JP5207516B2 - Method for producing 2,3-dicyanonaphthalene derivative - Google Patents

Method for producing 2,3-dicyanonaphthalene derivative Download PDF

Info

Publication number
JP5207516B2
JP5207516B2 JP2007307505A JP2007307505A JP5207516B2 JP 5207516 B2 JP5207516 B2 JP 5207516B2 JP 2007307505 A JP2007307505 A JP 2007307505A JP 2007307505 A JP2007307505 A JP 2007307505A JP 5207516 B2 JP5207516 B2 JP 5207516B2
Authority
JP
Japan
Prior art keywords
reaction
producing
dicyanonaphthalene
formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007307505A
Other languages
Japanese (ja)
Other versions
JP2009132623A (en
Inventor
郁三 西口
愛子 原田
博史 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2007307505A priority Critical patent/JP5207516B2/en
Publication of JP2009132623A publication Critical patent/JP2009132623A/en
Application granted granted Critical
Publication of JP5207516B2 publication Critical patent/JP5207516B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ナフタロシアニン製造の中間体等として有用な、2,3−ジシアノナフタレン誘導体の新規で効率的な製造方法に関する。   The present invention relates to a novel and efficient method for producing a 2,3-dicyanonaphthalene derivative, which is useful as an intermediate for producing naphthalocyanine.

近年、近赤外領域に発振波長を持つ半導体レーザーの登場によってフタロシアニンの吸収長波長化の研究が盛んに行われるようになり、それに関連してナフタロシアニンの合成が注目を浴びている。ナフタロシアニンは、フタロシアニンよりも共役系が長く吸収波長が長波長領域であるため、光記録材料だけでなく熱線吸収剤としての利用が期待されているが、前駆体である2,3−ジシアノナフタレン誘導体の合成が困難であるため報告例が少ない。   In recent years, with the advent of semiconductor lasers having an oscillation wavelength in the near-infrared region, research on increasing the absorption wavelength of phthalocyanine has been actively conducted, and the synthesis of naphthalocyanine has attracted attention in connection with this. Naphthalocyanine is expected to be used not only as an optical recording material but also as a heat ray absorber because its conjugated system is longer than that of phthalocyanine and its absorption wavelength is in the long wavelength region. However, 2,3-dicyanonaphthalene is a precursor. There are few reports because the synthesis of derivatives is difficult.

ナフタロシアニンの前駆体となる2,3−ジシアノナフタレン誘導体の製造方法としては、1−置換−又は1,4−置換−2,3−ジメチルベンゼンを原料として、多段階反応により対応する5−置換、又は5,8−置換−2,3−ジシアノナフタレン誘導体を製造する方法が提案されている。(例えば、特許文献1参照)
また、1,4−ジヒドロキシ−2,3−ジシアノナフタレンをアルキル化剤と反応させることによってヒドロキシル基をアルキル化し、対応する2,3−ジシアノナフタレン誘導体を製造する方法も提案されている。(例えば、特許文献2,非特許文献1参照)
特開平8−67826号公報 特表平8−508269号公報 A. Sygula, R. Sygula, P. N. Rabideau, Org. Lett. 2005, 7,4999 - 5001
As a method for producing a 2,3-dicyanonaphthalene derivative to be a precursor of naphthalocyanine, a corresponding 5-substituted compound is obtained by a multi-step reaction using 1-substituted- or 1,4-substituted-2,3-dimethylbenzene as a raw material. Alternatively, a method for producing a 5,8-substituted-2,3-dicyanonaphthalene derivative has been proposed. (For example, see Patent Document 1)
There has also been proposed a method of alkylating a hydroxyl group by reacting 1,4-dihydroxy-2,3-dicyanonaphthalene with an alkylating agent to produce a corresponding 2,3-dicyanonaphthalene derivative. (For example, see Patent Document 2 and Non-Patent Document 1)
JP-A-8-67826 Japanese National Patent Publication No. 8-508269 A. Sygula, R. Sygula, PN Rabideau, Org. Lett. 2005, 7,4999-5001

しかしながら、これらの従来技術では、複雑な多段階反応を必要とし収率が低い、或いは高価な触媒を必要とし製造コストが高くなる、といった問題点があった。また、製造可能な2,3−ジシアノナフタレン誘導体の種類も限られていた。   However, these conventional techniques have a problem that a complicated multistage reaction is required and the yield is low, or an expensive catalyst is required and the production cost is high. Also, the types of 2,3-dicyanonaphthalene derivatives that can be produced are limited.

したがって、本発明はこれら従来技術の問題点を解消して、簡単な工程により、各種の5〜8−位が置換された2,3−ジシアノナフタレン誘導体を、低コストで効率良く製造する方法を提供することを目的とする。   Therefore, the present invention eliminates the problems of these prior arts and provides a method for efficiently producing various kinds of 2,3-dicyanonaphthalene derivatives substituted at various 5-8-positions by a simple process at a low cost. The purpose is to provide.

本発明者等は鋭意検討した結果、置換フラン化合物を1,4−ジアルコキシ−2,3−ジシアノ−5,6−ジハロゲン化ベンゼンと反応させることによって、対応する2,3−ジシアノナフタレン誘導体を一段階で効率良く製造することができることを発見し、本発明を完成させたものである。
すなわち、本発明ではつぎの1〜3の構成を採用する。
1.下記の式(1)で表されるフラン化合物を、

Figure 0005207516
(式中、R〜Rは、各独立して、水素原子、炭素数1〜8のアルキル基、置換又は非置換フェニル基から選択された基を表す。)
金属マグネシウムの存在下に、下記式(2)で表される2,3−ジシアノベンゼン誘導体と反応させることを特徴とする、
Figure 0005207516
(式中、Xはハロゲン原子を表し;R及びRは、各独立して炭素数1〜12のアルキル基を表す。)
下記の式(3)で表される2,3−ジシアノナフタレン誘導体の製造方法。
Figure 0005207516
(式中、R〜Rは上記と同じものを表す。)
2.前記反応を、有機溶媒中で行うことを特徴とする1に記載の2,3−ジシアノナフタレン誘導体の製造方法。
3.前記反応を0℃〜リフラックス温度で行うことを特徴とする1又は2に記載の2,3−ジシアノナフタレン誘導体の製造方法。 As a result of intensive studies, the present inventors have reacted a substituted furan compound with 1,4-dialkoxy-2,3-dicyano-5,6-dihalogenated benzene to obtain a corresponding 2,3-dicyanonaphthalene derivative. The present invention has been completed by discovering that it can be efficiently produced in one stage.
That is, in the present invention, the following configurations 1 to 3 are adopted.
1. A furan compound represented by the following formula (1):
Figure 0005207516
(In the formula, R 1 to R 4 each independently represents a group selected from a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, and a substituted or unsubstituted phenyl group.)
Characterized by reacting with a 2,3-dicyanobenzene derivative represented by the following formula (2) in the presence of magnesium metal:
Figure 0005207516
(In the formula, X represents a halogen atom; R 5 and R 6 each independently represents an alkyl group having 1 to 12 carbon atoms.)
A method for producing a 2,3-dicyanonaphthalene derivative represented by the following formula (3).
Figure 0005207516
(Wherein R 1 to R 6 represent the same as above)
2. 2. The method for producing a 2,3-dicyanonaphthalene derivative according to 1, wherein the reaction is performed in an organic solvent.
3. The method for producing a 2,3-dicyanonaphthalene derivative according to 1 or 2, wherein the reaction is performed at 0 ° C to a reflux temperature.

本発明によれば、各種の5〜8−位が置換された2,3−ジシアノナフタレン誘導体を、一段階で効率良く製造することが可能であり、製造コストを大幅に低減することができる。また、本発明は、従来技術では製造することが困難であった、5〜8−位がアルキル基やアリール基によって置換された各種の2,3−ジシアノナフタレン誘導体の製造に広く適用することができるものであり、極めて実用的価値が高いものである。   According to the present invention, it is possible to efficiently produce various 2,3-dicyanonaphthalene derivatives substituted at the 5-8-position in one step, and the production cost can be greatly reduced. In addition, the present invention can be widely applied to the production of various 2,3-dicyanonaphthalene derivatives in which the 5-8-position is substituted with an alkyl group or an aryl group, which has been difficult to produce with the prior art. It is possible and has extremely high practical value.

本発明では、原料として次の式(1)で表されるフラン化合物を使用する。

Figure 0005207516
In the present invention, a furan compound represented by the following formula (1) is used as a raw material.
Figure 0005207516

上記式(1)において、R〜Rは同一又は異なるものであり、各独立して水素原子、炭素数1〜8のアルキル基、置換又は非置換フェニル基から選択された基を表す。
好ましいR〜Rとしては、水素原子;メチル基、エチル基、プロピル基、ブチル基、ペンチル基等の低級アルキル基;−CYで表される置換又は非置換のフェニル基(ここで、YはH,Cl,F,CH,OCH3, CF, CN, COOR (Rは炭素数1〜6のアルキル基)から選択された基を表す);が挙げられる。
In the above formula (1), R 1 to R 4 are the same or different and each independently represents a group selected from a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, and a substituted or unsubstituted phenyl group.
Preferred R 1 to R 4 include a hydrogen atom; a lower alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group; a substituted or unsubstituted phenyl group represented by —C 6 H 4 Y ( Here, Y represents a group selected from H, Cl, F, CH 3 , OCH 3 , CF 3 , CN, COOR (R represents an alkyl group having 1 to 6 carbon atoms);

また、本発明では他の原料として、次の式(2)で表される2,3−ジシアノベンゼン誘導体を使用する。

Figure 0005207516
In the present invention, a 2,3-dicyanobenzene derivative represented by the following formula (2) is used as another raw material.
Figure 0005207516

上記式(2)において、Xはハロゲン原子を表し;R及びRは、各独立して炭素数1〜12のアルキル基を表す。
ハロゲン原子としては、F,Cl,Br,I原子のいずれも使用可能であるが、Br原子が好ましい。また、R及びRとしては、水素原子及び炭素数1〜4の低級アルキル基も用いることができるが、炭素数5〜8の高級アルキル基が好ましい。
In the above formula (2), X represents a halogen atom; R 5 and R 6 each independently represents an alkyl group having 1 to 12 carbon atoms.
As the halogen atom, any of F, Cl, Br, and I atoms can be used, but a Br atom is preferable. In addition, as R 5 and R 6 , a hydrogen atom and a lower alkyl group having 1 to 4 carbon atoms can be used, but a higher alkyl group having 5 to 8 carbon atoms is preferable.

これらの2,3−ジシアノベンゼン誘導体は、入手の容易な1、4−ジヒドロキシ−2,3−ジシアノベンゼン誘導体を原料として、NBSによるジブロモ化反応、および、後続する光延反応(DIAD及びPPhの存在下での対応するアルコールROHおよび(または) ROHとの反応)により、次の反応スキームにしたがって製造することができる。

Figure 0005207516
These 2,3-dicyanobenzene derivatives can be obtained by using a readily available 1,4-dihydroxy-2,3-dicyanobenzene derivative as a raw material, a dibromination reaction with NBS, and a subsequent Mitsunobu reaction (of DIAD and PPh 3 ). By reaction with the corresponding alcohols R 5 OH and / or R 6 OH in the presence) according to the following reaction scheme:
Figure 0005207516

上記反応スキームにおいて、NBSはN−ブロモこはく酸イミド、DIADはジイソプロピルアゾカルボキシレート、PPhはトリフェニルホスフィン、THFはテトラヒドロフラン、r.t.は室温を意味し、65%及び97%は各反応における収率を表す。 In the above reaction scheme, NBS is N-bromosuccinimide, DIAD is diisopropyl azocarboxylate, PPh 3 is triphenylphosphine, THF is tetrahydrofuran, r.p. t. Means room temperature, 65% and 97% represent the yield in each reaction.

本発明では、上記の式(1)で表されるフラン化合物と、上記の式(2)で表される2,3−ジシアノベンゼン誘導体を、グリニヤール反応用の削状マグネシウムのような金属マグネシウムの存在下に反応させることによって、次の式(3)で表される5〜8−位が置換された2,3−ジシアノナフタレン誘導体を製造する。

Figure 0005207516
In the present invention, a furan compound represented by the above formula (1) and a 2,3-dicyanobenzene derivative represented by the above formula (2) are mixed with a metal magnesium such as a shaved magnesium for Grignard reaction. By reacting in the presence, a 2,3-dicyanonaphthalene derivative substituted at the 5- to 8-position represented by the following formula (3) is produced.
Figure 0005207516

上記式(3)において、R〜Rは上記と同じものを表す。
これらの式(3)で表される化合物には、公知化合物のほか、一部新規な化合物が含まれる。例えば、式(3)において、R〜Rが下記のものである化合物は、これまで知られていない。ここで、Meはメチル基、Phはフェニル基を表す。
=Me,R=R=R=H,R=R=C11
=R=Me,R=R=H,R=R=C11
=R=Ph,R=R=H,R=R=C11
=R=H,R=R=Ph,R=R=C11
In said formula (3), R < 1 > -R < 6 > represents the same thing as the above.
These compounds represented by formula (3) include some novel compounds in addition to known compounds. For example, in the formula (3), a compound in which R 1 to R 6 are as follows has not been known. Here, Me represents a methyl group, and Ph represents a phenyl group.
R 1 = Me, R 2 = R 3 = R 4 = H, R 5 = R 6 = C 5 H 11
R 1 = R 2 = Me, R 3 = R 4 = H, R 5 = R 6 = C 5 H 11
R 1 = R 2 = Ph, R 3 = R 4 = H, R 5 = R 6 = C 5 H 11
R 1 = R 2 = H, R 3 = R 4 = Ph, R 5 = R 6 = C 5 H 11

本発明によれば、上記式(3)で表される化合物を一段階反応で効率良く製造することができる。この反応は、通常は有機溶媒、特にTHF、ジオキサン、シクロペンチルメチルエーテル、グライム類のようなエーテル系有機溶媒中で行うことが好ましい。他の好適な有機溶媒としては、トルエンやキシレンなどの非極性溶媒、およびN,N−ジメチルホルムアミドやN−メチル−2−ピロリドン等の非プロトン性極性溶媒が挙げられる。
また、反応温度は0℃〜リフラックス温度の範囲で、使用する原料等に応じて選択することができる。
According to the present invention, the compound represented by the above formula (3) can be efficiently produced by a one-step reaction. This reaction is usually preferably carried out in an organic solvent, particularly an ether organic solvent such as THF, dioxane, cyclopentylmethyl ether, glymes. Other suitable organic solvents include nonpolar solvents such as toluene and xylene, and aprotic polar solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone.
Moreover, reaction temperature can be selected in the range of 0 degreeC-reflux temperature according to the raw material to be used.

次に実施例により本発明をさらに説明するが,以下の実施例は本発明を限定するものではない。
(製造例1:5, 6-ジブロモ-1, 4-ジヒドロキシ-2,3-ジシアノベンゼンの合成)
温度計と塩化カルシウム管を取り付けた500 mL三つ口フラスコに、1, 4-ジヒドロキシ-2,3-ジシアノベンゼン30.0 g(187 mmol)、tert-ブタノール 200 mLを導入し、50℃で加熱溶解した。そこへN-ブロモこはく酸イミド67.6 g(380 mmol, 2 eq.)を15分かけて加え、その後50℃で2時間加熱撹拌した。再びN-ブロモこはく酸イミド67.6 g(380 mmol, 2 eq.)を15分かけて加え、50℃で2時間加熱撹拌した。反応溶液は室温まで放冷した後、亜硫酸水素ナトリウム50 gを水200 mLに溶解した水溶液に加えた。生じた褐色沈殿を吸引ろ過で濾取および水洗した後、真空乾燥した。淡褐色粉末の5, 6-ジブロモ-1, 4-ジヒドロキシ-2,3-ジシアノベンゼンを39.0 g(収率
65 %)得た。得られた化合物の物性値を以下に示す。
13C NMR (100 MHz, TMS, d6-DMSO)δ151.73, 124.87, 113.94,
102.09 ppm; IR(KBr) νmax 3314, 2250, 1716, 1561, 1439, 1331, 1275, 1173, 1052, 986,
931, 844, 728, 681, 521, 419 cm-1; MS(APCI) m/z 318 [M + H]+
また、文献(Cook, M. J.; Heeney, M.
J. Chem. Eur. J. 2000, 21, 3958)のスペクトルと照合し、目的化合物の生成を確認した。
EXAMPLES Next, although an Example demonstrates this invention further, the following Examples do not limit this invention.
(Production Example 1: Synthesis of 5,6-dibromo-1,4-dihydroxy-2,3-dicyanobenzene)
1,4-dihydroxy-2,3-dicyanobenzene (30.0 g, 187 mmol) and tert-butanol (200 mL) were introduced into a 500 mL three-necked flask equipped with a thermometer and a calcium chloride tube, and heated and dissolved at 50 ° C. did. Thereto, 67.6 g (380 mmol, 2 eq.) Of N-bromosuccinimide was added over 15 minutes, and then heated and stirred at 50 ° C. for 2 hours. Again 67.6 g (380 mmol, 2 eq.) Of N-bromosuccinimide was added over 15 minutes, and the mixture was heated and stirred at 50 ° C. for 2 hours. The reaction solution was allowed to cool to room temperature, and then added to an aqueous solution in which 50 g of sodium bisulfite was dissolved in 200 mL of water. The resulting brown precipitate was collected by suction filtration and washed with water, followed by vacuum drying. 39.0 g (yield) of 5,6-dibromo-1,4-dihydroxy-2,3-dicyanobenzene as a light brown powder
65%). The physical property values of the obtained compound are shown below.
13 C NMR (100 MHz, TMS, d 6 -DMSO) δ 151.73, 124.87, 113.94,
102.09 ppm; IR (KBr) ν max 3314, 2250, 1716, 1561, 1439, 1331, 1275, 1173, 1052, 986,
931, 844, 728, 681, 521, 419 cm -1 ; MS (APCI) m / z 318 [M + H] +
The literature (Cook, MJ; Heeney, M.
J. Chem. Eur. J. 2000, 21, 3958) and the production of the target compound was confirmed.

(製造例2:5, 6-ジブロモ-2,3-ジシアノ-1,4-ジペンチルオキシベンゼンの合成)
滴下漏斗、塩化カルシウム管、窒素導入管、温度計を取り付けた1000 mL四つ口フラスコに、窒素雰囲気下にて上記製造例1で得られた5, 6-ジブロモ-1, 4-ジヒドロキシ-2,3-ジシアノベンゼン 37.1 g(117 mmol)、トリフェニルホスフィン 73.5 g(280 mmol, 2.4 eq.)、1-ペンタノール 25.7 g(292 mmol, 2.5 eq.)、テトラヒドロフラン 170 mLを導入した。反応溶液を氷浴で0℃に冷却し、そこへ滴下漏斗からジイソプロピルアゾジカルボキシレート 59.4 g(294 mmol, 2.5 eq.)をテトラヒドロフラン 250 mLに溶解した溶液を30分かけて滴下した。滴下後、氷浴を外して反応溶液を室温に戻し、室温で5時間撹拌した。反応溶液中のテトラヒドロフランをロータリーエバポレーターで留去した。得られた褐色粘調液体にジエチルエーテル100 mLを加え、析出した無色固体(トリフェニルホスフィンオキシド)を吸引ろ過で濾取した。濾液をロータリーエバポレーターで濃縮して褐色固体の粗成生物を94.0 g得た。これをシリカゲルカラムクロマトグラフィー(シリカゲル 800 mL,、展開溶媒 ジクロロメタン:ヘキサン = 1 : 5)で精製し、無色結晶の5,
6-ジブロモ-2,3-ジシアノ-1, 4-ジペンチルオキシベンゼンを 51.9 g(収率
97 %)得た。なお、テトラヒドロフランは金属ナトリウムを用いて蒸留したものを用いた(以下の例でも、同様である。)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3)δ4.20(t, 4H, J= 6.4 Hz),
1.94 - 1.87(m, 4H), 1.56-1.36(m, 8H), 0.95(t, 6H, J= 7.2 Hz) ppm; 13C
NMR (100 MHz, TMS, CDCl3)δ156.38, 129.62, 112.36, 109.21, 76.69, 29.63, 27.73,
22.34, 13.93 ppm; IR(KBr) νmax 2959, 2858, 2234, 1548, 1466, 1423, 1361, 1231, 1072, 1044,
1006, 936, 889, 835, 729, 536, 499 cm-1; MS(APCI) m/z 459 [M + H]+;
mp 68.8 - 69.9 ℃
(Production Example 2: Synthesis of 5,6-dibromo-2,3-dicyano-1,4-dipentyloxybenzene)
In a 1000 mL four-necked flask equipped with a dropping funnel, a calcium chloride tube, a nitrogen inlet tube, and a thermometer, the 5,6-dibromo-1,4-dihydroxy-2 obtained in Production Example 1 was obtained under a nitrogen atmosphere. , 3-dicyanobenzene 37.1 g (117 mmol), triphenylphosphine 73.5 g (280 mmol, 2.4 eq.), 1-pentanol 25.7 g (292 mmol, 2.5 eq.) And tetrahydrofuran 170 mL were introduced. The reaction solution was cooled to 0 ° C. with an ice bath, and a solution prepared by dissolving 59.4 g (294 mmol, 2.5 eq.) Of diisopropyl azodicarboxylate in 250 mL of tetrahydrofuran was added dropwise from the dropping funnel over 30 minutes. After the dropwise addition, the ice bath was removed and the reaction solution was allowed to return to room temperature and stirred at room temperature for 5 hours. Tetrahydrofuran in the reaction solution was distilled off with a rotary evaporator. Diethyl ether (100 mL) was added to the resulting brown viscous liquid, and the precipitated colorless solid (triphenylphosphine oxide) was collected by suction filtration. The filtrate was concentrated on a rotary evaporator to obtain 94.0 g of a brown solid crude product. This was purified by silica gel column chromatography (silica gel 800 mL, developing solvent dichloromethane: hexane = 1: 5) to give colorless crystals of 5,
51.9 g of 6-dibromo-2,3-dicyano-1,4-dipentyloxybenzene (yield
97%). Tetrahydrofuran used was distilled using sodium metal (the same applies to the following examples). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) δ 4.20 (t, 4H, J = 6.4 Hz),
1.94-1.87 (m, 4H), 1.56-1.36 (m, 8H), 0.95 (t, 6H, J = 7.2 Hz) ppm; 13 C
NMR (100 MHz, TMS, CDCl 3 ) δ156.38, 129.62, 112.36, 109.21, 76.69, 29.63, 27.73,
22.34, 13.93 ppm; IR (KBr) ν max 2959, 2858, 2234, 1548, 1466, 1423, 1361, 1231, 1072, 1044,
1006, 936, 889, 835, 729, 536, 499 cm -1 ; MS (APCI) m / z 459 [M + H] + ;
mp 68.8-69.9 ° C

(実施例1:2, 3-ジシアノ-1, 4-ジペンチルオキシナフタレンの合成)
10 mLナス型フラスコにy字管、滴下漏斗、還流冷却器、塩化カルシウム管、窒素導入管を取り付けた。窒素雰囲気下で、ナス型フラスコにグリニャール反応用削状マグネシウム0.1 g(4.1 mmol, 2 eq.)、フラン (2.0 mmol, 1 eq.)、テトラヒドロフラン 2 mLを入れ加熱還流した。そこへ滴下漏斗から上記の製造例2で得られた5, 6-ジブロモ-2,3
-ジシアノ-1,4-ジペンチルオキシベンゼン0.92 g(2.0 mmol)をテトラヒドロフラン 2 mLに溶解した溶液を30分かけて滴下した。1時間加熱還流し、反応溶液を飽和塩化アンモニウム水溶液100 mLに加え、15分間撹拌した。反応溶液を分液ロートに移し、50 mLのジクロロメタンで3回抽出し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾取し、濾液をロータリーエバポレーターで濃縮し、黒色油状の粗成生物を得た。これをシリカゲルカラムクロマトグラフィーで精製し、2, 3-ジシアノ-1, 4-ジペンチルオキシナフタレンを得た(収率97%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) δ8.23(dd,
2H, J= 2.8, 6.2 Hz), 7.79(dd, 2H, J= 3.2, 6.2 Hz), 4.42(t, 4H, J= 6.8 Hz),
1.97(quint, 4H, J= 6.8 Hz), 1.60 - 1.40(m, 8H), 0.97(t, 6H, J= 7.2 Hz) ppm; 13C
NMR (100 MHz, TMS, CDCl3)δ157.23, 130.45, 130.15, 123.53, 114.41, 98.70, 76.34,
29.76, 27.83, 22.32, 13.86 ppm; IR(KBr) νmax 2934, 2869, 2222, 1570, 1502, 1406,
1348, 1241, 1102, 1027, 965, 905, 789, 731, 678, 604, 515 cm-1;
MS(APCI) m/z 351 [M + H]+; mp 52.6 - 53.1 ℃
(Example 1: Synthesis of 2,3-dicyano-1,4-dipentyloxynaphthalene)
A 10 mL eggplant type flask was equipped with a y-shaped tube, a dropping funnel, a reflux condenser, a calcium chloride tube, and a nitrogen introduction tube. Under a nitrogen atmosphere, 0.1 g (4.1 mmol, 2 eq.) Of ground magnesium for Grignard reaction, 2 mL of furan (2.0 mmol, 1 eq.), And 2 mL of tetrahydrofuran were placed in a round flask and heated to reflux. There, 5, 6-dibromo-2,3 obtained in Production Example 2 above from the dropping funnel
A solution prepared by dissolving 0.92 g (2.0 mmol) of -dicyano-1,4-dipentyloxybenzene in 2 mL of tetrahydrofuran was added dropwise over 30 minutes. The mixture was heated to reflux for 1 hour, and the reaction solution was added to 100 mL of a saturated aqueous ammonium chloride solution and stirred for 15 minutes. The reaction solution was transferred to a separatory funnel, extracted three times with 50 mL of dichloromethane, and the organic layer was dried over anhydrous magnesium sulfate. The desiccant was collected by filtration, and the filtrate was concentrated by a rotary evaporator to obtain a crude product of black oil. This was purified by silica gel column chromatography to obtain 2,3-dicyano-1,4-dipentyloxynaphthalene (yield 97%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) δ8.23 (dd,
2H, J = 2.8, 6.2 Hz), 7.79 (dd, 2H, J = 3.2, 6.2 Hz), 4.42 (t, 4H, J = 6.8 Hz),
1.97 (quint, 4H, J = 6.8 Hz), 1.60-1.40 (m, 8H), 0.97 (t, 6H, J = 7.2 Hz) ppm; 13 C
NMR (100 MHz, TMS, CDCl 3 ) δ157.23, 130.45, 130.15, 123.53, 114.41, 98.70, 76.34,
29.76, 27.83, 22.32, 13.86 ppm; IR (KBr) ν max 2934, 2869, 2222, 1570, 1502, 1406,
1348, 1241, 1102, 1027, 965, 905, 789, 731, 678, 604, 515 cm -1 ;
MS (APCI) m / z 351 [M + H] + ; mp 52.6-53.1 ° C

(実施例2:2, 3-ジシアノ-5-メチル-1, 4-ジペンチルオキシナフタレンの合成)
実施例1において、フランに換えて2−メチルフランを使用し、滴下および反応を室温で行い、反応時間を4時間とした以外は、実施例1と同様にして2, 3-ジシアノ-5-メチル-1, 4-ジペンチルオキシナフタレンを得た(収率35%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) δ8.08(1H,
d, J= 8.4 Hz), 7.62(t, 1H, J= 7.2 Hz), 7.53(d, 1H, J= 7.2 Hz), 4.35(t, 2H, J=
6.4 Hz), 4.22(t, 2H, J= 6.8 Hz), 2.88(s, 3H), 2.02 - 1.92(m, 4H), 1.59 -
1.40(m, 8H), 0.97(dt, 6H, J= 2.0, 7.4 Hz) ppm; 13C NMR (100 MHz, TMS,
CDCl3)δ159.35,
157.42, 136.30, 133.94, 131.68, 129.75, 121.69, 114.44, 114.07, 101.29, 98.92,
77.00, 29.68, 27.72, 23.46, 22.28, 13.78 ppm; IR(KBr) νmax 2939, 2872, 2228, 1571,
1496, 1459, 1409, 1350, 1330, 1208, 1044, 1021, 972, 888, 810, 782 cm-1;
MS(APCI) m/z 365 [M + H]+; mp 62.0 - 63.8 ℃
(Example 2: Synthesis of 2,3-dicyano-5-methyl-1,4-dipentyloxynaphthalene)
In Example 1, 2,3-dicyano-5- was used in the same manner as in Example 1 except that 2-methylfuran was used instead of furan, the dropping and the reaction were performed at room temperature, and the reaction time was 4 hours. Methyl-1,4-dipentyloxynaphthalene was obtained (35% yield). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) δ8.08 (1H,
d, J = 8.4 Hz), 7.62 (t, 1H, J = 7.2 Hz), 7.53 (d, 1H, J = 7.2 Hz), 4.35 (t, 2H, J =
6.4 Hz), 4.22 (t, 2H, J = 6.8 Hz), 2.88 (s, 3H), 2.02-1.92 (m, 4H), 1.59-
1.40 (m, 8H), 0.97 (dt, 6H, J = 2.0, 7.4 Hz) ppm; 13 C NMR (100 MHz, TMS,
CDCl 3 ) δ159.35,
157.42, 136.30, 133.94, 131.68, 129.75, 121.69, 114.44, 114.07, 101.29, 98.92,
77.00, 29.68, 27.72, 23.46, 22.28, 13.78 ppm; IR (KBr) ν max 2939, 2872, 2228, 1571,
1496, 1459, 1409, 1350, 1330, 1208, 1044, 1021, 972, 888, 810, 782 cm -1 ;
MS (APCI) m / z 365 [M + H] + ; mp 62.0-63.8 ° C

(実施例3:2, 3-ジシアノ-5, 8-ジメチル-1, 4-ジペンチルオキシナフタレンの合成)
実施例1において、フランに換えて2,5−ジメチルフランを使用した以外は、実施例1と同様にして2, 3-ジシアノ-5, 8-ジメチル-1, 4-ジペンチルオキシナフタレンを得た(収率39%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) d 7.37(s, 2H), 4.14(t, 4H, J= 6.8 Hz), 2.83(s, 6H),
1.97(quint, 4H, J= 6.8 Hz) ppm; 13C NMR (100 MHz, TMS, CDCl3)δ159.70, 134.12, 133.71,
131.39, 114.22, 101.66, 77.64, 29.37, 27.68, 23.80, 22.33, 13.76 ppm; IR(KBr) νmax 2938, 2872, 2226, 1459,
1338, 1214, 1042, 1015, 962, 850, 729, 566 cm-1; MS(APCI) m/z 379 [M
+ H]+ ; mp95.0 - 95.3 ℃
(Example 3: Synthesis of 2,3-dicyano-5,8-dimethyl-1,4-dipentyloxynaphthalene)
In Example 1, 2,3-dicyano-5,8-dimethyl-1,4-dipentyloxynaphthalene was obtained in the same manner as in Example 1 except that 2,5-dimethylfuran was used instead of furan. (Yield 39%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 7.37 (s, 2H), 4.14 (t, 4H, J = 6.8 Hz), 2.83 (s, 6H),
1.97 (quint, 4H, J = 6.8 Hz) ppm; 13 C NMR (100 MHz, TMS, CDCl 3 ) δ159.70, 134.12, 133.71,
131.39, 114.22, 101.66, 77.64, 29.37, 27.68, 23.80, 22.33, 13.76 ppm; IR (KBr) ν max 2938, 2872, 2226, 1459,
1338, 1214, 1042, 1015, 962, 850, 729, 566 cm -1 ; MS (APCI) m / z 379 [M
+ H] + ; mp95.0-95.3 ° C

(実施例4:2, 3-ジシアノ-5, 8-ジフェニル-1, 4-ジペンチルオキシナフタレンの合成)
実施例1において、フランに換えて2,5−ジフェニルフランを使用した以外は、実施例1と同様にして2, 3-ジシアノ-5, 8-ジフェニル-1, 4-ジペンチルオキシナフタレンを得た(収率24%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) δ7.54(s,
2H), 7.44 - 7.35(m, 10H), 3.61(t, 4H, J= 6.8 Hz), 1.16(quint, 4H, J= 6.8 Hz),
1.06(quint, 4H, J= 7.2 Hz) 0.93(quint, 4H, J= 6.8 Hz), 0.82(t, 6H, J= 7.2 Hz) ppm;
13C NMR (100 MHz, TMS, CDCl3)δ158.80, 141.99, 139.74,
133.64, 129.50, 128.84, 127.38, 127.13, 113.92, 102.95, 77.05, 28.21, 27.28,
22.18, 13.75 ppm; IR(KBr) νmax 3057, 2956, 2870, 2230, 1599, 1573, 1489, 1411, 1353, 1280,
1233, 1074, 1027, 960, 855, 758, 699 cm-1; MS(APCI) m/z 503 [M + H]+;
mp 192.5 - 194.4 ℃
(Example 4: Synthesis of 2,3-dicyano-5,8-diphenyl-1,4-dipentyloxynaphthalene)
In Example 1, 2,3-dicyano-5,8-diphenyl-1,4-dipentyloxynaphthalene was obtained in the same manner as in Example 1 except that 2,5-diphenylfuran was used instead of furan. (Yield 24%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) δ7.54 (s,
2H), 7.44-7.35 (m, 10H), 3.61 (t, 4H, J = 6.8 Hz), 1.16 (quint, 4H, J = 6.8 Hz),
1.06 (quint, 4H, J = 7.2 Hz) 0.93 (quint, 4H, J = 6.8 Hz), 0.82 (t, 6H, J = 7.2 Hz) ppm;
13 C NMR (100 MHz, TMS, CDCl 3 ) δ158.80, 141.99, 139.74,
133.64, 129.50, 128.84, 127.38, 127.13, 113.92, 102.95, 77.05, 28.21, 27.28,
22.18, 13.75 ppm; IR (KBr) ν max 3057, 2956, 2870, 2230, 1599, 1573, 1489, 1411, 1353, 1280,
1233, 1074, 1027, 960, 855, 758, 699 cm -1 ; MS (APCI) m / z 503 [M + H] + ;
mp 192.5-194.4 ° C

(実施例5:2, 3-ジシアノ-6, 7-ジフェニル-1, 4-ジペンチルオキシナフタレンの合成)
実施例1において、フランに換えて3,4−ジフェニルフランを使用した以外は、実施例1と同様にして2, 3-ジシアノ-6, 7-ジフェニル-1, 4-ジペンチルオキシナフタレンを得た(収率54%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) δ8.12(s,
2H), 7.18 - 7.09(m, 10H), 4.33(t, 4H, J=6.4 Hz), 1.83(quint, 4H, J= 6.8 Hz),
1.47 - 1.25(m, 8H), 0.82(t, 6H, J= 7.2 Hz) ppm; 13C NMR (100 MHz,
TMS, CDCl3)δ157.08,
143.66, 139.75, 129.64, 129.22, 128.10, 127.48, 125.12, 114.44, 98.78, 76.31,
29.73, 27.87, 22.27, 13.86 ppm; IR(KBr) νmax 3061, 2956, 2870, 2223, 1565, 1495,
1340, 1041, 1025, 965, 908, 781, 768, 702, 565, 532 cm-1; MS(APCI) m/z
503 [M + H]+; mp 119.5 - 121.3 ℃
(Example 5: Synthesis of 2,3-dicyano-6,7-diphenyl-1,4-dipentyloxynaphthalene)
In Example 1, 2,3-dicyano-6,7-diphenyl-1,4-dipentyloxynaphthalene was obtained in the same manner as in Example 1 except that 3,4-diphenylfuran was used instead of furan. (Yield 54%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) δ8.12 (s,
2H), 7.18-7.09 (m, 10H), 4.33 (t, 4H, J = 6.4 Hz), 1.83 (quint, 4H, J = 6.8 Hz),
1.47-1.25 (m, 8H), 0.82 (t, 6H, J = 7.2 Hz) ppm; 13 C NMR (100 MHz,
TMS, CDCl 3 ) δ157.08,
143.66, 139.75, 129.64, 129.22, 128.10, 127.48, 125.12, 114.44, 98.78, 76.31,
29.73, 27.87, 22.27, 13.86 ppm; IR (KBr) ν max 3061, 2956, 2870, 2223, 1565, 1495,
1340, 1041, 1025, 965, 908, 781, 768, 702, 565, 532 cm -1 ; MS (APCI) m / z
503 [M + H] + ; mp 119.5-121.3 ° C

上記の各例における反応経路は、下記のスキームのように、5, 6-ジブロモ-2,3-ジシアノ-1, 4-ジペンチルオキシベンゼン1からベンザイン中間体2が生成し、置換フランとのDiels-Alder型[4+2]付加反応により不安定な含酸素環状体3を経由して2,3−ジシアノナフタレン誘導体4が生成すると考えられる。

Figure 0005207516
The reaction route in each of the above examples is as shown in the following scheme, in which benzyne intermediate 2 is generated from 5,6-dibromo-2,3-dicyano-1,4-dipentyloxybenzene 1 and Diels with a substituted furan. It is considered that the 2,3-dicyanonaphthalene derivative 4 is generated via the unstable oxygen-containing cyclic product 3 by the -Alder type [4 + 2] addition reaction.
Figure 0005207516

この反応経路においては、1,4位のジペンチルオキシ基は、ナフタレン環の形成反応に関与するものではない。したがって、上記の各例では一般式(2)及び(3)において、R及びRがペンチル基である化合物を製造する例について説明したが、R及びRとして他のアルキル基をした場合にも、同様にナフタレン環の形成反応は進行する。


In this reaction route, the 1,4-position dipentyloxy group does not participate in the formation reaction of the naphthalene ring. Therefore, in each of the above examples, in the general formulas (2) and (3), examples in which R 5 and R 6 are pentyl groups were described, but other alkyl groups were used as R 5 and R 6 . Even in this case, the formation reaction of the naphthalene ring proceeds similarly.


Claims (3)

下記の式(1)で表されるフラン化合物を、
Figure 0005207516
(式中、R〜Rは、各独立して、水素原子、炭素数1〜8のアルキル基、置換又は非置換フェニル基から選択された基を表す。)
金属マグネシウムの存在下に、下記式(2)で表される2,3−ジシアノベンゼン誘導体と反応させることを特徴とする、
Figure 0005207516
(式中、Xはハロゲン原子を表し;R及びRは、各独立して炭素数1〜12のアルキル基を表す。)
下記の式(3)で表される2,3−ジシアノナフタレン誘導体の製造方法。
Figure 0005207516
(式中、R〜Rは上記と同じものを表す。)
A furan compound represented by the following formula (1):
Figure 0005207516
(In the formula, R 1 to R 4 each independently represents a group selected from a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, and a substituted or unsubstituted phenyl group.)
Characterized by reacting with a 2,3-dicyanobenzene derivative represented by the following formula (2) in the presence of magnesium metal:
Figure 0005207516
(In the formula, X represents a halogen atom; R 5 and R 6 each independently represents an alkyl group having 1 to 12 carbon atoms.)
A method for producing a 2,3-dicyanonaphthalene derivative represented by the following formula (3).
Figure 0005207516
(Wherein R 1 to R 6 represent the same as above)
前記反応を、有機溶媒中で行うことを特徴とする請求項1に記載の2,3−ジシアノナフタレン誘導体の製造方法。   The method for producing a 2,3-dicyanonaphthalene derivative according to claim 1, wherein the reaction is performed in an organic solvent. 前記反応を0℃〜リフラックス温度で行うことを特徴とする請求項1又は2に記載の2,3−ジシアノナフタレン誘導体の製造方法。

The method for producing a 2,3-dicyanonaphthalene derivative according to claim 1 or 2, wherein the reaction is performed at a temperature of 0 ° C to a reflux temperature.

JP2007307505A 2007-11-28 2007-11-28 Method for producing 2,3-dicyanonaphthalene derivative Expired - Fee Related JP5207516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307505A JP5207516B2 (en) 2007-11-28 2007-11-28 Method for producing 2,3-dicyanonaphthalene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307505A JP5207516B2 (en) 2007-11-28 2007-11-28 Method for producing 2,3-dicyanonaphthalene derivative

Publications (2)

Publication Number Publication Date
JP2009132623A JP2009132623A (en) 2009-06-18
JP5207516B2 true JP5207516B2 (en) 2013-06-12

Family

ID=40864887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307505A Expired - Fee Related JP5207516B2 (en) 2007-11-28 2007-11-28 Method for producing 2,3-dicyanonaphthalene derivative

Country Status (1)

Country Link
JP (1) JP5207516B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126498A (en) * 2008-11-28 2010-06-10 Nagaoka Univ Of Technology 5,6,7,8-tetrasubstituted-1,4-dialkoxy-2,3-dicyanonaphthalene derivative and method for producing the same
JP2010126499A (en) * 2008-11-28 2010-06-10 Nagaoka Univ Of Technology Naphthalocyanine compound and method for producing the same
JP2010126500A (en) * 2008-11-28 2010-06-10 Nagaoka Univ Of Technology 5,6,7,8-tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126498A (en) * 2008-11-28 2010-06-10 Nagaoka Univ Of Technology 5,6,7,8-tetrasubstituted-1,4-dialkoxy-2,3-dicyanonaphthalene derivative and method for producing the same
JP2010126499A (en) * 2008-11-28 2010-06-10 Nagaoka Univ Of Technology Naphthalocyanine compound and method for producing the same
JP2010126500A (en) * 2008-11-28 2010-06-10 Nagaoka Univ Of Technology 5,6,7,8-tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and its production method

Also Published As

Publication number Publication date
JP2009132623A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
EP1254883B1 (en) Process for producing substituted 1,1,1-trifluoro-3-butene-2-ones
JP5247436B2 (en) Method for producing methylene disulfonate compound
JP5288779B2 (en) 2,3-dicyanonaphthalene derivative
JP5207516B2 (en) Method for producing 2,3-dicyanonaphthalene derivative
KR101728443B1 (en) Method for Producing Benzyl Ester 2-aminonicotinicotinate Derivative
JP5008404B2 (en) Method for producing methylene disulfonate compound
JP5408822B2 (en) 5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same
JP5408820B2 (en) 5,6,7,8-Tetra-substituted-1,4-dialkoxy-2,3-dicyano-naphthalene derivatives
US8277903B2 (en) Synthesis and applications of soluble pentacene precursors and related compounds
JP5408821B2 (en) Naphthalocyanine compound and method for producing the same
CN113956243A (en) Rosuvastatin intermediate and preparation method thereof
CN108727323B (en) Method for catalytically synthesizing trifluoromethyl substituted homoisoflavone compound by using N-heterocyclic carbene
CN107603271B (en) Preparation method of long-chain alkoxy BODIPY compound
JP4734558B2 (en) Method for producing heteroaromatic compound having pentafluorophenyl group
JP2008081418A (en) 9,9-bis(4-aminophenyl)fluorene compound
JP5036198B2 (en) Phthalimides containing fluorene skeleton and diamines derived therefrom
JP4403257B2 (en) α-Tetra (fluoroalkoxy) substituted phthalocyanine compounds
JP2007099744A (en) Method for producing tetraazaporphyrin compound
CN115028580B (en) Synthesis method of chemiluminescent reagent APS-5 for immunoassay
JP4157361B2 (en) Method for producing 9-spirofluorene compound
JP4118645B2 (en) Method for producing calix [4] arene derivative mixture
JP5408824B2 (en) Naphthalocyanine compound and method for producing the same
WO2022113850A1 (en) Near-infrared absorbing material
JP2008169161A (en) Method for producing methylene disulfonate compound
KR101511235B1 (en) Method of refining high purity 2,6-diamino-9,10-dihydroanthracene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees