニル基含有有機シラン化合物を含んでなる低誘電率絶縁膜用材料を提供すること、並びにこれらの絶縁膜を含んでなる半導体デバイスを提供することにある。   It is an object of the present invention to provide a novel low dielectric constant material, in particular, a low dielectric constant insulating film material comprising an alkenyl group-containing organosilane compound suitable for a PECVD apparatus, and including these insulating films. It is providing the semiconductor device which becomes.

本発明者らは、アルケニル基を有する有機シラン化合物が、殊に半導体デバイス用の低誘電率層間絶縁膜材料として好適であることを見出し、本発明を完成するに至った。   The present inventors have found that an organosilane compound having an alkenyl group is particularly suitable as a low dielectric constant interlayer insulating film material for a semiconductor device, and have completed the present invention.

すなわち、少なくとも一つのアルケニル基を有する下記一般式(1)   That is, the following general formula (1) having at least one alkenyl group

Figure 0004479190
(式中、R,Rは、炭素数1〜20の炭化水素基を表し、nは0〜3の整数を表す。R,Rは互いに結合していてもよい。)で示される有機シラン化合物を含んでなる、化学気相成長法により形成される絶縁膜用材料を提供することにある。
Figure 0004479190
(Wherein R 1 and R 2 represent a hydrocarbon group having 1 to 20 carbon atoms, and n represents an integer of 0 to 3. R 1 and R 2 may be bonded to each other). It is an object of the present invention to provide a material for an insulating film formed by a chemical vapor deposition method, comprising an organic silane compound.

以下、本発明の詳細について説明する。   Details of the present invention will be described below.

上記一般式(1)において、R,Rは、炭素数1〜20の飽和もしくは、不飽和炭化水素基を表し、nは0〜3の整数を表す。また、R,Rが互いに結合したものも本発明の範囲に含まれる。炭素数が20を超える場合は、対応する原料の調達が困難となったり、調達できたとしても純度が低い場合がある。 In the general formula (1), R 1 and R 2 represent a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, and n represents an integer of 0 to 3. Further, those in which R 1 and R 2 are bonded to each other are also included in the scope of the present invention. When the number of carbon atoms exceeds 20, it may be difficult to procure the corresponding raw material or the purity may be low even if it can be procured.

CVD装置での安定的使用考慮した場合、炭素数1〜10の炭化水素基が特に好ましい。炭素数が10を超えた場合、生成した有機シラン化合物の蒸気圧が低くなり、PECVD装置での使用が困難となる場合がある。   In consideration of stable use in a CVD apparatus, a hydrocarbon group having 1 to 10 carbon atoms is particularly preferable. When carbon number exceeds 10, the vapor pressure of the produced | generated organosilane compound may become low, and the use with a PECVD apparatus may become difficult.

,Rの炭化水素基の例としては、特に限定されるものではないが、炭素数1〜20、好ましくは炭素数1〜10のアルキル基、アリール基、アリールアルキル基、アルキルアリール基を挙げることができる。R,Rは、同一であっても異なっても良い。 Examples of the hydrocarbon group for R 1 and R 2 include, but are not limited to, alkyl groups having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, aryl groups, arylalkyl groups, and alkylaryl groups. Can be mentioned. R 1 and R 2 may be the same or different.

例えば、飽和炭化水素基として、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、tert.−ブチル、n−ペンチル、tert.−アミル、n−ヘキシル、シクロヘキシル等を挙げることができる。   For example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert. -Butyl, n-pentyl, tert. -Amyl, n-hexyl, cyclohexyl and the like can be mentioned.

また不飽和炭化水素基として、ビニル、1−プロペニル、1−ブテニル、2−ブテニル等のアルケニル、1,3−ブタジエニル、1,3−ペンタジエニル、1,3−ヘキサジエニル等のアルカジエニル、エチニル、1−プロピニル、1−ブチニル、2−ブチニル等のアルキニル、フェニル等のアリール、トルイル等のアルキルアリール等を挙げることができる。   As unsaturated hydrocarbon groups, alkenyl such as vinyl, 1-propenyl, 1-butenyl and 2-butenyl, alkadienyl such as 1,3-butadienyl, 1,3-pentadienyl and 1,3-hexadienyl, ethynyl, 1- Examples thereof include alkynyl such as propynyl, 1-butynyl and 2-butynyl, aryl such as phenyl, and alkylaryl such as toluyl.

飽和炭化水素基、不飽和炭化水素いずれの場合も、化学式(1)におけるnは0〜3の整数である。   In any case of the saturated hydrocarbon group and the unsaturated hydrocarbon, n in the chemical formula (1) is an integer of 0 to 3.

一般式(1)で表される有機シラン化合物の具体例としては、テトラビニルシラン、テトライソプロペニルシラン、メチルトリビニルシラン、ジメチルジビニルシラン、トリメチルビニルシラン、エチルトリビニルシラン、ジエチルジビニルシラン、トリエチルビニルシラン、フェニルトリビニルシラン、ジフェニルジビニルシラン、トリフェニルビニルシラン、イソプロピルトリビニルシラン、ジイソプロピルジビニルシラン、トリイソプロピルビニルシラン、sec−ブチルトリビニルシラン、ジsec−ブチルジビニルシラン、トリsec−ブチルビニルシラン、tert.−ブチルジメチルビニルシラン、tert.−ブチルメチルジビニルシラン、tert.−ブチルエチルジビニルシラン、ジ−tert.−ブチルジビニルシラン、tert.−ブチルトリビニルシラン、等を挙げることができる。   Specific examples of the organic silane compound represented by the general formula (1) include tetravinylsilane, tetraisopropenylsilane, methyltrivinylsilane, dimethyldivinylsilane, trimethylvinylsilane, ethyltrivinylsilane, diethyldivinylsilane, triethylvinylsilane, phenyltri Vinyl silane, diphenyldivinylsilane, triphenylvinylsilane, isopropyltrivinylsilane, diisopropyldivinylsilane, triisopropylvinylsilane, sec-butyltrivinylsilane, disec-butyldivinylsilane, trisec-butylvinylsilane, tert. -Butyldimethylvinylsilane, tert. -Butylmethyldivinylsilane, tert. -Butylethyldivinylsilane, di-tert. -Butyldivinylsilane, tert. -Butyltrivinylsilane, etc. can be mentioned.

本発明のアルケニル基を有する有機シラン化合物は、その作用機構の詳細は、不明であるが、従来の有機シラン化合物に比べて、化学気相成長法により、高い成膜速度で低比誘電率絶縁膜を成膜することが可能である。   Although the details of the mechanism of action of the organosilane compound having an alkenyl group of the present invention are unknown, it has a low dielectric constant insulation at a high film formation rate by chemical vapor deposition compared to conventional organosilane compounds. It is possible to form a film.

上記一般式(1)の有機シラン化合物の製造法は、特に限定されるものではないが、例えば、下記一般式(2)の炭化水素基置換ハロゲン化シラン化合物   Although the manufacturing method of the organosilane compound of the said General formula (1) is not specifically limited, For example, the hydrocarbon group substituted halogenated silane compound of the following General formula (2)

Figure 0004479190
(式中、R及びnは、上記一般式(1)に同じ。Xは、フッ素原子、塩素原子、臭素原子、沃素原子、炭素数1〜4のアルコキシ基を表す。)と、下記一般式(3)のアルケニル金属化合物
Figure 0004479190
(Wherein R 1 and n are the same as those in the general formula (1). X represents a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkoxy group having 1 to 4 carbon atoms) and the following general formula. Alkenyl metal compound of formula (3)

Figure 0004479190
(式中、Rは、上記一般式(1)に同じ。Mは、Li、MgCl、MgBr、MgIを表す。)
を反応させ、製造することができる。
Figure 0004479190
(In the formula, R 2 is the same as in the general formula (1). M represents Li, MgCl, MgBr, and MgI.)
Can be made to react.

また、例えば、下記一般式(4)のアルケニル基置換ハロゲン化シラン化合物   Further, for example, an alkenyl group-substituted halogenated silane compound of the following general formula (4)

Figure 0004479190
(式中、R及びnは、上記一般式(1)に同じ。Xは、フッ素原子、塩素原子、臭素原子、沃素原子、炭素数1〜4のアルコキシ基を表す。)と、下記一般式(5)の有機金属化合物
Figure 0004479190
(Wherein R 2 and n are the same as those in the general formula (1). X represents a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkoxy group having 1 to 4 carbon atoms) and the following general formula. Organometallic compound of formula (5)

Figure 0004479190
(式中、Rは、上記一般式(1)に同じ。Mは、上記一般式(3)に同じ。)
を反応させ、製造することもできる。
Figure 0004479190
(In the formula, R 1 is the same as the above general formula (1). M is the same as the above general formula (3).)
Can also be made to react.

本製造法では副生成物の生成が抑制され、高収率に高純度の一般式(1)で示される有機シラン化合物が得られる。   In this production method, the production of by-products is suppressed, and an organic silane compound represented by the general formula (1) having a high purity and a high yield can be obtained.

上記一般式(2)の炭化水素基置換ハロゲン化シラン化合物と上記一般式(3)で示されるアルケニル金属化合物との反応条件、及び上記一般式(4)のアルケニル基置換ハロゲン化シラン化合物と下記一般式(5)の有機金属化合物との反応条件は、特に限定されず、通常、工業的に使用されている温度である−100〜200℃の範囲、好ましくは−85〜150℃の範囲で行うことが好ましい。反応の圧力条件は、加圧下、常圧下、減圧下いずれであっても可能である。   Reaction conditions of the hydrocarbon group-substituted halogenated silane compound of the general formula (2) and the alkenyl metal compound represented by the general formula (3), and the alkenyl group-substituted halogenated silane compound of the general formula (4) and The reaction conditions with the organometallic compound of the general formula (5) are not particularly limited, and are usually in the range of −100 to 200 ° C., preferably −85 to 150 ° C., which is an industrially used temperature. Preferably it is done. The pressure conditions for the reaction can be any of under pressure, normal pressure, and reduced pressure.

上記の反応に用いる溶媒としては、当該技術分野で使用されるものであれば特に限定されるものでなく、例えば、n−ペンタン、i−ペンタン、n−ヘキサン、シクロヘキサン、n−ヘプタン、n−デカン等の飽和炭化水素類、トルエン、キシレン、デセン−1等の不飽和炭化水素類、ジエチルエーテル、ジプロピルエーテル、tert.−ブチルメチルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル等のエーテル類を使用することができる。また、これらの混合溶媒も使用することができる。   The solvent used in the above reaction is not particularly limited as long as it is used in the technical field. For example, n-pentane, i-pentane, n-hexane, cyclohexane, n-heptane, n- Saturated hydrocarbons such as decane, unsaturated hydrocarbons such as toluene, xylene and decene-1, diethyl ether, dipropyl ether, tert. -Ethers such as butyl methyl ether, dibutyl ether, and cyclopentyl methyl ether can be used. Moreover, these mixed solvents can also be used.

製造の際に用いる上記一般式(3)のアルケニル金属化合物及び上記一般式(5)の有機金属化合物は、下記一般式(6)の有機ハライド化合物   The alkenyl metal compound of the general formula (3) and the organometallic compound of the general formula (5) used in the production are the organic halide compounds of the following general formula (6)

Figure 0004479190
(式中、Rは、アルケニル基を含む炭素数1〜20の炭化水素基を表し、Xは、上記に同じ。)と、金属リチウム粒子または金属マグネシウムとを反応させて製造することができる。
Figure 0004479190
(In the formula, R 3 represents a hydrocarbon group having 1 to 20 carbon atoms including an alkenyl group, and X is the same as above) and can be produced by reacting metal lithium particles or metal magnesium. .

上記一般式(6)の有機ハライド化合物と、金属リチウム粒子または金属マグネシウムとの反応条件は、特に限定されるものではないが、以下にその一例を示す。   Although the reaction conditions of the organic halide compound of the general formula (6) and the metal lithium particles or metal magnesium are not particularly limited, an example is shown below.

使用する金属リチウムとしては、リチウムワイヤー、リチウムリボン、リチウムショット等を用いることができるが、反応の効率面から、500μm以下の粒径を有するリチウム微粒子を用いることが好ましい。   As the metallic lithium to be used, lithium wire, lithium ribbon, lithium shot and the like can be used, but lithium fine particles having a particle diameter of 500 μm or less are preferably used from the viewpoint of reaction efficiency.

使用する金属マグネシウムとしては、マグネシウムリボン、マグネシウム粒子、マグネシウムパウダー等を用いることができる。   As the metallic magnesium to be used, magnesium ribbon, magnesium particles, magnesium powder and the like can be used.

上記の反応に用いる溶媒としては、当該技術分野で使用されるものであれば特に限定されるものでなく、上記一般式(1)の有機シラン化合物の製造で例示した溶媒を使用することができる。また、これらの混合溶媒も使用することができる。   The solvent used in the above reaction is not particularly limited as long as it is used in the technical field, and the solvents exemplified in the production of the organosilane compound of the general formula (1) can be used. . Moreover, these mixed solvents can also be used.

上記の反応における反応温度については、生成する有機リチウム化合物または有機マグネシウム化合物が分解しない様な温度範囲で行うことが好ましい。通常、工業的に使用されている温度である−100〜200℃の範囲、好ましくは、−85〜150℃の範囲で行うことが好ましい。反応の圧力条件は、加圧下、常圧下、減圧下いずれであっても可能である。   About reaction temperature in said reaction, it is preferable to carry out in the temperature range which the organic lithium compound or organic magnesium compound to produce | generate does not decompose | disassemble. Usually, it is carried out in the range of −100 to 200 ° C., preferably −85 to 150 ° C., which is a temperature used industrially. The pressure conditions for the reaction can be any of under pressure, normal pressure, and reduced pressure.

合成したアルケニル金属化合物及び有機金属化合物は、合成の後、そのまま用いることができ、また、未反応の有機ハライド化合物および金属リチウム、金属マグネシウム、反応副生成物であるリチウムハライド、マグネシウムハライドを除去した後、使用することもできる。   The synthesized alkenyl metal compound and organometallic compound can be used as they are after synthesis, and unreacted organic halide compound and metal lithium, metal magnesium, reaction by-product lithium halide, and magnesium halide are removed. It can also be used later.

上述の方法で得られた上記一般式(1)で示される有機シラン化合物の精製法については、絶縁膜材料として使用するに有用な水分含有量50ppm未満、ケイ素、炭素、水素以外の元素であって製造原料に由来する不純物量を10ppb未満とする為に、副生するリチウム塩、マグネシウム塩、アルカリ金属塩を、ガラスフィルター、焼結多孔体等を用いた濾過、常圧もしくは減圧蒸留またはシリカ、アルミナ、高分子ゲルを用いたカラム分離精製等の手段により除去すればよい。この際、必要に応じてこれらの手段を組み合せて使用してもよい。一般の有機合成技術で用いられるような、副生するリチウム塩、マグネシウム塩、アルカリ金属塩を水等により抽出する方法では、最終的に得られる一般式(1)で示される有機シラン化合物中の水分やケイ素、炭素、水素以外の元素不純物、殊に金属不純物残渣が高くなって、絶縁膜材料として不適当なものとなる場合がある。   The method for purifying the organosilane compound represented by the above general formula (1) obtained by the above-described method is an element other than silicon, carbon, and hydrogen, having a moisture content of less than 50 ppm, useful for use as an insulating film material. In order to reduce the amount of impurities derived from the production raw material to less than 10 ppb, by-product lithium salt, magnesium salt, alkali metal salt is filtered using a glass filter, sintered porous body, etc., atmospheric pressure or reduced pressure distillation or silica It may be removed by means such as column separation and purification using alumina or polymer gel. At this time, these means may be used in combination as necessary. In a method of extracting by-product lithium salt, magnesium salt, alkali metal salt with water or the like as used in a general organic synthesis technique, the organic silane compound represented by the general formula (1) finally obtained Element impurities other than moisture, silicon, carbon, and hydrogen, especially metal impurity residues, may become high and may become inappropriate as an insulating film material.

製造に際しては、当該有機金属化合物合成分野での方法に従う。すなわち、脱水および脱酸素された窒素またはアルゴン雰囲気下で行い、使用する溶媒および精製用のカラム充填剤等は、予め脱水操作を施しておくことが好ましい。また、金属残渣およびパーティクル等の不純物も除去しておくことが好ましい。   In the production, the method in the organometallic compound synthesis field is followed. That is, the dehydration and deoxygenation is performed in a nitrogen or argon atmosphere, and the solvent to be used and the column filler for purification are preferably subjected to dehydration operations in advance. It is also preferable to remove impurities such as metal residues and particles.

本発明の一般式(1)で示される有機シラン化合物は、PECVD装置により、低誘電率絶縁材料として成膜するに好適な材料である。   The organosilane compound represented by the general formula (1) of the present invention is a material suitable for forming a film as a low dielectric constant insulating material by a PECVD apparatus.

本発明の絶縁膜材料の使用方法は、特に限定されるものではないが、半導体製造分野、液晶ディスプレイ製造分野等の当該技術分野で一般的に用いられるPECVD装置を用い、絶縁膜とすることができる。PECVD装置とは、有機シラン化合物等の絶縁膜材料を気化器により気化させて、成膜チャンバー内に導入し、高周波電源により、成膜チャンバー内の電極に印加し、プラズマを発生させ、成膜チャンバー内のシリコン基板等にプラズマ重合膜を形成させる装置を言う。この際、プラズマを発生させる目的でアルゴン、ヘリウム等のガス、薄膜中への酸素導入の目的で少なくとも一つの酸素原子を有する化合物を導入しても良い。   The method of using the insulating film material of the present invention is not particularly limited, but the PECVD apparatus generally used in the technical field such as the semiconductor manufacturing field and the liquid crystal display manufacturing field may be used to form the insulating film. it can. The PECVD equipment vaporizes an insulating film material such as an organosilane compound with a vaporizer, introduces it into a film forming chamber, applies it to an electrode in the film forming chamber with a high frequency power source, generates plasma, and forms a film. An apparatus for forming a plasma polymerized film on a silicon substrate or the like in a chamber. At this time, a gas such as argon or helium for the purpose of generating plasma, or a compound having at least one oxygen atom may be introduced for the purpose of introducing oxygen into the thin film.

少なくとも一つの酸素原子を有する化合物としては、酸素、オゾン、一酸化二窒素、水、過酸化水素、アルキコキシシラン化合物、二酸化炭素、一酸化炭素、カルボン酸、カルボン酸過酸化物、カルボン酸過酸化物エステル等の酸化材が挙げられる。   Compounds having at least one oxygen atom include oxygen, ozone, dinitrogen monoxide, water, hydrogen peroxide, alkoxysilane compounds, carbon dioxide, carbon monoxide, carboxylic acid, carboxylic acid peroxide, carboxylic acid Oxidizing materials such as peroxide esters can be mentioned.

PECVD装置によって本発明の絶縁膜用材料を用いて成膜した場合、半導体デバイス用の低誘電率材料(Low−k材)として好適な薄膜を形成できる。   When a film is formed using the insulating film material of the present invention by a PECVD apparatus, a thin film suitable as a low dielectric constant material (low-k material) for semiconductor devices can be formed.

これらの材料をCVDで成膜後に、炭素原子とケイ素原子との結合が切断される以上の温度で熱処理することで多孔質化した低誘電率絶縁材料を得ることもできる。熱処理温度は、好ましくは、多孔化が完結する350℃以上でかつ半導体デバイスを劣化せしめない500℃以下の温度である。   A porous low dielectric constant insulating material can also be obtained by heat-treating these materials at a temperature higher than the bond between carbon atoms and silicon atoms is broken after film formation by CVD. The heat treatment temperature is preferably a temperature of 350 ° C. or higher at which the porosity is completed and 500 ° C. or lower at which the semiconductor device is not deteriorated.

本発明の低誘電率材料は、多層配線を用いたULSIの製造に好適であり、これを用いた半導体デバイスも本発明の範疇に含有されるものである。   The low dielectric constant material of the present invention is suitable for the production of ULSI using multilayer wiring, and semiconductor devices using this material are also included in the scope of the present invention.

本発明によれば、以下の顕著な効果が奏される。
(1)本発明の構造を有するアルケニル基含有有機シラン化合物を用いることで、半導体デバイス用の層間絶縁膜を低比誘電率且つ高成膜速度に成膜できる。
(2)PECVD法層間絶縁膜材料として有用なアルケニル基含有有機シラン化合物を高純度に効率よく製造できる。
According to the present invention, the following remarkable effects are exhibited.
(1) By using the alkenyl group-containing organosilane compound having the structure of the present invention, an interlayer insulating film for a semiconductor device can be formed at a low relative dielectric constant and a high film formation rate.
(2) An alkenyl group-containing organosilane compound useful as a PECVD interlayer insulating film material can be efficiently produced with high purity.

以下に実施例を示すが、本発明は、これらの実施例によって何ら限定されるものではない。   Examples are shown below, but the present invention is not limited to these Examples.

参考例
[ビニルマグネシウムクロリドの合成]
窒素雰囲気下、還流冷却器、滴下濾斗、攪拌装置を備えた6Lの四つ口フラスコ反応器にマグネシウム552g(22.7mol)とテトラヒドロフラン4445g(5.00L)を仕込み、臭化エチル24.7g(0.227mol)を加え、10分間攪拌した。その後、塩化ビニルガスの1351gを10時間かけて、吹き込み、反応させた。塩化ビニルガス吹き込んだ後、更に12時間攪拌し、27.8wt%(3.20mol/kg)のビニルマグネシウムクロリドのテトラヒドロフラン溶液を得た。
Reference example [Synthesis of vinylmagnesium chloride]
Under a nitrogen atmosphere, 552 g (22.7 mol) of magnesium and 4445 g (5.00 L) of tetrahydrofuran were charged into a 6 L four-necked flask reactor equipped with a reflux condenser, a dropping funnel and a stirrer, and 24.7 g of ethyl bromide. (0.227 mol) was added and stirred for 10 minutes. Thereafter, 1351 g of vinyl chloride gas was blown in for 10 hours to react. After blowing the vinyl chloride gas, the mixture was further stirred for 12 hours to obtain a 27.8 wt% (3.20 mol / kg) vinylmagnesium chloride tetrahydrofuran solution.

[テトラビニルシランの合成]
窒素気流下、還流冷却器、攪拌装置を備えた6Lの四つ口フラスコ反応器に四塩化ケイ素493g(2.90mol)とテトラヒドロフラン1422g(1.60L)を仕込み、室温にて、上記で調製した27.8wt%(3.20mol/kg)のビニルマグネシウムクロリドのテトラヒドロフラン溶液3620g(11.6mol)を3時間かけて滴下した。滴下終了後、更に室温で1時間攪拌した。
[Synthesis of tetravinylsilane]
Under a nitrogen stream, 493 g (2.90 mol) of silicon tetrachloride and 1422 g (1.60 L) of tetrahydrofuran were charged into a 6 L four-necked flask reactor equipped with a reflux condenser and a stirring device, and prepared above at room temperature. A 37.8 g (11.6 mol) tetrahydrofuran solution of 27.8 wt% (3.20 mol / kg) vinylmagnesium chloride was added dropwise over 3 hours. After completion of dropping, the mixture was further stirred at room temperature for 1 hour.

固体残渣をガラスフィルターにより、濾別し、反応混合物溶液を得た。テトラヒドロフランを留去し、減圧蒸留により、目的物であるテトラビニルシランを単離した。   The solid residue was filtered off with a glass filter to obtain a reaction mixture solution. Tetrahydrofuran was distilled off, and tetravinylsilane as the target product was isolated by distillation under reduced pressure.

収量は、184g(1.35mol)であり、収率46.6%に相当した。   The yield was 184 g (1.35 mol), corresponding to a yield of 46.6%.

単離したテトラビニルシランをH−NMR、13C−NMR、GC−MSで分析した結果は、以下の通りであった。 The results of analyzing the isolated tetravinylsilane by 1 H-NMR, 13 C-NMR, and GC-MS were as follows.

H−NMR;5.80〜6.26ppm(m,12H)
13C−NMR;134.7ppm、136.2ppm
GC−MS;Mw=136、C12Si
また、得られたテトラビニルシラン100g中の水分量並びにカリウムおよびリチウム含有量を、カールフィッシャー水分計およびICP−MS(高周波プラズマ発光−質量分析器、横河アナリティカルシステムズ社製、商品名「HP4500」)により測定した結果は、HО=5ppm、Mg<10ppbであり、絶縁膜材料として有用なものであった。
1 H-NMR; 5.80 to 6.26 ppm (m, 12H)
13 C-NMR; 134.7 ppm, 136.2 ppm
GC-MS; Mw = 136, C 8 H 12 Si
Further, the water content and potassium and lithium contents in 100 g of the obtained tetravinylsilane were measured using a Karl Fischer moisture meter and ICP-MS (high frequency plasma emission-mass spectrometer, manufactured by Yokogawa Analytical Systems, trade name “HP4500”). The results of measurement by H) were H 2 O = 5 ppm and Mg <10 ppb, and were useful as insulating film materials.

[テトラビニルシランのプラズマ重合]
日本レーザー電子(株)製プラズマ重合装置NL−ОP50FTを用い、放電電圧2.1V、放電電流3.0mA、テトラビニルシラン分圧0.7torr、酸素分圧0.03torr、室温、重合(放電)時間5分間の条件でテトラビニルシランをプラズマ重合し、シリコン基板上に成膜した。結果は、
成膜速度=91.7nm/min.
薄膜組成(XPS)C=23.9atom%、О=51.1atom%、
Si=25.0atom%
C/Si=0.96atom比
О/Si=2.04atom比
SEM薄膜断面観察 平坦緻密膜
であった。
[Plasma polymerization of tetravinylsilane]
Using a plasma polymerization apparatus NL-OP50FT manufactured by Nippon Laser Electronics Co., Ltd., discharge voltage 2.1 V, discharge current 3.0 mA, tetravinylsilane partial pressure 0.7 torr, oxygen partial pressure 0.03 torr, room temperature, polymerization (discharge) time Tetravinylsilane was subjected to plasma polymerization under conditions of 5 minutes, and a film was formed on a silicon substrate. Result is,
Deposition rate = 91.7 nm / min.
Thin film composition (XPS) C = 23.9 atom%, O = 51.1 atom%,
Si = 25.0 atom%
C / Si = 0.96 atom ratio
O / Si = 2.04 atom ratio SEM thin film cross-section observation It was a flat dense film.

実施例
[イソプロピルトリビニルシランの合成]
窒素気流下、還流冷却器、攪拌装置を備えた6L四つ口フラスコ反応器にイソプロピルトリクロロシラン686g(3.87mol)とテトラヒドロフラン1422g(1.60L)を仕込み、室温にて、上記で調製した27.8wt%(3.20mol/kg)のビニルマグネシウムクロリドのテトラヒドロフラン溶液3620g(11.6mol)を3時間かけて滴下した。滴下終了後、更に室温で1時間攪拌した。
Example 1
[Synthesis of Isopropyltrivinylsilane]
Under a nitrogen stream, 686 g (3.87 mol) of isopropyltrichlorosilane and 1422 g (1.60 L) of tetrahydrofuran were charged into a 6 L four-necked flask reactor equipped with a reflux condenser and a stirrer, and prepared above at room temperature. A solution of 3820 g (11.6 mol) of 0.88 wt% (3.20 mol / kg) of vinylmagnesium chloride in tetrahydrofuran was added dropwise over 3 hours. After completion of dropping, the mixture was further stirred at room temperature for 1 hour.

固体残渣をガラスフィルターにより、濾別し、反応混合物溶液を得た。テトラヒドロフランを留去し、減圧蒸留により、目的物であるイソプロピルトリビニルシランを単離した。   The solid residue was filtered off with a glass filter to obtain a reaction mixture solution. Tetrahydrofuran was distilled off and the target product, isopropyltrivinylsilane, was isolated by distillation under reduced pressure.

収量は、441g(2.90mol)であり、収率74.9%に相当した。   The yield was 441 g (2.90 mol), corresponding to a yield of 74.9%.

単離したイソプロピルトリビニルシランをH−NMR、13C−NMR、GC−MSで分析した結果は、以下の通りであった。 The results of analyzing the isolated isopropyltrivinylsilane by 1 H-NMR, 13 C-NMR, and GC-MS were as follows.

H−NMR;1.091ppm(s,6H)、1.094ppm(s,1H)、
5.77ppm〜6.24ppm(m,9H)
13C−NMR;12.24ppm、17.64ppm、133.4ppm
134.9ppm
GC−MS;Mw=152、C16Si
また、得られたイソプロピルトリビニルシラン100g中の水分量並びにカリウムおよびリチウム含有量を、カールフィッシャー水分計およびICP−MS(高周波プラズマ発光−質量分析器、横河アナリティカルシステムズ社製、商品名「HP4500」)により測定した結果は、HО=7ppm、Mg<10ppbであり、絶縁膜材料として有用なものであった。
1 H-NMR; 1.091 ppm (s, 6H), 1.094 ppm (s, 1H),
5.77 ppm to 6.24 ppm (m, 9H)
13 C-NMR; 12.24 ppm, 17.64 ppm, 133.4 ppm
134.9 ppm
GC-MS; Mw = 152, C 9 H 16 Si
Further, the water content and potassium and lithium content in 100 g of the obtained isopropyltrivinylsilane were measured using a Karl Fischer moisture meter and ICP-MS (high-frequency plasma emission-mass spectrometer, manufactured by Yokogawa Analytical Systems, trade name “HP4500”). )), H 2 O = 7 ppm, Mg <10 ppb, which was useful as an insulating film material.

比較例1
[テトラエトキシシランのプラズマ重合]
日本レーザー電子(株)製プラズマ重合装置NL−ОP50FTを用い、放電電圧2.1V、放電電流3.0mA、テトラエトシキ分圧0.7torr、室温、重合(放電)時間5分間の条件でプラズマ重合し、シリコン基板上に成膜した。結果は、
成膜速度=37.5nm/min.
薄膜組成(XPS)C=53.6atom%、О=29.3tom%、
Si=17.1atom%
C/Si=3.13atom比
О/Si=1.71atom比
SEM薄膜断面観察 平坦緻密膜
であり、成膜速度は、参考例のテトラビニルシランの成膜速度の41%と低いものであった。
Comparative Example 1
[Plasma polymerization of tetraethoxysilane]
Plasma polymerization was performed using a plasma polymerization apparatus NL-OP50FT manufactured by Nippon Laser Electronics Co., Ltd. under conditions of a discharge voltage of 2.1 V, a discharge current of 3.0 mA, a tetraethoxy partial pressure of 0.7 torr, room temperature, and a polymerization (discharge) time of 5 minutes. A film was formed on a silicon substrate. Result is,
Deposition rate = 37.5 nm / min.
Thin film composition (XPS) C = 53.6 atom%, O = 29.3 atom%,
Si = 17.1 atom%
C / Si = 3.13 atom ratio
O / Si = 1.71 atom ratio SEM thin film cross-sectional observation A flat dense film, and the film formation rate was as low as 41% of the film formation rate of tetravinylsilane in the reference example .

Claims (7)

イソプロピルトリビニルシラン、ジイソプロピルジビニルシラン、及びトリイソプロピルビニルシランのいずれかを含んでなる、プラズマ励起化学気相成長法(PECVD:Plasma Enhanced Chemical Vapor Deposition)により形成される絶縁膜用材料。 A material for an insulating film formed by plasma enhanced chemical vapor deposition (PECVD) , comprising any of isopropyltrivinylsilane, diisopropyldivinylsilane, and triisopropylvinylsilane . ケイ素、炭素、水素以外の元素であって製造原料に由来する不純物量が10ppb未満であり、かつ含水量が50ppm未満であることを特徴とする請求項1に記載の絶縁膜用材料。 Silicon, carbon, insulating film material according to claim 1, wherein the amount of impurities derived from a by a raw material an element other than hydrogen is less than 10 ppb, and a water content of less than 50 ppm. 請求項1または2に記載の絶縁膜材料を用い、PECVD装置により成膜した絶縁膜。 Claim 1 or 2 with insulation Enmaku material according to the insulating film deposited by PECVD apparatus. 少なくとも一つの酸素原子を有する化合物を併用することを特徴とする請求項3に記載の絶縁膜。 Insulating film according to claim 3, characterized in that a combination of compounds having at least one oxygen atom. 少なくとも一つの酸素原子を有する化合物が酸素、オゾン、一酸化二窒素、水、過酸化水素、アルキコキシシラン化合物、二酸化炭素、一酸化炭素、カルボン酸、カルボン酸過酸化物、カルボン酸過酸化物エステルであることを特徴とする請求項4に記載の絶縁膜。 A compound having at least one oxygen atom is oxygen, ozone, dinitrogen monoxide, water, hydrogen peroxide, an alkoxysilane compound, carbon dioxide, carbon monoxide, carboxylic acid, carboxylic acid peroxide, carboxylic acid peroxide The insulating film according to claim 4, wherein the insulating film is a product ester. 請求項〜請求項5のいずれかに記載の絶縁膜を、炭素原子とケイ素原子との結合が切断される以上の温度で熱処理し、多孔質化した絶縁膜。 An insulating film made porous by heat-treating the insulating film according to any one of claims 3 to 5 at a temperature at which the bond between carbon atoms and silicon atoms is broken. 請求項〜請求項のいずれかに記載の絶縁膜を用いた半導体デバイス。 Semiconductor devices using an insulating film according to any one of claims 3 to 6.
JP2003298579A 2003-08-22 2003-08-22 Insulating film material comprising alkenyl group-containing organosilane compound, insulating film and semiconductor device using the same Expired - Fee Related JP4479190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298579A JP4479190B2 (en) 2003-08-22 2003-08-22 Insulating film material comprising alkenyl group-containing organosilane compound, insulating film and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298579A JP4479190B2 (en) 2003-08-22 2003-08-22 Insulating film material comprising alkenyl group-containing organosilane compound, insulating film and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2005071741A JP2005071741A (en) 2005-03-17
JP4479190B2 true JP4479190B2 (en) 2010-06-09

Family

ID=34404041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298579A Expired - Fee Related JP4479190B2 (en) 2003-08-22 2003-08-22 Insulating film material comprising alkenyl group-containing organosilane compound, insulating film and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4479190B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529434B2 (en) * 2003-12-11 2010-08-25 東ソー株式会社 Copper complex and copper complex composition comprising a polysubstituted vinylsilane compound
WO2006088015A1 (en) * 2005-02-18 2006-08-24 Nec Corporation Method for forming organosilicon film, semiconductor device having such organosilicon film and method for manufacturing same
JP2007009254A (en) * 2005-06-29 2007-01-18 Adeka Corp Raw material of thin film for vaporization process, and moisture analyzing method
TW200710260A (en) * 2005-08-10 2007-03-16 Taiyo Nippon Sanso Corp Material for an insulating film, film forming method and insulating film using the same
JP2007048955A (en) * 2005-08-10 2007-02-22 Taiyo Nippon Sanso Corp Material for insulating film, film deposition method using same, and insulating film
JP5040162B2 (en) * 2006-04-27 2012-10-03 東ソー株式会社 Si-containing film forming material comprising alkenyl group-containing organosilane compound and use thereof
JP6007662B2 (en) * 2011-09-05 2016-10-12 東ソー株式会社 Film forming material, sealing film using the same, and use thereof
CN114231947A (en) * 2016-02-26 2022-03-25 弗萨姆材料美国有限责任公司 Compositions and methods of depositing silicon-containing films using the same
US11713328B2 (en) 2018-08-23 2023-08-01 Versum Materials Us, Llc Stable alkenyl or alkynyl-containing organosilicon precursor compositions
CN113683634A (en) * 2020-05-19 2021-11-23 张家港市国泰华荣化工新材料有限公司 Synthetic method of tetravinylsilane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274153A (en) * 2000-03-24 2001-10-05 Hitachi Kokusai Electric Inc Method of manufacturing insulating film
JP3898133B2 (en) * 2003-01-14 2007-03-28 Necエレクトロニクス株式会社 A method of forming a SiCHN film.

Also Published As

Publication number Publication date
JP2005071741A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP5003722B2 (en) Organosiloxane compounds
JP4438385B2 (en) Insulating film material, organosilane compound manufacturing method, insulating film, and semiconductor device using the same
US7413775B2 (en) Insulating film material containing an organic silane compound, its production method and semiconductor device
JP4591651B2 (en) Insulating film material comprising organosilane compound, method for producing the same, and semiconductor device
JP2008274365A (en) MATERIAL FOR FORMING Si-CONTAINING FILM, Si-CONTAINING FILM, MANUFACTURING METHOD THEREFOR, AND SEMICONDUCTOR DEVICE
JP4479190B2 (en) Insulating film material comprising alkenyl group-containing organosilane compound, insulating film and semiconductor device using the same
JP5353845B2 (en) Cyclic siloxane compound
JP4333480B2 (en) Si-containing film forming material and use thereof
JP4957037B2 (en) Organosilane compound, Si-containing film-forming material containing the same, production method and use
JP4863182B2 (en) Insulating film material comprising organosilane compound, method for producing the same, and semiconductor device
JP2010067810A (en) Method for forming si-containing film, insulator film, and semiconductor device
JP5019742B2 (en) Cyclic siloxane compound, Si-containing film forming material, and use thereof
JP5040162B2 (en) Si-containing film forming material comprising alkenyl group-containing organosilane compound and use thereof
JP4259217B2 (en) Insulating film material comprising an ester group-containing organosilane compound and insulating film using the same
JP4341560B2 (en) Si-containing film forming material, Si-containing film, method for producing Si-containing film, and semiconductor device
JP4385616B2 (en) Insulating film material comprising organosilane compound, method for producing the same, and semiconductor device
JP2011116758A (en) ORGANOSILANE COMPOUND, METHOD FOR PRODUCING THE SAME, Si-CONTAINING FILM-FORMING MATERIAL CONTAINING THE SAME AND METHOD FOR FORMING FILM
CN101442003A (en) Organosilane-containing material for insulation film, method for producing the same, and semiconductor device
JP2007096237A (en) Si-CONTAINING FILM AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4479190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees