JP4259217B2 - Insulating film material comprising an ester group-containing organosilane compound and insulating film using the same - Google Patents

Insulating film material comprising an ester group-containing organosilane compound and insulating film using the same Download PDF

Info

Publication number
JP4259217B2
JP4259217B2 JP2003205439A JP2003205439A JP4259217B2 JP 4259217 B2 JP4259217 B2 JP 4259217B2 JP 2003205439 A JP2003205439 A JP 2003205439A JP 2003205439 A JP2003205439 A JP 2003205439A JP 4259217 B2 JP4259217 B2 JP 4259217B2
Authority
JP
Japan
Prior art keywords
insulating film
carbon
silicon
ppm
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003205439A
Other languages
Japanese (ja)
Other versions
JP2005056877A (en
Inventor
大治 原
圭介 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003205439A priority Critical patent/JP4259217B2/en
Publication of JP2005056877A publication Critical patent/JP2005056877A/en
Application granted granted Critical
Publication of JP4259217B2 publication Critical patent/JP4259217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ロジックULSIにおける多層配線技術において用いられる低誘電率層間絶縁膜材料に関するものである。殊にプラズマ重合用有機シラン化合物を含んでなる絶縁膜材料およびその用途に関するものである。
【0002】
【従来の技術】
電子産業の集積回路分野の製造技術において、高集積化かつ高速化の要求が高まっている。シリコンULSI、殊にロジックULSIにおいては、MOSFETの微細化による性能よりも、それらをつなぐ配線の性能が課題となっている。すなわち、多層配線化に伴う配線遅延の問題を解決する為に配線抵抗の低減と配線間および層間容量の低減が求められている。
【0003】
これらのことから、現在、集積回路の大部分に使用されているアルミニウム配線に変えて、より電気抵抗が低く、マイグレーション耐性のある銅配線の導入が必須となっており、スパッタリングまたは化学蒸着(以下、CVDと略記)法によるシード形成後、銅メッキを行うプロセスが実用化されつつある。
【0004】
低誘電率層間絶縁膜材料としては、さまざまな提案がある。従来技術としては、無機系では、二酸化珪素(SiO2)、窒化珪素、燐珪酸ガラス、有機系では、ポリイミドが用いられてきたが、最近では、より均一な層間絶縁膜を得る目的で予めテトラエトキシシランモノマーを加水分解、すなわち、重縮合させてSiO2を得、Spin on Glass(無機SOG)と呼ぶ塗布材として用いる提案や、有機アルコシキシランモノマーを重縮合させて得たポリシロキサンを有機SOGとして用いる提案がある。
【0005】
また、絶縁膜形成方法として絶縁膜ポリマー溶液をスピンコート法等で塗布、成膜を行う塗布型のものと主にプラズマCVD装置中でプラズマ重合させて成膜するCVD法の二つ方法がある。
【0006】
PECVD法の提案としては、例えば、特許文献1において、トリメチルシランと酸素とからプラズマCVD法により酸化トリメチルシラン薄膜を形成する方法が、また、特許文献2では、メチル,エチル,n−プロピル等の直鎖状アルキル、ビニル、フェニル等のアルキニル及びアルール基を有するアルコキシシランからPECVD法により酸化アルキルシラン薄膜を形成する方法が提案されている。これら従来のプラズマCVD法材料で形成された絶縁膜は、バリアメタル、配線材料である銅配線材料との密着性が良好な反面、膜の均一性が課題となったり、成膜速度、比誘電率が不十分な場合があった。更に、これらのPECVD法で得られた絶縁膜は、その使用するモノマーの炭素/ケイ素比から予想されるように高い炭素/ケイ素比組成を有している場合があり、半導体形成工程中のエッチング工程において問題となる場合があった。すなわち、炭素/ケイ素比組成が低く、エッチングが容易い絶縁膜が望まれている。
【0007】
一方、塗布型の提案としては、膜の均一性は良好であるものの、塗布、溶媒除去、熱処置の三工程が必要であり、CVD材料より経済的に不利であり、また、バリアメタル、配線材料である銅配線材料との密着性や、微細化している基板構造への塗布液の均一な塗布自体が課題となる場合が多かった。
【0008】
また、塗布型材料においては、比誘電率が2.5以下、更には、2.0以下のUltra Low−k材を実現する為に多孔質材料とする方法が提案されている。有機系もしくは無機系材料のマトリックスに容易に熱分解する有機成分微粒子を分散させ、熱処理し多孔化する方法、珪素と酸素をガス中蒸発させて形成したSiO2超微粒子を蒸着させ、SiO2超微粒子薄膜を形成させる方法等がある。
【0009】
しかしながら、これら多孔質化の方法は、低誘電率化には有効であるものの、機械的強度が低下し、化学的機械的研磨(CMP)が困難となったり、水分の吸収による誘電率の上昇と配線腐食を引き起こす場合があった。
【0010】
従って、市場は、低誘電率、十分な機械的強度、バリアメタルとの密着性、銅拡散防止、耐プラズマアッシング性、耐吸湿性等の全て要求性能を満たすバランスの良い材料を、更に求めており、これらの要求性能をある程度バランスさせる方法として、有機シラン系材料において、シランに対する有機置換基の炭素比率を上昇させることによって、有機ポリマーと無機ポリマーの中間的特徴を有する材料が提案されている。
【0011】
例えば、特許文献3では、アダマンチル基を有するシリコン化合物を酸性水溶液共存下、ゾル−ゲル法により加水分解重縮合した塗布溶液を用い、多孔質化せずに比誘電率が2.4以下の層間絶縁膜を得る方法を提案している。
【0012】
しかしながら、この材料は、塗布型の材料であり、依然、上述したような塗布型による成膜方法の課題、及び高い炭素/ケイ素比組成を有していることから、従来のテトラエトキシシランを用いたSiO2に比し、エッチングが困難である等の課題を抱えている。
【0013】
【特許文献1】
特開2002−110670号公報
【特許文献2】
特開平11−288931号公報
【特許文献3】
特開2000−302791号公報
【0014】
【発明が解決しようとする課題】
本発明は上記の課題に鑑みてなされたものであり、その目的は、新規な低誘電率材料、殊にPECVD装置に適したエステル基含有有機シラン化合物を含んでなる低誘電率絶縁膜用材料を提供すること、およびそれを用いたエッチングが容易な炭素/ケイ素比が低い絶縁膜並びにこれらの絶縁膜を含んでなる半導体デバイスを提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、エステル基を有する有機シラン化合物が、エッチングが容易な絶縁膜、殊に半導体デバイス用の低誘電率層間絶縁膜材料として好適であることを見出し、本発明を完成するに至った。
【0016】
すなわち、少なくとも一つのエステル基を有する下記一般式(1)
【0017】
【化2】

Figure 0004259217
(式中、R1,R2は、炭素数1〜20の炭化水素基を表し、nは0〜3の整数を表す。)で示される有機シラン化合物を含んでなる、化学気相成長法により形成される絶縁膜用材料を提供することにある。
【0018】
以下、本発明の詳細について説明する。
【0019】
上記一般式(1)において、R1,R2は、炭素数1〜20の飽和もしくは、不飽和炭化水素基を表し、nは0〜3の整数を表す。また、R1,R2が互いに結合したものも本発明の範囲に含まれる。炭素数が20を超える場合は、対応する原料の調達が困難となったり、調達できたとしても純度が低い場合がある。
【0020】
CVD装置での安定的使用考慮した場合、炭素数1〜10の炭化水素基が特に好ましい。炭素数が10を超えた場合、生成した有機シラン化合物の蒸気圧が低くなり、PECVD装置での使用が困難となる場合がある。
【0021】
1,R2の炭化水素基の例としては、特に限定されるものではないが、炭素数1〜20、好ましくは炭素数1〜10のアルキル基、アリール基、アリールアルキル基、アルキルアリール基を挙げることができる。R1,R2は、同一であっても異なっても良い。
【0022】
例えば、飽和炭化水素基として、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、tert.−ブチル、n−ペンチル、tert.−アミル、n−ヘキシル、シクロヘキシル等を挙げることができる。
【0023】
また不飽和炭化水素基として、ビニル、1−プロペニル、1−ブテニル、2−ブテニル等のアルケニル、1,3−ブタジエニル、1,3−ペンタジエニル、1,3−ヘキサジエニル等のアルカジエニル、エチニル、1−プロピニル、1−ブチニル、2−ブチニル等のアルキニル、フェニル等のアリール、トルイル等のアルキルアリール等を挙げることができる。
【0024】
飽和炭化水素基、不飽和炭化水素いずれの場合も、化学式(1)におけるnは0〜3の整数である。
【0025】
一般式(1)で表される有機シラン化合物の具体例としては、R2として、飽和炭化水素基を有する化合物として、トリメチルアセトキシシラン、ジメチルジアセトキシシラン、メチルトリアセトキシシラン、トリエチルアセトキシシラン、ジエチルジアセトキシシラン、エチルトリアセトキシシラン、ターシャリーブチルジメチルアセトキシシラン、ターシャリーブチルメチルジアセトキシシラン、ターシャリーブチルトリアセトキシシラン、ビニルジメチルアセトキシシラン、ビニルメチルジアセトキシシラン、ビニルトリアセトキシシラン、ジビニルジアセトキシシラン、トリビニルアセトキシシラン、フェニルジメチルアセトキシシラン、ジフェニルメチルアセトキシシラン、トルイルジメチルアセトキシシラン、ジトルイルメチルアセトキシシラン、p−スチリルジメチルアセトキシシラン、ジ−p−スチリルメチルアセトキシシランが挙げられる。
【0026】
2として、アルケニル等の不飽和炭化水素基を有する化合物として、トリメチルシリルアクリレート、トリメチルシリルメタクリレート、トリエチルシリルアクリレート、トリエチルシリルメタクリレート、ターシャリーブチルジメチルシリルアクリレート、ターシャリーブチルジメチルシリルメタクリレート、トリメチルシリル−2,4−ヘキサジエネート、トリエチルシリル−2,4−ヘキサジエネート、ターシャリーブチルジメチルシリル−2,4−ヘキサジエネート等を挙げることができる。
【0027】
本発明のエステル基を有する有機シラン化合物は、その作用機構の詳細は不明であるが、従来の酸素結合を含有する有機シラン化合物に比べて、化学気相成長法により、炭素/ケイ素比組成が低い絶縁膜の形成が可能でエッチングが容易な膜が得られる。炭素/ケイ素比組成が高い絶縁膜を過酸化水素等で処理して炭素/ケイ素比を低くした従来の方法に比べ、より均一な組成を有する炭素/ケイ素比組成が低い絶縁膜の形成が可能である。
【0028】
上記一般式(1)の有機シラン化合物の製造法は、特に限定されるものではないが、例えば、下記一般式(2)の炭化水素基置換ハロゲン化シラン化合物
【0029】
【化3】
Figure 0004259217
(式中、R1及びnは、上記一般式(1)に同じ。Xは、フッ素原子、塩素原子、臭素原子、沃素原子を表す。)と、下記一般式(3)のカルボン酸のアルカリ金属塩
【0030】
【化4】
Figure 0004259217
(式中、R2は、上記一般式(1)に同じ。M1は、Li,Na,Kを表す。)を反応させ、製造することができる。
【0031】
本製造法では副生成物の生成が抑制され、高収率に高純度の一般式(1)で示される有機シラン化合物が得られる。
【0032】
上記一般式(3)で示されるカルボン酸のアルカリ金属塩としては、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸リチウム、プロピオン酸ナトリウム、プロピオン酸カリウム、酪酸リチウム、酪酸ナトリウム、酪酸カリウム、安息香酸リチウム、安息香酸ナトリウム、安息香酸カリウム、2,4−ヘキサジエン酸リチウム、2,4−ヘキサジエン酸ナトリウム、2,4−ヘキサジエン酸カリウム等を挙げることができる。
【0033】
上記一般式(3)で示されるカルボン酸のアルカリ金属塩と上記一般式(2)の炭化水素基置換ハロゲン化シラン化合物との反応条件は、特に限定されず、通常、工業的に使用されている温度である−100〜200℃の範囲、好ましくは−85〜150℃の範囲で行うことが好ましい。反応の圧力条件は、加圧下、常圧下、減圧下いずれであっても可能である。
【0034】
また、上記一般式(2)の炭化水素基置換ハロゲン化シラン化合物は、安価にかつ容易に調達できる下記一般式(4)のハロゲン化シラン化合物
【0035】
【化5】
Figure 0004259217
(式中、R3は、メチル、エチル、ビニル、フェニル、pは0〜3の整数を表す。Xは、上記に同じ。)と、下記一般式(5)の有機リチウム化合物または有機マグネシウム化合物
【0036】
【化6】
Figure 0004259217
(式中、R1は、上記一般式(1)に同じ。M2は、Li,MgCl,MgBr,MgIを表す。)を反応させることにより、製造することができる。
【0037】
上記一般式(5)の有機リチウム化合物または有機マグネシウム化合物と上記一般式(4)のハロゲン化シラン化合物との反応条件は、特に限定されるものではないが、以下にその一例を示す。
【0038】
使用できる反応溶媒は、上記の有機ハライドと金属リチウムまたは金属マグネシウムとの反応の際に用いることができる溶媒と同様のものが使用できる。その反応温度については、使用する有機リチウム化合物または有機マグネシウム化合物が分解しない様な温度範囲で行うことが好ましい。通常、工業的に使用されている温度である−100〜200℃の範囲、好ましくは−85〜150℃の範囲で行うことが好ましい。反応の圧力条件は、加圧下、常圧下、減圧下いずれであっても可能である。
【0039】
製造の際に用いる上記一般式(5)の有機リチウム化合物または有機マグネシウム化合物は、下記一般式(6)の有機ハライド化合物
【0040】
【化7】
Figure 0004259217
(式中、R1、Xは、上記に同じ。)と、金属リチウム粒子または金属マグネシウムとを反応させて製造することができる。
【0041】
上記一般式(5)の有機リチウム化合物または有機マグネシウム化合物を合成する際の有機ハライド化合物と、金属リチウム粒子または金属マグネシウムとの反応条件は、特に限定されるものではないが、以下にその一例を示す。
【0042】
使用する金属リチウムとしては、リチウムワイヤー、リチウムリボン、リチウムショット等を用いることができるが、反応の効率面から、500μm以下の粒径を有するリチウム微粒子を用いることが好ましい。
【0043】
使用する金属マグネシウムとしては、マグネシウムリボン、マグネシウム粒子、マグネシウムパウダー等を用いることができる。
【0044】
上記の反応に用いる溶媒としては、当該技術分野で使用されるものであれば特に限定されるものでなく、例えば、n−ペンタン、i−ペンタン、n−ヘキサン、シクロヘキサン、n−ヘプタン、n−デカン等の飽和炭化水素類、トルエン、キシレン、デセン−1等の不飽和炭化水素類、ジエチルエーテル、ジプロピルエーテル、tert.−ブチルメチルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル等のエーテル類を使用することができる。また、これらの混合溶媒も使用することができる。
【0045】
上記の反応における反応温度については、生成する有機リチウム化合物または有機マグネシウム化合物が分解しない様な温度範囲で行うことが好ましい。通常、工業的に使用されている温度である−100〜200℃の範囲、好ましくは、−85〜150℃の範囲で行うことが好ましい。反応の圧力条件は、加圧下、常圧下、減圧下いずれであっても可能である。
【0046】
合成した有機リチウム化合物または有機マグネシウム化合物は、合成の後、そのまま用いることができ、また、未反応の有機ハライド化合物および金属リチウム、金属マグネシウム、反応副生成物であるリチウムハライド、マグネシウムハライドを除去した後、使用することもできる。
【0047】
上述の方法で得られた上記一般式(1)で示される有機シラン化合物の精製法については、絶縁膜材料として使用するに有用な水分含有量50ppm未満、ケイ素、炭素、酸素、水素以外の元素であって製造原料に由来する不純物量を10ppb未満とする為に、副生するリチウム塩、マグネシウム塩、アルカリ金属塩を、ガラスフィルター、焼結多孔体等を用いた濾過、常圧もしくは減圧蒸留またはシリカ、アルミナ、高分子ゲルを用いたカラム分離精製等の手段により除去すればよい。この際、必要に応じてこれらの手段を組み合せて使用してもよい。一般の有機合成技術で用いられるような、副生するリチウム塩、マグネシウム塩、アルカリ金属塩を水等により抽出する方法では、最終的に得られる一般式(1)で示される有機シラン化合物中の水分やケイ素、炭素、酸素、水素以外の元素不純物、殊に金属不純物残渣が高くなって、絶縁膜材料として不適当なものとなる場合がある。
【0048】
製造に際しては、当該有機金属化合物合成分野での方法に従う。すなわち、脱水および脱酸素された窒素またはアルゴン雰囲気下で行い、使用する溶媒および精製用のカラム充填剤等は、予め脱水操作を施しておくことが好ましい。また、金属残渣およびパーティクル等の不純物も除去しておくことが好ましい。
【0049】
本発明の一般式(1)で示される有機シラン化合物は、PECVD装置により、低誘電率絶縁材料として成膜するに好適な材料である。
【0050】
本発明の絶縁膜材料の使用方法は、特に限定されるものではないが、半導体製造分野、液晶ディスプレイ製造分野等の当該技術分野で一般的に用いられるPECVD装置を用い、絶縁膜とすることができる。PECVD装置とは、有機シラン化合物等の絶縁膜材料を気化器により気化させて、成膜チャンバー内に導入し、高周波電源により、成膜チャンバー内の電極に印加し、プラズマを発生させ、成膜チャンバー内のシリコン基板等にプラズマ重合膜を形成させる装置を言う。この際、プラズマを発生させる目的でアルゴン、ヘリウム等のガス、酸素、亜酸化窒素等の酸化剤を導入しても良い。PECVD装置によって本発明の絶縁膜用材料を用いて成膜した場合、半導体デバイス用の低誘電率材料(Low−k材)として好適な薄膜を形成できる。
【0051】
これらの材料をCVDで成膜後に、炭素原子とケイ素原子との結合が切断される、もしくは、エステル基が脱離する以上の温度で熱処理することで多孔質化した低誘電率絶縁材料を得ることもできる。熱処理温度は、好ましくは、多孔化が完結する350℃以上でかつ半導体デバイスを劣化せしめない500℃以下の温度である。
【0052】
本発明の低誘電率材料は、多層配線を用いたULSIの製造に好適であり、これを用いた半導体デバイスも本発明の範疇に含有されるものである。
【0053】
【実施例】
以下に実施例を示すが、本発明は、これらの実施例によって何ら限定されるものではない。
【0054】
実施例1
[ターシャーリーブチルジメチルクロロシランの合成]
窒素雰囲気下、還流冷却器、滴下濾斗、攪拌装置を備えた3Lの四つ口フラスコ反応器にジメチルジクロロシラン258.2g(2.00mol)とn−ペンタン600mlを仕込み、0℃に冷却した。滴下濾斗より、23.7wt%ターシャリーブチルリチウムのn−ペンタン溶液539.6g(2.00mol)を1時間で滴下し、更に2時間攪拌した。
【0055】
反応後、副生した塩化リチウムを濾別除去し、濾液からn−ペンタンを留去した後、蒸留により、精製物であるターシャリーブチルジメチルクロロシランを単離した。収量は、235.1gであり、単離収率は、78.0%であった。
【0056】
[ターシャリーブチルジメチルアセトキシシランの合成]
窒素気流下、還流冷却器、攪拌装置を備えた200mlのシユレンク反応器にターシャリーブチルジメチルクロロシラン15.1g(0.100mol)と酢酸カリウム11.8g(0.120mol)とn−ヘキサン100mlとを仕込み、n−ヘキサン還流条件下、28時間反応させた。
【0057】
固体残渣をガラスフィルターにより、濾別し、反応混合物溶液を得た。反応混合物溶液より、n−ヘキサンを留去し、常圧蒸留により、目的物であるターシャリーブチルジメチルアセトキシシランを単離した。
【0058】
収量は、12.2g(0.0701mol)であり、収率70.1%に相当した。
【0059】
単離したターシャリーブチルジメチルアセトキシシランを1H−NMR、13C−NMR、GC−MSで分析した結果は、以下の通りであった。
【0060】
1H−NMR;0.321ppm(s,6H)、0.990ppm(s,9H)、2.11ppm(s,3H)
13C−NMR;17.6ppm、22.9ppm、25.6ppm、171.5ppm
GC−MS;Mw=174、C8182Si
また、得られたターシャリーブチルジメチルアセトキシシラン100g中の水分量並びにカリウムおよびリチウム含有量を、カールフィッシャー水分計およびICP−MS(高周波プラズマ発光−質量分析器、横河アナリティカルシステムズ社製、商品名「HP4500」)により測定した結果は、H2О=6ppm、K<10ppb、Li<10ppbであり、絶縁膜材料として有用なものであった。
【0061】
[ターシャリーブチルジメチルアセトキシシランのプラズマ重合]
日本レーザー電子(株)社製プラズマ重合装置NL−ОP50FTを用い、放電電圧2.1V、放電電流3.0mA、ターシャリーブチルジメチルアセトキシシラン分圧0.7torr、室温、重合(放電)時間5分間の条件でターシャリーブチルジメチルアセトキシシランをプラズマ重合し、シリコン基板上に成膜した。結果は、
成膜速度=20.4nm/min.
薄膜組成(XPS)C=29.5atom%、О=42.4atom%
Si=28.1atom%
C/Si=1.05atom比、
О/Si=1.51atom比
SEM薄膜断面観察 平坦緻密膜
であり、ケイ素に対する炭素(有機置換基)の比率の低い、エッチングが容易な絶縁膜であった。
【0062】
比較例1
実施例1のターシャリーブチルジメチルクロロシランと酢酸カリウムとの反応後、カリウムクロライドおよび未反応の酢酸カリウムを濾別除去せず、水を加えて溶解分液抽出除去したこと以外は、実施例1と同様にしてターシャリーブチルジメチルアセトキシシランを合成した。
【0063】
得られたターシャリーブチルジメチルアセトキシシラン中の水分およびカリウム含有量を、カールフィッシャー水分計およびICP−MSにより測定したところ、H2О=240ppm、K=20ppbであり、絶縁膜材料としては、不適当なものであった。
【0064】
実施例2
[ターシャリーブチルジメチルシリル−2,4−ヘキサジエネートの合成]
窒素気流下、還流冷却器、攪拌装置を備えた200mlのシユレンク反応器にターシャリーブチルジメチルクロロシラン15.1g(0.100mol)と2,4−ヘキサンジエン酸カリウム18.0g(0.120mol)とn−ヘキサン100mlとを仕込み、n−ヘキサン還流条件下、8時間反応させた。
【0065】
固体残渣をガラスフィルターにより、濾別し、反応混合物溶液を得た。反応混合物溶液より、n−ヘキサンを留去し、常圧蒸留により、目的物であるターシャリーブチルジメチルシリル−2,4−ヘキサジエネートを単離した。
【0066】
収量は、16.0g(0.0705mol)であり、収率70.5%に相当した。
【0067】
単離したターシャリーブチルジメチルシリル−2,4−ヘキサジエネートを1H−NMR、13C−NMR、GC−MSで分析した結果は、以下の通りであった。
【0068】
1H−NMR;0.356ppm(s,6H)、1.02ppm(s,9H)、1.92ppm(d,3H)、5.83ppm(q,1H)、6.21ppm(m,2H)、7.25ppm(m,3H)
13C−NMR;17.8ppm、18.7ppm、25.7ppm、120.9ppm、129.7ppm、139.1ppm、145.3ppm、167.1ppm
GC−MS;Mw=226、C12222Si
また、得られたターシャリーブチルジメチルシリル−2,4−ヘキサジエネート100g中の水分量並びにカリウムおよびリチウム含有量を、カールフィッシャー水分計およびICP−MS(高周波プラズマ発光−質量分析器、横河アナリティカルシステムズ社製、商品名「HP4500」)により測定した結果は、H2О=4ppm、K<10ppb、Li<10ppbであり、絶縁膜材料として有用なものであった。
【0069】
[ターシャリーブチルジメチルシリル−2,4−ヘキサジエネートのプラズマ重合]
日本レーザー電子(株)社製プラズマ重合装置NL−ОP50FTを用い、放電電圧2.1V、放電電流3.0mA、ターシャリーブチルジメチルシリル−2,4−ヘキサジエネート分圧0.7torr、室温、重合(放電)時間5分間の条件でターシャリーブチルジメチルシリル−2,4−ヘキサジエネートをプラズマ重合し、シリコン基板上に成膜した。結果は、
成膜速度=30.0nm/min.
薄膜組成(XPS)C=26.4atom%、О=49.6atom%、
Si=24.0atom%
C/Si=1.10atom比、
О/Si=2.07atom比
SEM薄膜断面観察 平坦緻密膜
であり、ケイ素に対する炭素(有機置換基)の比率の低い、エッチングが容易な絶縁膜であった。
【0070】
比較例2
[テトラエトキシシランのプラズマ重合]
日本レーザー電子(株)社製プラズマ重合装置NL−ОP50FTを用い、放電電圧2.1V、放電電流3.0mA、テトラエトシキ分圧0.7torr、室温、重合(放電)時間5分間の条件でターシャリーブチルジメチルシリル−2,4−ヘキサジエネートをプラズマ重合し、シリコン基板上に成膜した。結果は、
成膜速度=37.5nm/min.
薄膜組成(XPS)C=53.6atom%、О=29.3tom%、
Si=17.1atom%
C/Si=3.13atom比、
О/Si=1.71atom比
SEM薄膜断面観察 平坦緻密膜
であり、ケイ素に対する炭素(有機置換基)の比率が高く、実施例1及び2に比し、エッチング困難な絶縁膜であった。
【0071】
【発明の効果】
本発明によれば、以下の顕著な効果が奏される。即ち、
▲1▼本発明の構造を有する有機シラン化合物を用いることで、半導体デバイス層間絶縁膜中の低誘電率材料として低誘電率且つ高機械的強度の材料を提供できる、
▲2▼PECVD法層間絶縁膜材料として有用な三級炭素原子が酸素素原子に直結したアルコキシ基を有する有機シラン化合物を高純度に効率よく製造できる、
ことである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low dielectric constant interlayer insulating film material used in multilayer wiring technology in logic ULSI. In particular, the present invention relates to an insulating film material containing an organosilane compound for plasma polymerization and its use.
[0002]
[Prior art]
In the manufacturing technology of the integrated circuit field of the electronics industry, there is an increasing demand for high integration and high speed. In silicon ULSIs, especially logic ULSIs, the performance of wiring connecting them is a problem rather than the performance due to miniaturization of MOSFETs. That is, in order to solve the wiring delay problem associated with the multilayer wiring, it is required to reduce the wiring resistance and between the wirings and the interlayer capacitance.
[0003]
For these reasons, instead of aluminum wiring, which is currently used in most integrated circuits, it is essential to introduce copper wiring with lower electrical resistance and migration resistance. The process of copper plating after seed formation by the CVD method is being put into practical use.
[0004]
There are various proposals for low dielectric constant interlayer insulating film materials. As the prior art, silicon dioxide (SiO 2 ), silicon nitride, phosphosilicate glass has been used for inorganic systems, and polyimide has been used for organic systems. Recently, however, a tetralayer has been previously prepared for the purpose of obtaining a more uniform interlayer insulating film. Hydrolysis of ethoxysilane monomer, that is, polycondensation to obtain SiO 2 , proposal to use as a coating material called Spin on Glass (inorganic SOG), and polysiloxane obtained by polycondensation of organic alkoxysilane monomer to organic There are proposals for use as SOG.
[0005]
In addition, there are two methods for forming an insulating film: a coating type in which an insulating film polymer solution is applied by spin coating or the like, and a CVD method in which a film is formed mainly by plasma polymerization in a plasma CVD apparatus. .
[0006]
As a proposal of the PECVD method, for example, in Patent Document 1, a method of forming a trimethylsilane oxide thin film by plasma CVD from trimethylsilane and oxygen, and in Patent Document 2, such as methyl, ethyl, n-propyl, etc. There has been proposed a method for forming an alkyl silane oxide thin film by a PECVD method from an alkoxysilane having an alkynyl such as linear alkyl, vinyl or phenyl and an aryl group. Insulating films made of these conventional plasma CVD materials have good adhesion to copper wiring materials as barrier metals and wiring materials, but the uniformity of the film is a problem, film formation speed, relative dielectric constant There were cases where the rate was insufficient. Furthermore, the insulating films obtained by these PECVD methods may have a high carbon / silicon ratio composition as expected from the carbon / silicon ratio of the monomers used, and etching during the semiconductor formation process may occur. There was a case where it became a problem in a process. That is, an insulating film having a low carbon / silicon ratio composition and easy etching is desired.
[0007]
On the other hand, as a coating type proposal, although the uniformity of the film is good, three steps of coating, solvent removal, and heat treatment are necessary, which is economically disadvantageous than CVD materials, and barrier metal, wiring In many cases, adhesion to the copper wiring material, which is the material, and uniform application of the coating liquid to the miniaturized substrate structure itself are problems.
[0008]
Moreover, in the coating type material, the method of using a porous material in order to implement | achieve the Ultra Low-k material whose relative dielectric constant is 2.5 or less and also 2.0 or less is proposed. Organic or inorganic material matrix readily disperse the thermally decomposed organic component particles in the method of heat treating and pore formation, silicon and oxygen by evaporating SiO 2 ultrafine particles formed by evaporation in a gas, SiO 2 than There is a method of forming a fine particle thin film.
[0009]
However, although these porous methods are effective for lowering the dielectric constant, the mechanical strength decreases, chemical mechanical polishing (CMP) becomes difficult, and the dielectric constant increases due to moisture absorption. And wiring corrosion could be caused.
[0010]
Therefore, the market further seeks a well-balanced material that satisfies all the required performance such as low dielectric constant, sufficient mechanical strength, adhesion to barrier metal, copper diffusion prevention, plasma ashing resistance, moisture absorption resistance, etc. As a method of balancing these required performances to some extent, a material having an intermediate characteristic between an organic polymer and an inorganic polymer has been proposed in an organic silane material by increasing the carbon ratio of the organic substituent to silane. .
[0011]
For example, in Patent Document 3, a coating solution obtained by hydrolytic polycondensation of a silicon compound having an adamantyl group in the presence of an acidic aqueous solution by a sol-gel method is used, and an interlayer having a relative dielectric constant of 2.4 or less without being made porous. A method for obtaining an insulating film is proposed.
[0012]
However, this material is a coating type material and still has the problems of the film forming method by the coating type as described above and a high carbon / silicon ratio composition, so that conventional tetraethoxysilane is used. Compared to SiO 2 , it has problems such as difficulty in etching.
[0013]
[Patent Document 1]
JP 2002-110670 A [Patent Document 2]
Japanese Patent Laid-Open No. 11-288931 [Patent Document 3]
JP 2000-302791 A [0014]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a novel low dielectric constant material, particularly a low dielectric constant insulating film material comprising an ester group-containing organosilane compound suitable for a PECVD apparatus. It is another object of the present invention to provide an insulating film having a low carbon / silicon ratio, which can be easily etched using the same, and a semiconductor device including these insulating films.
[0015]
[Means for Solving the Problems]
The present inventors have found that an organosilane compound having an ester group is suitable as an insulating film that can be easily etched, particularly as a low dielectric constant interlayer insulating film material for a semiconductor device, and has completed the present invention. It was.
[0016]
That is, the following general formula (1) having at least one ester group
[0017]
[Chemical formula 2]
Figure 0004259217
(Wherein R 1 and R 2 represent a hydrocarbon group having 1 to 20 carbon atoms, and n represents an integer of 0 to 3). An object of the present invention is to provide an insulating film material formed by the above.
[0018]
Details of the present invention will be described below.
[0019]
In the general formula (1), R 1 and R 2 represent a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, and n represents an integer of 0 to 3. Also, those in which R 1 and R 2 are bonded to each other are included in the scope of the present invention. When the number of carbon atoms exceeds 20, it may be difficult to procure the corresponding raw material, or even if it can be procured, the purity may be low.
[0020]
In consideration of stable use in a CVD apparatus, a hydrocarbon group having 1 to 10 carbon atoms is particularly preferable. When carbon number exceeds 10, the vapor pressure of the produced | generated organosilane compound may become low, and the use with a PECVD apparatus may become difficult.
[0021]
Examples of the hydrocarbon group for R 1 and R 2 are not particularly limited, but are alkyl groups having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, aryl groups, arylalkyl groups, and alkylaryl groups. Can be mentioned. R 1 and R 2 may be the same or different.
[0022]
For example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert. -Butyl, n-pentyl, tert. -Amyl, n-hexyl, cyclohexyl and the like can be mentioned.
[0023]
As unsaturated hydrocarbon groups, alkenyl such as vinyl, 1-propenyl, 1-butenyl, 2-butenyl, alkadienyl such as 1,3-butadienyl, 1,3-pentadienyl, 1,3-hexadienyl, ethynyl, 1- Examples thereof include alkynyl such as propynyl, 1-butynyl and 2-butynyl, aryl such as phenyl, and alkylaryl such as toluyl.
[0024]
In any case of the saturated hydrocarbon group and the unsaturated hydrocarbon, n in the chemical formula (1) is an integer of 0 to 3.
[0025]
Specific examples of the organic silane compound represented by the general formula (1) include R 2 as a compound having a saturated hydrocarbon group, trimethylacetoxysilane, dimethyldiacetoxysilane, methyltriacetoxysilane, triethylacetoxysilane, diethyl Diacetoxysilane, ethyltriacetoxysilane, tertiary butyldimethylacetoxysilane, tertiary butylmethyldiacetoxysilane, tertiary butyltriacetoxysilane, vinyldimethylacetoxysilane, vinylmethyldiacetoxysilane, vinyltriacetoxysilane, divinyldiacetoxy Silane, trivinylacetoxysilane, phenyldimethylacetoxysilane, diphenylmethylacetoxysilane, toluyldimethylacetoxysilane, ditoluylmethyl Setokishishiran, p- styryl dimethylacetoxysilane, di -p- styryl methyl acetoxy silane.
[0026]
Examples of compounds having an unsaturated hydrocarbon group such as alkenyl as R 2 include trimethylsilyl acrylate, trimethylsilyl methacrylate, triethylsilyl acrylate, triethylsilyl methacrylate, tertiary butyldimethylsilyl acrylate, tertiary butyldimethylsilyl methacrylate, trimethylsilyl-2,4 -Hexadienate, triethylsilyl-2,4-hexadienate, tertiary butyldimethylsilyl-2,4-hexadienate, etc. can be mentioned.
[0027]
Although the details of the mechanism of action of the organosilane compound having an ester group of the present invention are unknown, the carbon / silicon ratio composition is improved by chemical vapor deposition compared with conventional organosilane compounds containing oxygen bonds. A film which can form a low insulating film and can be easily etched is obtained. Compared with the conventional method in which an insulating film with a high carbon / silicon ratio composition is treated with hydrogen peroxide or the like to lower the carbon / silicon ratio, an insulating film with a more uniform composition and a low carbon / silicon ratio composition can be formed. It is.
[0028]
The method for producing the organosilane compound represented by the general formula (1) is not particularly limited. For example, the hydrocarbon group-substituted halogenated silane compound represented by the following general formula (2):
[Chemical 3]
Figure 0004259217
(Wherein R 1 and n are the same as those in the general formula (1). X represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) and an alkali of a carboxylic acid represented by the following general formula (3) Metal salt [0030]
[Formula 4]
Figure 0004259217
(In the formula, R 2 is the same as the above general formula (1). M 1 represents Li, Na, K.) can be reacted to produce.
[0031]
In this production method, the production of by-products is suppressed, and an organic silane compound represented by the general formula (1) having a high purity and a high yield can be obtained.
[0032]
Examples of the alkali metal salt of the carboxylic acid represented by the general formula (3) include lithium acetate, sodium acetate, potassium acetate, lithium propionate, sodium propionate, potassium propionate, lithium butyrate, sodium butyrate, potassium butyrate, benzoic acid. Examples thereof include lithium, sodium benzoate, potassium benzoate, lithium 2,4-hexadienoate, sodium 2,4-hexadienoate, potassium 2,4-hexadienoate and the like.
[0033]
The reaction conditions of the alkali metal salt of the carboxylic acid represented by the general formula (3) and the hydrocarbon group-substituted halogenated silane compound of the general formula (2) are not particularly limited and are usually used industrially. It is preferable to carry out in the range of -100 to 200 ° C, preferably in the range of -85 to 150 ° C. The pressure conditions for the reaction can be any of under pressure, normal pressure, and reduced pressure.
[0034]
The hydrocarbon group-substituted halogenated silane compound of the general formula (2) is a halogenated silane compound of the following general formula (4) that can be easily procured at low cost.
[Chemical formula 5]
Figure 0004259217
(Wherein R 3 represents methyl, ethyl, vinyl, phenyl, p represents an integer of 0 to 3. X is the same as above), and an organolithium compound or organomagnesium compound of the following general formula (5) [0036]
[Chemical 6]
Figure 0004259217
(In the formula, R 1 is the same as in the general formula (1). M 2 represents Li, MgCl, MgBr, or MgI).
[0037]
Although the reaction conditions of the organolithium compound or organomagnesium compound of the general formula (5) and the halogenated silane compound of the general formula (4) are not particularly limited, an example is shown below.
[0038]
As the reaction solvent that can be used, the same solvents as those that can be used in the reaction of the above-mentioned organic halide with metal lithium or metal magnesium can be used. About the reaction temperature, it is preferable to carry out in the temperature range which does not decompose | disassemble the organolithium compound or organomagnesium compound to be used. Usually, it is carried out in the range of −100 to 200 ° C., preferably in the range of −85 to 150 ° C., which is an industrially used temperature. The pressure conditions for the reaction can be any of under pressure, normal pressure, and reduced pressure.
[0039]
The organolithium compound or organomagnesium compound of the above general formula (5) used in the production is an organic halide compound of the following general formula (6):
[Chemical 7]
Figure 0004259217
(Wherein R 1 and X are the same as above) and metal lithium particles or metal magnesium can be reacted.
[0041]
The reaction conditions of the organic halide compound and the metal lithium particles or metal magnesium when synthesizing the organolithium compound or organomagnesium compound of the general formula (5) are not particularly limited. Show.
[0042]
As the metallic lithium to be used, lithium wire, lithium ribbon, lithium shot and the like can be used, but lithium fine particles having a particle diameter of 500 μm or less are preferably used from the viewpoint of reaction efficiency.
[0043]
As the metallic magnesium to be used, magnesium ribbon, magnesium particles, magnesium powder and the like can be used.
[0044]
The solvent used in the above reaction is not particularly limited as long as it is used in the technical field. For example, n-pentane, i-pentane, n-hexane, cyclohexane, n-heptane, n- Saturated hydrocarbons such as decane, unsaturated hydrocarbons such as toluene, xylene and decene-1, diethyl ether, dipropyl ether, tert. -Ethers such as butyl methyl ether, dibutyl ether, and cyclopentyl methyl ether can be used. Moreover, these mixed solvents can also be used.
[0045]
About reaction temperature in said reaction, it is preferable to carry out in the temperature range which the organic lithium compound or organic magnesium compound to produce | generate does not decompose | disassemble. Usually, it is carried out in the range of −100 to 200 ° C., preferably −85 to 150 ° C., which is a temperature used industrially. The pressure conditions for the reaction can be any of under pressure, normal pressure, and reduced pressure.
[0046]
The synthesized organolithium compound or organomagnesium compound can be used as it is after synthesis, and unreacted organohalide compound and metal lithium, metal magnesium, reaction by-product lithium halide, and magnesium halide are removed. It can also be used later.
[0047]
About the purification method of the organosilane compound represented by the above general formula (1) obtained by the above method, the moisture content is less than 50 ppm useful for use as an insulating film material, and elements other than silicon, carbon, oxygen and hydrogen In order to reduce the amount of impurities derived from the production raw material to less than 10 ppb, by-product lithium salt, magnesium salt, alkali metal salt is filtered using a glass filter, sintered porous body, etc. Alternatively, it may be removed by means such as column separation and purification using silica, alumina or polymer gel. At this time, these means may be used in combination as necessary. In the method of extracting by-product lithium salt, magnesium salt, alkali metal salt with water or the like as used in general organic synthesis technology, the final organic compound in the organic silane compound represented by the general formula (1) is obtained. Element impurities other than moisture, silicon, carbon, oxygen, and hydrogen, especially metal impurity residues, may become high, and may become inappropriate as an insulating film material.
[0048]
In the production, the method in the organometallic compound synthesis field is followed. That is, the dehydration and deoxygenation is performed in a nitrogen or argon atmosphere, and the solvent to be used and the column filler for purification are preferably subjected to dehydration operations in advance. It is also preferable to remove impurities such as metal residues and particles.
[0049]
The organosilane compound represented by the general formula (1) of the present invention is a material suitable for forming a film as a low dielectric constant insulating material by a PECVD apparatus.
[0050]
The method of using the insulating film material of the present invention is not particularly limited, but the PECVD apparatus generally used in the technical field such as the semiconductor manufacturing field and the liquid crystal display manufacturing field may be used to form the insulating film. it can. The PECVD equipment vaporizes an insulating film material such as an organosilane compound with a vaporizer, introduces it into a film forming chamber, applies it to an electrode in the film forming chamber with a high frequency power source, generates plasma, and forms a film. An apparatus for forming a plasma polymerized film on a silicon substrate or the like in a chamber. At this time, a gas such as argon or helium, or an oxidant such as oxygen or nitrous oxide may be introduced for the purpose of generating plasma. When a film is formed using the insulating film material of the present invention by a PECVD apparatus, a thin film suitable as a low dielectric constant material (low-k material) for semiconductor devices can be formed.
[0051]
After these materials are formed by CVD, the bonding between carbon atoms and silicon atoms is broken, or heat treatment is performed at a temperature higher than that at which the ester group is eliminated to obtain a porous low dielectric constant insulating material. You can also. The heat treatment temperature is preferably a temperature of 350 ° C. or higher at which the porosity is completed and 500 ° C. or lower at which the semiconductor device is not deteriorated.
[0052]
The low dielectric constant material of the present invention is suitable for the production of ULSI using multilayer wiring, and semiconductor devices using this material are also included in the scope of the present invention.
[0053]
【Example】
Examples are shown below, but the present invention is not limited to these Examples.
[0054]
Example 1
[Synthesis of Terstiary Butyldimethylchlorosilane]
Under a nitrogen atmosphere, 258.2 g (2.00 mol) of dimethyldichlorosilane and 600 ml of n-pentane were charged into a 3 L four-necked flask reactor equipped with a reflux condenser, a dropping funnel and a stirrer, and cooled to 0 ° C. . From the dropping funnel, 539.6 g (2.00 mol) of an n-pentane solution of 23.7 wt% tertiary butyl lithium was added dropwise over 1 hour, followed by further stirring for 2 hours.
[0055]
After the reaction, by-product lithium chloride was removed by filtration, n-pentane was distilled off from the filtrate, and then purified tert-butyldimethylchlorosilane was isolated by distillation. The yield was 235.1 g, and the isolated yield was 78.0%.
[0056]
[Synthesis of tertiary butyldimethylacetoxysilane]
Under a nitrogen stream, a 200 ml Syulenk reactor equipped with a reflux condenser and a stirrer was charged with 15.1 g (0.100 mol) of tertiary butyldimethylchlorosilane, 11.8 g (0.120 mol) of potassium acetate and 100 ml of n-hexane. The reaction was allowed to proceed for 28 hours under reflux conditions of n-hexane.
[0057]
The solid residue was filtered off with a glass filter to obtain a reaction mixture solution. N-Hexane was distilled off from the reaction mixture solution, and tertiary butyldimethylacetoxysilane as the target product was isolated by atmospheric distillation.
[0058]
The yield was 12.2 g (0.0701 mol), corresponding to a yield of 70.1%.
[0059]
The result of analyzing the isolated tertiary butyldimethylacetoxysilane by 1 H-NMR, 13 C-NMR, and GC-MS was as follows.
[0060]
1 H-NMR; 0.321 ppm (s, 6H), 0.990 ppm (s, 9H), 2.11 ppm (s, 3H)
13 C-NMR; 17.6 ppm, 22.9 ppm, 25.6 ppm, 171.5 ppm
GC-MS; Mw = 174, C 8 H 18 O 2 Si
In addition, the water content and potassium and lithium content in 100 g of the resulting tertiary butyldimethylacetoxysilane were measured using a Karl Fischer moisture meter and ICP-MS (high frequency plasma emission-mass spectrometer, manufactured by Yokogawa Analytical Systems, Inc. As a result of measurement by the name “HP4500”), H 2 O = 6 ppm, K <10 ppb, Li <10 ppb, which was useful as an insulating film material.
[0061]
[Plasma Polymerization of Tertiary Butyldimethylacetoxysilane]
Using a plasma polymerization apparatus NL-OP50FT manufactured by Nippon Laser Electronics Co., Ltd., discharge voltage 2.1 V, discharge current 3.0 mA, tertiary butyldimethylacetoxysilane partial pressure 0.7 torr, room temperature, polymerization (discharge) time 5 minutes Tertiary butyldimethylacetoxysilane was plasma polymerized under the conditions described above, and a film was formed on a silicon substrate. Result is,
Deposition rate = 20.4 nm / min.
Thin film composition (XPS) C = 29.5 atom%, O = 42.4 atom%
Si = 28.1 atom%
C / Si = 1.05 atom ratio,
O / Si = 1.51 atom ratio SEM thin film cross-sectional observation It was a flat dense film, an insulating film with a low ratio of carbon (organic substituent) to silicon and easy to etch.
[0062]
Comparative Example 1
After the reaction of tertiary butyldimethylchlorosilane and potassium acetate in Example 1, potassium chloride and unreacted potassium acetate were not removed by filtration, but water was added and the solution was separated and extracted by extraction. Similarly, tertiary butyldimethylacetoxysilane was synthesized.
[0063]
The water content and potassium content in the resulting tertiary butyldimethylacetoxysilane were measured with a Karl Fischer moisture meter and ICP-MS. As a result, H 2 O = 240 ppm, K = 20 ppb. It was appropriate.
[0064]
Example 2
[Synthesis of tertiary butyldimethylsilyl-2,4-hexadienate]
Under a nitrogen stream, a 200 ml slurry reactor equipped with a reflux condenser and a stirrer was charged with 15.1 g (0.100 mol) of tertiary butyldimethylchlorosilane and 18.0 g (0.120 mol) of potassium 2,4-hexanedienoate. 100 ml of n-hexane was charged and reacted for 8 hours under reflux condition of n-hexane.
[0065]
The solid residue was filtered off with a glass filter to obtain a reaction mixture solution. N-Hexane was distilled off from the reaction mixture solution, and tertiary butyldimethylsilyl-2,4-hexadienate as the target product was isolated by atmospheric distillation.
[0066]
The yield was 16.0 g (0.0705 mol), corresponding to a yield of 70.5%.
[0067]
The results of analyzing the isolated tertiary butyldimethylsilyl-2,4-hexadienate by 1 H-NMR, 13 C-NMR, and GC-MS were as follows.
[0068]
1 H-NMR: 0.356 ppm (s, 6H), 1.02 ppm (s, 9H), 1.92 ppm (d, 3H), 5.83 ppm (q, 1H), 6.21 ppm (m, 2H), 7.25 ppm (m, 3H)
13 C-NMR: 17.8 ppm, 18.7 ppm, 25.7 ppm, 120.9 ppm, 129.7 ppm, 139.1 ppm, 145.3 ppm, 167.1 ppm
GC-MS; Mw = 226, C 12 H 22 O 2 Si
In addition, the water content and potassium and lithium contents in 100 g of the resulting tertiary butyldimethylsilyl-2,4-hexadienate were measured using a Karl Fischer moisture meter and ICP-MS (high-frequency plasma emission-mass spectrometer, Yokogawa, Japan). Analytical Systems, product name “HP4500”) were measured as H 2 O = 4 ppm, K <10 ppb, Li <10 ppb, and were useful as insulating film materials.
[0069]
[Plasma polymerization of tertiary butyldimethylsilyl-2,4-hexadienate]
Using a plasma polymerization apparatus NL-OP50FT manufactured by Nippon Laser Electronics Co., Ltd., discharge voltage 2.1 V, discharge current 3.0 mA, tertiary butyldimethylsilyl-2,4-hexadienate partial pressure 0.7 torr, room temperature, Tertiary butyldimethylsilyl-2,4-hexadienate was subjected to plasma polymerization under a polymerization (discharge) time of 5 minutes, and a film was formed on a silicon substrate. Result is,
Deposition rate = 30.0 nm / min.
Thin film composition (XPS) C = 26.4 atom%, O = 49.6 atom%,
Si = 24.0 atom%
C / Si = 1.10 atom ratio,
O / Si = 2.07 atom ratio SEM thin film cross-sectional observation It was a flat dense film, an insulating film having a low ratio of carbon (organic substituent) to silicon and easy to etch.
[0070]
Comparative Example 2
[Plasma polymerization of tetraethoxysilane]
Using a laser polymerization apparatus NL-OP50FT manufactured by Nippon Laser Electronics Co., Ltd., a discharge voltage of 2.1 V, a discharge current of 3.0 mA, a tetraethoxy partial pressure of 0.7 torr, a room temperature, and a polymerization (discharge) time of 5 minutes are tertiary. Butyldimethylsilyl-2,4-hexadienate was plasma polymerized and formed on a silicon substrate. Result is,
Deposition rate = 37.5 nm / min.
Thin film composition (XPS) C = 53.6 atom%, O = 29.3 atom%,
Si = 17.1 atom%
C / Si = 3.13 atom ratio,
O / Si = 1.71 atom ratio SEM thin-film cross-sectional observation It was a flat dense film, and the ratio of carbon (organic substituent) to silicon was high, and it was an insulating film that was difficult to etch compared to Examples 1 and 2.
[0071]
【The invention's effect】
According to the present invention, the following remarkable effects are exhibited. That is,
(1) By using the organosilane compound having the structure of the present invention, a low dielectric constant and high mechanical strength material can be provided as a low dielectric constant material in the semiconductor device interlayer insulating film.
(2) An organic silane compound having an alkoxy group in which a tertiary carbon atom is directly connected to an oxygen atom, which is useful as an interlayer insulating film material for PECVD, can be efficiently produced with high purity.
That is.

Claims (6)

記一般式(2)
Figure 0004259217
(式中、 Buは、ターシャリーブチル基を表し、Rは、炭素数1〜20の飽和炭化水素基を表す。)で示される有機シラン化合物を含んでなる、化学気相成長法により形成される絶縁膜用材料。
Under following general formula (2)
Figure 0004259217
(Wherein, t Bu represents a tertiary butyl group, R 2 represents. A saturated hydrocarbon group having 1 to 20 carbon atoms) comprising the organic silane compound represented by the chemical vapor deposition method Insulating film material to be formed.
ケイ素、炭素、酸素、水素以外の元素であって製造原料に由来する不純物量が10ppb未満であり、かつ含水量が50ppm未満であることを特徴とする請求項1に記載の絶縁膜用材料。2. The insulating film material according to claim 1, wherein an amount of impurities other than silicon, carbon, oxygen, and hydrogen and derived from a manufacturing raw material is less than 10 ppb, and a water content is less than 50 ppm. 化学気相成長法が、プラズマ励起化学気相成長法(PECVD:Plasma Enhanced Chemical Vapor Deposition)である請求項1または2に記載の絶縁膜用材料。The material for an insulating film according to claim 1 or 2, wherein the chemical vapor deposition method is a plasma enhanced chemical vapor deposition (PECVD) method. 請求項1または2に記載の有機シランを含んでなる絶縁膜材料を用い、PECVD装置により成膜した絶縁膜。The insulating film formed into a film with the PECVD apparatus using the insulating film material containing the organosilane of Claim 1 or 2. 請求項1または2に記載の有機シランを含んでなる絶縁膜材料を用い、生成膜組成の炭素/ケイ素比を1.5未満とした絶縁膜。An insulating film using the insulating film material comprising the organosilane according to claim 1 or 2 and having a carbon / silicon ratio of a generated film composition of less than 1.5. 請求項4または5に記載の絶縁膜を、炭素原子とケイ素原子との結合が切断される、又は、エステル基が脱離する以上の温度で熱処理し、多孔質化した絶縁膜。6. An insulating film according to claim 4 or 5, wherein the insulating film according to claim 4 or 5 is made porous by heat treatment at a temperature higher than a bond between a carbon atom and a silicon atom is broken or an ester group is eliminated.
JP2003205439A 2003-08-01 2003-08-01 Insulating film material comprising an ester group-containing organosilane compound and insulating film using the same Expired - Fee Related JP4259217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205439A JP4259217B2 (en) 2003-08-01 2003-08-01 Insulating film material comprising an ester group-containing organosilane compound and insulating film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205439A JP4259217B2 (en) 2003-08-01 2003-08-01 Insulating film material comprising an ester group-containing organosilane compound and insulating film using the same

Publications (2)

Publication Number Publication Date
JP2005056877A JP2005056877A (en) 2005-03-03
JP4259217B2 true JP4259217B2 (en) 2009-04-30

Family

ID=34362720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205439A Expired - Fee Related JP4259217B2 (en) 2003-08-01 2003-08-01 Insulating film material comprising an ester group-containing organosilane compound and insulating film using the same

Country Status (1)

Country Link
JP (1) JP4259217B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010002358A1 (en) * 2010-02-25 2011-08-25 Evonik Degussa GmbH, 45128 Carboxy-functionalized silicon-containing precursor compound of various organic carboxylic acids

Also Published As

Publication number Publication date
JP2005056877A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP5003722B2 (en) Organosiloxane compounds
JP4438385B2 (en) Insulating film material, organosilane compound manufacturing method, insulating film, and semiconductor device using the same
US7413775B2 (en) Insulating film material containing an organic silane compound, its production method and semiconductor device
JP4591651B2 (en) Insulating film material comprising organosilane compound, method for producing the same, and semiconductor device
JP2008274365A (en) MATERIAL FOR FORMING Si-CONTAINING FILM, Si-CONTAINING FILM, MANUFACTURING METHOD THEREFOR, AND SEMICONDUCTOR DEVICE
JP5353845B2 (en) Cyclic siloxane compound
JP4479190B2 (en) Insulating film material comprising alkenyl group-containing organosilane compound, insulating film and semiconductor device using the same
JP4957037B2 (en) Organosilane compound, Si-containing film-forming material containing the same, production method and use
JP4333480B2 (en) Si-containing film forming material and use thereof
JP4863182B2 (en) Insulating film material comprising organosilane compound, method for producing the same, and semiconductor device
JP5019742B2 (en) Cyclic siloxane compound, Si-containing film forming material, and use thereof
JP4259217B2 (en) Insulating film material comprising an ester group-containing organosilane compound and insulating film using the same
JP4385616B2 (en) Insulating film material comprising organosilane compound, method for producing the same, and semiconductor device
JP5040162B2 (en) Si-containing film forming material comprising alkenyl group-containing organosilane compound and use thereof
JP4341560B2 (en) Si-containing film forming material, Si-containing film, method for producing Si-containing film, and semiconductor device
CN100444330C (en) Insulating film material containing organic silane or organic siloxane compound, method for producing same, and semiconductor device
JP2011116758A (en) ORGANOSILANE COMPOUND, METHOD FOR PRODUCING THE SAME, Si-CONTAINING FILM-FORMING MATERIAL CONTAINING THE SAME AND METHOD FOR FORMING FILM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4259217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees