JP5408822B2 - 5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same - Google Patents

5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same Download PDF

Info

Publication number
JP5408822B2
JP5408822B2 JP2008304176A JP2008304176A JP5408822B2 JP 5408822 B2 JP5408822 B2 JP 5408822B2 JP 2008304176 A JP2008304176 A JP 2008304176A JP 2008304176 A JP2008304176 A JP 2008304176A JP 5408822 B2 JP5408822 B2 JP 5408822B2
Authority
JP
Japan
Prior art keywords
dicyano
epoxy
dialkoxy
reaction
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008304176A
Other languages
Japanese (ja)
Other versions
JP2010126500A (en
Inventor
郁三 西口
愛子 原田
博史 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2008304176A priority Critical patent/JP5408822B2/en
Publication of JP2010126500A publication Critical patent/JP2010126500A/en
Application granted granted Critical
Publication of JP5408822B2 publication Critical patent/JP5408822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

本発明は、ナフタロシアニン製造の中間体等として有用な、新規な5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体、及びその製造方法に関する。   The present invention is a novel 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8 useful as an intermediate for the production of naphthalocyanine. -It relates to a dihydronaphthalene derivative and a method for producing the same.

近年、近赤外領域に発振波長を持つ半導体レーザーの登場によってフタロシアニンの吸収長波長化の研究が盛んに行われるようになり、それに関連してナフタロシアニンの合成が注目を浴びている。ナフタロシアニンは、フタロシアニンよりも共役系が長く吸収波長が長波長領域であるため、光記録材料だけでなく熱線吸収剤としての利用が期待されているが、前駆体である2,3−ジシアノナフタレン誘導体の合成が困難であるため報告例が少ない。   In recent years, with the advent of semiconductor lasers having an oscillation wavelength in the near-infrared region, research on increasing the absorption wavelength of phthalocyanine has been actively conducted, and the synthesis of naphthalocyanine has attracted attention in connection with this. Naphthalocyanine is expected to be used not only as an optical recording material but also as a heat ray absorber because its conjugated system is longer than that of phthalocyanine and its absorption wavelength is in the long wavelength region. There are few reports because the synthesis of derivatives is difficult.

ナフタロシアニンの前駆体となる2,3−ジシアノナフタレン誘導体の製造方法としては、1−置換又は1,4−置換−2,3−ジメチルベンゼンを原料として、多段階反応により対応する5−置換、又は5,8−置換−2, 3−ジシアノナフタレン誘導体を製造する方法が提案されている。(例えば、特許文献1参照)
また、1,4−ジヒドロキシ−2,3−ジシアノナフタレンをアルキル化剤と反応させることによってヒドロキシル基をアルキル化し、対応する2, 3−ジシアノナフタレン誘導体を製造する方法も提案されている。(例えば、特許文献2,非特許文献1参照)
特開平8−67826号公報 特表平8−508269号公報 A. Sygula, R. Sygula, P. N. Rabideau, Org. Lett.2005, 7, 4999 - 5001
As a method for producing a 2,3-dicyanonaphthalene derivative that is a precursor of naphthalocyanine, 1-substituted or 1,4-substituted-2,3-dimethylbenzene is used as a raw material, and the corresponding 5-substituted by a multistage reaction, Alternatively, a method for producing a 5,8-substituted-2,3-dicyanonaphthalene derivative has been proposed. (For example, see Patent Document 1)
Also proposed is a method of alkylating a hydroxyl group by reacting 1,4-dihydroxy-2,3-dicyanonaphthalene with an alkylating agent to produce a corresponding 2,3-dicyanonaphthalene derivative. (For example, see Patent Document 2 and Non-Patent Document 1)
JP-A-8-67826 Japanese National Patent Publication No. 8-508269 A. Sygula, R. Sygula, PN Rabideau, Org. Lett. 2005, 7, 4999-5001

しかしながら、これらの従来技術で得られる2,3-ジシアノナフタレン誘導体の種類は限られていた。また、2,3−ジシアノナフタレン環に結合した炭化水素基の数が少ないために有機溶媒に対する溶解性が小さく、これらの化合物をナフタロシアニン化合物等の原料として使用した場合には、所望の化合物を効率良く製造することは困難であった。   However, the types of 2,3-dicyanonaphthalene derivatives obtained by these conventional techniques are limited. Further, since the number of hydrocarbon groups bonded to the 2,3-dicyanonaphthalene ring is small, the solubility in organic solvents is small, and when these compounds are used as raw materials for naphthalocyanine compounds, the desired compounds are It was difficult to manufacture efficiently.

したがって、本発明は各種の炭化水素基等により、2,3−ジシアノナフタレン環の5〜8−位が置換された、新規な5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体、及びその製造方法を提供することを目的とする。   Therefore, the present invention provides a novel 5,6,7,8-tetrasubstituted-1,4-dialkoxy in which 5-8-position of 2,3-dicyanonaphthalene ring is substituted with various hydrocarbon groups and the like. An object of the present invention is to provide a -5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and a production method thereof.

本発明者等は鋭意検討した結果、置換フラン化合物を1,4-ジアルコキシ-2,3−ジシアノ−5,6-ジハロゲン化ベンゼンと反応させることによって、対応する2,3−ジシアノナフタレン環の5〜8−位が置換された新規な5,6,7,8−テトラ置換−1,4−ジアルコキシ−2,3−ジシアノナフタレン誘導体及びその合成前駆体である5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体が得られることを発見し、本発明を完成させたものである。
すなわち、本発明はつぎの1〜6の構成を有するものである。
1.下記の式(1)で表される5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体:

Figure 0005408822
(式中、R,Rは各独立して、H又は−Cで表される基を表し、R,Rはナフチル基又は−Cで表される基を表す。ここで、RはH、F、OCHから選択された基を表す。また、RおよびR6は各独立して炭素数1〜12のアルキル基を表す。)
2.前記R及びRが、同一の基であることを特徴とする1に記載の5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体。
3.前記RおよびR6がペンチル基であることを特徴とする1又は2に記載の5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体。
4.下記の式(2)で表されるフラン化合物を、
Figure 0005408822
(式中、R,Rは各独立して、H又は−Cで表される基を表し、R,Rはナフチル基又は−Cで表される基を表す。ここで、RはH、F、OCHから選択された基を表す。)
金属マグネシウムの存在下に、下記式(3)で表される2,3−ジシアノベンゼン誘導体と反応させることを特徴とする、
Figure 0005408822
(式中、Xはハロゲン原子を表し;R及びRは、各独立して炭素数1〜12のアルキル基を表す。)
下記の式(1)で表される5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体の製造方法:
Figure 0005408822
(式中、R〜Rは上記と同じものを表す。)
5.前記反応を、有機溶媒中で行うことを特徴とする4に記載の2,3−ジシアノ−1,4−ジアルコキシ−5,6,7,8−テトラ置換−5,8−エポキシナフタレン誘導体の製造方法。
6.前記反応を0℃〜30℃で行うことを特徴とする4又は5に記載の5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体の製造方法。 As a result of intensive studies, the inventors of the present invention reacted the substituted furan compound with 1,4-dialkoxy-2,3-dicyano-5,6-dihalogenated benzene to produce a corresponding 2,3-dicyanonaphthalene ring. Novel 5,6,7,8-tetrasubstituted-1,4-dialkoxy-2,3-dicyanonaphthalene derivatives substituted at the 5-8-position and 5,6,7,8, which are precursors thereof The present inventors have found that a tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative can be obtained and completed the present invention.
That is, this invention has the structure of the following 1-6.
1. 5,6,7,8-tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative represented by the following formula (1):
Figure 0005408822
(In the formula, R 1 and R 4 each independently represent a group represented by H or —C 6 H 4 R 7 , and R 2 and R 3 represent a naphthyl group or —C 6 H 4 R 7 . Here, R 7 represents a group selected from H, F, and OCH 3. R 5 and R 6 each independently represents an alkyl group having 1 to 12 carbon atoms.)
2. 5. The 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3- of claim 1, wherein R 2 and R 3 are the same group Dicyano-5,8-dihydronaphthalene derivative.
3. 5. The 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3- of (1) or (2), wherein R 5 and R 6 are pentyl groups Dicyano-5,8-dihydronaphthalene derivative.
4). A furan compound represented by the following formula (2):
Figure 0005408822
(In the formula, R 1 and R 4 each independently represent a group represented by H or —C 6 H 4 R 7 , and R 2 and R 3 represent a naphthyl group or —C 6 H 4 R 7 . Wherein R 7 represents a group selected from H, F and OCH 3. )
Characterized by reacting with a 2,3-dicyanobenzene derivative represented by the following formula (3) in the presence of magnesium metal:
Figure 0005408822
(In the formula, X represents a halogen atom; R 5 and R 6 each independently represents an alkyl group having 1 to 12 carbon atoms.)
Method for producing 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative represented by the following formula (1) :
Figure 0005408822
(Wherein R 1 to R 6 represent the same as above)
5. The 2,3-dicyano-1,4-dialkoxy-5,6,7,8-tetrasubstituted-5,8-epoxynaphthalene derivative according to 4, wherein the reaction is performed in an organic solvent. Production method.
6). The 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano according to 4 or 5, wherein the reaction is carried out at 0 ° C to 30 ° C. A method for producing a -5,8-dihydronaphthalene derivative.

本発明の5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体は、ナフタロシアニン化合物の原料である5,6,7,8−テトラ置換−1,4−ジアルコキシ−2,3−ジシアノナフタレン誘導体の合成前駆体として有用な新規な化合物である。また、この化合物は有機溶媒に対して良好な溶解性を有し、色素、半導体等として用いられるナフタロシアニン化合物を直接合成する原料としても、好適に用いられる。   The 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative of the present invention is a raw material for naphthalocyanine compounds. , 6,7,8-Tetra-substituted-1,4-dialkoxy-2,3-dicyanonaphthalene derivatives are novel compounds useful as synthesis precursors. Moreover, this compound has favorable solubility with respect to an organic solvent, and can be suitably used as a raw material for directly synthesizing a naphthalocyanine compound used as a pigment, a semiconductor, or the like.

本発明の式(1)で表される5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体の具体例としては、例えばR〜Rとして次のような置換基を有する化合物が挙げられる。
=R=H,R=R=フェニル,R=R=C11
=R=H,R=R=4’−フルオロフェニル,R=R=C11
=R=H,R=R=4’−メトキシフェニル,R=R=C11
=R=H,R=R=1’−ナフチル,R=R=C11
=R=R=R=フェニル,R=R=C11
=R=R=R=4’−フルオロフェニル,R=R=C11
Specific examples of the 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative represented by the formula (1) of the present invention examples include compounds which as R 1 to R 6 has a substituent such as the following may be mentioned.
R 1 = R 4 = H, R 2 = R 3 = phenyl, R 5 = R 6 = C 5 H 11
R 1 = R 4 = H, R 2 = R 3 = 4′-fluorophenyl, R 5 = R 6 = C 5 H 11
R 1 = R 4 = H, R 2 = R 3 = 4'-methoxyphenyl, R 5 = R 6 = C 5 H 11
R 1 = R 4 = H, R 2 = R 3 = 1′-naphthyl, R 5 = R 6 = C 5 H 11
R 1 = R 2 = R 3 = R 4 = phenyl, R 5 = R 6 = C 5 H 11
R 1 = R 2 = R 3 = R 4 = 4′-fluorophenyl, R 5 = R 6 = C 5 H 11

本発明の式(1)で表される5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体は、下記の式(2)で表されるフラン化合物を、

Figure 0005408822
(式中、R,Rは各独立して、H又は−Cで表される基を表し、R,Rはナフチル基又は−Cで表される基を表す。ここで、RはH、F、OCHから選択された基を表す。)
グリニヤール反応用の削状マグネシウムのような金属マグネシウムの存在下に、下記式(3)で表される2,3−ジシアノベンゼン誘導体と反応させることにより製造することができる。
Figure 0005408822
(式中、Xはハロゲン原子を表し;RおよびR6は、各独立して炭素数1〜12のアルキル基を表す。) The 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative represented by the formula (1) of the present invention is: A furan compound represented by the following formula (2):
Figure 0005408822
(In the formula, R 1 and R 4 each independently represent a group represented by H or —C 6 H 4 R 7 , and R 2 and R 3 represent a naphthyl group or —C 6 H 4 R 7 . Wherein R 7 represents a group selected from H, F and OCH 3. )
It can be produced by reacting with a 2,3-dicyanobenzene derivative represented by the following formula (3) in the presence of metallic magnesium such as a milled magnesium for Grignard reaction.
Figure 0005408822
(In the formula, X represents a halogen atom; R 5 and R 6 each independently represents an alkyl group having 1 to 12 carbon atoms.)

上記式(2)で表されるフラン化合物において、好ましいR〜Rとしては、H、フェニル基、置換フェニル基、ナフチル基等が挙げられる。 In the furan compound represented by the above formula (2), preferred examples of R 1 to R 4 include H, a phenyl group, a substituted phenyl group, and a naphthyl group.

また、上記の式(3)で表される2,3−ジシアノベンゼン誘導体において、好ましいハロゲン原子としてはBr原子が、また、好ましいRおよびR6としては、Hおよび炭素数1〜4の低級アルキル基も用いることができるが、炭素数5〜12程度の高級アルキル基が好ましい。
これらの2,3−ジシアノベンゼン誘導体は、入手の容易な1,4−ジヒドロキシ−2, 3−ジシアノベンゼン誘導体を原料として、NBSによるジブロモ化反応、および、後続する光延反応(DIAD及びPPhの存在下での対応するアルコールROHおよび(または) ROHとの反応)により、次の反応スキームにしたがって製造することができる。

Figure 0005408822
In the 2,3-dicyanobenzene derivative represented by the above formula (3), a preferable halogen atom is a Br atom, and preferable R 5 and R 6 are H and a lower limit of 1 to 4 carbon atoms. An alkyl group can also be used, but a higher alkyl group having about 5 to 12 carbon atoms is preferred.
These 2,3-dicyanobenzene derivatives can be obtained by using a readily available 1,4-dihydroxy-2,3-dicyanobenzene derivative as a raw material, dibromination reaction with NBS, and subsequent Mitsunobu reaction (of DIAD and PPh 3 ). By reaction with the corresponding alcohols R 5 OH and / or R 6 OH in the presence) according to the following reaction scheme:
Figure 0005408822

上記反応スキームにおいて、NBSはN−ブロモこはく酸イミド、DIADははジイソプロピルアゾカルボキシレート、PPhはトリフェニルホスフィン、THFはテトラヒドロフラン、r.t.は室温を意味し、65%及び97%は各反応における収率を表す。 In the above reaction scheme, NBS is N-bromosuccinimide, DIAD is diisopropyl azocarboxylate, PPh 3 is triphenylphosphine, THF is tetrahydrofuran, r.p. t. Means room temperature, 65% and 97% represent the yield in each reaction.

本発明の上記式(1)で表される化合物は、上記のように式(2)で表されるフラン化合物を、式(3)で表される2,3−ジシアノベンゼン誘導体と反応させることによって、効率良く製造することができる。この反応は、通常は有機溶媒、特にTHF、ジオキサン、シクロペンチルメチルエーテル、グライム類のようなエーテル系有機溶媒中で行うことが好ましい。他の好適な有機溶媒としては、トルエンやキシレンなどの非極性溶媒、およびN、N−ジメチルホルムアミドやN−メチル−2−ピロリドン等の非プロトン性極性溶媒が挙げられる。
また、反応温度は0℃〜リフラックス温度の範囲で、使用する原料等に応じて選択することができる。
The compound represented by the above formula (1) of the present invention is obtained by reacting the furan compound represented by the formula (2) with the 2,3-dicyanobenzene derivative represented by the formula (3) as described above. Therefore, it can manufacture efficiently. This reaction is usually preferably carried out in an organic solvent, particularly an ether organic solvent such as THF, dioxane, cyclopentylmethyl ether, glymes. Other suitable organic solvents include nonpolar solvents such as toluene and xylene, and aprotic polar solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone.
Moreover, reaction temperature can be selected in the range of 0 degreeC-reflux temperature according to the raw material to be used.

この反応は、R及びRがペンチル基であるものを例にとると、下記の反応スキームのように、5, 6-ジブロモ−2,3−ジシアノ−1、4-ジペンチルオキシベンゼンからベンザイン中間体が生成し、置換フランとのDiels-Alder型[4+2]付加反応により合成前駆体である5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体を経由して2、3−ジシアノナフタレン誘導体が生成すると考えられる。

Figure 0005408822
In this reaction, when R 5 and R 6 are pentyl groups, for example, as shown in the following reaction scheme, 5,6-dibromo-2,3-dicyano-1,4-dipentyloxybenzene is converted to benzyne. 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy, which is a synthetic precursor by Diels-Alder type [4 + 2] addition reaction with substituted furan It is considered that a 2,3-dicyanonaphthalene derivative is formed via a -2,3-dicyano-5,8-dihydronaphthalene derivative.
Figure 0005408822

反応系には、合成前駆体である5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体と、最終生成物である5,6,7,8−テトラ置換−1,4−ジアルコキシ−2,3−ジシアノナフタレン誘導体が共存し、反応温度や反応時間を調整することによって合成前駆体の割合を高めることができる。例えば、反応温度を室温とし、反応時間を2時間以下とした場合には、合成前駆体と最終生成物の割合を1:1程度とすることができる。また、反応温度を高めてリフラックス温度で反応を行うか、反応時間を長くして反応を完結させた場合には、最終生成物である2,3−ジシアノナフタレン誘導体のみを得ることができる。   The reaction system includes a 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative which is a synthetic precursor, The product, 5,6,7,8-tetrasubstituted-1,4-dialkoxy-2,3-dicyanonaphthalene derivative coexists, and the proportion of the synthetic precursor is increased by adjusting the reaction temperature and reaction time. be able to. For example, when the reaction temperature is room temperature and the reaction time is 2 hours or less, the ratio of the synthesis precursor to the final product can be about 1: 1. Further, when the reaction is carried out at the reflux temperature with the reaction temperature increased or the reaction time is extended to complete the reaction, only the 2,3-dicyanonaphthalene derivative as the final product can be obtained.

合成前駆体である5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体と、最終生成物である5,6,7,8−テトラ置換−1,4−ジアルコキシ−2,3−ジシアノナフタレン誘導体が共存する反応液は、そのままナフタロシアニン化合物の合成原料として使用することができる。
また、合成前駆体である5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体は、カラムクロマト等により単離することができる。得られた5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体からは、次式にしたがって脱酸素化することによって、5,6,7,8−テトラ置換−1,4−ジアルコキシ−2,3−ジシアノナフタレン誘導体を製造することができる。

Figure 0005408822
5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative as a synthetic precursor and 5 as a final product , 6,7,8-tetrasubstituted-1,4-dialkoxy-2,3-dicyanonaphthalene derivatives can be used as they are as raw materials for the synthesis of naphthalocyanine compounds.
In addition, 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivatives, which are synthetic precursors, are obtained by column chromatography or the like. It can be isolated. The resulting 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative is deoxygenated according to the following formula: Thus, a 5,6,7,8-tetrasubstituted-1,4-dialkoxy-2,3-dicyanonaphthalene derivative can be produced.
Figure 0005408822

次に実施例により本発明をさらに説明するが,以下の実施例は本発明を限定するものではない。
(製造例1:5, 6-ジブロモ-1, 4-ジヒドロキシ-2,3−ジシアノベンゼンの合成)
温度計と塩化カルシウム管を取り付けた500 mL三つ口フラスコに、1, 4-ジヒドロキシ-2,3−ジシアノベンゼン30.0 g(187 mmol)、tert-ブタノール 200 mLを導入し、50℃で加熱溶解した。そこへN-ブロモコハク酸イミド67.6 g(380 mmol, 2 eq.)を15分かけて加え、その後50℃で2時間加熱撹拌した。再びN-ブロモコハク酸イミド67.6 g(380 mmol, 2 eq.)を15分かけて加え、50℃で2時間加熱撹拌した。反応溶液は室温まで放冷した後、亜硫酸水素ナトリウム50 gを水200 mLに溶解した水溶液に加えた。生じた褐色沈殿を吸引ろ過で濾取および水洗した後、真空乾燥した。淡褐色粉末の5, 6-ジブロモ-1, 4-ジヒドロキシ-2,3−ジシアノベンゼンを39.0 g(収率:65%)得た。得られた化合物の物性値を以下に示す。
13C NMR (100 MHz, TMS, d6-DMSO)d 151.73, 124.87, 113.94, 102.09 ppm; IR(KBr)nmax 3314, 2250, 1716, 1561, 1439, 1331, 1275, 1173, 1052,
986, 931, 844, 728, 681, 521, 419 cm-1; MS(APCI) m/z
318 [M + H]+
また、文献(Cook, M. J.; Heeney, M.
J. Chem. Eur. J. 2000, 21, 3958)のスペクトルと照合し、目的化合物の生成を確認した。
EXAMPLES Next, although an Example demonstrates this invention further, the following Examples do not limit this invention.
(Production Example 1: Synthesis of 5,6-dibromo-1,4-dihydroxy-2,3-dicyanobenzene)
1,4-dihydroxy-2,3-dicyanobenzene (30.0 g, 187 mmol) and tert-butanol (200 mL) were introduced into a 500 mL three-necked flask equipped with a thermometer and a calcium chloride tube, and dissolved by heating at 50 ° C. did. Thereto, 67.6 g (380 mmol, 2 eq.) Of N-bromosuccinimide was added over 15 minutes, and then heated and stirred at 50 ° C. for 2 hours. Again 67.6 g (380 mmol, 2 eq.) Of N-bromosuccinimide was added over 15 minutes, and the mixture was heated and stirred at 50 ° C. for 2 hours. The reaction solution was allowed to cool to room temperature, and then added to an aqueous solution in which 50 g of sodium bisulfite was dissolved in 200 mL of water. The resulting brown precipitate was collected by suction filtration and washed with water, followed by vacuum drying. As a result, 39.0 g (yield: 65%) of 5,6-dibromo-1,4-dihydroxy-2,3-dicyanobenzene was obtained as a light brown powder. The physical property values of the obtained compound are shown below.
13 C NMR (100 MHz, TMS, d 6 -DMSO) d 151.73, 124.87, 113.94, 102.09 ppm; IR (KBr) n max 3314, 2250, 1716, 1561, 1439, 1331, 1275, 1173, 1052,
986, 931, 844, 728, 681, 521, 419 cm -1 ; MS (APCI) m / z
318 [M + H] +
The literature (Cook, MJ; Heeney, M.
J. Chem. Eur. J. 2000, 21, 3958) and the production of the target compound was confirmed.

(製造例2:5, 6-ジブロモ-1, 4-ジペンチルオキシ-2,3-ジシアノベンゼンの合成)
滴下漏斗、塩化カルシウム管、窒素導入管、温度計を取り付けた1000 mL四つ口フラスコに、窒素雰囲気下にて上記製造例1で得られた5, 6-ジブロモ-1, 4-ジヒドロキシ-2,3-ジシアノベンゼン37.1 g(117 mmol)、トリフェニルホスフィン 73.5 g(280 mmol, 2.4 eq.)、1-ペンタノール 25.7 g(292 mmol, 2.5 eq.)、テトラヒドロフラン 170 mLを導入した。反応溶液を氷浴で0℃に冷却し、そこへ滴下漏斗からジイソプロピルアゾジカルボキシレート 59.4 g(294 mmol, 2.5 eq.)をテトラヒドロフラン 250 mLに溶解した溶液を30分かけて滴下した。滴下後、氷浴を外して反応溶液を室温に戻し、室温で5時間撹拌した。反応溶液中のテトラヒドロフランをロータリーエバポレーターで留去した。得られた褐色粘調液体にジエチルエーテル100 mLを加え、析出した無色固体(トリフェニルホスフィンオキシド)を吸引ろ過で濾取した。濾液をロータリーエバポレーターで濃縮して褐色固体の粗生成物を94.0 g得た。これをシリカゲルカラムクロマトグラフィー(シリカゲル 800 mL, 展開溶媒 ジクロロメタン:ヘキサン = 1 : 5)で精製し、無色結晶の5,
6-ジブロモ-1, 4-ジペンチルオキシ-2,3-ジシアノベンゼンを 51.9 g(収率
97 %)得た。なお、テトラヒドロフランは金属ナトリウムを用いて蒸留したものを用いた(以下の例でも、同様である。)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) d 4.20(t, 4H, J = 6.4 Hz), 1.94 - 1.87(m, 4H), 1.56 -
1.36(m, 8H), 0.95(t, 6H, J = 7.2 Hz) ppm; 13C NMR (100 MHz,
TMS, CDCl3)d 156.38, 129.62, 112.36,
109.21, 76.69, 29.63, 27.73, 22.34, 13.93 ppm; IR(KBr) nmax 2959, 2858, 2234, 1548, 1466, 1423, 1361, 1231, 1072,
1044, 1006, 936, 889, 835, 729, 536, 499 cm-1; MS(APCI) m/z
459 [M + H]+; mp 68.8 - 69.9 ℃
(Production Example 2: Synthesis of 5,6-dibromo-1,4-dipentyloxy-2,3-dicyanobenzene)
In a 1000 mL four-necked flask equipped with a dropping funnel, a calcium chloride tube, a nitrogen inlet tube, and a thermometer, the 5,6-dibromo-1,4-dihydroxy-2 obtained in Production Example 1 was obtained under a nitrogen atmosphere. , 3-dicyanobenzene 37.1 g (117 mmol), triphenylphosphine 73.5 g (280 mmol, 2.4 eq.), 1-pentanol 25.7 g (292 mmol, 2.5 eq.) And tetrahydrofuran 170 mL were introduced. The reaction solution was cooled to 0 ° C. with an ice bath, and a solution prepared by dissolving 59.4 g (294 mmol, 2.5 eq.) Of diisopropyl azodicarboxylate in 250 mL of tetrahydrofuran was added dropwise from the dropping funnel over 30 minutes. After the dropwise addition, the ice bath was removed and the reaction solution was allowed to return to room temperature and stirred at room temperature for 5 hours. Tetrahydrofuran in the reaction solution was distilled off with a rotary evaporator. Diethyl ether (100 mL) was added to the resulting brown viscous liquid, and the precipitated colorless solid (triphenylphosphine oxide) was collected by suction filtration. The filtrate was concentrated on a rotary evaporator to obtain 94.0 g of a crude product as a brown solid. This was purified by silica gel column chromatography (silica gel 800 mL, developing solvent dichloromethane: hexane = 1: 5) to give colorless crystals of 5,
51.9 g (yield) of 6-dibromo-1, 4-dipentyloxy-2,3-dicyanobenzene
97%). Tetrahydrofuran used was distilled using sodium metal (the same applies to the following examples). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 4.20 (t, 4H, J = 6.4 Hz), 1.94-1.87 (m, 4H), 1.56-
1.36 (m, 8H), 0.95 (t, 6H, J = 7.2 Hz) ppm; 13 C NMR (100 MHz,
TMS, CDCl 3 ) d 156.38, 129.62, 112.36,
109.21, 76.69, 29.63, 27.73, 22.34, 13.93 ppm; IR (KBr) n max 2959, 2858, 2234, 1548, 1466, 1423, 1361, 1231, 1072,
1044, 1006, 936, 889, 835, 729, 536, 499 cm -1 ; MS (APCI) m / z
459 [M + H] + ; mp 68.8-69.9 ° C

(実施例1:6,7−ジフェニル−1,4−ジペンチルオキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン)
30 mLナス型フラスコに窒素導入管と塩化カルシウム管を取り付け、窒素気流下で、ナス型フラスコにグリニャール反応用削状マグネシウム0.41 g(17 mmol, 4 eq.)を入れ室温で10分間攪拌した。そこへ溶媒である乾燥テトラヒドロフラン16mL、3,4-ジフェニルフラン (4.2 mmol, 1 eq.)、5, 6-ジブロモ-1, 4-ジペンチルオキシ-2,3 -ジシアノベンゼン3.84 g(8.4 mmol, 2.0 eq.)を入れ、原料が消失するまで1.0時間、室温で攪拌した。反応終了後、反応溶液を飽和塩化アンモニウム水溶液400 mLに加え、15分間撹拌した。反応溶液を分液ロートに移し、50 mLのジクロロメタンで3回抽出し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾取し、濾液をロータリーエバポレーターで濃縮し、黒色油状の粗成生物を得た。これをシリカゲルカラムクロマトグラフィーで精製し、淡黄色針状結晶の6,7−ジフェニル−1,4−ジペンチルオキシ−5,8−エポキシ−2,3-ジシアノ−5,8−ジヒドロナフタレンを得た(収率35%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) d 7.34-7.25(m, 10H), 6.23(s, 2H), 4.10(dt, 2H, J = 8.8, 6.4
Hz), 3.94(dt, 2H, J =8.8, 6.8 Hz), 1.77-1.58(m, 4H), 1.38-1.25(m, 8H),
0.90(t, 6H, J = 7.2 Hz) ppm; 13C NMR (100 MHz, TMS, CDCl3)d, 149.95, 146.53, 146.22, 132.23, 128.89, 128.81, 126.92,
113.36, 108.84, 85.79, 75.35, 29.35, 27.62, 22.17, 13.87 ppm; IR(KBr) nmax 3081, 3056, 3022, 2931, 2870, 2233, 1597, 1574, 1498,
1442, 1377, 1340, 1297, 984, 920, 863, 761, 695 cm-1; MS(APCI) m/z
536 [M + H2O] +; Anal. Calcd. for C34H34N2O3:
C 78.74, H 6.61, N 5.40, found: C 78.59, H 6.83, N 5.43; mp 101.2-101.5 ℃
(Example 1: 6,7-diphenyl-1,4-dipentyloxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene)
A nitrogen inlet tube and a calcium chloride tube were attached to a 30 mL eggplant-shaped flask, and 0.41 g (17 mmol, 4 eq.) Of Grignard reaction ground magnesium was added to the eggplant-shaped flask under a nitrogen stream, followed by stirring at room temperature for 10 minutes. Thereto, 16 mL of dry tetrahydrofuran as a solvent, 3,4-diphenylfuran (4.2 mmol, 1 eq.), 3.84 g (8.4 mmol, 2.0) of 5,6-dibromo-1,4-dipentyloxy-2,3-dicyanobenzene eq.) was added and stirred at room temperature for 1.0 hour until the starting material disappeared. After completion of the reaction, the reaction solution was added to 400 mL of saturated aqueous ammonium chloride solution and stirred for 15 minutes. The reaction solution was transferred to a separatory funnel, extracted three times with 50 mL of dichloromethane, and the organic layer was dried over anhydrous magnesium sulfate. The desiccant was collected by filtration, and the filtrate was concentrated by a rotary evaporator to obtain a crude product of black oil. This was purified by silica gel column chromatography to obtain 6,7-diphenyl-1,4-dipentyloxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene as pale yellow needles. (Yield 35%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 7.34-7.25 (m, 10H), 6.23 (s, 2H), 4.10 (dt, 2H, J = 8.8, 6.4
Hz), 3.94 (dt, 2H, J = 8.8, 6.8 Hz), 1.77-1.58 (m, 4H), 1.38-1.25 (m, 8H),
0.90 (t, 6H, J = 7.2 Hz) ppm; 13 C NMR (100 MHz, TMS, CDCl 3 ) d, 149.95, 146.53, 146.22, 132.23, 128.89, 128.81, 126.92,
113.36, 108.84, 85.79, 75.35, 29.35, 27.62, 22.17, 13.87 ppm; IR (KBr) n max 3081, 3056, 3022, 2931, 2870, 2233, 1597, 1574, 1498,
1442, 1377, 1340, 1297, 984, 920, 863, 761, 695 cm -1 ; MS (APCI) m / z
536 [M + H 2 O] + ; Anal. Calcd. For C 34 H 34 N 2 O 3 :
C 78.74, H 6.61, N 5.40, found: C 78.59, H 6.83, N 5.43; mp 101.2-101.5 ° C

(実施例2:6,7−ジ(4’−フルオロフェニル)−1,4−ジペンチルオキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレンの合成)
実施例1において、3,4-ジフェニルフランに換えて3,4-ジ(4’−フルオロフェニル)フランを使用し、反応時間を1.2時間とした以外は、実施例1と同様にして淡黄色針状結晶の6,7−ジ(4’−フルオロフェニル)−1,4−ジペンチルオキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレンを得た(収率42%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) d 7.28-7.23(m, 4H), 7.02(t, 2H, J= 8.4 HZ), 6.17(s, 2H), 4.13(dt,
2H, J =8.9, 6.4 Hz), 3.95(dt, 2H, J =8.9, 6.8 Hz), 1.83-1.68(m,
4H), 1.40-1.27(m, 8H), 0.91(t, 6H, J = 6.9 Hz) ppm; 13C NMR
(100 MHz, TMS, CDCl3) d 162.82(d, 1JCF
= 250.4Hz), 149.98, 145.98, 145.63, d 128.85(d, 3JCF = 8.1 Hz), 128.18(d, 4JCF
= 3.6 Hz), 116.26(d, 2JCF = 21.6 Hz), 113.29,
109.11, 85.74, 75.45, 29.42, 27.70, 22.20, 13.90 ppm; IR(KBr) nmax 3072, 2932, 2873, 2228, 1599, 1513, 1503, 1443, 1377,
1338, 1280, 1221, 1162, 983, 920, 865, 839, 685, 567, 538 cm-1;
MS(APCI) m/z 572 [M + H2O] +; mp
160.5-161.2 ℃
Example 2: Synthesis of 6,7-di (4′-fluorophenyl) -1,4-dipentyloxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene
In Example 1, 3,4-di (4′-fluorophenyl) furan was used instead of 3,4-diphenylfuran, and the reaction time was 1.2 hours. A pale yellow needle-like crystal of 6,7-di (4′-fluorophenyl) -1,4-dipentyloxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene was obtained (yield). 42%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 7.28-7.23 (m, 4H), 7.02 (t, 2H, J = 8.4 HZ), 6.17 (s, 2H), 4.13 (dt,
2H, J = 8.9, 6.4 Hz), 3.95 (dt, 2H, J = 8.9, 6.8 Hz), 1.83-1.68 (m,
4H), 1.40-1.27 (m, 8H), 0.91 (t, 6H, J = 6.9 Hz) ppm; 13 C NMR
(100 MHz, TMS, CDCl 3 ) d 162.82 (d, 1 J CF
= 250.4Hz), 149.98, 145.98, 145.63, d 128.85 (d, 3 J CF = 8.1 Hz), 128.18 (d, 4 J CF
= 3.6 Hz), 116.26 (d, 2 J CF = 21.6 Hz), 113.29,
109.11, 85.74, 75.45, 29.42, 27.70, 22.20, 13.90 ppm; IR (KBr) n max 3072, 2932, 2873, 2228, 1599, 1513, 1503, 1443, 1377,
1338, 1280, 1221, 1162, 983, 920, 865, 839, 685, 567, 538 cm -1 ;
MS (APCI) m / z 572 [M + H 2 O] + ; mp
160.5-161.2 ℃

(実施例3:6,7−ジ(4’−メトキシフェニル)−1,4−ジペンチルオキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレンの合成)
実施例1において、3,4-ジフェニルフランに換えて3,4-ジ(4’−メトキシフェニル)フランを使用し、反応時間を1.2時間とした以外は、実施例1と同様にして黄色粉末状の6,7−ジ(4’−メトキシフェニル)−1,4−ジペンチルオキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレンを得た(収率35%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) d 7.24(d, 4H, J= 8.6 HZ), 6.84(d, 4H, J= 8.6 HZ),4.10(dt, 2H,
J = 8.9, 6.6 Hz), 3.95(dt, 2H, J =8.9, 6.6 Hz), 3.81(s, 6H),
1.79-1.71(m, 4H), 1.39-1.29(m, 8H), 0.91(t, 6H, J = 6.9 Hz) ppm; 13C
NMR (100 MHz, TMS, CDCl3) d 159.86, 149.91, 146.56, 144.31, 128.33, 124.86, 114.34,
113.45, 108.79, 85.76, 75.41, 55.26, 29.44, 27.71, 22.24, 13.93 ppm; IR(KBr) nmax 2977, 2934, 2871, 2229, 1604, 1573, 1517, 1505, 1439,
1376, 1341, 1292, 1248, 1179, 982, 924, 863, 834, 679, 577, 547 cm-1;
MS(APCI) m/z 596 [M + H2O] +; mp
105.8-106.4 ℃
(Example 3: Synthesis of 6,7-di (4'-methoxyphenyl) -1,4-dipentyloxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene)
In Example 1, 3,4-di (4′-methoxyphenyl) furan was used in place of 3,4-diphenylfuran, and the reaction time was 1.2 hours. A yellow powdery 6,7-di (4′-methoxyphenyl) -1,4-dipentyloxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene was obtained (yield 35%). ). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 7.24 (d, 4H, J = 8.6 HZ), 6.84 (d, 4H, J = 8.6 HZ), 4.10 (dt, 2H,
J = 8.9, 6.6 Hz), 3.95 (dt, 2H, J = 8.9, 6.6 Hz), 3.81 (s, 6H),
1.79-1.71 (m, 4H), 1.39-1.29 (m, 8H), 0.91 (t, 6H, J = 6.9 Hz) ppm; 13 C
NMR (100 MHz, TMS, CDCl 3 ) d 159.86, 149.91, 146.56, 144.31, 128.33, 124.86, 114.34,
113.45, 108.79, 85.76, 75.41, 55.26, 29.44, 27.71, 22.24, 13.93 ppm; IR (KBr) n max 2977, 2934, 2871, 2229, 1604, 1573, 1517, 1505, 1439,
1376, 1341, 1292, 1248, 1179, 982, 924, 863, 834, 679, 577, 547 cm -1 ;
MS (APCI) m / z 596 [M + H 2 O] + ; mp
105.8-106.4 ℃

(実施例4:6,7−ジ(1’−ナフチル)−1,4−ジペンチルオキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレンの合成)
実施例1において、3,4-ジフェニルフランに換えて3,4-ジ(1’−ナフチル)フランを使用し、反応時間を2.3時間とした以外は、実施例1と同様にして白色粉末状の6,7−ジ(1’−ナフチル)−1,4−ジペンチルオキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレンを得た(収率36%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) d 7.84(d, 2H, J= 8.6 HZ), 7.77(d, 2H, J= 8.2 HZ), 7.73(d, 2H,
J = 8.2 HZ), 7.41 (t, 2H, J= 7.4 HZ), 7.31(t, 2H, J= 7.6 HZ), 7.28(t, 2H, J=
7.8 HZ), 7.05(d, 2H, J= 6.9 HZ), 6.41(s, H), 3.84(dt, 2H, J =8.6, 6.6
Hz), 3.69(dt, 2H, J =8.6, 6.9 Hz), 1.52(quint, 4H, J=6.7 Hz),
1.10-1.02(m, 8H), 0.76(t, 6H, J = 6.8 Hz) ppm; 13C NMR (100
MHz, TMS, CDCl3) d 149.91, 146.09, 145.68, 133.71,
130.46, 130.40, 129.24, 128.55, 126.61, 126.26, 125.23, 125.19, 124.97, 113.38,
108.93, 86.92, 75.13, 29.26, 27.37, 22.00, 13.80 ppm; IR(KBr) nmax 3055, 2930, 2867, 2227, 1591, 1505, 1441, 1379, 1340,
1281, 984, 960, 911, 871, 775, 741, 654, 639, 449, 419 cm-1;
MS(APCI) m/z 636 [M + H2O] +; Anal. Calcd.
for C42H38N2O3: C 81.53, H 6.19, N
4.53, found: C 81.62, H 6.27, N 4.37; mp 171.8-173.3 ℃
(Example 4: Synthesis of 6,7-di (1'-naphthyl) -1,4-dipentyloxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene)
In Example 1, white was used in the same manner as in Example 1 except that 3,4-di (1′-naphthyl) furan was used in place of 3,4-diphenylfuran and the reaction time was 2.3 hours. A powdery 6,7-di (1′-naphthyl) -1,4-dipentyloxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene was obtained (yield 36%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 7.84 (d, 2H, J = 8.6 HZ), 7.77 (d, 2H, J = 8.2 HZ), 7.73 (d, 2H,
J = 8.2 HZ), 7.41 (t, 2H, J = 7.4 HZ), 7.31 (t, 2H, J = 7.6 HZ), 7.28 (t, 2H, J =
7.8 HZ), 7.05 (d, 2H, J = 6.9 HZ), 6.41 (s, H), 3.84 (dt, 2H, J = 8.6, 6.6
Hz), 3.69 (dt, 2H, J = 8.6, 6.9 Hz), 1.52 (quint, 4H, J = 6.7 Hz),
1.10-1.02 (m, 8H), 0.76 (t, 6H, J = 6.8 Hz) ppm; 13 C NMR (100
MHz, TMS, CDCl 3 ) d 149.91, 146.09, 145.68, 133.71,
130.46, 130.40, 129.24, 128.55, 126.61, 126.26, 125.23, 125.19, 124.97, 113.38,
108.93, 86.92, 75.13, 29.26, 27.37, 22.00, 13.80 ppm; IR (KBr) n max 3055, 2930, 2867, 2227, 1591, 1505, 1441, 1379, 1340,
1281, 984, 960, 911, 871, 775, 741, 654, 639, 449, 419 cm -1 ;
MS (APCI) m / z 636 [M + H 2 O] + ; Anal. Calcd.
for C 42 H 38 N 2 O 3 : C 81.53, H 6.19, N
4.53, found: C 81.62, H 6.27, N 4.37; mp 171.8-173.3 ° C

以下の例では、上記の実施例1〜4で得られたエポキシ化合物を脱酸素化して、対応する2,3−ジシアノ−1,4−ジアルコキシ−6,7−ジ置換ナフタレン誘導体を製造した例について記載する。
(参考例1−4)
3.5mLスクリュー管にグリニャール反応用削状マグネシウム0.039g(1.6mmol,4eq.)、トリメチルクロロシラン0.18g(1.7mmol,4eq.),溶媒である乾燥テトラヒドロフラン2mLを入れ、窒素置換して30分間室温で攪拌した。そこへ,上記実施例1〜4で得られたエポキシ化合物(0.4mmol,1eq.)を入れ、再び窒素置換して原料が消失するまで室温で攪拌した。反応終了後、反応溶液を飽和塩化アンモニウム水溶液100 mLに加え、15分間撹拌した。反応溶液を分液ロートに移し、20 mLのジクロロメタンで3回抽出し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾取し、濾液をロータリーエバポレーターで濃縮し、橙色固体の粗成生物を得た。これをシリカゲルカラムクロマトグラフィーで精製し、対応するナフタレン誘導体を得た。
In the following examples, the epoxy compounds obtained in Examples 1-4 above were deoxygenated to produce the corresponding 2,3-dicyano-1,4-dialkoxy-6,7-disubstituted naphthalene derivatives. An example is described.
(Reference Example 1-4)
Put 0.039 g (1.6 mmol, 4 eq.) Of Grignard reaction ground magnesium, 0.18 g (1.7 mmol, 4 eq.) Of trimethylchlorosilane and 2 mL of dry tetrahydrofuran as a solvent in a 3.5 mL screw tube, and purge with nitrogen. For 30 minutes at room temperature. The epoxy compound (0.4 mmol, 1 eq.) Obtained in the above Examples 1 to 4 was added thereto, and the mixture was stirred at room temperature until the raw material disappeared by replacing with nitrogen again. After completion of the reaction, the reaction solution was added to 100 mL of saturated aqueous ammonium chloride solution and stirred for 15 minutes. The reaction solution was transferred to a separatory funnel, extracted three times with 20 mL of dichloromethane, and the organic layer was dried over anhydrous magnesium sulfate. The desiccant was collected by filtration, and the filtrate was concentrated on a rotary evaporator to obtain an orange solid crude product. This was purified by silica gel column chromatography to obtain the corresponding naphthalene derivative.

得られたナフタレン誘導体の物性値を以下に記載する。
(参考例1:6, 7-ジフェニル-1, 4-ジペンチルオキシ-2, 3-ジシアノ-ナフタレン)
反応時間:2.5時間、収率:68%。
1H NMR(400 MHz, TMS, CDCl3) d 8.12(s, 2H), 7.18 - 7.09(m, 10H), 4.33(t, 4H, J = 6.4 Hz),
1.83(quint, 4H, J = 6.8 Hz), 1.47 - 1.25(m, 8H), 0.82(t, 6H, J =
7.2 Hz) ppm; 13C NMR (100 MHz, TMS, CDCl3) δ 157.08, 143.66, 139.75,
129.64, 129.22, 128.10, 127.48, 125.12, 114.44, 98.78, 76.31, 29.73, 27.87,
22.27, 13.86 ppm; IR(KBr) nmax 3061, 2956, 2870, 2223,
1565, 1495, 1340, 1041, 1025, 965, 908, 781, 768, 702, 565, 532 cm-1;
MS(APCI) m/z 503 [M + H]+; mp 119.5 - 121.3 ℃
The physical property values of the obtained naphthalene derivative are described below.
(Reference Example 1: 6,7-diphenyl-1,4-dipentyloxy-2,3-dicyano-naphthalene)
Reaction time: 2.5 hours, yield: 68%.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 8.12 (s, 2H), 7.18-7.09 (m, 10H), 4.33 (t, 4H, J = 6.4 Hz),
1.83 (quint, 4H, J = 6.8 Hz), 1.47-1.25 (m, 8H), 0.82 (t, 6H, J =
7.2 Hz) ppm; 13 C NMR (100 MHz, TMS, CDCl 3 ) δ 157.08, 143.66, 139.75,
129.64, 129.22, 128.10, 127.48, 125.12, 114.44, 98.78, 76.31, 29.73, 27.87,
22.27, 13.86 ppm; IR (KBr) n max 3061, 2956, 2870, 2223,
1565, 1495, 1340, 1041, 1025, 965, 908, 781, 768, 702, 565, 532 cm -1 ;
MS (APCI) m / z 503 [M + H] + ; mp 119.5-121.3 ° C

(参考例2:6,7-ジ(4’-フルオロフェニル)-1, 4-ジペンチルオキシ-2,
3-ジシアノナフタレン)
反応時間:1.3時間、収率:84%。
1H NMR(400 MHz, TMS, CDCl3) d 8.21(s, 2H), 7.17-7.13(m, 4H), 7.01(tt, 4H, J = 2.3 Hz, 8.7
Hz), 4.47(t, 4H, J = 6.6 Hz), 1.95(quint, 4H, J = 6.6
Hz),1.54(quint, 4H, J = 7.3 Hz), 1.41(sext, 4H, J= 7.4 Hz), 0.93(t, 6H, J
= 7.3 Hz) ppm; 13C NMR (100 MHz, TMS, CDCl3)d 162.40(d, 1JCF = 247.7Hz), 157.14,
142.58, 135.71(d, 4JCF = 4.0Hz), 131.36(d, 3JCF
= 8.0Hz), 129.47, 125.25, 115.36(d, 2JCF = 20.0Hz),
114.51, 99.12, 76.45, 29.83, 27.98, 22.36, 13.95 ppm; IR(KBr) nmax 3070, 2960, 2874, 2226, 1905, 1603, 1509, 1339, 1220,
1161, 1015, 966, 842, 817, 546 cm-1; MS(APCI) m/z 538
[M ] +; Anal. Calcd. for C34H32F2N2O2:
C 75.82, H 5.99, N 5.20, found: C 75.74, H 6.07, N 5.16; mp 228.5-230.2 ℃
(Reference Example 2: 6,7-di (4′-fluorophenyl) -1,4-dipentyloxy-2,
3-dicyanonaphthalene)
Reaction time: 1.3 hours, yield: 84%.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 8.21 (s, 2H), 7.17-7.13 (m, 4H), 7.01 (tt, 4H, J = 2.3 Hz, 8.7
Hz), 4.47 (t, 4H, J = 6.6 Hz), 1.95 (quint, 4H, J = 6.6
Hz), 1.54 (quint, 4H, J = 7.3 Hz), 1.41 (sext, 4H, J = 7.4 Hz), 0.93 (t, 6H, J
= 7.3 Hz) ppm; 13 C NMR (100 MHz, TMS, CDCl 3 ) d 162.40 (d, 1 J CF = 247.7 Hz), 157.14,
142.58, 135.71 (d, 4 J CF = 4.0Hz), 131.36 (d, 3 J CF
= 8.0Hz), 129.47, 125.25, 115.36 (d, 2 J CF = 20.0Hz),
114.51, 99.12, 76.45, 29.83, 27.98, 22.36, 13.95 ppm; IR (KBr) n max 3070, 2960, 2874, 2226, 1905, 1603, 1509, 1339, 1220,
1161, 1015, 966, 842, 817, 546 cm -1 ; MS (APCI) m / z 538
[M] + ; Anal. Calcd. For C 34 H 32 F 2 N 2 O 2 :
C 75.82, H 5.99, N 5.20, found: C 75.74, H 6.07, N 5.16; mp 228.5-230.2 ° C

(参考例3:6,7-ジ(4’-メトキシフェニル)-1, 4-ジペンチルオキシ-2,
3-ジシアノナフタレン)
反応時間:2.0時間、収率:82%。
1H NMR(400 MHz, TMS, CDCl3) d 8.18(s, 2H), 7.13(d, 4H, J = 8.6 Hz), 6.84(d, 4H, J =
8.6 Hz), 4.45(t, 4H, J = 6.6 Hz), 3.82(s, 6H), 1.95(quint, 4H, J
= 7.1 Hz), 1.54(quint, 4H, J = 7.9 Hz), 1.42(sext, 4H, J = 7.3
Hz), 0.94(t, 6H, J = 7.3 Hz) ppm; 13C NMR (100 MHz, TMS, CDCl3)d 159.15, 157.30, 143.43, 132.36, 130.87, 129.28, 124.95,
114.66, 113.75, 98.80, 76.43, 55.23, 29.85, 27.98, 23.46, 22.38, 13.96 ppm;
IR(KBr) nmax 3070, 2956, 2871, 2224,
1608, 1515, 1338, 1295, 1251, 1179, 1029, 835, 560 cm-1; MS(APCI) m/z
562 [M ] +; Anal. Calcd. for C36H38N2O4:
C 76.84, H 6.81, N 4.98, found: C 76.99, H 6.83, N 4.79; mp 128.0-130.0 ℃
(Reference Example 3: 6,7-di (4′-methoxyphenyl) -1,4-dipentyloxy-2,
3-dicyanonaphthalene)
Reaction time: 2.0 hours, yield: 82%.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 8.18 (s, 2H), 7.13 (d, 4H, J = 8.6 Hz), 6.84 (d, 4H, J =
8.6 Hz), 4.45 (t, 4H, J = 6.6 Hz), 3.82 (s, 6H), 1.95 (quint, 4H, J
= 7.1 Hz), 1.54 (quint, 4H, J = 7.9 Hz), 1.42 (sext, 4H, J = 7.3
Hz), 0.94 (t, 6H, J = 7.3 Hz) ppm; 13 C NMR (100 MHz, TMS, CDCl 3 ) d 159.15, 157.30, 143.43, 132.36, 130.87, 129.28, 124.95,
114.66, 113.75, 98.80, 76.43, 55.23, 29.85, 27.98, 23.46, 22.38, 13.96 ppm;
IR (KBr) n max 3070, 2956, 2871, 2224,
1608, 1515, 1338, 1295, 1251, 1179, 1029, 835, 560 cm -1 ; MS (APCI) m / z
562 [M] + ; Anal. Calcd. For C 36 H 38 N 2 O 4 :
C 76.84, H 6.81, N 4.98, found: C 76.99, H 6.83, N 4.79; mp 128.0-130.0 ° C

(参考例4:6,7-ジ(1’-ナフチル)-1, 4-ジペンチルオキシ-2,
3-ジシアノナフタレン)
反応時間:2.5時間、収率:67%。
1H NMR(400 MHz, TMS, CDCl3) d 8.44(s, 1H), 8.49(s, 1H), 7.80(dd, 1H, J = 2.0, 7.6 Hz),
7.71(dd, 1H, J = 1.6, 7.3 Hz), 7.67-7.61(m, 4H), 7.49-7.42(m, 2H),
7.29-7.24(m, 3H), 7.09(t, 1H, J = 7.9 Hz), 7.04(t, 1H, J = 7.9
Hz), 6.95(dd, 1H, J=1.2, 7.1 Hz), 4.54-4.44(m, 4H), 1.88(sext, 4H, J = 6.6
Hz), 1.49-1.26(m, 8H), 0.83(t, 3H, J = 7.4 Hz), 0.80(t, 3H, J=7.3 Hz)
ppm; 13C NMR (100 MHz, TMS, CDCl3)d 157.41, 143.79, 143.60, 137.15, 137.13, 133.31, 133.20,
132.00, 131.18, 129.38, 129.24, 128.38, 128.33, 128.12, 128.07, 127.99, 127.05,
126.58, 126.52, 126.27, 125.78, 125.62, 125.59, 125.41, 124.66, 124.46, 114.65,
99.11, 99.05, 76.63, 76.61, 29.78, 29.75, 27.84, 27.80, 22.30, 22.27, 13.85,
13.82 ppm; IR(KBr) nmax 3047, 2955, 2871, 2224,
1592, 1560, 1509, 1426, 1340, 1177, 1011, 802, 775 cm-1; MS(APCI) m/z
603 [M ] +; Anal. Calcd. for C42H38N2O2:
C 83.69, H 6.35, N 4.65, found: C 83.70, H 6.55, N 4.45; mp 142.1-142.6 ℃
(Reference Example 4: 6,7-di (1′-naphthyl) -1,4-dipentyloxy-2,
3-dicyanonaphthalene)
Reaction time: 2.5 hours, yield: 67%.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 8.44 (s, 1H), 8.49 (s, 1H), 7.80 (dd, 1H, J = 2.0, 7.6 Hz),
7.71 (dd, 1H, J = 1.6, 7.3 Hz), 7.67-7.61 (m, 4H), 7.49-7.42 (m, 2H),
7.29-7.24 (m, 3H), 7.09 (t, 1H, J = 7.9 Hz), 7.04 (t, 1H, J = 7.9
Hz), 6.95 (dd, 1H, J = 1.2, 7.1 Hz), 4.54-4.44 (m, 4H), 1.88 (sext, 4H, J = 6.6
Hz), 1.49-1.26 (m, 8H), 0.83 (t, 3H, J = 7.4 Hz), 0.80 (t, 3H, J = 7.3 Hz)
ppm; 13 C NMR (100 MHz, TMS, CDCl 3 ) d 157.41, 143.79, 143.60, 137.15, 137.13, 133.31, 133.20,
132.00, 131.18, 129.38, 129.24, 128.38, 128.33, 128.12, 128.07, 127.99, 127.05,
126.58, 126.52, 126.27, 125.78, 125.62, 125.59, 125.41, 124.66, 124.46, 114.65,
99.11, 99.05, 76.63, 76.61, 29.78, 29.75, 27.84, 27.80, 22.30, 22.27, 13.85,
13.82 ppm; IR (KBr) n max 3047, 2955, 2871, 2224,
1592, 1560, 1509, 1426, 1340, 1177, 1011, 802, 775 cm -1 ; MS (APCI) m / z
603 [M] + ; Anal. Calcd. For C 42 H 38 N 2 O 2 :
C 83.69, H 6.35, N 4.65, found: C 83.70, H 6.55, N 4.45; mp 142.1-142.6 ° C

上記の各例では、式(1)で示される化合物において、R,及びRが共にペンチルオキシ基である化合物について説明したが、これらの反応経路においては、1, 4位のジペンチルオキシ基は、ナフタレン環の形成反応に関与するものではない。したがって、RおよびR6として他のアルキル基をした場合にも、同様にナフタレン環の形成反応は進行する。

In each of the above examples, in the compound represented by the formula (1), the compounds in which R 5 and R 6 are both pentyloxy groups have been described. However, in these reaction routes, the 1,4-position dipentyloxy group Does not participate in the formation reaction of the naphthalene ring. Therefore, even when other alkyl groups are used as R 5 and R 6 , the naphthalene ring formation reaction proceeds in the same manner.

Claims (6)

下記の式(1)で表される5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体:
Figure 0005408822
(式中、R,Rは各独立して、H又は−Cで表される基を表し、R,Rはナフチル基又は−Cで表される基を表す。ここで、RはH、F、OCHから選択された基を表す。また、RおよびR6は各独立して炭素数1〜12のアルキル基を表す。)
5,6,7,8-tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative represented by the following formula (1):
Figure 0005408822
(In the formula, R 1 and R 4 each independently represent a group represented by H or —C 6 H 4 R 7 , and R 2 and R 3 represent a naphthyl group or —C 6 H 4 R 7 . Here, R 7 represents a group selected from H, F, and OCH 3. R 5 and R 6 each independently represents an alkyl group having 1 to 12 carbon atoms.)
前記R及びRが、同一の基であることを特徴とする請求項1に記載の5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体。 5. The 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2 according to claim 1, wherein R 2 and R 3 are the same group. 3-dicyano-5,8-dihydronaphthalene derivative. 前記RおよびR6がペンチル基であることを特徴とする請求項1又は2に記載の5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体。 Wherein R 5 and R 6 are as defined in claim 1 or 2, characterized in that a pentyl 5,6,7,8-substituted-1,4-dialkoxy-5,8-epoxy-2, 3-dicyano-5,8-dihydronaphthalene derivative. 下記の式(2)で表されるフラン化合物を、
Figure 0005408822
(式中、R,Rは各独立して、H又は−Cで表される基を表し、R,Rはナフチル基又は−Cで表される基を表す。ここで、RはH、F、OCHから選択された基を表す。)
金属マグネシウムの存在下に、下記式(3)で表される2,3−ジシアノベンゼン誘導体と反応させることを特徴とする、
Figure 0005408822
(式中、Xはハロゲン原子を表し;R及びRは、各独立して炭素数1〜12のアルキル基を表す。)
下記の式(1)で表される5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体の製造方法:
Figure 0005408822
(式中、R〜Rは上記と同じものを表す。)
A furan compound represented by the following formula (2):
Figure 0005408822
(In the formula, R 1 and R 4 each independently represent a group represented by H or —C 6 H 4 R 7 , and R 2 and R 3 represent a naphthyl group or —C 6 H 4 R 7 . Wherein R 7 represents a group selected from H, F and OCH 3. )
Characterized by reacting with a 2,3-dicyanobenzene derivative represented by the following formula (3) in the presence of magnesium metal:
Figure 0005408822
(In the formula, X represents a halogen atom; R 5 and R 6 each independently represents an alkyl group having 1 to 12 carbon atoms.)
Method for producing 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative represented by the following formula (1) :
Figure 0005408822
(Wherein R 1 to R 6 represent the same as above)
前記反応を、有機溶媒中で行うことを特徴とする請求項4に記載の5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体の製造方法。   5. The 6,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano- of claim 4, wherein the reaction is performed in an organic solvent. A method for producing a 5,8-dihydronaphthalene derivative. 前記反応を0℃〜30℃で行うことを特徴とする請求項4又は5に記載の5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体の製造方法。


The 5,6,7,8-tetrasubstituted-1,4-dialkoxy-5,8-epoxy-2,3 according to claim 4 or 5, wherein the reaction is carried out at 0 ° C to 30 ° C. -Production method of dicyano-5,8-dihydronaphthalene derivative.


JP2008304176A 2008-11-28 2008-11-28 5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same Expired - Fee Related JP5408822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304176A JP5408822B2 (en) 2008-11-28 2008-11-28 5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304176A JP5408822B2 (en) 2008-11-28 2008-11-28 5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010126500A JP2010126500A (en) 2010-06-10
JP5408822B2 true JP5408822B2 (en) 2014-02-05

Family

ID=42327120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304176A Expired - Fee Related JP5408822B2 (en) 2008-11-28 2008-11-28 5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP5408822B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408820B2 (en) * 2008-11-28 2014-02-05 国立大学法人長岡技術科学大学 5,6,7,8-Tetra-substituted-1,4-dialkoxy-2,3-dicyano-naphthalene derivatives
JP5408821B2 (en) * 2008-11-28 2014-02-05 国立大学法人長岡技術科学大学 Naphthalocyanine compound and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089714B2 (en) * 1989-05-12 1996-01-31 三井東圧化学株式会社 Near infrared absorber and display / recording material using the same
JP5288779B2 (en) * 2007-11-28 2013-09-11 国立大学法人長岡技術科学大学 2,3-dicyanonaphthalene derivative
JP5207516B2 (en) * 2007-11-28 2013-06-12 国立大学法人長岡技術科学大学 Method for producing 2,3-dicyanonaphthalene derivative
JP5408820B2 (en) * 2008-11-28 2014-02-05 国立大学法人長岡技術科学大学 5,6,7,8-Tetra-substituted-1,4-dialkoxy-2,3-dicyano-naphthalene derivatives
JP5408821B2 (en) * 2008-11-28 2014-02-05 国立大学法人長岡技術科学大学 Naphthalocyanine compound and method for producing the same

Also Published As

Publication number Publication date
JP2010126500A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5326211B2 (en) Method for producing caged cyclobutanoic acid dianhydride
JPS6139949B2 (en)
JP5288779B2 (en) 2,3-dicyanonaphthalene derivative
JP5408822B2 (en) 5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same
KR101728443B1 (en) Method for Producing Benzyl Ester 2-aminonicotinicotinate Derivative
JP5207516B2 (en) Method for producing 2,3-dicyanonaphthalene derivative
JP5408820B2 (en) 5,6,7,8-Tetra-substituted-1,4-dialkoxy-2,3-dicyano-naphthalene derivatives
JP5408821B2 (en) Naphthalocyanine compound and method for producing the same
JPS63316757A (en) 3-amino-2-substituted benzoylacrylic acid derivative
JP5586000B2 (en) Indacene derivative and method for producing the same, carbon bridged p-phenylene vinylene derivative and method for producing the same
JP5036198B2 (en) Phthalimides containing fluorene skeleton and diamines derived therefrom
JP5408824B2 (en) Naphthalocyanine compound and method for producing the same
JP2021176823A (en) Manufacturing method of dibenzo[g,p] chrysene derivative and novel dibenzo[g,p] chrysene derivative
JP2008081418A (en) 9,9-bis(4-aminophenyl)fluorene compound
JP5277776B2 (en) Method for producing liquid crystal compound
JP2005504019A (en) Method for preparing isocoumarin
JP4258658B2 (en) Method for producing acetylene compound
BR112019009804A2 (en) 4 - ((6-bromopyridin-3-yl) oxy) benzonitrile and preparation processes
JP7475635B2 (en) Nitrogen-containing compound, its production method, and optically functional material containing said nitrogen-containing compound
JP7007999B2 (en) Diester compound and its manufacturing method
US6433176B1 (en) Method for making 8-hydroxyjulolidine compound
JP5347177B2 (en) Method for producing hexathiaadamantane compound
JP4561635B2 (en) Process for producing 4-alkoxycarbonyltetrahydropyran or tetrahydropyranyl-4-carboxylic acid
JP5036445B2 (en) Method for producing iodine compound
JP5487815B2 (en) Method for producing pyromethene derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131102

LAPS Cancellation because of no payment of annual fees