JP2014062864A - 熱アシスト磁気ヘッド素子の検査方法及びその装置 - Google Patents

熱アシスト磁気ヘッド素子の検査方法及びその装置 Download PDF

Info

Publication number
JP2014062864A
JP2014062864A JP2012209251A JP2012209251A JP2014062864A JP 2014062864 A JP2014062864 A JP 2014062864A JP 2012209251 A JP2012209251 A JP 2012209251A JP 2012209251 A JP2012209251 A JP 2012209251A JP 2014062864 A JP2014062864 A JP 2014062864A
Authority
JP
Japan
Prior art keywords
magnetic head
cantilever
assisted magnetic
phase difference
head element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012209251A
Other languages
English (en)
Inventor
Teruaki Tokutomi
照明 徳冨
Ke-Bong Chang
開鋒 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012209251A priority Critical patent/JP2014062864A/ja
Priority to US13/967,619 priority patent/US20140086033A1/en
Publication of JP2014062864A publication Critical patent/JP2014062864A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】製造工程途中のできるだけ早い段階で熱アシスト磁気ヘッドの近接場光発光部の物理形状の検査を行うことができるようにする。
【解決手段】試料である熱アシスト磁気ヘッド素子を平面内で移動可能なテーブルに載置し、このテーブルを平面内で移動させながらこのテーブルに載置された試料の表面を探針を備えたカンチレバーを上下方向に振動させることにより短針で試料の表面を走査し、試料の表面を走査しているカンチレバーの探針が形成されている側と反対側の面に光を照射してカンチレバーからの反射光を検出することによりカンチレバーの振動を検出し、カンチレバーを上下方向に振動させる駆動信号とカンチレバーの振動を検出して得た検出信号との位相差を検出し、この検出した位相差の情報を用いて熱アシスト磁気ヘッド素子に形成された近接場光発光部の良否を判定するようにした。
【選択図】図1

Description

本発明は、薄膜熱アシスト磁気ヘッドを検査する熱アシスト磁気ヘッド検査方法及びその装置に係り、特に光学顕微鏡等の技術で検査不可能な熱アシスト磁気ヘッドが発生する近接場光の発生領域の物理形状を検査することのできる熱アシスト磁気ヘッド素子の検査方法及びその装置に関する。
次世代ハードディスクヘッドとして熱アシスト磁気ヘッドが各ハードディスクメーカに採用される計画である。熱アシスト磁気ヘッドから発生する近接場光の幅は20nm以下であり、この幅はハードディスクの書き込みトラック幅を決める。実際の動作時の近接場光の強度分布や、発光部の物理形状に対する検査方法は未解決の重要な課題である。現在走査型電子顕微鏡(SEM)を用いてヘッド(素子)の形状を測定することは可能であるが、破壊検査であり、量産向けの全数検査には適用困難である。
一方、これまでのハードディスク用磁気ヘッドのトラック幅検査は、HGA(Head Gimbal Assembly)状態又は擬似HGA状態という磁気ヘッド製造の最終工程で行っていた。生産コスト、の改善や製造プロセス条件の早期フィードバックという要望に応えるために、ウエハから切り出されたローバー状態において検査する方法が特許文献1に開示されている。
又、特許文献2には、原子間力顕微鏡において試料を横振動させ、この横振動によって励起されるカンチレバーの曲げまたはねじれ振動の位相と振幅を同時に計測し、振動振幅像および振動位相差像を形成することが記載されている。
更に、特許文献3には、原子間力顕微鏡のカンチレバーのQ値を計測する場合に、探針と接触する試料の物性に応じてカンチレバーの共振周波数が変化し、出力信号の位相が変化するのを受けて位相比較器の出力が変化するのを受けてカンチレバーを常に共振周波数で振動させる構成について開示されている。
更に特許文献4には、磁気力顕微鏡を用いて、振幅変調信号を印加した磁気ヘッドから生じている磁界に応じた探針の振動の位相変化を測定し、振幅変調信号の値の変化に対する位相変位の変化をヘッドの磁界周波数依存性として測定することが記載されている。
特開2009−230845号公報 特開平6−323834号公報 特開2002−277378号公報 特開2002−269708号公報
ヘッドが発生する近接場光又は近接場光発光部の物理形状の検査を目的とする専用の検査装置はまだ世の中に存在しない。また、現在磁気ヘッドへの性能検査においてはウエハから切り出されたローバーの状態における検査装置が使用されているが、熱アシスト磁気ヘッドに対しても同じくローバーというヘッド製造の早い段階での検査装置を開発する必要がある。
特許文献1には、磁気力顕微鏡などを用いて磁気ヘッドが発生する磁界の様子を直接観察することが記載されているが、熱アシスト磁気ヘッドの近接場光の発生領域の物理形状(近接場光の発生領域の位置及び大きさ)を検査することについては記載されていない。
特許文献2には、原子間力顕微鏡において、摩擦力を強く反映する映像として振動振幅像及び振動位相像を形成することについて記載されているが、熱アシスト磁気ヘッドの近接場光の発生領域の物理形状を検査することについては記載されていない。
さらに、特許文献3には、原子間力顕微鏡において、出力信号の位相差を検出してカンチレバーを常に共振周波数で振動させることについて記載されているが、出力信号の位相差の情報を用いて熱アシスト磁気ヘッドの近接場光の発生領域の物理形状を検査することについては記載されていない。
また、特許文献4には、探針の振動の位相差を検出することについては記載されているが、熱アシスト磁気ヘッドの近接場光の発生領域の物理形状を検査することについては記載されていない。
本発明は、上述の点に鑑みてなされたものであり、製造工程途中のできるだけ早い段階で熱アシスト磁気ヘッドの近接場光の発生領域の物理形状の検査を行うことのできる熱アシスト磁気ヘッド素子の検査方法及びその装置を提供するものである。
上記した課題を解決するために、本発明では、近接場光発光部が形成された熱アシスト磁気ヘッド素子を検査する検査装置を、試料である熱アシスト磁気ヘッド素子を載置して平面内で移動可能なテーブル手段と、このテーブル手段に載置された試料の表面を走査する探針を備えたカンチレバーと、このカンチレバーを試料の表面に対して上下方向に振動させる振動駆動手段と、この振動駆動手段により振動させられているカンチレバーの探針が形成されている側と反対側の面に光を照射してカンチレバーからの反射光を検出することによりカンチレバーの振動を検出する変位検出手段と、振動駆動手段でカンチレバーを上下方向に振動させる駆動信号と変位検出手段でカンチレバーの振動を検出して得た検出信号との位相差を検出する位相差検出手段と、この位相差検出手段で検出した位相差の情報とテーブル手段の位置情報とを用いて熱アシスト磁気ヘッド素子の位相差画像を形成する位相差画像形成手段と、この位相差画像形成手段で形成した位相差画像を処理して熱アシスト磁気ヘッド素子に形成された近接場光発光部の良否を判定する判定手段とを備えて構成した。
又、上記目的を達成するために、本発明では、近接場光発光部が形成された熱アシスト磁気ヘッド素子を検査する方法において、試料である熱アシスト磁気ヘッド素子を平面内で移動可能なテーブルに載置し、このテーブルを平面内で移動させながらこのテーブルに載置された試料の表面を探針を備えたカンチレバーを上下方向に振動させることにより短針で試料の表面を走査し、試料の表面を走査しているカンチレバーの探針が形成されている側と反対側の面に光を照射してカンチレバーからの反射光を検出することによりカンチレバーの振動を検出し、カンチレバーを上下方向に振動させる駆動信号とカンチレバーの振動を検出して得た検出信号との位相差を検出し、この検出した位相差の情報を用いて熱アシスト磁気ヘッド素子に形成された近接場光発光部の良否を判定するようにした。
本発明によれば、製造工程途中のできるだけ早い段階で熱アシスト磁気ヘッドの近接場光発光部の物理形状の検査を非破壊で行うことができるという効果がある。
第1の実施例に係る熱アシスト磁気ヘッド検査装置の概略の構成を示すブロック図である。 第1の実施形態におけるカンチレバーの先端部分の探針と記録ヘッドの熱アシスト光発生部分を拡大した側面図である。 第1の実施形態に係る熱アシスト磁気ヘッド検査装置におけるカンチレバーを振動させるための駆動波形と、カンチレバーからの反射信号を検出して得られた検出波形信号を示すグラフである。 第1の実施形態に係る熱アシスト磁気ヘッド検査装置におけるカンチレバーを振動させるための駆動波形と、近接場光の発生領域を走査しているときのカンチレバーからの反射信号を検出して得られた検出波形信号を示すグラフである。 第1の実施形態に係る制御部PCの構成を示すブロック図である。 第1の実施形態に係る位相差画像形成部で形成された熱アシスト磁気ヘッドの近接場発生領域と磁界発生領域とを含む画像である。 第1の実施形態に係る位相差画像形成部で形成された熱アシスト磁気ヘッドの近接場発生領域を含む画像である。 第1の実施形態に係る熱アシスト磁気ヘッド検査装置の動作手順を示すフロー図である。 第1の実施形態に係る熱アシスト磁気ヘッド検査装置において、探針の先端部分に比較的細い細線を固定した状態のカンチレバーと記録ヘッドの熱アシスト光発生部分を拡大した側面図である。 第1の実施形態の変形例に係る熱アシスト磁気ヘッド検査装置の制御PCの概略の構成を示すブロック図である。 第2の実施形態に係る熱アシスト磁気ヘッド検査装置の概略の構成を示すブロック図である。 第2の実施形態における表面に磁性膜を形成した探針を備えたカンチレバーと記録ヘッドの熱アシスト光発生部分を拡大した側面図である。 第2の実施携帯に係る熱アシスト磁気ヘッド検査装置の制御PCの概略の構成を示すブロック図である。 第2の実施形態に係る熱アシスト磁気ヘッド検査装置の動作手順を示すフロー図である。
熱アシスト磁気ヘッド素子の近接場光の発生領域の物理形状を検査する方法としては、近接場光発光部で発生する近接場光の発生状態を検査する方法と、近接場光の発生領域の物理形状を検査する方法とがある。本発明では、熱アシスト磁気ヘッド素子の近接場光の発生領域の物理形状を、走査プローブ顕微鏡で検出できるようにした。
以下に、本発明の実施例を図面を参照しながら詳細に説明する。
図1は、本発明に係る熱アシスト磁気ヘッド検査装置の第1実施形態の基本的な構成を示すブロック図である。図1の熱アシスト磁気ヘッド検査装置は、スライダ単体(チップ)を切り出す前工程のローバー(ヘッドスライダが配列されたブロック)の状態で熱アシスト磁気ヘッドの近接場光の発生領域の物理形状を検査することが可能なものである。通常、3cm〜5cm程度の細長いブロック体としてウエハから切り出されたローバーは、40個〜90個程度のヘッドスライダが配列された構成となっている。この実施の形態に係る熱アシスト磁気ヘッド検査装置は、このローバー1をワークとして所定の検査を行うように構成されている。ローバー1は、通常、図示していないトレイ内に20〜30本程度、短軸方向に所定間隔で配列収納されている。図示していないハンドリングロボットは、ローバー1を図示してないトレイからで一本ずつ取り出して検査ステージ101に搬送する。検査ステージ101に搬送設置されたローバー1は後述のように検査される。
検査ステージ101は、ローバー1をX,Y方向に移動可能なXステージ106、Yステージ105を備えている。ローバー1は、その長軸方向の片側面がYステージ105の基準面に一旦突き当てられることによって位置決めされる。Yステージ105の上面には、ローバー1の位置決め用の載置部114が設けられている。この載置部114の上面側縁部には、ローバー1の形状にほぼ合致した段差部(図示せず)が設けられている。ローバー1は、この段差部の底面と側面にそれぞれ当接されることによって所定位置に設置されるようになっている。段差部の後面には、ローバー1の後側面(熱アシスト磁気ヘッドの各接続端子のある面の反対面)が当接される。各当接面は、Xステージ106の移動方向(X軸)及びZステージ104の移動方向(Z軸)にそれぞれ平行で、かつ、直交した位置関係となる基準面を備えているので、ローバー1がYステージ105の段差部の底面と側面に当接設置されることによってX方向とZ方向の位置決めが実行されるようになっている。
Yステージ105の上方には、位置ずれ量測定用のカメラ103が設けられている。Zステージ104は、原子間力顕微鏡(Atomic Force Microscope :AFM)のカンチレバー部100をZ方向に移動させるものである。検査ステージ101のXステージ106、Yステージ105、Zステージ104は、それぞれピエゾ素子で駆動されるピエゾステージで構成されている。所定の位置決めが終了すると、ローバー1は、載置部114に吸着保持される。
ピエゾドライバ107は、この検査ステージ101の各Xステージ106、Yステージ105、Zステージ104(ピエゾステージ)を駆動制御するものである。制御部PC30は、モニタを含むパーソナルコンピュータ(PC)を基本構成とする制御用コンピュータで構成されている。図に示すように、検査ステージ101のYステージ105上の載置部114に載置されたローバー1の上方の対向する位置には、先端の尖った探針120が形成されて自由端となっているカンチレバー部100が配置されている。カンチレバー部100は、Zステージ104の下側に設けられた加振部122に取り付けられている。加振部122はピエゾ素子で構成され、ピエゾドライバ107からの励振電圧によって機械的共振周波数近傍の周波数の交流電圧が印加され、探針120は上下方向に振動される。
変位検出部は、半導体レーザ素子109と、4分割光ディテクタ素子からなる変位センサ110とから構成される。半導体レーザ素子109から出射した光はカンチレバー部100上に照射され、カンチレバー部100で反射された光は変位センサ110に導かれる。差動アンプ111は、変位センサ110から出力される4つの信号の差分信号に所定の演算処理を施してDCコンバータ112に出力する。すなわち、差動アンプ111は、変位センサ110から出力される4つの信号の差分に対応した変位信号をDCコンバータ112に出力する。従って、カンチレバー部100が加振部122により加振されていない状態では、差動アンプ111からの出力はゼロになる。DCコンバータ112は、差動アンプ111から出力される変位信号を実効値の直流信号に変換するRMS−DCコンバータ(Root Mean Squared value to Direct Current Converter)で構成される。
差動アンプ111から出力される変位信号は、カンチレバー部100の変位に応じた信号であり、カンチレバー部100は振動しているので交流信号となる。DCコンバータ112から出力される信号は、フィードバックコントローラ113に入力される。フィードバックコントローラ113は、カンチレバー部100の現在の振動の大きさをモニターするための信号として制御部PC30にDCコンバータ112から入力した信号を出力すると共に、カンチレバー部100の励振の大きさを調整するためのZステージ104の制御用信号として制御部PC30を通じて、ピエゾドライバ107にDCコンバータ112から入力した信号を出力する。
この信号を制御部PC30でモニタし、その値に応じて、ピエゾドライバ107でZステージ104を駆動するピエゾ素子(図示せず)を制御することによって、測定開始前に、カンチレバー部100の初期位置を調整するようにしている。この実施の形態では、ハードディスクドライブのヘッド浮上高さをカンチレバー部100の初期位置として設定する。
発信器102は、カンチレバー部100を励振するための発振信号をピエゾドライバ107に供給するものである。ピエゾドライバ107は、この発信器102からの発振信号に基づいて加振部122を駆動してカンチレバー部100を所定の周波数で振動させる。
図2は、ローバー1に形成されている熱アシスト磁気ヘッド素子4の磁界発生領域3及び熱アシスト光(近接場光)の発生領域2の構成を拡大してカンチレバー部100と一緒に示した図である。
図2に示すように、カンチレバー部100は、一定の振幅Hfで振動したときの最下点が、ローバー1に形成された熱アシスト磁気ヘッド素子4の表面にカンチレバー部100の探針120の先端部が試料の表面と一定の間隔dを維持するように、Zステージ104によって位置決めされる。カンチレバー部100は、発振器102からの発振信号を受けたピエゾドライバ107により、カンチレバー部100の共振周波数又はその近傍の周波数で加振され、ローバー1に形成された熱アシスト磁気ヘッド素子4の記録面に平行な平面内を数百nm〜数μmの範囲内でスキャンする。この実施の形態では、Xステージ106及びYステージ107によってローバー1が移動される。
ここで、探針120がスキャンする範囲内で、試料であるローバー1の材質が均一である場合には、図3Aに示すように、ピエゾドライバ107で駆動するカンチレバー部の加振波形310と探針120で熱アシスト磁気ヘッド素子4の記録面に平行な平面内をスキャンさせて変位センサ110で検出される変位信号波形311との位相差321は一定である。
しかし、スキャンする範囲内に近接場光の発生領域2又は磁界発生領域3のような他の部分と異なる材質の部分があると、探針120とこの異なる材質の部分との間に働く力(ファンデルワールス力)が変化する。その結果、図3Bに示すように、スキャンする範囲内における近接場光の発生領域2の表面と他の部分の表面とが同一平面内にあっても、カンチレバー部100の振動波形が変化し、ピエゾドライバ107で駆動するカンチレバー部の加振波形310と探針120でローバー1上をスキャンさせて変位センサ110で検出される変位信号波形312との位相差322が、図3Aの状態に対して変化する。
このとき、探針120の振幅Hfも変動するが、この変動はDCコンバータ112で検出されて、フィードバックコントローラ113を介して制御用PC30に入力され、制御用PC30でピエゾドライバ107によるZステージ104の駆動を制御することにより、振幅Hfの変動は抑制される。
この変化した位相差を画像化することにより、位相差が変化した部分を材質が異なる領域として検出することができる。この検出した位相差が変化した領域の位置情報及び大きさ情報を予め設計情報を用いて設定しておいた基準値と比較し、基準値との差が許容できる範囲か否かを判定して近接場光の発生領域2が正しく形成されているか否かを検査する。
図4Aに、制御部PC30の構成を示す。作動アンプ111から入力されたカンチレバー部100の変位に応じた信号(図3Aの信号311及び図3Bの信号312)は、位相比較部302に入力される。また、位相比較部302には、発振器102から発信される信号(図3A及び図3Bの信号310)を受信し、この発振器102からの信号と作動アンプ111から入力された信号との位相差を検出する。次に、検出された位相差情報は、検査ステージ101から送られてきたYステージ105およびXステージ106の位置情報と共に位相差画像形成部303に送られて図4Bに示すような位相差画像401が形成される。
この作成された位相差画像は領域判定部304へ送られて、位相差画像401から近接場光の発生領域2の画像402の中心と磁界発生領域3の画像403の中心との間隔L、及び近接場光の発生領域2の画像402の大きさDが求められ、これらを予め設定しておいた基準値と比較して、それぞれ基準値からのずれ量が算出される。そして、この算出したそれぞれの基準値からのずれ量を予め設定しておいたしきい値と比較して、それぞれのずれ量が許容の範囲内であるか否かをチェックして、磁界発生領域3を基準としたときの近接場光の発生領域2の位置及び形状の良否を判定する。この良否の判定結果は、入出力部31へ送られて図示していない画面上に表示される。
図5は、上述した熱アシスト磁気ヘッド検査装置の動作手順を示すフロー図である。
先ず複数設置されたローバーを1本ずつ取り出し、検査ステージ上に搬送し(S501)、カメラ103によるアライメントを行い(S502)、ローバー1に形成された熱アシスト磁気ヘッド素子部4(測定ヘッド)を測定位置に移動させて測定ヘッド(熱アシスト磁気ヘッド素子4)の位置決めを行う(S503)。次に、ピエゾドライバ107でZテージ104を制御することによって、カンチレバー部100の探針120を測定ヘッドの記録表面にアプローチさせる(S504)。
次に、発信器102からの発振信号に基づいてピエゾドライバ107で加振部122を駆動してカンチレバー部100を所定の周波数で振動させる。この状態でピエゾドライバ107でYステージ105とXステージ106を駆動してローバー1をXY平面内で移動させることにより、カンチレバー部100はヘッドの記録面に平行する平面に数百nm〜数μmの範囲内でスキャンする(S505)。
このスキャンしているときに、カンチレバー100の振動を、半導体レーザ素子109から発射されてカンチレバー100で反射し変位センサ110で検出されたレーザの検出信号波形として検出する。そしてこの検出した信号波形を、発振器102から発信される駆動信号波形と比較して、その位相差を計測する(S506)。
次に、カンチレバーが上昇し、ローバー1の中で次に測定すべきヘッドがあるかをチェックし(S507)、有る場合には次の測定ヘッドがカンチレバーの下方に移動し(S508),S504からの操作を実行する。ローバー1の中で次に測定すべきヘッドが無くなった場合には、Zステージ104でカンチレバー部100を上昇させた状態で測定が終了したローバー1を図示していないハンドリングユニットで取出して回収トレイに収納する(S509)。次に、図示していない供給トレイに未検査のローバー40があるか否かをチェックし(S510)、未検査のローバー40がある場合にはS501に戻って未検査のローバー40を供給トレイ(図示せず)から取出して(S511),検査ステージ101に搬送してS501からのステップを実行する。一方、供給トレイうちに未検査のローバー40が無い場合には、測定を終了する(S512)。
なお、上記した実施例においては、ローバー1の状態で検査することについて説明したが、本実施例はこれに限定されるものではなく、ローバー1から切り出された熱アシスト磁気ヘッド素子4単体を載置部114に載置して上記に説明したのと同様な検査を行うようにしてもよい。
上記した実施例においては、探針120を試料であるローバー1の表面に対して一定の距離だけ離れた位置を振動の最下点として、試料であるローバー1の表面に直接接触しないようにして走査する方式で説明したが、探針120の振動の最下点を試料であるローバー1の表面に一致させて、振動の最下点で試料であるローバー1に接触させながら走査させる方式であってもよい。
また、上記した実施例においては、熱アシスト磁気ヘッド素子4の近接場光の発生領域2を含む領域と磁界発生領域3を含む領域との位相差画像を形成して、近接場光の発生領域2の画像402の中心と磁界発生領域3の画像403の中心との間隔L、及び近接場光の発生領域2の画像402の大きさDを求めて、近接場光の発生領域2の位置と形状の良否を判定する方法について説明した。しかし、磁界発生領域3を含む領域は探針120で走査せずに、熱アシスト磁気ヘッド素子4の設計情報を用いて走査近接場光の発生領域2を含む領域だけを探針120で走査して、近接場光の発生領域2を含む領域の位相差画像を形成し、図4Cに示すように、近接場光の発生領域2の位相差画像402から、直交する2方向の寸法D1とD2とを求め、これらを予め設定した基準値と比較することにより、走査近接場光の発生領域2の形状の良否を判定するようにしてもよい。
本実施例によれば、熱アシスト磁気ヘッド素子の近接場光の発生領域を、熱アシスト磁気ヘッド素子の製造工程の比較的上流の段階、例えばローバーの状態で、近接場光を発光させることなく検査することが可能である。また、検査装置に近接場光を発光させるための機構部を装備する必要が無くなり、検査装置の構成を比較的簡素化することができる。
上記した実施例においては、図2に示したように、探針120で試料であるローバー1の表面を走査する構成で説明したが、図6に示すように、探針120の先端部分に比較的硬い材質の細線を固定し、この細線でローバー1の表面を走査する構成としてもよい。この細線1201を構成する材料としては、カーボンナノファイバ(CNF)、カーボンナノチューブ(CNT)、高密度カーボン(HDC:DLC)、又はタングステン(W)の何れかにすればよい。このような構成とすることにより、比較的硬い材質の細線1201がローバー1に形成された熱アシスト磁気ヘッド素子4と接触することになり、探針120を直接接触させる場合と比べて、カンチレバー100の寿命を延ばすことができる。
〔変形例〕
実施例1においては、差動アンプ111の出力を用いて制御部PC30で位相差画像を作成することについて説明したが、本変形例においては、更に、フィードバックコントローラ113からのZステージ104の振幅制御信号も用いる。
フィードバックコントローラ113では、差動アンプ111からの出力を受けてカンチレバー100の振幅の変動を検出し、振動の変動を抑えようとする信号を出力する。
この振動の変動は、探針120を走査中に熱アシスト磁気ヘッド素子4の材質が変化にしたことによりカンチレバー100の振動の振幅が変化することにより発生するものであって、熱アシスト磁気ヘッド素子4の材質境界の位置情報を含んでいる。
本変形例においては、図7に示すように、実施例1で説明した制御部PC30を制御部PC30´に置き換えた。制御部PC30´では、ピエゾドライバ制御部305が差動アンプ111からの上記した情報を含む出力信号を受けてピエゾドライバ107に出力するZステージ104を制御する信号を分岐して、領域設定部304´に入力する。
領域設定部304´においては、差動アンプ111からの出力と発振器102とからの信号を受けて位相比較部302で抽出した位相差情報を用いて位相差画像形成部303で形成した位相差画像と、ピエゾドライバ制御部305から出力された熱アシスト磁気ヘッド素子4の材質境界の位置情報を含むZステージ104制御信号とを用いて、図4Bに示した位相差画像401から近接場光の発生領域2の画像402と磁界発生領域3の画像403との境界を特定する。そして、この特定した境界の情報から近接場光の発生領域2に対応する画像402の中心及び幅、磁界発生領域3に対応する画像403の中心を求め、画像402の中心と画像403の中心との間隔Lと画像402の幅Dとを算出する。これらを予め設定しておいた基準値と比較して基準値からのずれ量が算出される。そして、この算出した基準値からのずれ量を、それぞれを予め設定したしきい値と比較してそれぞれのずれ量が許容の範囲内であるか否かをチェックする。その結果に基づいて、磁界発生領域3を基準としたときの近接場光の発生領域2の位置及び大きさの良否を判定する。この良否の判定結果は、入出力部31へ送られて図示していない画面上に表示される。
本変形例によれば、近接場光の発生領域2に対応する画像402の領域、及び磁界発生領域3に対応する画像403の領域を複数の情報を用いて決定することができるので、より高い精度で近接場光の発生領域2の位置及び大きさの良否を判定することができる。
本発明の第2の実施例を図面を参照しながら説明する。
図8に、本実施例に係る熱アシスト磁気ヘッド検査装置8000の構成を示す。
本実施例に係る熱アシスト磁気ヘッド検査装置8000の基本的な構成は、図1に示した実施例1における装置の構成と基本的には同じであるが、図9のカンチレバー100の図中に太線で示すように、カンチレバー100の探針120の表面に磁性膜121が形成されている点において異なる。また、制御部PC35に励磁用信号出力部1007を備えた点、及び、この励磁用信号出力部1007から出力した熱アシスト磁気ヘッド素子部4の磁界発生領域3に磁界を発生させるための信号を、ローバー1に形成された熱アシスト磁気ヘッド素子部4に送るための信号ライン301を追加した点において異なる。
図10に、本実施例における制御部PC35の構成を示す。制御部PC35には、差動アンプ111から出力された信号をMFM画像作成部1002か位相比較部1003の何れかに切替える信号切替回路部1001、表面に磁性膜121が形成されたカンチレバー100の探針120を振動させながら磁界発生領域3を含む領域を走査したときに、差動アンプ111から出力される信号を処理してMFM(Magnetic Force Microscope:磁気力顕微鏡)画像を作成するMFM画像作成部1002を備えた点が実施例1の制御部PC30と異なる。
信号切替回路部1001は、検査ステージ101から出力されるXステージ106及びYステージ105の位置情報に基づいて、探針120が熱アシスト磁気ヘッド素子部4の磁界発生領域3を含む領域を走査しているときには、差動アンプ111から出力された信号を、検査ステージ101から出力されるXステージ106及びYステージ105の位置情報と共に、MFM画像作成部1002の側に出力する。MFM画像作成部1002は、差動アンプ111からの信号と検査ステージ101から出力されたXステージ106及びYステージ105の位置情報とを用いて、MFM画像を形成する。
一方、探針120が熱アシスト磁気ヘッド素子部4の近接場光の発生領域2を含む領域を走査しているときには、差動アンプ111から出力された信号を、検査ステージ101から出力されるXステージ106及びYステージ105の位置情報と共に、位相比較部1003の側に出力する。位相比較部1003及び位相差画像形成部1004における信号の処理については、実施例1で説明した制御部PC30における処理と同じであるので、説明を省略する。
領域判定部1005は、MFM画像作成部1002で形成したMFM画像と位相差画像形成部1004で形成した位相差画像とを入力し、磁界発生領域3を基準として近接場光の発生領域2の位置及び大きさの良否を判定する。
励磁信号出力部1007は、検査ステージ101から出力されるXステージ106及びYステージ105の位置情報に基づいて、探針120が熱アシスト磁気ヘッド素子部4の磁界発生領域3を含む領域を走査するときには、信号ライン301を介して、磁界発生領域3に磁界発生信号を送信する。
ピエゾドライバ制御部1006は、差動アンプ111からの出力信号を受けて、ピエゾドライバ107にZステージ104を制御する信号を出力する。
本実施例における熱アシスト磁気ヘッド検査装置8000の動作手順は、実施例1で図5を用いて説明したものと、S506とS507とを除いて同じである。図5に示した実施例1のフロー図と異なる部分について、図11を用いて説明する。
S504が完了した後、励磁用信号出力部1007は、検査ステージ101から出力されるXステージ106及びYステージ105の位置情報を受けて、信号線301を介してローバー1に形成された熱アシスト磁気ヘッド素子部4の磁界発生領域3に磁界を発生させる信号を出力して、磁界発生領域3に磁界を発生させる(S5051)。つぎに、表面に磁性膜121が形成されたカンチレバー100の探針120を上下に振動させながら、磁界を発生させた磁界発生領域3を含む領域を走査して(S5052)、MFM画像形成部1002で磁界発生領域3のMFM画像を作成する(S5053)。
次に、信号線301からのローバー1に形成された熱アシスト磁気ヘッド素子部4の磁界発生領域3に磁界を発生させる信号を遮断して、実施例1の場合と同様に、カンチレバー100を上下に振動させながら近接場光の発生領域2を含む領域を探針120で走査して(S5054)、位相差画像形成部1004で近接場光の発生領域2を含む領域の位相差画像を形成する(S5055)。更に、この位相差画像とS5052で作成したMFM画像とを用いて磁界発生領域3と近接場光の発生領域2の位置を特定し、近接場光の発生領域2の位置情報として、磁界発生領域3から近接場光の発生領域2までの距離を算出すると共に、位相差画像から近接場光の発生領域2の大きさを求める(S5061)。最後に、これら求めた値を予め設定したそれぞれの基準値と比較することにより、近接場光の発生領域2の位置及び大きさの良否を判定し(S5062)、その結果を、MFM画像及び位相差画像と共に入出力部31に出力する(S5063)。
本実施例においても、実施例1で説明したのと同様に、図6に示すように、探針120の先端部分に比較的硬い材質で表面に磁性膜を形成した細線を備え、この表面に磁性膜を形成した細線でローバー1の表面を走査する構成としてもよい。この細線1201を構成する材料としては、カーボンナノファイバ(CNF)、カーボンナノチューブ(CNT)、高密度カーボン(HDC:DLC)、又はタングステン(W)の何れかにすればよい。このような構成とすることにより、比較的硬い材質の細線1201がローバー1に形成された熱アシスト磁気ヘッド素子4と接触することになり、探針120を直接接触させる場合と比べて、カンチレバー100の寿命を延ばすことができる。
以上、本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
1・・・ローバー 2・・・近接場光発光部 4・・・熱アシスト磁気ヘッド素子 30、30´、35・・・制御部PC 31・・・入出力部 100・・・カンチレバー部 101・・・検査ステージ 102・・・発信器 103・・・カメラ 104・・・Zステージ 105・・・Yステージ 106・・・Xステージ 107・・・ピエゾドライバ 109・・・レーザ素子 110・・・変位センサ 111・・・差動アンプ 112・・・DCコンバータ 113・・・フィードバックコントローラ 114・・・載置部 120・・・探針 122・・・加振部 302,1003・・・位相差比較部 303、1004・・・位相差画像形成部 304、1005・・・領域判定部 1002・・・MFM画像形成部。

Claims (10)

  1. 近接場光発光部が形成された熱アシスト磁気ヘッド素子を検査する検査装置であって、
    試料である熱アシスト磁気ヘッド素子を載置して平面内で移動可能なテーブル手段と、
    該テーブル手段に載置された試料の表面を走査する探針を備えたカンチレバーと、
    該カンチレバーを前記試料の表面に対して上下方向に振動させる振動駆動手段と、
    該振動駆動手段により振動させられている前記カンチレバーの前記探針が形成されてい
    る側と反対側の面に光を照射して前記カンチレバーからの反射光を検出することにより前
    記カンチレバーの振動を検出する変位検出手段と、
    前記振動駆動手段で前記カンチレバーを上下方向に振動させる駆動信号と、前記変位検出手段で前記カンチレバーの振動を検出して得た検出信号との位相差を検出する位相差検出手段と、
    該位相差検出手段で検出した位相差の情報と前記テーブル手段の位置情報とを用いて前記熱アシスト磁気ヘッド素子の位相差画像を形成する位相差画像形成手段と、
    該位相差画像形成手段で形成した位相差画像を処理して前記熱アシスト磁気ヘッド素子に形成された近接場光発光部の良否を判定する判定手段と
    を備えたことを特徴とする熱アシスト磁気ヘッド素子の検査装置。
  2. 前記熱アシスト磁気ヘッド素子は、ローバー上に複数形成されており、該ローバー上に複数形成された前記熱アシスト磁気ヘッド素子を検査することを特徴とする請求項1記載の熱アシスト磁気ヘッド素子の検査装置。
  3. 前記変位検出手段は、前記カンチレバーが前記熱アシスト磁気ヘッド素子の近接場光発光部が形成された個所を走査するときと近接場光発光部が形成された個所以外の個所を走査するときの振動の位相の変化を検出し、前記位相差検出手段は、前記変位検出手段で検出した振動の位相の変化を、前記振動駆動手段で前記カンチレバーを上下方向に振動させる駆動信号に対する位相差として検出することを特徴とする請求項1記載の熱アシスト磁気ヘッド素子の検査装置。
  4. 前記探針の表面には、磁性膜が形成されていることを特徴とする請求項1乃至3の何れかに記載の熱アシスト磁気ヘッド素子の検査装置。
  5. 前記カンチレバーの探針には、カーボンナノファイバ(CNF)、カーボンナノチューブ(CNT)、高密度カーボン(HDC:DLC)、又はタングステン(W)の何れで形成された細線が装着されていることを特徴とする請求項1乃至3の何れかに記載の熱アシスト磁気ヘッド素子の検査装置。
  6. 近接場光発光部が形成された熱アシスト磁気ヘッド素子を検査する方法であって、
    試料である熱アシスト磁気ヘッド素子を平面内で移動可能なテーブルに載置し、
    該テーブルを平面内で移動させながら該テーブルに載置された試料の表面を探針を備えたカンチレバーを上下方向に振動させることにより前記短針で前記試料の表面を走査し、
    該試料の表面を走査している前記カンチレバーの前記探針が形成されている側と反対側の面に光を照射して前記カンチレバーからの反射光を検出することにより前記カンチレバーの振動を検出し、
    前記カンチレバーを上下方向に振動させる駆動信号と、前記カンチレバーの振動を検出して得た検出信号との位相差を検出し、
    該検出した位相差の情報を用いて前記熱アシスト磁気ヘッド素子に形成された近接場光発光部の良否を判定する
    ことを特徴とする熱アシスト磁気ヘッド素子の検査方法。
  7. 前記検出した位相差の情報を用いて前記熱アシスト磁気ヘッド素子に形成された近接場光発光部の良否を判定することが、
    前記検出した位相差の情報と前記移動しているテーブルの位置情報とを用いて前記熱アシスト磁気ヘッド素子の位相差画像を形成し、
    該形成した位相差画像を処理して前記熱アシスト磁気ヘッド素子に形成された近接場光発光部の良否を判定する
    ことを含むことを特徴とする請求項6記載の熱アシスト磁気ヘッド素子の検査方法。
  8. 前記熱アシスト磁気ヘッド素子は、ローバー上に複数形成されており、該ローバー上に複数形成された前記熱アシスト磁気ヘッド素子を検査することを特徴とする請求項6記載の熱アシスト磁気ヘッド素子の検査方法。
  9. 前記カンチレバーの振動を検出することにより、前記カンチレバーが前記熱アシスト磁気ヘッド素子の近接場光発光部が形成された個所を走査するときと近接場光発光部が形成された個所以外の個所を走査するときの振動の位相の変化を検出し、前記位相差を検出することが、前記検出した振動の位相の変化を、前記カンチレバーを上下方向に振動させる駆動信号に対する位相差の変化として検出することを特徴とする請求項6記載の熱アシスト磁気ヘッド素子の検査方法。
  10. 前記探針の表面には磁性膜が形成されており、前記カンチレバーを上下方向に振動させながら前記磁性膜が形成された領域を前記探針で走査し、該走査中の前記カンチレバーの振動を検出した信号を用いて前記磁性膜が形成された領域の磁気力顕微鏡画像を形成し、該形成した磁気力顕微鏡画像と前記形成した位相差画像とを処理して前記熱アシスト磁気ヘッド素子に形成された近接場光発光部の良否を判定することを特徴とする請求項6乃至9の何れかに記載の熱アシスト磁気ヘッド素子の検査方法。
JP2012209251A 2012-09-24 2012-09-24 熱アシスト磁気ヘッド素子の検査方法及びその装置 Pending JP2014062864A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012209251A JP2014062864A (ja) 2012-09-24 2012-09-24 熱アシスト磁気ヘッド素子の検査方法及びその装置
US13/967,619 US20140086033A1 (en) 2012-09-24 2013-08-15 Method and apparatus for inspecting thermal assist type magnetic head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209251A JP2014062864A (ja) 2012-09-24 2012-09-24 熱アシスト磁気ヘッド素子の検査方法及びその装置

Publications (1)

Publication Number Publication Date
JP2014062864A true JP2014062864A (ja) 2014-04-10

Family

ID=50618226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209251A Pending JP2014062864A (ja) 2012-09-24 2012-09-24 熱アシスト磁気ヘッド素子の検査方法及びその装置

Country Status (1)

Country Link
JP (1) JP2014062864A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507000A (ja) * 1995-01-31 1998-07-07 デジタル・インストルメンツ・インコーポレーテッド 位相または周波数の検出を用いる軽打原子間力顕微鏡
JP2009058488A (ja) * 2007-09-03 2009-03-19 Daiken Kagaku Kogyo Kk Cntプローブ、その製造方法及び測定方法
JP2009230845A (ja) * 2008-02-28 2009-10-08 Hitachi High-Technologies Corp 磁気ヘッド検査方法、磁気ヘッド検査装置、及び磁気ヘッド製造方法
JP2012047539A (ja) * 2010-08-25 2012-03-08 Hitachi High-Technologies Corp Spmプローブおよび発光部検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507000A (ja) * 1995-01-31 1998-07-07 デジタル・インストルメンツ・インコーポレーテッド 位相または周波数の検出を用いる軽打原子間力顕微鏡
JP2009058488A (ja) * 2007-09-03 2009-03-19 Daiken Kagaku Kogyo Kk Cntプローブ、その製造方法及び測定方法
JP2009230845A (ja) * 2008-02-28 2009-10-08 Hitachi High-Technologies Corp 磁気ヘッド検査方法、磁気ヘッド検査装置、及び磁気ヘッド製造方法
JP2012047539A (ja) * 2010-08-25 2012-03-08 Hitachi High-Technologies Corp Spmプローブおよび発光部検査装置

Similar Documents

Publication Publication Date Title
US8483035B2 (en) Thermally assisted magnetic recording head inspection method and apparatus
US9304145B2 (en) Inspection method and its apparatus for thermal assist type magnetic head element
JP2009230845A (ja) 磁気ヘッド検査方法、磁気ヘッド検査装置、及び磁気ヘッド製造方法
JP5832374B2 (ja) 走査プローブ顕微鏡のカンチレバー及びその製造方法、並びに熱アシスト磁気ヘッド素子の検査方法及びその装置
US8787132B2 (en) Method and apparatus for inspecting thermal assist type magnetic head
JP2011008845A (ja) 磁気ヘッド搬送装置、磁気ヘッド検査装置、及び磁気ヘッド製造方法
JP5460386B2 (ja) 磁気ヘッド検査方法及び磁気ヘッド製造方法
JP5813608B2 (ja) 熱アシスト磁気ヘッド検査方法及び熱アシスト磁気ヘッド検査装置
JP6129630B2 (ja) 熱アシスト磁気ヘッド素子の検査方法及びその装置、微小熱源の温度測定方法及びその装置並びにカンチレバーおよびその製造方法
JP2015079550A (ja) 熱アシスト磁気ヘッド検査方法及び熱アシスト磁気ヘッド検査装置
JP2014062864A (ja) 熱アシスト磁気ヘッド素子の検査方法及びその装置
JP5758861B2 (ja) 熱アシスト磁気ヘッド検査方法及び熱アシスト磁気ヘッド検査装置
US20140086033A1 (en) Method and apparatus for inspecting thermal assist type magnetic head device
JP6184847B2 (ja) 磁気ヘッド素子の表面形状測定方法及びその装置
JP2014063554A (ja) 熱アシスト磁気ヘッド素子の検査方法及びその装置
JP5923364B2 (ja) 熱アシスト磁気ヘッド素子検査方法及びその装置
WO2014057849A1 (ja) 近接場光検出方法及び熱アシスト磁気ヘッド素子の検査装置
JP6219332B2 (ja) 熱アシスト磁気ヘッド素子の検査装置及びその方法
WO2015012200A1 (ja) 磁気ヘッド検査装置及び磁気ヘッド検査方法
JP2015069677A (ja) 磁気ヘッド検査装置及び磁気ヘッド検査方法
JP5969876B2 (ja) 熱アシスト磁気ヘッド検査方法および熱アシスト磁気ヘッド検査装置
JP2017041290A (ja) 磁気ヘッド外観検査装置及び磁気ヘッド外観検査方法
JP2014199689A (ja) 磁気ヘッド検査装置及び磁気ヘッド検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106