WO2019146280A1 - Compound and method for producing compound - Google Patents

Compound and method for producing compound Download PDF

Info

Publication number
WO2019146280A1
WO2019146280A1 PCT/JP2018/045219 JP2018045219W WO2019146280A1 WO 2019146280 A1 WO2019146280 A1 WO 2019146280A1 JP 2018045219 W JP2018045219 W JP 2018045219W WO 2019146280 A1 WO2019146280 A1 WO 2019146280A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
iii
alkyl group
compound represented
Prior art date
Application number
PCT/JP2018/045219
Other languages
French (fr)
Japanese (ja)
Inventor
木村 桂三
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880081170.3A priority Critical patent/CN111479801A/en
Priority to JP2019567896A priority patent/JP7316228B2/en
Publication of WO2019146280A1 publication Critical patent/WO2019146280A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C241/00Preparation of compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C241/04Preparation of hydrazides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C243/00Compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C243/24Hydrazines having nitrogen atoms of hydrazine groups acylated by carboxylic acids
    • C07C243/26Hydrazines having nitrogen atoms of hydrazine groups acylated by carboxylic acids with acylating carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C243/28Hydrazines having nitrogen atoms of hydrazine groups acylated by carboxylic acids with acylating carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Abstract

A compound which is represented by formula (I). A method for producing this compound according to the present invention comprises a step for reacting a compound represented by formula (II) with one or more compounds represented by formula (III). In formula (I), each of R11 and R12 independently represents an unsubstituted linear alkyl group having 3 or more carbon atoms. In formula (III), R31 represents an unsubstituted linear alkyl group having 3 or more carbon atoms; and X31 represents a leaving group.

Description

化合物および化合物の製造方法Compound and method for producing compound
 本発明は、化合物およびその製造方法に関する。より詳しくは、N,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物およびその製造方法に関する。 The present invention relates to compounds and methods for their preparation. More particularly, the present invention relates to N, N'-diformyl-N, N'-dialkylhydrazine compounds and a method for producing the same.
 ヒドラジン誘導体は、色素、医薬、農薬、工業材料などの機能性材料またはこれらの中間体など、種々の用途に用いられている。また、ヒドラジン誘導体の一種としてN,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物などがある。例えば、非特許文献1には下記構造の化合物が記載されている。
Figure JPOXMLDOC01-appb-C000003
Hydrazine derivatives are used in various applications such as dyes, functional materials such as pharmaceuticals, agricultural chemicals, industrial materials, etc., or intermediates thereof. In addition, N, N '-diformyl-N, N'-dialkylhydrazine compounds etc. are one kind of hydrazine derivatives. For example, Non-Patent Document 1 describes a compound having the following structure.
Figure JPOXMLDOC01-appb-C000003
 N,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物に関し、近年、色素、医薬、農薬、工業材料またはこれらの中間体などに有用な新規な化合物についての開発が望まれている。 With respect to N, N'-diformyl-N, N'-dialkylhydrazine compounds, development of novel compounds useful for dyes, pharmaceuticals, agricultural chemicals, industrial materials, intermediates thereof and the like has recently been desired.
 よって、本発明の目的は、色素、医薬、農薬、工業材料などの機能性材料またはこれらの中間体などに有用な新規な化合物およびその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a novel compound useful for functional materials such as dyes, medicines, agricultural chemicals, industrial materials, etc. or intermediates thereof, and a process for producing the same.
 本発明は、以下を提供する。
 <1> 式(I)で表される化合物;
Figure JPOXMLDOC01-appb-C000004
 式(I)中、R11およびR12は各々独立に炭素数3以上の無置換の直鎖アルキル基を表す。
 <2> R11とR12が同一の基である、<1>に記載の化合物。
 <3> 式(II)で表される化合物と、式(III)で表される化合物の1種又は2種以上とを反応させることを含む、式(I)で表される化合物の製造方法;
Figure JPOXMLDOC01-appb-C000005
 式(I)中、R11およびR12は各々独立に炭素数3以上の無置換の直鎖アルキル基を表す;
 式(III)中、R31は炭素数3以上の無置換の直鎖アルキル基を表し、X31は脱離基を表す。
 <4> 式(II)で表される化合物と、式(III)で表される化合物の1種又は2種以上とを、無機塩基の存在下で反応させる、<3>に記載の化合物の製造方法。
The present invention provides the following.
<1> a compound represented by the formula (I);
Figure JPOXMLDOC01-appb-C000004
In formula (I), R 11 and R 12 each independently represent an unsubstituted linear alkyl group having 3 or more carbon atoms.
<2> The compound according to <1>, wherein R 11 and R 12 are the same group.
The manufacturing method of the compound represented by Formula (I) including making the compound represented by <3> Formula (II), and 1 type, or 2 or more types of a compound represented with Formula (III) react ;
Figure JPOXMLDOC01-appb-C000005
In formula (I), R 11 and R 12 each independently represent an unsubstituted linear alkyl group having 3 or more carbon atoms;
Wherein (III), R 31 represents a linear alkyl group unsubstituted or 3 carbon atoms, X 31 represents a leaving group.
<4> The compound according to <3>, wherein the compound represented by the formula (II) and one or more of the compound represented by the formula (III) are reacted in the presence of an inorganic base Production method.
 本発明によれば、色素、医薬、農薬、工業材料などの機能性材料またはこれらの中間体などに有用な新規な化合物およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a novel compound useful for functional materials such as dyes, medicines, agricultural chemicals, industrial materials, etc., or intermediates thereof, and a method for producing the same.
 以下において、本発明の内容について詳細に説明する。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基と共に置換基を有する基を包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において「工程」との語は、独立した工程を意味するだけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
Hereinafter, the contents of the present invention will be described in detail.
In the notation of the group (atomic group) in the present specification, the notation not describing substitution and non-substitution includes a group having a substituent together with a group having no substituent. For example, the "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In the present specification, a numerical range represented using “to” means a range including the numerical values described before and after “to” as the lower limit value and the upper limit value.
As used herein, the term "step" does not only mean an independent step, but if the intended function of that step is achieved even if it can not be clearly distinguished from other steps, this term include.
 本発明の化合物は、式(I)で表される化合物である。また、本発明の化合物の製造方法は、式(II)で表される化合物と、式(III)で表される化合物の1種又は2種以上とを反応させることを含む、式(I)で表される化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000006
 式(I)中、R11およびR12は各々独立に炭素数3以上の無置換の直鎖アルキル基を表す。式(III)中、R31は炭素数3以上の無置換の直鎖アルキル基を表し、X31は脱離基を表す。
The compound of the present invention is a compound represented by formula (I). Further, the method for producing the compound of the present invention comprises reacting the compound represented by the formula (II) with one or more of the compounds represented by the formula (III), It is a manufacturing method of the compound represented by these.
Figure JPOXMLDOC01-appb-C000006
In formula (I), R 11 and R 12 each independently represent an unsubstituted linear alkyl group having 3 or more carbon atoms. Wherein (III), R 31 represents a linear alkyl group unsubstituted or 3 carbon atoms, X 31 represents a leaving group.
 まず、式(I)で表される化合物について説明する。式(I)中、R11およびR12は各々独立に炭素数3以上の無置換の直鎖アルキル基を表す。R11およびR12は、炭素数3~20の無置換の直鎖アルキル基であることが好ましく、炭素数3~18の無置換の直鎖アルキル基であることがより好ましく、炭素数3~14の無置換の直鎖アルキル基であることが更に好ましく、炭素数3~8の無置換の直鎖アルキル基であることがより一層好ましく、炭素数3~6の無置換の直鎖アルキル基であることが更に一層好ましく、炭素数4の無置換の直鎖アルキル基であることが特に好ましい。R11およびR12は同じでも異なっていてもよいが、同一であることが製造時の収率の観点で好ましい。 First, the compound represented by formula (I) will be described. In formula (I), R 11 and R 12 each independently represent an unsubstituted linear alkyl group having 3 or more carbon atoms. Each of R 11 and R 12 is preferably a C 3-20 unsubstituted linear alkyl group, more preferably a C 3-18 unsubstituted linear alkyl group, with 3 to 20 carbon atoms It is more preferably 14 unsubstituted linear alkyl groups, still more preferably an unsubstituted linear alkyl group having 3 to 8 carbon atoms, and an unsubstituted linear alkyl group having 3 to 6 carbon atoms It is still more preferable that it is, and it is particularly preferable that it is a C 4 unsubstituted linear alkyl group. R 11 and R 12 may be the same or different, but are preferably identical in view of the production yield.
 式(I)で表される化合物の具体例としては、下記構造の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Specific examples of the compound represented by the formula (I) include compounds of the following structure.
Figure JPOXMLDOC01-appb-C000007
 式(I)で表される化合物は、各種機能性材料およびその中間体として好ましく用いることができる。具体的には、色素(染料、顔料など)、医薬、農薬、工業材料(分散剤、褪色防止剤、変色防止剤、界面活性剤、樹脂添加剤など)、食品添加剤、化粧品添加剤、土壌改良剤、水質改良剤またはこれらの中間体などに好ましく用いることができる。例えば、この化合物を各種機能性材料およびその中間体として用いることで、従来公知のN,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物では得られない物性や、生理活性などが期待できる。また、式(I)で表される化合物を原料として用いて各種反応を行った場合においては、各種反応生成物を従来よりも高い収率で製造することができる。例えば、N,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物の脱ホルミル体を製造する場合においては、式(I)で表される化合物を原料として用いることで、脱ホルミル体を従来よりも高い収率で製造することができる。その他、式(I)で表される化合物を原料として用いることで、種々のヒドラジン誘導体を従来よりも高い収率で製造することができる。 The compounds represented by the formula (I) can be preferably used as various functional materials and their intermediates. Specifically, dyes (dyes, pigments, etc.), medicines, pesticides, industrial materials (dispersants, anti-fading agents, anti-discoloring agents, surfactants, resin additives, etc.), food additives, cosmetic additives, soil It can be preferably used as a modifier, a water quality improver, or an intermediate thereof. For example, by using this compound as various functional materials and an intermediate thereof, it is possible to expect physical properties, physiological activities and the like which can not be obtained by the conventionally known N, N'-diformyl-N, N'-dialkylhydrazine compounds. Moreover, when various reactions are performed using the compound represented by Formula (I) as a raw material, various reaction products can be manufactured with a yield higher than before. For example, in the case of producing a deformyl form of an N, N'-diformyl-N, N'-dialkylhydrazine compound, the deformyl form is conventionally used by using a compound represented by the formula (I) as a raw material Can also be produced in high yields. In addition, various hydrazine derivatives can be produced with a higher yield than before by using the compound represented by the formula (I) as a raw material.
 次に、式(I)で表される化合物の製造に用いられる原料である式(III)で表される化合物について説明する。 Next, the compound represented by Formula (III) which is a raw material used for manufacture of the compound represented by Formula (I) is demonstrated.
 式(III)中、R31は炭素数3以上の無置換の直鎖アルキル基を表す。R31は、炭素数3~20の無置換の直鎖アルキル基であることが好ましく、炭素数3~18の無置換の直鎖アルキル基であることがより好ましく、炭素数3~14の無置換の直鎖アルキル基であることが更に好ましく、炭素数3~8の無置換の直鎖アルキル基であることがより一層好ましく、炭素数3~6の無置換の直鎖アルキル基であることが更に一層好ましく、炭素数4の無置換の直鎖アルキル基であることが特に好ましい。 In formula (III), R 31 represents an unsubstituted linear alkyl group having 3 or more carbon atoms. R 31 is preferably an unsubstituted linear alkyl group having 3 to 20 carbon atoms, more preferably an unsubstituted linear alkyl group having 3 to 18 carbon atoms, and no substituent having 3 to 14 carbon atoms. It is more preferably a substituted linear alkyl group, still more preferably an unsubstituted linear alkyl group having 3 to 8 carbon atoms, and it is an unsubstituted linear alkyl group having 3 to 6 carbon atoms Is even more preferable, and a C 4 unsubstituted linear alkyl group is particularly preferable.
 式(III)中、X31は脱離基を表す。脱離基としては、式(III)で表される化合物が式(II)で表される化合物と反応して、式(III)で表される化合物のR31が式(II)で表される化合物の窒素原子と結合を形成する際に脱離しうる基であればよく、特に限定はない。脱離基としては、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、アシルオキシ基(例えばアセトキシ基、トリフルオロアセトキシ基、ベンゾイルオキシ基、3-ニトロベンゾイルオキシ基)、アルキルスルホニルオキシ基(例えばメタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基)、アリールスルホニルオキシ基(例えばベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基)が挙げられ、ハロゲン原子、アルキルスルホニルオキシ基およびアリールスルホニルオキシ基が好ましく、ハロゲン原子、炭素数4以下のアルキルスルホニルオキシ基および炭素数8以下のアリールスルホニルオキシ基がより好ましく、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基およびベンゼンスルホニルオキシ基が更に好ましく、臭素原子、p-トルエンスルホニルオキシ基およびベンゼンスルホニルオキシ基が特に好ましい。 In formula (III), X 31 represents a leaving group. As the leaving group, the compound of the formula (III) is reacted with the compound of the formula (II), and R 31 of the compound of the formula (III) is represented by the formula (II) The group is not particularly limited as long as it is a group which can be eliminated when forming a bond with the nitrogen atom of the compound. As a leaving group, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), an acyloxy group (eg, acetoxy group, trifluoroacetoxy group, benzoyloxy group, 3-nitrobenzoyloxy group), alkylsulfonyloxy Groups (eg, methanesulfonyloxy group, trifluoromethanesulfonyloxy group), arylsulfonyloxy groups (eg, benzenesulfonyloxy group, p-toluenesulfonyloxy group), and halogen atoms, alkylsulfonyloxy groups and arylsulfonyloxy groups are exemplified. A halogen atom, an alkylsulfonyloxy group having 4 or less carbon atoms, and an arylsulfonyloxy group having 8 or less carbon atoms are more preferable, and a bromine atom, an iodine atom, a methanesulfonyloxy group, p-toluenesu Niruokishi group and more preferably a benzenesulfonyloxy group, a bromine atom, p- toluenesulfonyloxy group and a benzenesulfonyloxy group is particularly preferred.
 式(III)で表される化合物の具体例としては、下記構造の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Specific examples of the compound represented by the formula (III) include compounds of the following structure.
Figure JPOXMLDOC01-appb-C000008
 次に、式(I)で表される化合物の製造方法について説明する。式(I)で表される化合物の製造方法において、式(II)で表される化合物と、式(III)で表される化合物との反応は、溶媒の存在下で行ってもよいし、溶媒を用いることなく反応を行ってもよい。また、前述の反応は、他の有機化合物(例えばトリブチルアンモニウムブロミドなどの4級アンモニウム塩、ポリエチレングリコールなどのエーテル系化合物)や無機化合物(ヨウ化ナトリウムなどの塩類など)を添加して行ってもよい。溶媒としては、アミド系溶媒(例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチルー2-ピロリドン)、スルホン系溶媒(例えばスルホラン)、スルホキシド系溶媒(例えばジメチルスルホキシド)、ウレイド系溶媒(例えばテトラメチルウレア)、アルコール系溶媒(例えばメタノール、オクタノール、ベンジルアルコール)、エーテル系溶媒(例えばジオキサン、アニソール、テトラヒドロフラン)、ケトン系溶媒(例えばアセトン、シクロヘキサノン)、炭化水素系溶媒(例えばトルエン、キシレン、メシチレン、n-オクタン、n-ドデカン)、ハロゲン系溶媒(例えばクロロベンゼン、テトラクロロエタン、ジクロロベンゼン)、ピリジン系溶媒(例えばピリジン、γ-ピコリン、2,6-ルチジン)、ニトリル系溶媒(例えばアセトニトリル)、エステル系溶媒(例えば酢酸エチル)および水溶媒が挙げられ、これらの溶媒を単独で用いてもよく、2種以上を混合して用いてもよい。これらの溶媒のうち好ましくは、アミド系溶媒、スルホン系溶媒、スルホキシド系溶媒、ウレイド系溶媒、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、ハロゲン系溶媒、ピリジン系溶媒、ニトリル系溶媒およびエステル系溶媒であり、より好ましくはアミド系溶媒、スルホン系溶媒、スルホキシド系溶媒、ウレイド系溶媒、ニトリル系溶媒およびエステル系溶媒であり、更に好ましくはアミド系溶媒、スルホン系溶媒、スルホキシド系溶媒、ウレイド系溶媒、およびニトリル系溶媒であり、特に好ましくはアミド系溶媒、スルホン系溶媒、ウレイド系溶媒およびニトリル系溶媒である。 Next, the method for producing the compound represented by formula (I) will be described. In the method for producing a compound represented by the formula (I), the reaction of the compound represented by the formula (II) with the compound represented by the formula (III) may be carried out in the presence of a solvent, The reaction may be carried out without using a solvent. The above reaction may be carried out by adding other organic compounds (for example, quaternary ammonium salts such as tributyl ammonium bromide, ether compounds such as polyethylene glycol) and inorganic compounds (salts such as sodium iodide) Good. As the solvent, amide solvents (eg, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone), sulfone solvents (eg, sulfolane), sulfoxide solvents (eg, dimethyl sulfoxide), ureide solvents Solvents (eg tetramethylurea), alcohol solvents (eg methanol, octanol, benzyl alcohol), ether solvents (eg dioxane, anisole, tetrahydrofuran), ketone solvents (eg acetone, cyclohexanone), hydrocarbon solvents (eg toluene) , Xylene, mesitylene, n-octane, n-dodecane), halogenated solvents (eg, chlorobenzene, tetrachloroethane, dichlorobenzene), pyridine solvents (eg, pyridine, γ-picoline, 2, 6-luchidi) ), Nitrile solvents (e.g. acetonitrile), include ester solvents (e.g. ethyl acetate) and water the solvent may be used those solvents alone or may be used in mixture of two or more thereof. Among these solvents, preferred are amide solvents, sulfone solvents, sulfoxide solvents, ureide solvents, alcohol solvents, ether solvents, ketone solvents, halogen solvents, pyridine solvents, nitrile solvents, and ester solvents. It is a solvent, more preferably an amide type solvent, a sulfone type solvent, a sulfoxide type solvent, a ureide type solvent, a nitrile type solvent and an ester type solvent, still more preferably an amide type solvent, a sulfone type solvent, a sulfoxide type solvent, a ureide type Solvents and nitrile solvents, particularly preferably amide solvents, sulfone solvents, ureido solvents and nitrile solvents.
 式(I)で表される化合物の製造方法において、式(II)で表される化合物と、式(III)で表される化合物との反応温度は、0~200℃が好ましい。下限は10℃以上が好ましく、20℃以上がより好ましく、25℃以上が更に好ましく、50℃以上が特に好ましい。上限は、180℃以下が好ましく、150℃以下がより好ましく、130℃以下が更に好ましく、110℃以下が特に好ましい。 In the method for producing a compound represented by the formula (I), the reaction temperature between the compound represented by the formula (II) and the compound represented by the formula (III) is preferably 0 to 200 ° C. The lower limit is preferably 10 ° C. or more, more preferably 20 ° C. or more, further preferably 25 ° C. or more, and particularly preferably 50 ° C. or more. 180 degrees C or less is preferable, 150 degrees C or less is more preferable, 130 degrees C or less is still more preferable, and 110 degrees C or less is especially preferable.
 式(I)で表される化合物の製造方法において、式(II)で表される化合物と、式(III)で表される化合物は、収率の観点から、式(II)で表される化合物のモル数に対する、式(III)で表される化合物のモル数の比率が1.0以上となる割合で反応させることが好ましく、2.0以上となる割合で反応させることがより好ましく、2.1以上となる割合で反応させることが更に好ましく、2.2以上となる割合で反応させることがより一層好ましく、2.3以上となる割合で反応させることが特に好ましい。前述の比の上限は、製造コストの観点から10.0以下であることが好ましく、6.0以下であることがより好ましく、5.0以下であることが更に好ましく、4.0以下であることがより一層好ましく、3.0以下であることが特に好ましく、2.5以下であることが最も好ましい。式(III)で表される化合物は、1種単独で用いてもよく、2種以上を併用してもよい。2種以上を併用する場合は、それらの合計量が上記範囲であることが好ましい。 In the method for producing a compound represented by the formula (I), the compound represented by the formula (II) and the compound represented by the formula (III) are represented by the formula (II) from the viewpoint of yield. The reaction is preferably carried out in such a ratio that the ratio of the number of moles of the compound represented by the formula (III) to the number of moles of the compound is 1.0 or more, more preferably 2.0 or more. It is further preferable to react at a ratio of 2.1 or more, more preferably at a ratio of 2.2 or more, and particularly preferably at a ratio of 2.3 or more. The upper limit of the above-mentioned ratio is preferably 10.0 or less, more preferably 6.0 or less, still more preferably 5.0 or less, from the viewpoint of production cost. Is more preferably 3.0 or less, particularly preferably 2.5 or less. The compounds represented by the formula (III) may be used alone or in combination of two or more. When 2 or more types are used together, it is preferable that the total amount of them is the said range.
 式(I)で表される化合物の製造方法において、式(II)で表される化合物と、式(III)で表される化合物を有機又は無機の塩基の存在下で反応させることが収率等の観点から好ましい。塩基としては、収率および製造コストの観点から無機塩基であることが好ましい。 In the method for producing a compound represented by the formula (I), it is possible to react the compound represented by the formula (II) with the compound represented by the formula (III) in the presence of an organic or inorganic base. It is preferable from the viewpoint of The base is preferably an inorganic base from the viewpoint of yield and production cost.
 無機塩基としては、水酸化物(例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム)、炭酸塩(例えば炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム)、酢酸塩(例えば酢酸ナトリウム、酢酸カリウム)、金属水素化物(例えば水素化ナトリウム、水素化リチウム)などが挙げられる。有機塩基としては、アミン類(例えばトリエチルアミン、トリプロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N-メチルピペリジン、1,8-ジアザビシクロ[5.4.0]ウンデ-7-エン(略称DBU)、ピリジン、α-ピコリン、γ-ピコリン、α、α’-ルチジン)、ヘテロ環化合物(例えばピラゾール、イミダゾール)などが挙げられる。 As the inorganic base, hydroxides (eg, lithium hydroxide, sodium hydroxide, potassium hydroxide), carbonates (eg, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogencarbonate, sodium hydrogencarbonate), acetate (Eg, sodium acetate, potassium acetate), metal hydrides (eg, sodium hydride, lithium hydride) and the like. Examples of the organic base include amines (eg, triethylamine, tripropylamine, tributylamine, diisopropylethylamine, N-methylpiperidine, 1,8-diazabicyclo [5.4.0] unde-7-ene (abbr. DBU), pyridine, α-picoline, γ-picoline, α, α′-lutidine), heterocyclic compounds (eg, pyrazole, imidazole) and the like can be mentioned.
 塩基は、水酸化物、炭酸塩、アミン類、ピリジン類が好ましく、炭酸塩、アミン類、ピリジン類がより好ましく、炭酸塩が更に好ましい。具体的には、塩基は、炭酸ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウム、トリエチルアミン、ピリジン、α-ピコリン、γ-ピコリン、α,α’-ルチジンが好ましく、炭酸ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウム、トリエチルアミン、ピリジン、γ-ピコリンがより好ましく、炭酸ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウム、ピリジンが更に好ましく、炭酸ナトリウム、炭酸カリウムが特に好ましい。 The base is preferably a hydroxide, a carbonate, an amine or a pyridine, more preferably a carbonate, an amine or a pyridine, still more preferably a carbonate. Specifically, the base is preferably sodium carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, triethylamine, pyridine, α-picoline, γ-picoline, α, α'-lutidine, sodium carbonate, potassium carbonate, carbonate Potassium hydrogen, sodium hydrogen carbonate, triethylamine, pyridine and γ-picoline are more preferable, sodium carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate and pyridine are more preferable, and sodium carbonate and potassium carbonate are particularly preferable.
 塩基の使用量としては、式(II)で表される化合物のモル数に対する塩基のモル数の比率が0.3以上となる割合で反応させることが好ましく、0.5以上となる割合で反応させることがより好ましく、0.8以上となる割合で反応させることが更に好ましく、1.0以上となる割合で反応させることがより一層好ましく、1.5以上となる割合で反応させることが更に一層好ましく、2.0以上となる割合で反応させることが特に好ましく、2.8以上となる割合で反応させることが最も好ましい。前述の比の上限は、20.0以下であることが好ましく、15.0以下であることがより好ましく、10.0以下であることが更に好ましく、8.0以下であることがより一層好ましく、7.0以下であることが更に一層好ましく、6.0以下であることが特に好ましく、5.0以下であることが最も好ましい。 The amount of the base used is preferably such that the ratio of the number of moles of the base to the number of moles of the compound represented by the formula (II) is 0.3 or more, and the reaction is preferably 0.5 or more. The reaction is more preferably performed at a ratio of 0.8 or more, still more preferably at a ratio of 1.0 or more, and still more preferably at a ratio of 1.5 or more It is more preferable that the reaction is carried out at a ratio of 2.0 or more, particularly preferably at a ratio of 2.8 or more. The upper limit of the aforementioned ratio is preferably 20.0 or less, more preferably 15.0 or less, still more preferably 10.0 or less, still more preferably 8.0 or less , Still more preferably 7.0 or less, particularly preferably 6.0 or less, and most preferably 5.0 or less.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は、質量基準である。また、NMRは核磁気共鳴の略語である。 Hereinafter, the present invention will be more specifically described by way of examples. The materials, amounts used, proportions, treatment contents, treatment procedures and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention is not limited to the specific examples shown below. In addition, unless there is particular notice, "part" and "%" are mass references. Also, NMR is an abbreviation of nuclear magnetic resonance.
(実施例1)
 下記のスキームに従って化合物(I-1)を合成した。
Figure JPOXMLDOC01-appb-C000009
Example 1
Compound (I-1) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000009
 3口フラスコに化合物(1)の62.6g、イソプロピルアルコールの109mL、ギ酸の125.4gを入れ、加熱還流下にて3時間攪拌した。その後、フラスコを水冷し、15℃にて1時間攪拌した後、析出した結晶を濾過して、化合物(II)の84.7gを得た(収率96%)。
 3口フラスコに化合物(II)の69.9g、炭酸カリウムの332.0g、N,N-ジメチルアセトアミドの105mLおよびアセトニトリルの253mLを入れ、加熱還流下にて、式(III)で表される化合物として化合物(III-4)の260.6gを滴下した。滴下後、そのまま3時間加熱還流した後、冷却し、酢酸エチルの776mLと水の777mLを添加して攪拌し、抽出を行った。得られた酢酸エチル相を食塩の11.6gと水の817mLから調製した食塩水にて3回洗浄した後、ロータリーエバポレーターで濃縮し、残渣物をシリカゲルカラムクロマトグラフィーで精製して化合物(I-1)を146.3g得た(収率92%)。
 NMR(CDCl):δ=8.1(2H,brS),3.0-4.3(4H,m),1.2-1.8(8H,m),0.95(6H,t,J=7.1Hz)
In a three-necked flask, 62.6 g of Compound (1), 109 mL of isopropyl alcohol and 125.4 g of formic acid were placed, and the mixture was stirred for 3 hours under heating to reflux. Thereafter, the flask was water-cooled and stirred at 15 ° C. for 1 hour, and the precipitated crystals were filtered to obtain 84.7 g of compound (II) (yield: 96%).
In a three-necked flask, 69.9 g of Compound (II), 332.0 g of potassium carbonate, 105 mL of N, N-dimethylacetamide and 253 mL of acetonitrile are charged, and the compound represented by Formula (III) is heated under reflux. 260.6 g of the compound (III-4) was dropped as. After the dropwise addition, the mixture was heated under reflux for 3 hours as it was, then cooled, and 776 mL of ethyl acetate and 777 mL of water were added and stirred for extraction. The obtained ethyl acetate phase is washed three times with brine prepared from 11.6 g of brine and 817 mL of water, concentrated by a rotary evaporator, and the residue is purified by silica gel column chromatography to obtain a compound (I- 146.3 g of 1) was obtained (yield 92%).
NMR (CDCl 3 ): δ = 8.1 (2 H, brS), 3.0-4.3 (4 H, m), 1.2-1.8 (8 H, m), 0.95 (6 H, t) , J = 7.1 Hz)
(実施例2~9)
 原料および反応条件を下記表に変更した以外は実施例1と同様にして下記表の生成物の欄に記載の化合物を製造した。
(Examples 2 to 9)
In the same manner as in Example 1 except that the raw materials and the reaction conditions were changed to the following Table, the compounds described in the column of products in the following Table were produced.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記表中、式(III)で表される化合物の欄に記載の化合物(III-1)、(III-3)、(III-5)、(III-6)、(III-8)、(III-9)は、式(III)で表される化合物の具体例で挙げた構造の化合物である。また、生成物の欄に記載の化合物(I-1)、(I-5)、(I-9)、(I-7)、(I-17)は、式(I)で表される化合物の具体例で挙げた構造の化合物である。また、溶媒の欄に記載のDMAcはジメチルアセトアミドの略称であり、DMFはN,N-ジメチルホルムアミドの略称である。 Compounds (III-1), (III-3), (III-5), (III-6), (III-8), (III-8) and (III-8) described in the column of the compound represented by Formula (III) in the above table III-9) is a compound having the structure given in the specific example of the compound represented by the formula (III). In addition, the compounds (I-1), (I-5), (I-9), (I-7) and (I-17) described in the product column are compounds represented by the formula (I) The compounds of the structures listed in the specific examples of Further, DMAc described in the column of solvent is an abbreviation of dimethylacetamide, and DMF is an abbreviation of N, N-dimethylformamide.
(実施例10)
 下記のスキームに従って化合物(I-18)を合成した。
Figure JPOXMLDOC01-appb-C000011
(Example 10)
Compound (I-18) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000011
 3口フラスコに化合物(II)の44.0g、炭酸カリウムの103.7g、N,N-ジメチルアセトアミドの88mL、アセトニトリルの176mLを入れ、加熱還流下にて化合物(III-4)の82.2gを滴下した。滴下後、そのまま3時間加熱還流した後、さらにここへ炭酸カリウムの138.21gを追加し、化合物(III-8)の208.3gを滴下した。そのまま3時間加熱攪拌した後、冷却し、酢酸エチルの1100mLと水の1100mLを添加して攪拌し、抽出を行った。得られた酢酸エチル相を食塩の20gと水の1000mLから調製した食塩水にて3回洗浄した後、ロータリーエバポレーターで濃縮して、残渣物をシリカゲルカラムクロマトグラフィーで精製して化合物(I-18)を48.7g得た(収率38%)。 In a three-necked flask, 44.0 g of Compound (II), 103.7 g of potassium carbonate, 88 mL of N, N-dimethylacetamide, and 176 mL of acetonitrile are charged, and 82.2 g of Compound (III-4) is heated under reflux. Was dropped. After the dropwise addition, the mixture was heated under reflux for 3 hours as it is, and 138.21 g of potassium carbonate was further added here, and 208.3 g of the compound (III-8) was dropped. After heating and stirring as it was for 3 hours, the reaction solution was cooled, and 1100 mL of ethyl acetate and 1100 mL of water were added and stirred for extraction. The resulting ethyl acetate phase is washed 3 times with brine prepared from 20 g of sodium chloride and 1000 mL of water, concentrated by a rotary evaporator, and the residue is purified by silica gel column chromatography to obtain a compound (I-18) ) Was obtained (yield 38%).
[製造例1]
 下記のスキームに従って化合物(V-1)を合成した。
Figure JPOXMLDOC01-appb-C000012
Production Example 1
Compound (V-1) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000012
 3口フラスコに化合物(I-1)の100.1g、p-トルエンスルホン酸・1水和物の190.2g、メタノールの230mLを入れて40℃にて2時間、加熱攪拌した。次いで、ロータリーエバポレーターで濃縮した後、酢酸エチルの500mLを添加して結晶を分散させた。次いで、濾過、乾燥を行い化合物(V-1)の244.3gを得た(収率100%)。 In a three-necked flask, 100.1 g of Compound (I-1), 190.2 g of p-toluenesulfonic acid monohydrate, and 230 mL of methanol were charged, and the mixture was heated and stirred at 40 ° C. for 2 hours. Then, after concentration with a rotary evaporator, 500 mL of ethyl acetate was added to disperse crystals. Then, filtration and drying were performed to obtain 244.3 g of a compound (V-1) (yield 100%).
[製造例2]
 下記のスキームに従って化合物(V-2)を合成した。
Figure JPOXMLDOC01-appb-C000013
 3口フラスコに化合物(I-7)の156.3g、p-トルエンスルホン酸・1水和物の190.2g、メタノールの500mLを入れて50℃で3時間加熱攪拌した。次いで、ロータリーエバポレーターで濃縮した後、アセトニトリルの600mLを添加して結晶を分散させた。次いで、濾過、乾燥して、化合物(V-2)の297.5gを得た(収率99%)。
Production Example 2
Compound (V-2) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000013
In a three-necked flask, 156.3 g of Compound (I-7), 190.2 g of p-toluenesulfonic acid monohydrate, and 500 mL of methanol were placed, and the mixture was heated and stirred at 50 ° C. for 3 hours. Then, after concentrating with a rotary evaporator, 600 mL of acetonitrile was added to disperse crystals. Then, it was filtered and dried to obtain 297.5 g of compound (V-2) (yield: 99%).
[製造例3]
 下記のスキームに従って化合物(V-3)を合成した。
Figure JPOXMLDOC01-appb-C000014
 3口フラスコに化合物(I-4)の114.2g、p-トルエンスルホン酸・1水和物の190.2g、メタノールの250mLを入れて50℃で3時間加熱攪拌した。次いで、ロータリーエバポレーターで濃縮した後、酢酸エチルの600mLを添加して結晶を分散させた。次いで、濾過、乾燥して、化合物(V-3)の255.8gを得た(収率99%)。
[Production Example 3]
Compound (V-3) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000014
In a three-necked flask, 114.2 g of Compound (I-4), 190.2 g of p-toluenesulfonic acid monohydrate, and 250 mL of methanol were placed, and the mixture was heated and stirred at 50 ° C. for 3 hours. Then, after concentration with a rotary evaporator, 600 mL of ethyl acetate was added to disperse crystals. Then, it was filtered and dried to obtain 255.8 g of a compound (V-3) (yield 99%).
[製造例R1]
 下記のスキームに従って化合物(21)を合成した。
Figure JPOXMLDOC01-appb-C000015
 3口フラスコに化合物(11)の100.1g、p-トルエンスルホン酸・1水和物の190.2g、メタノールの230mLを入れて40℃にて2時間、加熱攪拌した。次いで、ロータリーエバポレーターで濃縮した後、酢酸エチルの500mLを添加して結晶を分散させた。次いで、濾過、乾燥して、化合物(21)の215.0gを得た(収率88%)。
[Production example R1]
The compound (21) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000015
In a three-necked flask, 100.1 g of compound (11), 190.2 g of p-toluenesulfonic acid monohydrate, and 230 mL of methanol were added, and the mixture was heated and stirred at 40 ° C. for 2 hours. Then, after concentration with a rotary evaporator, 500 mL of ethyl acetate was added to disperse crystals. Then, it was filtered and dried to obtain 215.0 g of a compound (21) (yield: 88%).
[製造例R2]
 下記のスキームに従って化合物(22)を合成した。
Figure JPOXMLDOC01-appb-C000016
 3口フラスコに化合物(12)の156.3g、p-トルエンスルホン酸・1水和物の190.2g、メタノールの500mLを入れて50℃で3時間加熱攪拌した。次いで、ロータリーエバポレーターで濃縮した後、アセトニトリルの600mLを添加して結晶を分散させた。次いで、濾過、乾燥して、化合物(22)の222.5gを得た(収率74%)。
[Production example R2]
Compound (22) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000016
In a three-necked flask, 156.3 g of Compound (12), 190.2 g of p-toluenesulfonic acid monohydrate, and 500 mL of methanol were placed, and the mixture was heated and stirred at 50 ° C. for 3 hours. Then, after concentrating with a rotary evaporator, 600 mL of acetonitrile was added to disperse crystals. Then, it was filtered and dried to obtain 222.5 g of compound (22) (yield 74%).
[製造例R3]
 下記のスキームに従って化合物(23)を合成した。
Figure JPOXMLDOC01-appb-C000017
 3口フラスコに化合物(13)の114.2g、p-トルエンスルホン酸・1水和物の190.2g、メタノールの250mLを入れて50℃で3時間加熱攪拌した。次いで、ロータリーエバポレーターで濃縮した後、酢酸エチルの600mLを添加して結晶を分散させた。次いで、濾過、乾燥して、化合物(23)の142.2gを得た(収率55%)。
[Production example R3]
Compound (23) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000017
In a three-necked flask, 114.2 g of Compound (13), 190.2 g of p-toluenesulfonic acid monohydrate, and 250 mL of methanol were placed, and the mixture was heated and stirred at 50 ° C. for 3 hours. Then, after concentration with a rotary evaporator, 600 mL of ethyl acetate was added to disperse crystals. Then, it was filtered and dried to obtain 142.2 g of a compound (23) (yield 55%).
[製造例R4]
 下記のスキームに従って化合物(24)を合成した。
Figure JPOXMLDOC01-appb-C000018
[Production example R4]
Compound (24) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000018
 3口フラスコに化合物(14)の97.1g、p-トルエンスルホン酸・1水和物の190.2g、メタノールの500mLを入れて50℃で3時間加熱攪拌した。次いで、ロータリーエバポレーターで濃縮した後、アセトニトリルの500mLを添加して結晶を分散させた。次いで、濾過、乾燥して、化合物(24)の190.6gを得た(収率79%)。 97.1 g of the compound (14), 190.2 g of p-toluenesulfonic acid monohydrate, and 500 mL of methanol were placed in a three-necked flask, and heated and stirred at 50 ° C. for 3 hours. Then, after concentrating with a rotary evaporator, 500 mL of acetonitrile was added to disperse crystals. Then, it was filtered and dried to obtain 190.6 g of a compound (24) (yield 79%).
[製造例R5]
 下記のスキームに従って化合物(25)を合成した。
Figure JPOXMLDOC01-appb-C000019
[Production example R5]
Compound (25) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000019
 3口フラスコに化合物(15)の157.2g、p-トルエンスルホン酸・1水和物の380.4g、メタノールの1000mLを入れて50℃で3時間加熱攪拌した。次いで、ロータリーエバポレーターで濃縮した後、アセトニトリルの500mLを添加して結晶を分散させた。次いで、濾過、乾燥して、化合物(25)の317.3gを得た(収率67%)。 In a three-necked flask, 157.2 g of Compound (15), 380.4 g of p-toluenesulfonic acid monohydrate, and 1000 mL of methanol were charged, and the mixture was heated and stirred at 50 ° C. for 3 hours. Then, after concentrating with a rotary evaporator, 500 mL of acetonitrile was added to disperse crystals. Then, it was filtered and dried to obtain 317.3 g of compound (25) (yield: 67%).
[製造例R6]
 下記のスキームに従って化合物(26)を合成した。
Figure JPOXMLDOC01-appb-C000020
[Production example R6]
Compound (26) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000020
 3口フラスコに化合物(16)の72.1g、p-トルエンスルホン酸・1水和物の190.2g、メタノールの250mLを入れて50℃で3時間加熱攪拌した。次いで、ロータリーエバポレーターで濃縮した後、アセトニトリルの500mLを添加して結晶を分散させた。次いで、濾過、乾燥して、化合物(26)の170.9gを得た(収率79%)。 In a three-necked flask, 72.1 g of Compound (16), 190.2 g of p-toluenesulfonic acid monohydrate, and 250 mL of methanol were placed, and the mixture was heated and stirred at 50 ° C. for 3 hours. Then, after concentrating with a rotary evaporator, 500 mL of acetonitrile was added to disperse crystals. Then, it was filtered and dried to obtain 170.9 g of a compound (26) (yield 79%).
[製造例R7]
 下記のスキームに従って化合物(27)を合成した。
Figure JPOXMLDOC01-appb-C000021
[Production example R7]
Compound (27) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000021
 3口フラスコに化合物(17)の72.1g、p-トルエンスルホン酸・1水和物の190.2g、メタノールの250mLを入れて50℃で3時間加熱攪拌した。次いで、ロータリーエバポレーターで濃縮した後、アセトニトリル500mLを添加して結晶を分散させようとしたたが、岩状の塊のため、十分洗えなかった。アセトニトリルの代わりに酢酸エチル500mLでも試みたが、同様の結果となった。 In a three-necked flask, 72.1 g of Compound (17), 190.2 g of p-toluenesulfonic acid monohydrate, and 250 mL of methanol were placed, and the mixture was heated and stirred at 50 ° C. for 3 hours. Next, after concentration with a rotary evaporator, 500 mL of acetonitrile was added to try to disperse the crystals, but because of the rocky mass, washing was not enough. An attempt was made to use 500 mL of ethyl acetate instead of acetonitrile, with similar results.
 製造例1~3と製造例R1~R3の結果より、N,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物の脱ホルミル体を製造する際において、N,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物として、N,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物の窒素原子に直結するアルキル基が同じ炭素数のアルキル基であっても、無置換の直鎖アルキル基である化合物(I-1)、(I-7)、(I-4)を用いた場合は、分岐アルキル基である化合物(11)、(12)、(13)を用いた場合に比べて大幅に収率がよかった。これは直鎖アルキル型の構造の化合物を原料として用いた場合、得られる生成物である結晶の溶媒への溶解性が低く、濾液への消失が殆どないためであると推測される。
 また、製造例R4、R5の結果より、N,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物として窒素原子に直結するアルキル基が置換基を有するアルキル基である化合物を用いた場合においては、脱ホルミル体の収率が低かった。この理由は、得られる結晶の溶解性が高く、濾液への消失が多かったためであると推測される。
From the results of Production Examples 1 to 3 and Production Examples R1 to R3, N, N'-diformyl-N, N was produced in the production of a deformyl form of N, N'-diformyl-N, N'-dialkylhydrazine compound. Even if the alkyl group directly linked to the nitrogen atom of the N, N'-diformyl-N, N'-dialkylhydrazine compound is an alkyl group having the same carbon number as the '-dialkylhydrazine compound, it is an unsubstituted linear alkyl group When certain compounds (I-1), (I-7), and (I-4) are used, they are significantly more than when compounds (11), (12), and (13), which are branched alkyl groups, are used. The yield was good. This is presumed to be due to the low solubility of the resulting product crystals in the solvent and little loss in the filtrate when a compound having a linear alkyl type structure is used as a raw material.
In addition, according to the results of Production Examples R4 and R5, in the case of using a compound in which the alkyl group directly linked to the nitrogen atom is an alkyl group having a substituent as the N, N'-diformyl-N, N'-dialkylhydrazine compound, The yield of deformyl was low. The reason for this is presumed to be that the solubility of the obtained crystals is high and the disappearance to the filtrate is large.
 また、製造例R6の結果より、N,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物として窒素原子に直結するアルキル基が分岐アルキル基である化合物を用いた場合においては、脱ホルミル体の収率が低かった。この理由は、得られる結晶の溶解性が高く、濾液への消失が多かったためであると推測される。 In addition, according to the results of Production Example R6, when a compound in which the alkyl group directly linked to the nitrogen atom is a branched alkyl group is used as the N, N'-diformyl-N, N'-dialkylhydrazine compound, The yield was low. The reason for this is presumed to be that the solubility of the obtained crystals is high and the disappearance to the filtrate is large.
 また、製造例R7の結果より、N,N’-ジホルミル-N,N’-ジアルキルヒドラジン化合物として窒素原子に直結するアルキル基がエチル基である化合物を用いた場合においては、脱ホルミル体を十分に洗浄できなかった。この理由は、結晶と共存する不純物が低溶解性であることから、結晶がまったくほぐれなかったためと推測される。 In addition, according to the results of Production Example R7, when N, N'-diformyl-N, N'-dialkylhydrazine compound is a compound in which the alkyl group directly linked to the nitrogen atom is an ethyl group, the deformyl form is sufficient. It was not possible to wash it. The reason for this is presumed to be that the crystals were not loosened at all because the impurities coexisting with the crystals have low solubility.

Claims (4)

  1.  式(I)で表される化合物;
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、R11およびR12は各々独立に炭素数3以上の無置換の直鎖アルキル基を表す。
    A compound represented by formula (I);
    Figure JPOXMLDOC01-appb-C000001
    In formula (I), R 11 and R 12 each independently represent an unsubstituted linear alkyl group having 3 or more carbon atoms.
  2.  R11とR12が同一の基である、請求項1に記載の化合物。 The compound according to claim 1, wherein R 11 and R 12 are the same group.
  3.  式(II)で表される化合物と、式(III)で表される化合物の1種又は2種以上とを反応させることを含む、式(I)で表される化合物の製造方法;
    Figure JPOXMLDOC01-appb-C000002
     式(I)中、R11およびR12は各々独立に炭素数3以上の無置換の直鎖アルキル基を表す;
     式(III)中、R31は炭素数3以上の無置換の直鎖アルキル基を表し、X31は脱離基を表す。
    A method for producing a compound represented by the formula (I), which comprises reacting the compound represented by the formula (II) with one or more of the compounds represented by the formula (III);
    Figure JPOXMLDOC01-appb-C000002
    In formula (I), R 11 and R 12 each independently represent an unsubstituted linear alkyl group having 3 or more carbon atoms;
    Wherein (III), R 31 represents a linear alkyl group unsubstituted or 3 carbon atoms, X 31 represents a leaving group.
  4.  式(II)で表される化合物と、式(III)で表される化合物の1種又は2種以上とを、無機塩基の存在下で反応させる、請求項3に記載の化合物の製造方法。 The method for producing a compound according to claim 3, wherein the compound represented by the formula (II) and one or more of the compounds represented by the formula (III) are reacted in the presence of an inorganic base.
PCT/JP2018/045219 2018-01-23 2018-12-10 Compound and method for producing compound WO2019146280A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880081170.3A CN111479801A (en) 2018-01-23 2018-12-10 Compound and method for producing compound
JP2019567896A JP7316228B2 (en) 2018-01-23 2018-12-10 Compounds and methods for producing compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-008594 2018-01-23
JP2018008594 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019146280A1 true WO2019146280A1 (en) 2019-08-01

Family

ID=67395330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045219 WO2019146280A1 (en) 2018-01-23 2018-12-10 Compound and method for producing compound

Country Status (3)

Country Link
JP (1) JP7316228B2 (en)
CN (1) CN111479801A (en)
WO (1) WO2019146280A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3655690A (en) * 1968-11-08 1972-04-11 Monsanto Co 1 2 3 5-tetramethyl pyrazolium chloride and method for preparation
JP6877563B2 (en) 2017-09-25 2021-05-26 富士フイルム株式会社 Compound manufacturing method and compound

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HINMAN, R. L ET AL.: "The chromatography of some hydrazine derivatives on paper", ANALYTICA CHIMICA ACTA, vol. 15, 1956, pages 125 - 128, XP026725163 *
HRABAK, F ET AL.: "1-(3-CHLORO-2-BUTENYL)-3-METHYLPYRAZOLE AND 1-(3-CHLORO-2-BUTENYL)-5-METHYLPYRAZOLE FROM OXIDATION PRODUCTS OF HYDRAZO-3-CHLORO-2-BUTENE", COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, vol. 46, no. 10, 1981, pages 2519 - 2523, XP055631212 *
HRABAK, F ET AL.: "Preparation of hydrazo-2-alkenes", COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, vol. 34, no. 12, 1969, pages 4010 - 4012, XP055631215 *

Also Published As

Publication number Publication date
CN111479801A (en) 2020-07-31
JP7316228B2 (en) 2023-07-27
JPWO2019146280A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
CA2775229C (en) Process for the preparation of sorafenib tosylate
BR112017009471B1 (en) METHODS FOR PREPARING COPANLISIB AND ITS DI-CHLORIDATE SALT, ITS INTERMEDIATES AND THEIR USE
KR20190035680A (en) Polymorphism of binalinostet and its production method
CN113072436A (en) Preparation method of benzyl aryl ether
EP3088391B1 (en) Method for producing benzyl ester 2-aminonicotinate derivative
JP5008404B2 (en) Method for producing methylene disulfonate compound
JP7316228B2 (en) Compounds and methods for producing compounds
JP7406692B2 (en) Method for preparing soluble guanylyl cyclase stimulators
JPH02289563A (en) Improved process for producing ortho-carboxypyridyl- and ortho-carboxyquinolylimidazolinones
CN110172062B (en) Synthesis method of monofluoro spiro compound and intermediate thereof
JP5234856B2 (en) Crystal of compound having NPYY5 receptor antagonistic action
JP2019043941A (en) Carbazole derivative and biphenyl derivative production method and novel biphenyl derivative
CN104136422A (en) Compound, method for producing compound, and method for purifying compound
JP4528884B2 (en) Naphthalene-2-carboxylate derivative useful for the synthesis of gemcitabine and method for producing the same
BR122019027818B1 (en) IMPROVED PROCESS FOR PREPARATION OF (E)-(5,6-DIHYDRO1,4,2-DIOXAZIN-3-IL)(2-HYDROXYPHENYL)METANONE O-METHYL OXIME
EP3287448A1 (en) Method for producing dicarboxylic acid compound
JP2022106045A (en) Process for producing n-(4-halogenobenzyl)picoline amide derivative
JP2007246400A (en) Fluorene skeleton-containing phthalimides and diamines derived therefrom
JP5164755B2 (en) Method for producing crystals of bis-acetylaminophenyl compound
JP4055246B2 (en) 5-chloro-6- (α-fluoroalkyl) -4-pyrimidone and process for producing the same
EP3906235A1 (en) Method for preparing sulfonamides drugs
WO2017043563A1 (en) Method for producing pyridinecarboxamide
JP2770895B2 (en) 4,5-dihalogeno-6- (α-halogenoethyl) pyrimidine and process for producing the same
JP2018162239A (en) Aromatic compounds and production methods thereof
JPS62209069A (en) Production of 3-aryl-1,4,2-dithiazol-5-ylidene derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901817

Country of ref document: EP

Kind code of ref document: A1