JP2014065670A - Simple production method of trifluoromethyl phthalonitrile and phthalocyanine derivative - Google Patents

Simple production method of trifluoromethyl phthalonitrile and phthalocyanine derivative Download PDF

Info

Publication number
JP2014065670A
JP2014065670A JP2012210476A JP2012210476A JP2014065670A JP 2014065670 A JP2014065670 A JP 2014065670A JP 2012210476 A JP2012210476 A JP 2012210476A JP 2012210476 A JP2012210476 A JP 2012210476A JP 2014065670 A JP2014065670 A JP 2014065670A
Authority
JP
Japan
Prior art keywords
general formula
following general
phthalonitrile
trifluoromethyl
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012210476A
Other languages
Japanese (ja)
Inventor
Tetsuo Shibata
哲男 柴田
Noriji Iida
紀士 飯田
Etsuko Tokunaga
恵津子 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2012210476A priority Critical patent/JP2014065670A/en
Publication of JP2014065670A publication Critical patent/JP2014065670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple production method of a trifluoromethyl phthalonitrile derivative and a phthalocyanine derivative.SOLUTION: The inventors have succeeded in simple synthesis of trifluoromethyl phthalonitrile by using aromatic coupling reaction with iodophthalonitrile that is an existing compound. It is a functional pigment that is a raw material of trifluoromethyl phthalocyanine and can be applied to pharmaceuticals, photosensitive solar cells, and optical materials.

Description

本発明はトリフルオロメチルフタロニトリル誘導体の簡便な製造方法及びフタロシアニン誘導体に関するものである。 The present invention relates to a simple method for producing a trifluoromethylphthalonitrile derivative and a phthalocyanine derivative.

フタロシアニンは青・緑色の顔料として利用されてきた。その優れた物理学的な性質から,電荷発生材,光磁気ディスク用色素として利用されている機能性色素である。さらに光線力学的治療の光増感剤,非線型光学材料等,さまざまな分野での応用が期待されている。しかしフタロシアニン誘導体は一般的に有機溶媒への溶解性が悪いという問題を抱える。そこで溶解性の向上を狙いトリフルオロメチル基を導入したフタロシアニンが合成されてきた(非特許文献1、2、3)。その後、藤原らによってより新たなトリフルオロメチルフタロニトリルの製造方法も報告されてきた(特許文献1)が低収率なステップもあり、簡便とは言い難い。 Phthalocyanines have been used as blue and green pigments. Due to its excellent physical properties, it is a functional dye used as a charge generating material and a dye for magneto-optical disks. Furthermore, applications in various fields such as photosensitizers for photodynamic therapy and nonlinear optical materials are expected. However, phthalocyanine derivatives generally have a problem of poor solubility in organic solvents. Accordingly, phthalocyanines into which a trifluoromethyl group has been introduced have been synthesized with the aim of improving solubility (Non-Patent Documents 1, 2, and 3). Thereafter, Fujiwara et al. Also reported a new method for producing trifluoromethylphthalonitrile (Patent Document 1), but there are also steps with low yields, which are not easy.

特開平06−041137号公報Japanese Patent Laid-Open No. 06-041137

Barkanova, S. V.; Iodko, S. S., Kaliya, O. L.; Kondratenko, N. V.; Luk'yanets, E. A.; Oksengendler, I. G.; Tomilova, L. G.; Yagupol'skii, L. M.; Zhurnal Organicheskoi Khimii, 1979, 15(8), 1770-1773.Barkanova, SV; Iodko, SS, Kaliya, OL; Kondratenko, NV; Luk'yanets, EA; Oksengendler, IG; Tomilova, LG; Yagupol'skii, LM; Zhurnal Organicheskoi Khimii, 1979, 15 (8), 1770-1773 . Oksengendler, I. G.; Kondratenko, N. V.; Luk'yanets, E. A.; Yagupol'skii, L. M. Zhurnal Organicheskoi Khimii, 1977, 13(7), 1554-1558.Oksengendler, I. G .; Kondratenko, N. V .; Luk'yanets, E. A .; Yagupol'skii, L. M. Zhurnal Organicheskoi Khimii, 1977, 13 (7), 1554-1558. George, P.; Michael, H.; Synthesis communication, 1981, 11(5), 351-363George, P .; Michael, H .; Synthesis communication, 1981, 11 (5), 351-363

既存のトリフルオロメチルフタロニトリルの合成方法はステップ数が多く各段階での収率も満足のいくものではなかった。
本発明が解決しようとする課題は、トリフルオロメチルフタロニトリルの簡便かつ位置選択的な合成法を提供することである。
Existing methods for synthesizing trifluoromethylphthalonitrile have a large number of steps and yields at each stage are not satisfactory.
The problem to be solved by the present invention is to provide a simple and regioselective synthesis method of trifluoromethylphthalonitrile.

上記目的を達成するため,我々は近年目覚ましい進歩を遂げている芳香族に対するトリフルオロメチル化反応、特に2011年に報告されたヤゴロフスキー試薬と銅を用いたカップリング反応(非特許文献4)によって容易かつ様々な位置にトリフルオロメチルを持つフタロニトリルを高収率で合成することに成功した。
(非特許文献4)Cheng-Pan, Z.; Zong-Ling, W.; Qing-Yun, C.; Chun-Tao, Z.; Yu-Cheng, G.; Ji-Chang, X.; Angew. Chem. Int. Ed. 2011, 50, 1896-1900
本発明は上記問題点を鑑みて様々なヨードフタロニトリルを原料に用いてトリフルオロメチル基を簡便に導入する方法を提供することを目的とする。
In order to achieve the above-mentioned objective, we facilitated the trifluoromethylation reaction for aromatics, which has made remarkable progress in recent years, especially the coupling reaction using Yagorovsky reagent and copper reported in 2011 (Non-patent Document 4). And we succeeded in synthesizing phthalonitrile with trifluoromethyl at various positions in high yield.
(Non-Patent Document 4) Cheng-Pan, Z .; Zong-Ling, W .; Qing-Yun, C .; Chun-Tao, Z .; Yu-Cheng, G .; Ji-Chang, X .; Angew. Chem. Int. Ed. 2011, 50, 1896-1900
In view of the above problems, an object of the present invention is to provide a method for simply introducing a trifluoromethyl group using various iodophthalonitriles as raw materials.

上記目的を達成するために請求項1記載の発明では4−ヨードフタロニトリルに対してカップリング反応によるパーフルオロアルキル化を行った。すなわち請求項1記載の発明は次の一般式(1)   In order to achieve the above object, according to the first aspect of the invention, perfluoroalkylation is performed on 4-iodophthalonitrile by a coupling reaction. That is, the invention according to claim 1 has the following general formula (1)


(式中、Rは低級パーフルオロアルキル基を示し、nは1から4を表す。)で表せられる4−パーフルオロアルキルフタロニトリルの製造方法であって、4−ハロゲンフタロニトリルに対して0価の銅とパーフルオロアルキル化剤を反応させる工程からなる。
前記工程は、ハロゲンをヨウ素とした場合に次式のように表される。
(Wherein R represents a lower perfluoroalkyl group and n represents 1 to 4), which is a method for producing 4-perfluoroalkylphthalonitrile represented by Comprising the step of reacting copper with a perfluoroalkylating agent.
The above process is expressed by the following formula when halogen is iodine.

請求項2記載の発明は次の一般式(1’) The invention according to claim 2 has the following general formula (1 ')

で表される4−トリフルオロメチルフタロニトリルの製造方法であって、前記4−ハロゲンフタロニトリルのハロゲン部位が塩素、臭素、ヨウ素からなる群から選択されていて、パーフルオロアルキル化剤としてヤゴロフスキー試薬を用いた請求項1記載の方法にある。
請求項3記載の発明は次の一般式(2)
Wherein the halogen moiety of the 4-halogenphthalonitrile is selected from the group consisting of chlorine, bromine and iodine, and a Yagolovsky reagent as a perfluoroalkylating agent The method according to claim 1, wherein
The invention according to claim 3 has the following general formula (2)

(式中のRとnは請求項1と同じ。)で表せられる3−パーフルオロアルキルフタロニトリルの製造方法であって、3−ハロゲンフタロニトリルに対して0価の銅とパーフルオロアルキル化剤を反応させる工程からなる。
請求項4記載の発明は次の一般式(2’)
(Wherein R and n are the same as those in claim 1), which is a method for producing 3-perfluoroalkylphthalonitrile, which is a zero-valent copper and a perfluoroalkylating agent with respect to 3-halogenphthalonitrile. Comprising the step of reacting.
The invention according to claim 4 is the following general formula (2 ′).

で表される3−トリフルオロメチルフタロニトリルの製造方法であり、前記3−ハロゲンフタロニトリルのハロゲン部位が塩素、臭素、ヨウ素からなる群から選択されていて、パーフルオロアルキル化剤としてヤゴロフスキー試薬を用いた請求項3記載の方法にある。
請求項5記載の発明は次の一般式(3)
Wherein the halogen moiety of the 3-halogenphthalonitrile is selected from the group consisting of chlorine, bromine and iodine, and a Yagolovsky reagent is used as the perfluoroalkylating agent. The method according to claim 3 used.
The invention according to claim 5 has the following general formula (3)

(式中のRとnは請求項1と同じ。)で表せられる4,5−ジ(パーフルオロアルキル)フタロニトリルの製造方法であって、4,5−ジ(ハロゲン)フタロニトリルに対して0価の銅とパーフルオロアルキル化剤を反応させる工程からなる。
請求項6記載の発明は次の一般式(3’)
(Wherein R and n are the same as those in claim 1), which is a process for producing 4,5-di (perfluoroalkyl) phthalonitrile, which is based on 4,5-di (halogen) phthalonitrile. It consists of a step of reacting zero-valent copper with a perfluoroalkylating agent.
The invention according to claim 6 is the following general formula (3 ′).

で表される4,5−ジ(トリフルオロメチル)フタロニトリルの製造方法であって、前記4,5−ジ(ハロゲン)フタロニトリルのハロゲン部位が塩素、臭素、ヨウ素からなる群から選択されていて、パーフルオロアルキル化剤としてヤゴロフスキー試薬を用いた請求項5記載の方法にある。
請求項7記載の発明は次の一般式(4)
Wherein the halogen moiety of the 4,5-di (halogen) phthalonitrile is selected from the group consisting of chlorine, bromine, and iodine. The method according to claim 5, wherein a Yagorovsky reagent is used as the perfluoroalkylating agent.
The invention according to claim 7 has the following general formula (4)

(式中のRとnは請求項1と同じ。)で表せられる3,6−ジ(パーフルオロアルキル)フタロニトリルの製造方法であって、3,6−ジ(ハロゲン)フタロニトリルに対して0価の銅とパーフルオロアルキル化剤を反応させる工程からなる。
請求項8記載の発明は次の一般式(4’)
(Wherein R and n are the same as in claim 1), which is a process for producing 3,6-di (perfluoroalkyl) phthalonitrile, wherein 3,6-di (halogen) phthalonitrile is It consists of a step of reacting zero-valent copper with a perfluoroalkylating agent.
The invention according to claim 8 is the following general formula (4 ′).

で表される3,6−ジ(トリフルオロメチル)フタロニトリルの製造方法であって、前記3,6−ジ(ハロゲン)フタロニトリルのハロゲン部位が塩素、臭素、ヨウ素からなる群から選択されていて、パーフルオロアルキル化剤としてヤゴロフスキー試薬を用いた請求項7記載の方法にある。
請求項9記載の発明は次の一般式(5)
Wherein the halogen moiety of the 3,6-di (halogen) phthalonitrile is selected from the group consisting of chlorine, bromine, and iodine. The method according to claim 7, wherein a Yagolovsky reagent is used as the perfluoroalkylating agent.
The invention according to claim 9 has the following general formula (5)

(式中、Rは低級パーフルオロアルキル基を示し、nは1から4を表し、Mは水素原子,金属元素,半金属元素,金属酸化物,半金属酸化物,金属水酸化物,半金属水酸化物,金属ハロゲン化物,半金属ハロゲン化物を示す。)で表せられるフタロシアニン誘導体の製造方法であって、請求項1記載の方法により製造した4−パーフルオロアルキルフタロニトリルを金属塩とともに溶媒中100℃以上で反応させる工程からなる。
請求項10記載の発明は次の一般式(5')
(In the formula, R represents a lower perfluoroalkyl group, n represents 1 to 4, M represents a hydrogen atom, metal element, metalloid element, metal oxide, metalloid oxide, metal hydroxide, metalloid) Wherein 4-perfluoroalkylphthalonitrile produced by the method according to claim 1 together with a metal salt in a solvent is a method for producing a phthalocyanine derivative represented by hydroxide, metal halide, and metalloid halide. It consists of the process of making it react at 100 degreeC or more.
The invention according to claim 10 is the following general formula (5 ′).

(式中のR、n、Mは請求項9と同じ。)で表されるβ−トリフルオロメチルフタロニトリルの製造方法であって、前記4−パーフルオロアルキルフタロニトリルとして請求項2記載の方法により製造した4−トリフルオロメチルフタロニトリルを用いた請求項9記載の方法にある。
請求項11記載の発明は次の一般式(6)
(Wherein R, n and M are the same as those in claim 9), wherein the 4-perfluoroalkylphthalonitrile is used as the 4-perfluoroalkylphthalonitrile. The method according to claim 9, wherein 4-trifluoromethylphthalonitrile produced by the method is used.
The invention according to claim 11 has the following general formula (6)

(式中のR、n、Mは請求項9と同じ。)で表せられるフタロシアニン誘導体の製造方法であって、請求項3記載の方法により製造した3−パーフルオロアルキルフタロニトリルを金属塩とともに溶媒中100℃以上で反応させる工程からなる。
請求項12記載の発明は次の一般式(6’)
(Wherein R, n and M are the same as in claim 9), wherein 3-perfluoroalkylphthalonitrile prepared by the method according to claim 3 is mixed with a metal salt as a solvent. It consists of the process made to react at 100 degreeC or more inside.
The invention according to claim 12 is the following general formula (6 ′).

(式中のR、n、Mは請求項9と同じ。)で表されるα−トリフルオロメチルフタロシアニンの製造方法であって、前記3−パーフルオロアルキルフタロニトリルとして請求項4記載の方法により製造した3−トリフルオロメチルフタロニトリルを用いた請求項11記載の方法にある。
請求項13記載の発明は次の一般式(7)
(Wherein R, n and M are the same as in claim 9), wherein the 3-perfluoroalkylphthalonitrile is produced by the method according to claim 4. The method according to claim 11, wherein the produced 3-trifluoromethylphthalonitrile is used.
The invention according to claim 13 has the following general formula (7)

(式中のR、n、Mは請求項9と同じ。)で表せられるフタロシアニン誘導体の製造方法であって、請求項5記載の方法により製造した4,5−ジ(パーフルオロアルキル)フタロニトリルを金属塩とともに溶媒中100℃以上で反応させる工程からなる。
請求項14記載の発明は次の一般式(7’)
(Wherein R, n and M are the same as those in claim 9), and a 4,5-di (perfluoroalkyl) phthalonitrile produced by the method according to claim 5. And a metal salt in a solvent at 100 ° C. or higher.
The invention according to claim 14 is the following general formula (7 ′).

(式中のR、n、Mは請求項9と同じ。)で表わされるβ,β−オクタ(トリフルオロメチル)フタロシアニン誘導体の製造方法であって、前記4,5−ジ(パーフルオロアルキル)フタロニトリルとして請求項6記載の方法により製造した4,5−ジ(トリフルオロメチル)フタロニトリルを用いた請求項13記載の方法にある。
請求項15記載の発明は次の一般式(8)
(Wherein R, n and M are the same as in claim 9), a process for producing a β, β-octa (trifluoromethyl) phthalocyanine derivative represented by the above 4,5-di (perfluoroalkyl) The method according to claim 13, wherein 4,5-di (trifluoromethyl) phthalonitrile produced by the method according to claim 6 is used as phthalonitrile.
The invention according to claim 15 is the following general formula (8)

(式中のR、n、Mは請求項9と同じ。)で表せられるフタロシアニン誘導体の製造方法であって、請求項7記載の方法により製造した3,6−ジ(パーフルオロアルキル)フタロニトリルを金属塩とともに溶媒中100℃以上で反応させる工程からなる。
請求項16記載の発明は次の一般式(8’)
(Wherein R, n and M are the same as those in claim 9), and a 3,6-di (perfluoroalkyl) phthalonitrile produced by the method according to claim 7. And a metal salt in a solvent at 100 ° C. or higher.
The invention according to claim 16 is the following general formula (8 ′).

(式中のR、n、Mは請求項9と同じ。)で表わされるα, α−オクタ(トリフルオロメチル)フタロシアニン誘導体の製造方法であって、前記3,6−ジ(パーフルオロアルキル)フタロニトリルとして請求項8記載の方法により製造した3,6−ジ(トリフルオロメチル)フタロニトリルを用いた請求項15記載の方法にある。
さらに、請求項17〜24の発明は請求項9〜16で製造したフタロシアニン誘導体にある。
(Wherein R, n and M are the same as in claim 9), wherein the 3,6-di (perfluoroalkyl) is a method for producing an α, α-octa (trifluoromethyl) phthalocyanine derivative represented by The method according to claim 15, wherein 3,6-di (trifluoromethyl) phthalonitrile produced by the method according to claim 8 is used as the phthalonitrile.
Furthermore, the inventions of claims 17 to 24 reside in the phthalocyanine derivative produced in claims 9 to 16.

原料となる4−ヨードフタロニトリルは市販品であり容易に入手可能である。その他のヨードフタロニトリルは文献を参考に(非特許文献5、6)下記の方法によって合成可能である。
Alexandre, A. P.; Qingping, T.; Richard, C. L.; J. Org. Chem. 2002, 67, 9276-9287 Dmitri, S. T.; Kieran, J. M. N.; Colin, R. M.; Clifford, C. L.; J. Org. Chem. 1996, 61, 3034-3040
4-iodophthalonitrile as a raw material is a commercial product and can be easily obtained. Other iodophthalonitriles can be synthesized by the following method with reference to the literature (Non-Patent Documents 5 and 6).
Alexandre, AP; Qingping, T .; Richard, CL; J. Org. Chem. 2002, 67, 9276-9287 Dmitri, ST; Kieran, JMN; Colin, RM; Clifford, CL; J. Org. Chem. 1996, 61, 3034-3040

原料であるヨードフタロニトリルからパーフルオロアルカン置換された請求項1記載のフタロニトリル誘導体へはカップリング反応を用いて以下のように変換できる。 From the starting material iodophthalonitrile to the perfluoroalkane-substituted phthalonitrile derivative according to claim 1, it can be converted as follows using a coupling reaction.

一般式(1)、(2)、(3)、(4)の合成
用いるハロゲン化パーフルオロアルカン類はアルキル鎖が1から4でありハロゲン部位は塩素、臭素、ヨウ素が利用できるが好ましくはヨウ素である。用いる銅は0価の銅であり、粉末状の銅を用いるのが好ましい。溶媒の種類は特に限定されないが,ジエチルエーテル,ジイソプロピルエーテル,n−ブチルメチルエーテル,tert−ブチルメチルエーテル,テトラヒドロフラン,ジオキサン等のエーテル系溶媒;ヘプタン,ヘキサン,シクロペンタン,シクロヘキサン等の炭化水素系溶媒;クロロホルム,四塩化炭素,塩化メチレン,ジクロロエタン,トリクロロエタン等のハロゲン化炭化水素系溶媒;ベンゼン,トルエン,キシレン,クメン,シメン,メシチレン,ジイソプロピルベンゼン,ピリジン,ピリミジン,ピラジン,ピリダジン等の芳香族系溶媒;酢酸エチル等のエステル系溶媒;アセトン,メチルエチルケトン等のケトン系溶媒;ジメチルスルホキシド,ジメチルホルムアミド等の溶媒;メタノール,エタノール,プロパノール,イソプロピルアルコール,アミノエタノール,N,N-ジメチルアミノエタノール等のアルコール系溶媒;超臨界二酸化炭素,イオン性液体が挙げられるが,ジメチルホルムアミドが最も好ましい。反応温度は室温から100℃の間で可能であるが好ましくは60℃である。
The halogenated perfluoroalkanes used in the synthesis of the general formulas (1), (2), (3), and (4) have an alkyl chain of 1 to 4, and chlorine, bromine, and iodine can be used for the halogen moiety. It is. Copper to be used is zero-valent copper, and powdered copper is preferably used. The type of solvent is not particularly limited, but ether solvents such as diethyl ether, diisopropyl ether, n-butyl methyl ether, tert-butyl methyl ether, tetrahydrofuran and dioxane; hydrocarbon solvents such as heptane, hexane, cyclopentane and cyclohexane Halogenated hydrocarbon solvents such as chloroform, carbon tetrachloride, methylene chloride, dichloroethane, and trichloroethane; aromatic solvents such as benzene, toluene, xylene, cumene, cymene, mesitylene, diisopropylbenzene, pyridine, pyrimidine, pyrazine, and pyridazine Ester solvents such as ethyl acetate; ketone solvents such as acetone and methyl ethyl ketone; solvents such as dimethyl sulfoxide and dimethylformamide; methanol, ethanol, propanol, isopropyl alcohol Alcohol solvents such as alcohol, aminoethanol, N, N-dimethylaminoethanol; supercritical carbon dioxide, ionic liquids, and dimethylformamide is most preferred. The reaction temperature can be between room temperature and 100 ° C, preferably 60 ° C.

トリフルオロメチルフタロニトリルの合成は一般式(9)   The synthesis of trifluoromethylphthalonitrile is represented by the general formula (9)

で表されるヤゴロフスキー試薬と銅を用いて以下のように合成することが可能である。 It is possible to synthesize | combine as follows using the Yagorovsky reagent represented by these, and copper.

一般式(1’)、(2’)、(3’)、(4’)の合成
用いる銅は0価の銅であり、粉末状の銅を用いるのが好ましい。溶媒の種類は特に限定されないが,ジエチルエーテル,ジイソプロピルエーテル,n−ブチルメチルエーテル,tert−ブチルメチルエーテル,テトラヒドロフラン,ジオキサン等のエーテル系溶媒;ヘプタン,ヘキサン,シクロペンタン,シクロヘキサン等の炭化水素系溶媒;クロロホルム,四塩化炭素,塩化メチレン,ジクロロエタン,トリクロロエタン等のハロゲン化炭化水素系溶媒;ベンゼン,トルエン,キシレン,クメン,シメン,メシチレン,ジイソプロピルベンゼン,ピリジン,ピリミジン,ピラジン,ピリダジン等の芳香族系溶媒;酢酸エチル等のエステル系溶媒;アセトン,メチルエチルケトン等のケトン系溶媒;ジメチルスルホキシド,ジメチルホルムアミド等の溶媒;メタノール,エタノール,プロパノール,イソプロピルアルコール,アミノエタノール,N,N-ジメチルアミノエタノール等のアルコール系溶媒;超臨界二酸化炭素,イオン性液体が挙げられるが,ジメチルホルムアミドが最も好ましい。反応温度は室温から100℃の間で可能であるが好ましくは60℃である。
以下,本発明のトリフルオロメチルフタロニトリル合成を実施形態により具体的に説明するが,本発明の範囲は下記の実施形態に限定されるものではない。
(実施形態1)
4-トリフルオロメチルフタロニトリルの合成:
窒素置換を行った30mlナスフラスコに4−ヨードフタロニトリル150 mg (0.59 mmol)とヤゴロフスキー試薬477 mg (1.2 mmol)、銅113 mg (1.8 mmol)を入れジメチルホルムアミド5.0 mlに溶解し60 ℃に加熱した。一晩撹拌した後、室温まで冷却し水を加え、酢酸エチルで三回抽出を行った。有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させシリカゲルカラムクロマトグラフィー(Hex / AcOEt = 8 /2)で精製を行い目的物103 mg (収率89%)を得た。
1H NMR (300MHz, CDCl3): 8.01 (s, 2H), 8.09 (s, 1H)
19F NMR (282 MHz,CDCl3): -64.1 (s, 3F)
(実施形態2)
3-トリフルオロメチルフタロニトリルの合成:
窒素置換をした試験管に3-ヨードフタロニトリルを25 mg (0.10 mmol)、ヤゴロフスキー試薬81 mg (0.20 mmol)、銅19 mg (0.30 mmol)を入れ、ジメチルホルムアミド1.0 mlに溶解し60 ℃に加熱した。一晩撹拌した後、室温まで冷却し水を加え、酢酸エチルで三回抽出を行った。有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させシリカゲルカラムクロマトグラフィー(Hex / AcOEt = 7 / 3)で精製を行い目的物17.9 mg (収率91%)を得た。
1H NMR (300MHz, CDCl3): 7.93 (t, J = 7.8 Hz, 1H), 8.07 (t, J = 7.8 Hz, 2H)
19F NMR (282 MHz,CDCl3): -62.7 (s, 3F)
(実施形態3)
4,5-ジ(トリフルオロメチル)フタロニトリルの合成:
窒素置換した30 mlナスフラスコに4,5-ジヨードフタロニトリル190 mg (0.50 mmol)、ヤゴロフスキー試薬810 mg (2.0 mmol)、銅190 mg (3.0 mmol)を加えジメチルホルムアミド5.0 mlに溶解させ60 ℃に加熱した。一晩撹拌した後、室温まで冷却し水を加え、酢酸エチルで三回抽出を行った。有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させシリカゲルカラムクロマトグラフィー(Hex / AcOEt = 9 / 1)で精製を行い目的物105 mg (収率79%)を得た。
1H NMR (300MHz, CDCl3): 8.31 (s, 2H)
19F NMR (282 MHz, CDCl3): -60.6 (s, 3F)
(実施形態4)
3,6-ジ(トリフルオロメチル)フタロニトリルの合成:
窒素置換した30 mlナスフラスコに3,5-ジヨードフタロニトリル38 mg (0.10 mmol)、ヤゴロフスキー試薬162 mg (0.4 mmol)、銅38 mg (0.6 mmol)を入れジメチルホルムアミド1.0 mlに溶解させ60 ℃に加熱した。一晩撹拌した後、室温まで冷却し水を加え、酢酸エチルで三回抽出を行った。有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させシリカゲルカラムクロマトグラフィー(Hex / AcOEt = 8 / 2)で精製を行い目的物22 mg (収率82%)を得た。
1H NMR (300MHz, CDCl3): 8.23 (s, 2H)
19F NMR (282 MHz,CDCl3): -63.1 (s, 3F)
(実施形態5)
β-テトラ(トリフルオロメチル)亜鉛フタロシアニンの合成:
窒素置換した試験管に4-トリフルオロメチルフタロニトリル68 mg (0.35 mmol)、塩化亜鉛16 mg (0.12 mmol)をN,N-ジメチルアミノエタノール1.0 mlに溶解させ140℃に加熱し一晩撹拌した。室温に冷却後、飽和塩化アンモニア水を加え析出した結晶をろ取し、水で洗浄後デシケーターにて減圧乾燥した。その後酢酸エチルとヘキサンで再結晶を行い目的物17 mg (収率24%)を得た。
1H NMR (300MHz, d-acetone): 8.45-9.11 (m, 12H)
19F NMR (282 MHz,d-acetone): -61.3 (12F)
MALDI-TOF calculated forC36H12F12N8Zn (M-H+- 848.03 found 849.39
(実施形態6)
α-テトラ(トリフルオロメチル)亜鉛フタロシアニンの合成:
窒素置換をした試験管に3-トリフルオロメチルフタロニトリルを30 mg (0.15 mmol)を塩化亜鉛 6.9 mg (0.051 mmol)をN,N-ジメチルアミノエタノール1.0 mlに溶解させ140℃に加熱し一晩撹拌した。室温に冷却後、飽和塩化アンモニア水を加え酢酸エチルで三回抽出した。有機層を飽和塩化アンモニア水、飽和食塩水で洗浄後、硫酸ナトリウムを用いて乾燥させシリカゲルカラムクロマトグラフィー(Hex / Acetone = 7 / 3)で精製を行い目的物23 mg(収率72%)を得た。
1H NMR (300MHz, d-acetone): isomer 2: 8.04-8.13(m, 12H), isomer 1: 8.35 (t, J = 7.35 Hz, 4H), 8.50 (d, J = 7.2 Hz, 4H), 9.53 (s, 4H)
19F NMR (282 MHz,d-acetone), isomer 1 / isomer 2 = 73 / 28: -58.9 (s, 12F), -60.4 (s, 12F)
MALDI-TOF calculated forC36H12F12N8Zn (M-H+- 848.03 found 849.74
(実施形態7)
β,β-オクタ(トリフルオロメチル)亜鉛フタロシアニンの合成:
4,5-ジ(トリフルオロメチル)フタロニトリル70 mg (0.27 mmol)、塩化亜鉛 12 mg (0.089 mmol)をN,N-ジメチルアミノエタノール1.0 mlに溶解させ140℃に加熱し一晩撹拌した。室温に冷却後、飽和塩化アンモニア水を加え酢酸エチルで三回抽出した。有機層を飽和塩化アンモニア水、飽和食塩水で洗浄後、硫酸ナトリウムを用いて乾燥させ酢酸エチル、ヘキサンで再結晶し目的物38 mg (収率51%)を得た。
1H NMR (300MHz, d-acetone): 9.41 (s, 8H)
19F NMR (282 MHz,d-acetone): -58.3 (s, 24F)
MALDI-TOF calculated forC40H8F24N8Zn (M-H+- 1119.98 found 1121.78
(実施形態8)
α, α-オクタ(トリフルオロメチル)亜鉛フタロシアニンの合成:
窒素置換した試験管に23 mg (0.087mmol)、塩化亜鉛 4.0 mg (0.029 mmol)でN,N-ジメチルアミノエタノール1.0 mlに溶解させ140℃に加熱し一晩撹拌した。室温に冷却後、飽和塩化アンモニア水を加え酢酸エチルで三回抽出した。有機層を飽和塩化アンモニア水、飽和食塩水で洗浄後、硫酸ナトリウムを用いて乾燥させジエチルエーテルで三回抽出し、有機層を飽和塩化アンモニア水、飽和食塩水で洗浄後、硫酸ナトリウムを用いて乾燥させシリカゲルカラムクロマトグラフィー(Hex / AcOEt = 8 / 2)で精製し目的物を12 mg (収率50%)で得た。
1H NMR (300MHz, CDCl3): 8.16 (s, 8H)
19F NMR (282 MHz,CDCl3): -61.9 (s, 24F)
MALDI-TOF calculated forC40H8F24N8Zn (M-H+- 1119.98 found 1121.63
Copper used for the synthesis of the general formulas (1 ′), (2 ′), (3 ′), and (4 ′) is zero-valent copper, and it is preferable to use powdered copper. The type of solvent is not particularly limited, but ether solvents such as diethyl ether, diisopropyl ether, n-butyl methyl ether, tert-butyl methyl ether, tetrahydrofuran and dioxane; hydrocarbon solvents such as heptane, hexane, cyclopentane and cyclohexane Halogenated hydrocarbon solvents such as chloroform, carbon tetrachloride, methylene chloride, dichloroethane, and trichloroethane; aromatic solvents such as benzene, toluene, xylene, cumene, cymene, mesitylene, diisopropylbenzene, pyridine, pyrimidine, pyrazine, and pyridazine Ester solvents such as ethyl acetate; ketone solvents such as acetone and methyl ethyl ketone; solvents such as dimethyl sulfoxide and dimethylformamide; methanol, ethanol, propanol, isopropyl alcohol Alcohol solvents such as alcohol, aminoethanol, N, N-dimethylaminoethanol; supercritical carbon dioxide, ionic liquids, and dimethylformamide is most preferred. The reaction temperature can be between room temperature and 100 ° C, preferably 60 ° C.
Hereinafter, the synthesis of trifluoromethylphthalonitrile of the present invention will be specifically described with reference to embodiments, but the scope of the present invention is not limited to the following embodiments.
(Embodiment 1)
Synthesis of 4-trifluoromethylphthalonitrile:
In a 30-ml eggplant flask with nitrogen replacement, 150 mg (0.59 mmol) of 4-iodophthalonitrile, 477 mg (1.2 mmol) of Yagorovsky reagent and 113 mg (1.8 mmol) of copper were dissolved in 5.0 ml of dimethylformamide and heated to 60 ° C. did. After stirring overnight, the mixture was cooled to room temperature, water was added, and extraction was performed three times with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate, and purified by silica gel column chromatography (Hex / AcOEt = 8/2) to obtain 103 mg of the desired product (yield 89%).
1 H NMR (300MHz, CDCl 3 ): 8.01 (s, 2H), 8.09 (s, 1H)
19 F NMR (282 MHz, CDCl 3 ): -64.1 (s, 3F)
(Embodiment 2)
Synthesis of 3-trifluoromethylphthalonitrile:
Place 25 mg (0.10 mmol) of 3-iodophthalonitrile, 81 mg (0.20 mmol) of Yagorovsky reagent, and 19 mg (0.30 mmol) of copper into a nitrogen-substituted test tube, dissolve in 1.0 ml of dimethylformamide, and heat to 60 ° C. did. After stirring overnight, the mixture was cooled to room temperature, water was added, and extraction was performed three times with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate, and purified by silica gel column chromatography (Hex / AcOEt = 7/3) to obtain 17.9 mg (yield 91%) of the desired product.
1 H NMR (300MHz, CDCl 3 ): 7.93 (t, J = 7.8 Hz, 1H), 8.07 (t, J = 7.8 Hz, 2H)
19 F NMR (282 MHz, CDCl 3 ): -62.7 (s, 3F)
(Embodiment 3)
Synthesis of 4,5-di (trifluoromethyl) phthalonitrile:
To a 30 ml eggplant flask purged with nitrogen, add 190 mg (0.50 mmol) of 4,5-diiodophthalonitrile, 810 mg (2.0 mmol) of Yagorovsky reagent, 190 mg (3.0 mmol) of copper, dissolve in 5.0 ml of dimethylformamide and dissolve at 60 ° C. Heated. After stirring overnight, the mixture was cooled to room temperature, water was added, and extraction was performed three times with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate, and purified by silica gel column chromatography (Hex / AcOEt = 9/1) to obtain 105 mg of the desired product (yield 79%).
1 H NMR (300MHz, CDCl 3 ): 8.31 (s, 2H)
19 F NMR (282 MHz, CDCl 3 ): -60.6 (s, 3F)
(Embodiment 4)
Synthesis of 3,6-di (trifluoromethyl) phthalonitrile:
Nitrogen-substituted 30 ml eggplant flask was charged with 3,5-diiodophthalonitrile 38 mg (0.10 mmol), Yagolovsky reagent 162 mg (0.4 mmol), copper 38 mg (0.6 mmol) and dissolved in 1.0 ml dimethylformamide at 60 ° C. Heated. After stirring overnight, the mixture was cooled to room temperature, water was added, and extraction was performed three times with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate, and purified by silica gel column chromatography (Hex / AcOEt = 8/2) to obtain 22 mg of the desired product (yield 82%).
1 H NMR (300MHz, CDCl 3 ): 8.23 (s, 2H)
19 F NMR (282 MHz, CDCl 3 ): -63.1 (s, 3F)
(Embodiment 5)
Synthesis of β-tetra (trifluoromethyl) zinc phthalocyanine:
In a nitrogen-substituted test tube, 4-trifluoromethylphthalonitrile 68 mg (0.35 mmol) and zinc chloride 16 mg (0.12 mmol) were dissolved in 1.0 ml of N, N-dimethylaminoethanol, heated to 140 ° C. and stirred overnight. . After cooling to room temperature, saturated aqueous ammonium chloride was added and the precipitated crystals were collected by filtration, washed with water and dried under reduced pressure in a desiccator. Thereafter, recrystallization was performed with ethyl acetate and hexane to obtain 17 mg (yield 24%) of the desired product.
1 H NMR (300MHz, d-acetone): 8.45-9.11 (m, 12H)
19 F NMR (282 MHz, d-acetone): -61.3 (12F)
MALDI-TOF calculated forC36H12F12N8Zn (MH + ) - 848.03 found 849.39
(Embodiment 6)
Synthesis of α-tetra (trifluoromethyl) zinc phthalocyanine:
In a nitrogen-substituted test tube, dissolve 30 mg (0.15 mmol) of 3-trifluoromethylphthalonitrile and 6.9 mg (0.051 mmol) of zinc chloride in 1.0 ml of N, N-dimethylaminoethanol and heat to 140 ° C overnight. Stir. After cooling to room temperature, saturated aqueous ammonium chloride was added, and the mixture was extracted 3 times with ethyl acetate. The organic layer was washed with saturated aqueous ammonium chloride and saturated brine, dried over sodium sulfate, and purified by silica gel column chromatography (Hex / Acetone = 7/3) to obtain 23 mg of the desired product (yield 72%). Obtained.
1 H NMR (300MHz, d-acetone): isomer 2: 8.04-8.13 (m, 12H), isomer 1: 8.35 (t, J = 7.35 Hz, 4H), 8.50 (d, J = 7.2 Hz, 4H), 9.53 (s, 4H)
19 F NMR (282 MHz, d-acetone), isomer 1 / isomer 2 = 73/28: -58.9 (s, 12F), -60.4 (s, 12F)
MALDI-TOF calculated forC36H12F12N8Zn (MH + ) - 848.03 found 849.74
(Embodiment 7)
Synthesis of β, β-octa (trifluoromethyl) zinc phthalocyanine:
4,5-di (trifluoromethyl) phthalonitrile 70 mg (0.27 mmol) and zinc chloride 12 mg (0.089 mmol) were dissolved in 1.0 ml of N, N-dimethylaminoethanol, heated to 140 ° C. and stirred overnight. After cooling to room temperature, saturated aqueous ammonium chloride was added and the mixture was extracted three times with ethyl acetate. The organic layer was washed with saturated aqueous ammonium chloride and saturated brine, dried over sodium sulfate, and recrystallized from ethyl acetate and hexane to obtain the desired product (38 mg, yield 51%).
1 H NMR (300MHz, d-acetone): 9.41 (s, 8H)
19 F NMR (282 MHz, d-acetone): -58.3 (s, 24F)
MALDI-TOF calculated forC40H8F24N8Zn (MH + ) - 1119.98 found 1121.78
(Embodiment 8)
Synthesis of α, α-octa (trifluoromethyl) zinc phthalocyanine:
In a nitrogen-substituted test tube, 23 mg (0.087 mmol) and zinc chloride 4.0 mg (0.029 mmol) were dissolved in 1.0 ml of N, N-dimethylaminoethanol, heated to 140 ° C. and stirred overnight. After cooling to room temperature, saturated aqueous ammonium chloride was added and the mixture was extracted three times with ethyl acetate. The organic layer was washed with saturated aqueous ammonia chloride and saturated brine, dried over sodium sulfate and extracted three times with diethyl ether. The organic layer was washed with saturated aqueous ammonia chloride and saturated brine, and then sodium sulfate. It was dried and purified by silica gel column chromatography (Hex / AcOEt = 8/2) to obtain 12 mg (yield 50%) of the target compound.
1 H NMR (300MHz, CDCl 3 ): 8.16 (s, 8H)
19 F NMR (282 MHz, CDCl 3 ): -61.9 (s, 24F)
MALDI-TOF calculated forC40H8F24N8Zn (MH + ) - 1119.98 found 1121.63

Claims (24)

次の一般式(1)

(式中、Rは低級パーフルオロアルキル基を示し、nは1から4を表す。)で表せられる4−パーフルオロアルキルフタロニトリルの製造方法であって、4−ハロゲンフタロニトリルに対して0価の銅とパーフルオロアルキル化剤を反応させる工程からなる製造方法。
The following general formula (1)

(Wherein R represents a lower perfluoroalkyl group and n represents 1 to 4), which is a method for producing 4-perfluoroalkylphthalonitrile represented by A process comprising the step of reacting copper with a perfluoroalkylating agent.
次の一般式(1’)

で表される4−トリフルオロメチルフタロニトリルの製造方法であって、前記4−ハロゲンフタロニトリルのハロゲン部位が塩素、臭素、ヨウ素からなる群から選択されていて、パーフルオロアルキル化剤としてヤゴロフスキー試薬を用いた請求項1記載の製造方法。
The following general formula (1 ')

Wherein the halogen moiety of the 4-halogenphthalonitrile is selected from the group consisting of chlorine, bromine and iodine, and a Yagolovsky reagent as a perfluoroalkylating agent The manufacturing method of Claim 1 using this.
次の一般式(2)

(式中のRとnは請求項1と同じ。)で表せられる3−パーフルオロアルキルフタロニトリルの製造方法であって、3−ハロゲンフタロニトリルに対して0価の銅とパーフルオロアルキル化剤を反応させる工程からなる製造方法。
The following general formula (2)

(Wherein R and n are the same as those in claim 1), which is a method for producing 3-perfluoroalkylphthalonitrile, which is a zero-valent copper and a perfluoroalkylating agent with respect to 3-halogenphthalonitrile. The manufacturing method which consists of the process of reacting.
次の一般式(2’)

で表される3−トリフルオロメチルフタロニトリルの製造方法であり、前記3−ハロゲンフタロニトリルのハロゲン部位が塩素、臭素、ヨウ素からなる群から選択されていて、パーフルオロアルキル化剤としてヤゴロフスキー試薬を用いた請求項3記載の製造方法。
The following general formula (2 ')

Wherein the halogen moiety of the 3-halogenphthalonitrile is selected from the group consisting of chlorine, bromine and iodine, and a Yagolovsky reagent is used as the perfluoroalkylating agent. The manufacturing method of Claim 3 used.
次の一般式(3)

(式中のRとnは請求項1と同じ。)で表せられる4,5−ジ(パーフルオロアルキル)フタロニトリルの製造方法であって、4,5−ジ(ハロゲン)フタロニトリルに対して0価の銅とパーフルオロアルキル化剤を反応させる工程からなる製造方法。
The following general formula (3)

(Wherein R and n are the same as those in claim 1), which is a process for producing 4,5-di (perfluoroalkyl) phthalonitrile, which is based on 4,5-di (halogen) phthalonitrile. A production method comprising a step of reacting zero-valent copper with a perfluoroalkylating agent.
次の一般式(3’)

で表される4,5−ジ(トリフルオロメチル)フタロニトリルの製造方法であって、前記4,5−ジ(ハロゲン)フタロニトリルのハロゲン部位が塩素、臭素、ヨウ素からなる群から選択されていて、パーフルオロアルキル化剤としてヤゴロフスキー試薬を用いた請求項5記載の製造方法。
The following general formula (3 ')

Wherein the halogen moiety of the 4,5-di (halogen) phthalonitrile is selected from the group consisting of chlorine, bromine, and iodine. The production method according to claim 5, wherein a Yagolovsky reagent is used as the perfluoroalkylating agent.
次の一般式(4)

(式中のRとnは請求項1と同じ。)で表せられる3,6−ジ(パーフルオロアルキル)フタロニトリルの製造方法であって、3,6−ジ(ハロゲン)フタロニトリルに対して0価の銅とパーフルオロアルキル化剤を反応させる工程からなる製造方法。
The following general formula (4)

(Wherein R and n are the same as in claim 1), which is a process for producing 3,6-di (perfluoroalkyl) phthalonitrile, wherein 3,6-di (halogen) phthalonitrile is A production method comprising a step of reacting zero-valent copper with a perfluoroalkylating agent.
次の一般式(4’)

で表される3,6−ジ(トリフルオロメチル)フタロニトリルの製造方法であって、前記3,6−ジ(ハロゲン)フタロニトリルのハロゲン部位が塩素、臭素、ヨウ素からなる群から選択されていて、パーフルオロアルキル化剤としてヤゴロフスキー試薬を用いた請求項7記載の製造方法。
The following general formula (4 ')

Wherein the halogen moiety of the 3,6-di (halogen) phthalonitrile is selected from the group consisting of chlorine, bromine, and iodine. The production method according to claim 7, wherein a Yagorovsky reagent is used as the perfluoroalkylating agent.
次の一般式(5)

(式中、Rは低級パーフルオロアルキル基を示し、nは1から4を表し、Mは水素原子,金属元素,半金属元素,金属酸化物,半金属酸化物,金属水酸化物,半金属水酸化物,金属ハロゲン化物,半金属ハロゲン化物を示す。)で表せられるフタロシアニン誘導体の製造方法であって、請求項1記載の方法により製造した4−パーフルオロアルキルフタロニトリルを金属塩とともに溶媒中100℃以上で反応させる工程からなる製造方法。
The following general formula (5)

(In the formula, R represents a lower perfluoroalkyl group, n represents 1 to 4, M represents a hydrogen atom, metal element, metalloid element, metal oxide, metalloid oxide, metal hydroxide, metalloid) Wherein 4-perfluoroalkylphthalonitrile produced by the method according to claim 1 together with a metal salt in a solvent is a method for producing a phthalocyanine derivative represented by hydroxide, metal halide, and metalloid halide. The manufacturing method which consists of the process made to react at 100 degreeC or more.
次の一般式(5')

(式中のR、n、Mは請求項9と同じ。)で表されるβ−テトラ(トリフルオロメチル)フタロニトリルの製造方法であって、前記4−パーフルオロアルキルフタロニトリルとして請求項2記載の方法により製造した4−トリフルオロメチルフタロニトリルを用いた請求項9記載の製造方法。
The following general formula (5 ')

(Wherein R, n, and M are the same as in claim 9). Β-tetra (trifluoromethyl) phthalonitrile represented by claim 2, wherein the 4-perfluoroalkylphthalonitrile is claim 2. The manufacturing method of Claim 9 using the 4-trifluoromethyl phthalonitrile manufactured by the method of description.
次の一般式(6)

(式中のR、n、Mは請求項9と同じ。)で表せられるフタロシアニン誘導体の製造方法であって、請求項3記載の方法により製造した3−パーフルオロアルキルフタロニトリルを金属塩とともに溶媒中100℃以上で反応させる工程からなる製造方法。
The following general formula (6)

(Wherein R, n and M are the same as in claim 9), wherein 3-perfluoroalkylphthalonitrile prepared by the method according to claim 3 is mixed with a metal salt as a solvent. The manufacturing method which consists of the process made to react at 100 degreeC or more inside.
次の一般式(6’)

(式中のR、n、Mは請求項9と同じ。)で表されるα−テトラ(トリフルオロメチル)フタロシアニンの製造方法であって、前記3−パーフルオロアルキルフタロニトリルとして請求項4記載の方法により製造した3−トリフルオロメチルフタロニトリルを用いた請求項11記載の製造方法。
The following general formula (6 ')

(Wherein R, n and M are the same as in claim 9), wherein α-tetra (trifluoromethyl) phthalocyanine is represented by claim 4 as the 3-perfluoroalkylphthalonitrile. The manufacturing method of Claim 11 using the 3-trifluoromethyl phthalonitrile manufactured by the method of.
次の一般式(7)

(式中のR、n、Mは請求項9と同じ。)で表せられるフタロシアニン誘導体の製造方法であって、請求項5記載の方法により製造した4,5−ジ(パーフルオロアルキル)フタロニトリルを金属塩とともに溶媒中100℃以上で反応させる工程からなる製造方法。
The following general formula (7)

(Wherein R, n and M are the same as those in claim 9), and a 4,5-di (perfluoroalkyl) phthalonitrile produced by the method according to claim 5. The manufacturing method which consists of the process of making a metal salt react with 100 degreeC or more with a metal salt.
次の一般式(7’)

(式中のR、n、Mは請求項9と同じ。)で表わされるβ,β−オクタ(トリフルオロメチル)フタロシアニン誘導体の製造方法であって、前記4,5−ジ(パーフルオロアルキル)フタロニトリルとして請求項6記載の方法により製造した4,5−ジ(トリフルオロメチル)フタロニトリルを用いた請求項13記載の製造方法。
The following general formula (7 ')

(Wherein R, n and M are the same as in claim 9), a process for producing a β, β-octa (trifluoromethyl) phthalocyanine derivative represented by the above 4,5-di (perfluoroalkyl) The production method according to claim 13, wherein 4,5-di (trifluoromethyl) phthalonitrile produced by the method according to claim 6 is used as phthalonitrile.
次の一般式(8)

(式中のR、n、Mは請求項9と同じ。)で表せられるフタロシアニン誘導体の製造方法であって、請求項7記載の方法により製造した3,6−ジ(パーフルオロアルキル)フタロニトリルを金属塩とともに溶媒中100℃以上で反応させる工程からなる製造方法。
The following general formula (8)

(Wherein R, n and M are the same as those in claim 9), and a 3,6-di (perfluoroalkyl) phthalonitrile produced by the method according to claim 7. The manufacturing method which consists of the process of making a metal salt react with 100 degreeC or more with a metal salt.
次の一般式(8’)

(式中のR、n、Mは請求項9と同じ。)で表わされるα, α−オクタ(トリフルオロメチル)フタロシアニン誘導体の製造方法であって、前記3,6−ジ(パーフルオロアルキル)フタロニトリルとして請求項8記載の方法により製造した3,6−ジ(トリフルオロメチル)フタロニトリルを用いた請求項15記載の製造方法。
The following general formula (8 ')

(Wherein R, n and M are the same as in claim 9), wherein the 3,6-di (perfluoroalkyl) is a method for producing an α, α-octa (trifluoromethyl) phthalocyanine derivative represented by The production method according to claim 15, wherein 3,6-di (trifluoromethyl) phthalonitrile produced by the method according to claim 8 is used as phthalonitrile.
下記一般式(5)で表されるフタロシアニン誘導体。

(式中のR、n、Mは請求項9と同じ。)
A phthalocyanine derivative represented by the following general formula (5).

(In the formula, R, n and M are the same as in claim 9.)
次の一般式(5')で表されるβ−テトラ(トリフルオロメチル)フタロニトリル誘導体。

(式中のR、n、Mは請求項9と同じ。)
A β-tetra (trifluoromethyl) phthalonitrile derivative represented by the following general formula (5 ′).

(In the formula, R, n and M are the same as in claim 9.)
次の一般式(6) で表せられるフタロシアニン誘導体。

(式中のR、n、Mは請求項9と同じ。)
A phthalocyanine derivative represented by the following general formula (6).

(In the formula, R, n and M are the same as in claim 9.)
次の一般式(6’) で表されるα−テトラ(トリフルオロメチル)フタロシアニン誘導体。

(式中のR、n、Mは請求項9と同じ。)
An α-tetra (trifluoromethyl) phthalocyanine derivative represented by the following general formula (6 ′):

(In the formula, R, n and M are the same as in claim 9.)
次の一般式(7) で表せられるフタロシアニン誘導体。

(式中のR、n、Mは請求項9と同じ。)
A phthalocyanine derivative represented by the following general formula (7):

(In the formula, R, n and M are the same as in claim 9.)
次の一般式(7’) で表わされるβ,β−オクタ(トリフルオロメチル)フタロシアニン誘導体。

(式中のR、n、Mは請求項9と同じ。)
A β, β-octa (trifluoromethyl) phthalocyanine derivative represented by the following general formula (7 ′):

(In the formula, R, n and M are the same as in claim 9.)
一般式(8) で表せられるフタロシアニン誘導体。

(式中のR、n、Mは請求項9と同じ。)
A phthalocyanine derivative represented by the general formula (8).

(In the formula, R, n and M are the same as in claim 9.)
一般式(8’) で表わされるα, α−オクタ(トリフルオロメチル)フタロシアニン誘導体

(式中のR、n、Mは請求項9と同じ。)
Α, α-octa (trifluoromethyl) phthalocyanine derivative represented by the general formula (8 ′)

(In the formula, R, n and M are the same as in claim 9.)
JP2012210476A 2012-09-25 2012-09-25 Simple production method of trifluoromethyl phthalonitrile and phthalocyanine derivative Pending JP2014065670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012210476A JP2014065670A (en) 2012-09-25 2012-09-25 Simple production method of trifluoromethyl phthalonitrile and phthalocyanine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210476A JP2014065670A (en) 2012-09-25 2012-09-25 Simple production method of trifluoromethyl phthalonitrile and phthalocyanine derivative

Publications (1)

Publication Number Publication Date
JP2014065670A true JP2014065670A (en) 2014-04-17

Family

ID=50742438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210476A Pending JP2014065670A (en) 2012-09-25 2012-09-25 Simple production method of trifluoromethyl phthalonitrile and phthalocyanine derivative

Country Status (1)

Country Link
JP (1) JP2014065670A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089882A (en) * 2013-11-06 2015-05-11 独立行政法人産業技術総合研究所 Phthalocyanine compound and organic semiconductor material
CN104804465A (en) * 2015-04-24 2015-07-29 江苏双乐化工颜料有限公司 Fine clean production process of phthalocyanine green pigment
JPWO2014084331A1 (en) * 2012-11-29 2017-01-05 宇部興産株式会社 Pentafluorosulfanyl phthalocyanine derivatives and intermediates thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014084331A1 (en) * 2012-11-29 2017-01-05 宇部興産株式会社 Pentafluorosulfanyl phthalocyanine derivatives and intermediates thereof
JP2015089882A (en) * 2013-11-06 2015-05-11 独立行政法人産業技術総合研究所 Phthalocyanine compound and organic semiconductor material
CN104804465A (en) * 2015-04-24 2015-07-29 江苏双乐化工颜料有限公司 Fine clean production process of phthalocyanine green pigment
CN104804465B (en) * 2015-04-24 2016-09-07 江苏双乐化工颜料有限公司 Phthalocyanine green pigment becomes more meticulous process for cleanly preparing

Similar Documents

Publication Publication Date Title
JP2014065670A (en) Simple production method of trifluoromethyl phthalonitrile and phthalocyanine derivative
JP6206977B2 (en) Pentafluorosulfanyl phthalocyanine derivatives and intermediates thereof
TWI488856B (en) Process for preparing dithiine-tetracarboximides
TW201643135A (en) Process for preparing 3-chloro-2-vinylphenylsulfonates
CN107540598B (en) Method for preparing N-difluoromethylthio phthalimide compound
JP2006188449A (en) Method for producing cyclic disulfonic acid ester
JP2009046408A (en) Dihalo polycyclic aromatic compound, pyrrolyl polycyclic aromatic compound and method for producing the same
TW200837057A (en) Processes for the preparation of 3-(4-(2, 4-difluorobenzyloxy)-3-bromo-6-methyl-2-oxopyridin-1(2H)-yl)-N, 4-dimethylbenzamide
CA2863420C (en) Process for the preparation of substituted phenylpropanones
CN112979581B (en) Method for preparing benzothiazole compound from N- (2-bromophenyl) thioamide promoted by visible light
JP2003335735A (en) Method for producing perfluoroisopropylanilines
JP2009132624A (en) 2,3-dicyanonaphthalene derivative
JP7355004B2 (en) Method for producing aniline derivatives
JP5207516B2 (en) Method for producing 2,3-dicyanonaphthalene derivative
JP4026233B2 (en) Method for producing 4,5-dichloro-6- (α-fluoroalkyl) pyrimidine
JP5408822B2 (en) 5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same
JP2017036248A (en) New benzoindenofluorenopyrans and method for producing the same
JP2019043941A (en) Carbazole derivative and biphenyl derivative production method and novel biphenyl derivative
JP2010126499A (en) Naphthalocyanine compound and method for producing the same
JP2010126498A (en) 5,6,7,8-tetrasubstituted-1,4-dialkoxy-2,3-dicyanonaphthalene derivative and method for producing the same
WO2022178693A1 (en) Method for preparing benzothiazole compound by using n-(2-bromophenyl)thioamide under promotion of visible light
JP2007246400A (en) Fluorene skeleton-containing phthalimides and diamines derived therefrom
JP2003048873A (en) Method of producing 4-phthalonitrile derivative
WO2019146280A1 (en) Compound and method for producing compound
JP2009029890A (en) Diacetylene compound having fluorine-containing phthalocyanine moieties