JP2014060435A - Substrate built-in chip resistor and manufacturing method therefor - Google Patents

Substrate built-in chip resistor and manufacturing method therefor Download PDF

Info

Publication number
JP2014060435A
JP2014060435A JP2013241415A JP2013241415A JP2014060435A JP 2014060435 A JP2014060435 A JP 2014060435A JP 2013241415 A JP2013241415 A JP 2013241415A JP 2013241415 A JP2013241415 A JP 2013241415A JP 2014060435 A JP2014060435 A JP 2014060435A
Authority
JP
Japan
Prior art keywords
internal electrode
substrate
chip resistor
protective film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013241415A
Other languages
Japanese (ja)
Inventor
Katsumi Ariga
克実 有賀
Hidekazu Karasawa
秀和 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2013241415A priority Critical patent/JP2014060435A/en
Publication of JP2014060435A publication Critical patent/JP2014060435A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for substrate built-in chip resistor having a wide and flat electrode surface on the surface, and an internal electrode of conventional structure on the substrate surface, which ensures wide resistance characteristics while enhancing the mountability.SOLUTION: An insulating large-sized substrate 11 having front and back surfaces is prepared, a pair of internal electrodes 12 are formed in each section on the surface of the large-sized substrate, a resistance film is formed in each section so as to connect the pair of internal electrodes, a first protective film 17 is formed so as to expose at least a part of the internal electrode, a second protective film 18 is formed so as to cover the region where the resistance film is formed at least partially, and connected with the exposed part of the internal electrode, a second internal electrode 14 is formed to cover the end of the second protective film, while having a wide and flat electrode surface, and a plating layer 15 is formed on the surface of the second internal electrode, so that the upper surface of the plating layer is higher than the upper surface of second protective film.

Description

本発明は、チップ抵抗器に係り、特に積層回路基板等に内蔵して用いる厚さが極めて薄い基板内蔵用チップ抵抗器およびその製造方法に関する。   The present invention relates to a chip resistor, and more particularly to a substrate built-in chip resistor that is built in a laminated circuit board or the like and is extremely thin, and a method of manufacturing the same.

電子機器の軽薄短小化に伴い、チップ抵抗器等の電子部品も回路基板の表裏面に実装するばかりではなく、積層回路基板等の内層に実装する場合が生じ、その薄型化の要請に対応した構成例が提案されている(特許文献1参照)。係る積層回路基板等に内装する基板内蔵用チップ抵抗器では、その厚さはできるだけ薄いことが好ましく、且つ片面のみに電極と抵抗体と保護膜を配置することが薄型化の観点から好ましい。   As electronic devices become lighter, thinner, and smaller, not only chip resistors and other electronic components are mounted on the front and back surfaces of circuit boards, but also on the inner layer of laminated circuit boards, etc. A configuration example has been proposed (see Patent Document 1). In the chip resistor with a built-in substrate mounted on the laminated circuit board or the like, the thickness is preferably as thin as possible, and it is preferable to dispose the electrode, the resistor, and the protective film only on one side from the viewpoint of thinning.

また、基板内蔵用チップ抵抗器では、積層回路基板等の絶縁層内部に該抵抗器が埋め込まれ、絶縁層表面に配置された回路配線層とビアを介して接続される場合があり、ビアはレーザビーム照射によるエッチングで形成される場合がある(特許文献2参照)。   In addition, in a chip resistor for a substrate, the resistor may be embedded inside an insulating layer such as a laminated circuit board and connected to a circuit wiring layer disposed on the surface of the insulating layer via a via. It may be formed by etching by laser beam irradiation (see Patent Document 2).

このため、該抵抗器の電極のサイズは広いことが望ましく、また電極面の平坦性がよいことが望ましい。しかしながら、従来のチップ抵抗器の構造のまま電極を広くすると、両電極間距離が狭くなって、抵抗体の形成領域が制限されるため、従来と同等の定格を維持することが困難となり、また、広範な抵抗特性の抵抗器を製造するのに支障となるという問題がある。   For this reason, it is desirable that the size of the electrode of the resistor is wide and that the flatness of the electrode surface is good. However, if the electrodes are widened while maintaining the structure of the conventional chip resistor, the distance between the two electrodes is reduced, and the region where the resistor is formed is limited, so that it is difficult to maintain the same rating as the conventional one. However, there is a problem that it becomes an obstacle to manufacture resistors having a wide range of resistance characteristics.

特開2004−140285号公報JP 2004-140285 A 特開2008−288607号公報JP 2008-288607 A

本発明は、上述の事情に基づいてなされたもので、表面に広く且つ平坦な電極面を有すると共に、基板表面における内部電極は従来通りの構造であり、広範な抵抗特性が得られると共に実装性を向上した基板内蔵用チップ抵抗器を提供することを目的とする。   The present invention has been made based on the above-mentioned circumstances, and has a wide and flat electrode surface on the surface, and the internal electrode on the substrate surface has a conventional structure, so that a wide range of resistance characteristics can be obtained and mountability can be obtained. It is an object of the present invention to provide a chip resistor with a built-in substrate with improved resistance.

本発明の基板内蔵用チップ抵抗器の製造方法は、表面と裏面とを有する絶縁性の大判基板を準備し、該大判基板の表面の各区画に一対の内部電極を形成し、該一対の内部電極を接続するように各区画に抵抗膜を形成し、該抵抗膜の全体を覆い、該内部電極の少なくとも一部が露出するように第1保護膜を形成し、前記抵抗膜が形成された領域の少なくとも一部を覆う第2保護膜を形成し、前記内部電極の露出部と接続し、前記第2保護膜の端部を覆うように第2内部電極を形成し、該第2内部電極は広く且つ平坦な電極面を有し、該第2内部電極の表面にメッキ層を形成し、該メッキ層の上面を前記第2保護膜の上面よりも高く形成する、ことを特徴とする。   According to the method for manufacturing a chip resistor for a substrate of the present invention, an insulating large-sized substrate having a front surface and a back surface is prepared, a pair of internal electrodes is formed in each section of the surface of the large-sized substrate, and the pair of internal resistors A resistive film is formed in each partition so as to connect the electrodes, the first protective film is formed so as to cover the entire resistive film and to expose at least a part of the internal electrode, and the resistive film is formed. Forming a second protective film covering at least a part of the region, connecting the exposed portion of the internal electrode, and forming a second internal electrode so as to cover an end of the second protective film; Has a wide and flat electrode surface, a plating layer is formed on the surface of the second internal electrode, and the upper surface of the plating layer is formed higher than the upper surface of the second protective film.

これにより、内部電極は従来の構造のままで、その両電極間の間隔を狭くすることなく、広範な抵抗特性が得られる。そして、前記内部電極に接続し、該電極と保護膜端部の上面に配置した第2内部電極を設けることで、その両電極間の間隔を狭くすることができるため、前記内部電極と比較して広面積の第2内部電極が得られ、積層回路基板等の内層に実装するに際して、その実装性を向上することができる。   As a result, the internal electrode remains in the conventional structure, and a wide range of resistance characteristics can be obtained without reducing the distance between the two electrodes. Then, by providing a second internal electrode connected to the internal electrode and disposed on the upper surface of the electrode and the protective film end, the distance between the two electrodes can be narrowed. Thus, the second internal electrode having a large area can be obtained, and the mounting property can be improved when mounting on the inner layer of the laminated circuit board or the like.

本発明の実施例1の基板内蔵用チップ抵抗器の(a)は断面図であり、(b)は上面図であり、(c)は底面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) of the board | substrate chip resistor of Example 1 of this invention is sectional drawing, (b) is a top view, (c) is a bottom view. 本発明の実施例2の基板内蔵用チップ抵抗器の断面図である。It is sectional drawing of the chip resistor for a board | substrate of Example 2 of this invention. 本発明の該抵抗器の製造工程を示す上面図である。It is a top view which shows the manufacturing process of this resistor of this invention. 同じく、本発明の該抵抗器の製造工程を示す上面図である。Similarly, it is a top view which shows the manufacturing process of this resistor of this invention. 本発明の該抵抗器の積層回路基板への内蔵する工程の一例を示す断面図である。It is sectional drawing which shows an example of the process of incorporating this resistor in the laminated circuit board of this invention.

以下、本発明の実施形態について、図1乃至図5を参照して説明する。なお、各図中、同一または相当する部材または要素には、同一の符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5. In addition, in each figure, the same code | symbol is attached | subjected and demonstrated to the same or equivalent member or element.

本発明の基板内蔵用チップ抵抗器は、図1に示すように、表面と裏面とを有する厚さが100μm程度のアルミナ等の絶縁性基板11の表面に、厚さが10μm程度のAg−Pd等の厚膜焼成体からなる一対の内部電極12a,12bを備え、該一対の内部電極間に跨るようにRuO等の厚膜焼成体からなる抵抗膜13が配置されている。抵抗膜13はガラスコートからなる第1保護膜17およびエポキシ樹脂等のオーバコートからなる第2保護膜18に被覆されている。 As shown in FIG. 1, the chip resistor with a built-in substrate of the present invention has an Ag-Pd having a thickness of about 10 μm on the surface of an insulating substrate 11 such as alumina having a surface and a back surface of about 100 μm. A pair of internal electrodes 12a, 12b made of a thick film fired body such as RuO 2 is disposed between the pair of internal electrodes 12a and 12b. The resistance film 13 is covered with a first protective film 17 made of a glass coat and a second protective film 18 made of an overcoat such as an epoxy resin.

すなわち、保護膜は、抵抗膜13上に形成され抵抗膜全体を覆う第1保護膜17と、該第1保護膜上に形成されその端部以外を覆う第2保護膜18とからなり、電流方向における第1保護膜17の長さは、第2保護膜18の長さよりも長い。そして、第1保護膜17は、内部電極12a,12bの少なくとも一部が露出するように形成されている。また、第2保護膜18は抵抗膜13が形成された領域の少なくとも一部を覆い、内部電極12a,12bとオーバーラップしない範囲で形成されている。これにより、第2保護膜が短いので、塗り重ねによる高さ寸法の増大を低減でき、電極形成部分における高さ寸法を均一化できる。   That is, the protective film includes a first protective film 17 that is formed on the resistive film 13 and covers the entire resistive film, and a second protective film 18 that is formed on the first protective film and covers the portion other than the end portion. The length of the first protective film 17 in the direction is longer than the length of the second protective film 18. The first protective film 17 is formed so that at least a part of the internal electrodes 12a and 12b is exposed. The second protective film 18 covers at least a part of the region where the resistance film 13 is formed, and is formed in a range that does not overlap the internal electrodes 12a and 12b. Thereby, since the 2nd protective film is short, the increase in the height dimension by recoating can be reduced, and the height dimension in an electrode formation part can be made uniform.

そして、内部電極12a,12bの露出部と接続され、該電極12a,12bと保護膜17および保護膜18の端部を覆うように形成された一対の第2内部電極14a,14bを備える。第2内部電極14a,14bの厚さは20μm程度である。この第2内部電極14a,14bは、実施例1ではNiを主な導電材料として含有する導電性樹脂であり、この導電性樹脂のペーストをスクリーン印刷で塗布し、加温硬化することにより形成する。導電性樹脂ペーストであるので下層の凹凸を吸収して表面の平坦性が高く、且つ第2保護膜18を覆った広い電極面積が得られる。これにより、一対の第2内部電極14a,14bの間隔は、一対の内部電極12a,12bの間隔よりも狭くでき、広い電極面積と平坦性が得られるので、後述するように良好な実装性が得られる。   A pair of second internal electrodes 14a and 14b are provided which are connected to the exposed portions of the internal electrodes 12a and 12b and are formed so as to cover the ends of the electrodes 12a and 12b, the protective film 17 and the protective film 18. The thickness of the second internal electrodes 14a, 14b is about 20 μm. The second internal electrodes 14a and 14b are conductive resins containing Ni as a main conductive material in Example 1, and are formed by applying a paste of the conductive resin by screen printing and heating and curing. . Since it is a conductive resin paste, the unevenness of the lower layer is absorbed, the surface flatness is high, and a wide electrode area covering the second protective film 18 is obtained. Thus, the distance between the pair of second internal electrodes 14a and 14b can be made narrower than the distance between the pair of internal electrodes 12a and 12b, and a wide electrode area and flatness can be obtained. can get.

そして、第2内部電極14a,14bはそれぞれ厚さ7μm程度のCuメッキ層からなる外部電極15a,15bにより被覆されている。この外部電極15a,15bは実装時のレーザビームエッチングによるビア形成に際して、レーザビームの衝撃から内部電極や第2内部電極を保護するためのストッパ層として機能すると共に、回路基板の配線層に対して良好な接続性が得られる。   The second internal electrodes 14a and 14b are covered with external electrodes 15a and 15b made of a Cu plating layer having a thickness of about 7 μm, respectively. The external electrodes 15a and 15b function as a stopper layer for protecting the internal electrode and the second internal electrode from the impact of the laser beam when forming vias by laser beam etching during mounting, and for the wiring layer of the circuit board. Good connectivity is obtained.

なお、電流方向と直交する方向における第2内部電極14a,14bの幅は、内部電極12a,12bの幅よりも大きくすることが好ましく、絶縁性基板11の幅と等しくしている(図4(d)参照)。これにより、外部電極15,15を広面積化し、且つ外部電極表面の平坦性を向上させることができる。   The width of the second internal electrodes 14a and 14b in the direction orthogonal to the current direction is preferably larger than the width of the internal electrodes 12a and 12b, and is equal to the width of the insulating substrate 11 (FIG. 4 ( d)). Thereby, the area of the external electrodes 15 and 15 can be increased, and the flatness of the external electrode surface can be improved.

絶縁性基板11の裏面側には、文字または図形または記号からなるマーキング19a,19bが形成されている。このマーキング19a,19bは、外部電極15a,15bの中央部の直下に設けることが好ましい。これにより、実装時のレーザビームエッチングによるビア形成に際して位置合わせの目印として用いることができる。   On the back surface side of the insulating substrate 11, markings 19a and 19b made of characters, figures or symbols are formed. The markings 19a and 19b are preferably provided immediately below the center of the external electrodes 15a and 15b. Thus, it can be used as a mark for alignment when forming a via by laser beam etching during mounting.

基板内蔵用チップ抵抗器では、回路基板の絶縁体内部に埋め込んだ後、レーザビームを照射してチップ抵抗器を被覆する絶縁層にビアを形成して外部電極を露出させ外部配線に接続する場合があり、ビア形成のため外部電極はできるだけ大きいことが好ましい。この実施例では、回路基板の絶縁体内部に埋め込むチップ抵抗器の実装に好適な、内部電極12a,12bの有効領域(外部との導通を図るに際しての有効領域。即ち、抵抗膜13にも保護膜17にも覆われていない領域)よりも大きな第2内部電極14a,14bを備えた基板内蔵用チップ抵抗器を形成することができる。また、内部電極12a,12bの有効領域の間隔よりも、第2内部電極14a,14bの間隔を狭くしたので、微小なチップの限られた範囲内で大きな第2内部電極14a,14bを形成することができる。   In the case of a built-in chip resistor, after embedding in the insulator of the circuit board, a laser beam is irradiated to form a via in the insulating layer covering the chip resistor to expose the external electrode and connect to the external wiring The external electrode is preferably as large as possible for via formation. In this embodiment, the effective area of the internal electrodes 12a and 12b (effective area for electrical connection to the outside. That is, the resistance film 13 is also protected, which is suitable for mounting a chip resistor embedded in the insulator of the circuit board. A chip resistor with a built-in substrate including the second internal electrodes 14a and 14b larger than the region not covered by the film 17 can be formed. In addition, since the interval between the second internal electrodes 14a and 14b is narrower than the interval between the effective regions of the internal electrodes 12a and 12b, the second internal electrodes 14a and 14b that are large within a limited range of a minute chip are formed. be able to.

以上の構成により回路基板に内蔵するのに適した、薄く、且つ基板11の表面にのみ広面積の外部電極を備えた基板内蔵用チップ抵抗器が得られる。なお、抵抗器のサイズは、例えば1005型(1.0mm×0.5mm)および0603型(0.6mm×0.3mm)等の通常のチップ抵抗器サイズに適用が可能であり、通常のチップ抵抗器の厚さに比べて薄い、例えば、半分以下の60〜150μm程度の厚さにすることができる。   With the above configuration, a thin chip resistor suitable for being built in a circuit board and having a thin external electrode only on the surface of the board 11 can be obtained. The size of the resistor can be applied to normal chip resistor sizes such as 1005 type (1.0 mm × 0.5 mm) and 0603 type (0.6 mm × 0.3 mm). It can be made thinner than the thickness of the resistor, for example, about half the thickness of about 60 to 150 μm.

図2は本発明の実施例2の基板内蔵用チップ抵抗器を示す。このチップ抵抗器は、内部電極12a,12b上に接続し、且つ内部電極12a,12bにおける有効領域よりも大面積とした第2内部電極14c,14dを備えている。実施例2では、第2内部電極14c,14dをAgを主な導電材料として含有する導電性樹脂により構成し、該電極上にNiメッキ層15c,15dおよびCuメッキ層15e,15fを形成したものである。なお、実施例2においても実施例1と同じく、Niを主な導電材料として含有する導電性樹脂により第2内部電極を形成し、この第2内部電極にCuメッキ層を形成した構造にしてもよい。   FIG. 2 shows a chip resistor with a built-in substrate according to a second embodiment of the present invention. The chip resistor includes second internal electrodes 14c and 14d that are connected to the internal electrodes 12a and 12b and have a larger area than the effective area of the internal electrodes 12a and 12b. In Example 2, the second internal electrodes 14c and 14d are made of a conductive resin containing Ag as a main conductive material, and Ni plated layers 15c and 15d and Cu plated layers 15e and 15f are formed on the electrodes. It is. In Example 2, as in Example 1, the second internal electrode is formed of a conductive resin containing Ni as a main conductive material, and a Cu plating layer is formed on the second internal electrode. Good.

実施例2でも、実施例1と同様に、内部電極12a,12bはそれぞれ一部が抵抗膜13および保護膜17に覆われているため、外部との導通を図るための領域、即ち、内部電極12a,12bにおける抵抗膜13および保護膜17に覆われていない領域が、内部電極12a,12bの実際の印刷パターンと比べて狭くなってしまう。そこで、内部電極12a,12bと接続し、保護膜17および保護膜18の端部に重なるように第2内部電極14c,14dを形成することにより、外部との導通を図る大きな領域を確保することができる。   Also in the second embodiment, as in the first embodiment, the internal electrodes 12a and 12b are partially covered with the resistance film 13 and the protective film 17, respectively. The regions of 12a and 12b that are not covered with the resistance film 13 and the protective film 17 become narrower than the actual print pattern of the internal electrodes 12a and 12b. Therefore, by connecting the internal electrodes 12a and 12b and forming the second internal electrodes 14c and 14d so as to overlap the end portions of the protective film 17 and the protective film 18, a large area for conducting to the outside is secured. Can do.

次に、本発明のチップ抵抗器の製造工程の一実施例について説明する。まず、図3(a)(b)に示すように、表面(図3(a))と裏面(図3(b))とを有する厚さが100μm程度以下のアルミナ等のセラミックスからなる大判の絶縁性基板11を準備する。この基板11には、縦横の分割溝x、yを備え、デバイス形成後に各区画毎にチップ片に分割可能となっている。なお、分割溝x、yは型押しやレーザ加工機により形成する。   Next, an embodiment of the manufacturing process of the chip resistor of the present invention will be described. First, as shown in FIGS. 3 (a) and 3 (b), a large format made of ceramic such as alumina having a front surface (FIG. 3 (a)) and a back surface (FIG. 3 (b)) of about 100 μm or less. An insulating substrate 11 is prepared. This substrate 11 is provided with vertical and horizontal dividing grooves x and y, and can be divided into chip pieces for each section after device formation. The dividing grooves x and y are formed by embossing or a laser processing machine.

基板11の裏面には、一例としてガラスペーストをスクリーン印刷し、乾燥後焼成して厚膜焼成体からなるマーキング19を形成する。但し、マーキング19は後述の内部電極12の形成後に形成してもよく、またマーキング19は最終工程で印刷等により形成してもよい。マーキング19の形成方法の他の例としては、レーザを基板11の裏面に照射して、レーザの照射痕をマーキングとしてもよく、また、基板11の裏面の全面又はマーキングの形成領域に、エポキシ樹脂等の被膜を形成し、この被膜にレーザを照射して被膜を変色させることによりマーキング19を形成してもよい。   As an example, a glass paste is screen-printed on the back surface of the substrate 11 and dried and fired to form a marking 19 made of a thick film fired body. However, the marking 19 may be formed after formation of the internal electrode 12 described later, and the marking 19 may be formed by printing or the like in the final process. As another example of the method of forming the marking 19, the back surface of the substrate 11 may be irradiated with a laser to mark the laser irradiation traces, and an epoxy resin may be formed on the entire back surface of the substrate 11 or the marking formation region. The marking 19 may be formed by forming a film such as the above, and irradiating the film with a laser to change the color of the film.

次に、図3(c)に示すように、基板11の表面の各区画に跨る内部電極パターンをAg−Pdペーストのスクリーン印刷にて形成し、乾燥後焼成することで、厚膜焼成体からなる内部電極12を形成する。   Next, as shown in FIG.3 (c), the internal electrode pattern which straddles each division of the surface of the board | substrate 11 is formed by the screen printing of Ag-Pd paste, and after baking, it is fired from a thick film fired body. The internal electrode 12 is formed.

次に、図3(d)に示すように、RuOペーストのスクリーン印刷にて一区画両側の内部電極12,12に跨る抵抗膜パターンを形成し、乾燥後焼成することで、厚膜焼成体からなる抵抗膜13を各区画に形成する。そして、図3(e)に示すように、ガラスペーストのスクリーン印刷にて抵抗膜13の全体を被覆するガラス保護膜パターンをスクリーン印刷にて形成し、乾燥後焼成することで、抵抗膜13を被覆する厚膜焼成体からなるガラス保護膜(第1保護膜)17を形成する。 Next, as shown in FIG. 3 (d), a thick film fired body is formed by forming a resistive film pattern straddling the internal electrodes 12, 12 on both sides of one section by screen printing of RuO 2 paste, and firing after drying. The resistance film 13 made of is formed in each section. Then, as shown in FIG. 3E, a glass protective film pattern that covers the entire resistance film 13 is formed by screen printing by screen printing of glass paste, dried, and fired after drying. A glass protective film (first protective film) 17 made of a thick film fired body to be coated is formed.

次に、図3(f)に示すように、レーザトリミングを適宜行い、抵抗値を調整する。図中の符号Tはトリミング跡を示す。そして、図4(a)に示すように、エポキシ樹脂等の樹脂ペーストを用いて、ガラス保護膜17の端部以外を被覆する樹脂保護膜パターンをスクリーン印刷にて形成し、加温硬化することで、ガラス保護膜を被覆する樹脂保護膜(第2保護膜)18を形成する。この実施例では、第2保護膜は、所定方向において(分割溝y方向において)隣接する区画に渡る帯状のパターンで形成する。なお、保護膜18は帯状にしないで(分割溝xを跨がないで)、各区画毎に区切るようにしてもよいが、第2保護膜の表面の平坦性を確保する上でも、区画に渡る帯状パターンとすることが好ましい。   Next, as shown in FIG. 3F, laser trimming is appropriately performed to adjust the resistance value. A symbol T in the figure indicates a trimming mark. Then, as shown in FIG. 4A, using a resin paste such as an epoxy resin, a resin protective film pattern that covers other than the edge of the glass protective film 17 is formed by screen printing, and is heated and cured. Thus, a resin protective film (second protective film) 18 covering the glass protective film is formed. In this embodiment, the second protective film is formed in a strip-like pattern extending over adjacent sections in a predetermined direction (in the dividing groove y direction). The protective film 18 may not be strip-shaped (does not straddle the dividing groove x) and may be partitioned for each section. However, in order to ensure the flatness of the surface of the second protective film, the protection film 18 may be divided into sections. It is preferable to use a crossing strip pattern.

次に、図4(b)に示すように、第2保護膜18の端部に重なるように、Niを主な導電成分とした導電性樹脂ペーストを分割溝yに沿ってスクリーン印刷して、保護膜17,18の一部と内部電極12上に帯状の第2内部電極パターンを形成し、加温硬化することでNiを主な導電成分とした導電性樹脂による帯状の第2内部電極14を形成する。なお、第2内部電極14は帯状にしないで(分割溝xを跨がないで)、各区画毎に区切るようにしてもよいが、第2内部電極14の表面の平坦性を確保する上でも、区画に渡る帯状パターンとすることが好ましい。   Next, as shown in FIG. 4B, a conductive resin paste containing Ni as a main conductive component is screen-printed along the divided grooves y so as to overlap the end portion of the second protective film 18, A band-shaped second internal electrode pattern is formed on a part of the protective films 17, 18 and the internal electrode 12, and is heated and cured to form a band-shaped second internal electrode 14 made of a conductive resin containing Ni as a main conductive component. Form. The second internal electrode 14 may not be strip-shaped (does not straddle the dividing groove x) and may be partitioned for each section. However, in order to ensure the flatness of the surface of the second internal electrode 14 as well. It is preferable to use a belt-like pattern extending over the sections.

そして、大判の絶縁性基板11を分割溝yに沿って1次ブレークして短冊状基板とし(図4(c)参照)、ついで短冊状基板を分割溝xに沿って2次ブレークして、大判の絶縁性基板11をチップ個片に分割する(図4(d)参照)。更に第2内部電極14a,14bの表面に電解メッキによりCuのメッキ膜を形成することで、外部電極となるCuメッキ層15a,15bを形成する。この段階で、図1に示す本発明の実施例1のチップ抵抗器が完成する。このチップ抵抗器では、従来のチップ抵抗器と比べ、大きく且つ平坦な外部電極が得られるので、積層回路基板等に内蔵するのに、良好な実装性が得られる。   Then, the large-sized insulating substrate 11 is subjected to a primary break along the dividing groove y to form a strip-shaped substrate (see FIG. 4C), and then the strip-shaped substrate is subjected to a secondary break along the dividing groove x. The large insulating substrate 11 is divided into chip pieces (see FIG. 4D). Further, Cu plating layers 15a and 15b serving as external electrodes are formed by forming a Cu plating film on the surfaces of the second internal electrodes 14a and 14b by electrolytic plating. At this stage, the chip resistor according to the first embodiment of the present invention shown in FIG. 1 is completed. In this chip resistor, since a large and flat external electrode can be obtained as compared with the conventional chip resistor, good mountability can be obtained for incorporation in a laminated circuit board or the like.

本発明の実施例2のチップ抵抗器の製造工程については、樹脂保護膜18の形成後に、Agを主な導電成分とした導電性樹脂ペーストをスクリーン印刷して、保護膜17,18の一部と内部電極12上に第2内部電極パターンを形成し、加温硬化することでAgを主成分とした導電性樹脂による第2内部電極14を形成する。   Regarding the manufacturing process of the chip resistor of Example 2 of the present invention, after the resin protective film 18 is formed, a conductive resin paste containing Ag as a main conductive component is screen-printed, and a part of the protective films 17 and 18 is formed. A second internal electrode pattern is formed on the internal electrode 12 and is heated and cured to form the second internal electrode 14 made of a conductive resin mainly composed of Ag.

そして、1次ブレークと2次ブレークにより、大判の基板11をチップ個片の基板11に分割し、第2内部電極14a,14bの表面に電解メッキによりNiのメッキ膜を形成し、更に電解メッキによりCuのメッキ膜を形成することで、Niメッキ層15c,15dおよびCuメッキ層15e,15fからなる外部電極15,15を形成する。この段階で、図2に示す本発明の実施例2のチップ抵抗器が完成する。このチップ抵抗器でも、実施例1のチップ抵抗器と同様に、大きく且つ平坦な外部電極が得られる。   Then, the large-sized substrate 11 is divided into chip-piece substrates 11 by the primary break and the secondary break, and a Ni plating film is formed on the surfaces of the second internal electrodes 14a and 14b by electrolytic plating. By forming a Cu plating film, the external electrodes 15 and 15 comprising the Ni plating layers 15c and 15d and the Cu plating layers 15e and 15f are formed. At this stage, the chip resistor according to the second embodiment of the present invention shown in FIG. 2 is completed. Even with this chip resistor, a large and flat external electrode can be obtained in the same manner as the chip resistor of the first embodiment.

図5は、本発明のチップ抵抗器の積層回路基板への内装例を示す。この例では、積層回路基板は、絶縁性のシート31a,31bが積層して形成され、本発明のチップ抵抗器が内装されている。このチップ抵抗器は、絶縁性基板11の表面に抵抗膜が配置され、保護膜により該抵抗膜が被覆され、その両側にCuメッキ層を表面に備えた外部電極15が配置され、外部電極15は上述のように内部電極に対して大きく形成された、図1、図2に示すチップ抵抗器である。以下に、本発明のチップ抵抗器を積層基板内に内装する工程の一例を説明する。   FIG. 5 shows an example of the interior of the chip resistor of the present invention on a laminated circuit board. In this example, the laminated circuit board is formed by laminating insulating sheets 31a and 31b, and the chip resistor of the present invention is built therein. In this chip resistor, a resistive film is disposed on the surface of the insulating substrate 11, the resistive film is covered with a protective film, and external electrodes 15 having a Cu plating layer on the surface are disposed on both sides thereof. Is a chip resistor shown in FIGS. 1 and 2 which is formed larger than the internal electrode as described above. Below, an example of the process of mounting the chip resistor of this invention in a laminated substrate is demonstrated.

図5(a)に示すとおり、絶縁性のシート31aに接着剤35によりチップ抵抗器を固定する。次に図5(b)に示すとおり、チップ抵抗器が収まる貫通孔が形成されたシート31bをシート31aに重ね、さらに透明なシート31cを重ね、積層体を得る。その後、この積層体を静水圧プレス法等の手法でプレスし、各シートおよび内蔵したチップ抵抗器を密着させる。図5(c)は、図5(b)に示す積層体をプレスした後、その上下を逆転した図である。画像認識装置を用いてチップ抵抗器の基板11に印字されたマーキング19を確認して(符号C)、レーザLの照射位置合せを行い、レーザLをシート31aに照射してエッチングする。シート31cは、少なくともマーキング19を外部から確認できる程度に透明な樹脂シート等である。   As shown in FIG. 5A, a chip resistor is fixed to the insulating sheet 31a with an adhesive 35. Next, as shown in FIG.5 (b), the sheet | seat 31b in which the through-hole which accommodates a chip resistor was formed was piled up on the sheet | seat 31a, and also the transparent sheet | seat 31c was piled up, and a laminated body is obtained. Then, this laminated body is pressed by a technique such as an isostatic pressing method, and each sheet and the built-in chip resistor are brought into close contact. FIG.5 (c) is the figure which turned upside down after pressing the laminated body shown in FIG.5 (b). The marking 19 printed on the substrate 11 of the chip resistor is confirmed using an image recognition device (reference numeral C), the irradiation position of the laser L is aligned, and the sheet 31a is irradiated with the laser L for etching. The sheet 31c is a resin sheet or the like that is transparent to the extent that at least the marking 19 can be confirmed from the outside.

本発明のチップ抵抗器は広面積の外部電極15を備えるので、エッチングの許容領域が広がり実装が容易となり、またマーキング19によりレーザLの照射位置合せが可能となるため、誤って保護膜表面にレーザを照射する等による不良の発生を防止することができる。また、チップ抵抗器の基板11の裏面側にマーキング19を形成したので、マーキング19の形成が電極には影響しないため、電極寸法や導電性等に影響することがなく好適である。   Since the chip resistor according to the present invention includes the external electrode 15 having a large area, the allowable area for etching is widened and mounting is easy, and the laser 19 can be aligned with the marking 19 by mistake. The occurrence of defects due to laser irradiation or the like can be prevented. In addition, since the marking 19 is formed on the back side of the substrate 11 of the chip resistor, the formation of the marking 19 does not affect the electrode, which is preferable without affecting the electrode dimensions, conductivity, and the like.

こうして図5(d)に示すとおりビアホール37が形成される。ビアホール37内には外部電極15が露出している。次に図5(e)に示すとおり、ビアホール37内に導電材料を充填してビア33を形成し、シート31aの表面にビア33と接続する配線32を印刷形成する。こうして得られた積層体は、さらにシートを重ね、配線の形成とビアによる層間接続を図ることにより多層化することができる。   Thus, a via hole 37 is formed as shown in FIG. The external electrode 15 is exposed in the via hole 37. Next, as shown in FIG. 5E, a conductive material is filled in the via hole 37 to form the via 33, and the wiring 32 connected to the via 33 is printed on the surface of the sheet 31a. The laminated body thus obtained can be multi-layered by further stacking sheets and forming interconnections and interlayer connection by vias.

なお、上述の実施例では、第2内部電極をNiまたはAgの金属材料と樹脂成分からなる導電性樹脂で形成する例について説明したが、その他の金属材料を主な導電成分とした導電性樹脂で形成することも可能である。第2内部電極を導電性樹脂で形成することで、下層の内部電極12と抵抗膜13および第1保護膜17の重なりによる凸状部等の凹凸を吸収し、表面が平坦で且つ広面積の第2内部電極14を形成できる。   In the above-described embodiment, the example in which the second internal electrode is formed of a conductive resin made of a metal material of Ni or Ag and a resin component has been described. However, the conductive resin having other metal material as a main conductive component. It can also be formed. By forming the second internal electrode with a conductive resin, it absorbs irregularities such as convex portions due to the overlapping of the lower internal electrode 12, the resistance film 13 and the first protective film 17, and the surface is flat and has a wide area. The second internal electrode 14 can be formed.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明のチップ抵抗器は、基板の表面に形成された内部電極に接続し、該電極と第1および第2保護膜の端部の上面に配置された広面積で且つ平坦な第2内部電極とその表面に形成された外部電極を備えるので、積層回路基板等への実装が容易となる。従って、高実装密度化が要求される積層回路基板等への内装用のチップ抵抗器として好適に利用可能である。   The chip resistor of the present invention is connected to an internal electrode formed on the surface of a substrate, and has a large area and a flat second internal electrode disposed on the upper surfaces of the electrodes and the end portions of the first and second protective films. And the external electrode formed on the surface thereof, it is easy to mount on a laminated circuit board or the like. Therefore, it can be suitably used as a chip resistor for interior use in a laminated circuit board or the like that requires high mounting density.

Claims (5)

表面と裏面とを有する絶縁性の大判基板を準備し、
該大判基板の表面の各区画に一対の内部電極を形成し、
該一対の内部電極を接続するように各区画に抵抗膜を形成し、
該抵抗膜の全体を覆い、該内部電極の少なくとも一部が露出するように第1保護膜を形成し、
前記抵抗膜が形成された領域の少なくとも一部を覆う第2保護膜を形成し、
前記内部電極の露出部と接続し、前記第2保護膜の端部を覆うように第2内部電極を形成し、該第2内部電極は広く且つ平坦な電極面を有し、
該第2内部電極の表面にメッキ層を形成し、該メッキ層の上面を前記第2保護膜の上面よりも高く形成する、基板内蔵用チップ抵抗器の製造方法。
Prepare an insulating large-format substrate having a front surface and a back surface,
Forming a pair of internal electrodes in each section of the surface of the large substrate;
Forming a resistive film in each section so as to connect the pair of internal electrodes;
Covering the entire resistance film and forming a first protective film so that at least a part of the internal electrode is exposed;
Forming a second protective film covering at least a part of the region where the resistance film is formed;
A second internal electrode is formed so as to connect to an exposed portion of the internal electrode and cover an end portion of the second protective film, and the second internal electrode has a wide and flat electrode surface,
A method of manufacturing a chip resistor for a substrate, wherein a plating layer is formed on a surface of the second internal electrode, and an upper surface of the plating layer is formed higher than an upper surface of the second protective film.
前記抵抗膜の形成後であって、前記第2内部電極の形成前に、前記抵抗膜の一部を除去して抵抗値調整を行なう、請求項1に記載の基板内蔵用チップ抵抗器の製造方法。   2. The manufacturing of the chip resistor for a substrate according to claim 1, wherein the resistance value is adjusted by removing a part of the resistance film after the formation of the resistance film and before the formation of the second internal electrode. Method. 前記内部電極形成前または後に、前記大判基板の裏面に文字または図形または記号からなるマーキングを形成する、請求項1に記載の基板内蔵用チップ抵抗器の製造方法。   The manufacturing method of the chip resistor for board | substrate incorporation of Claim 1 which forms the marking which consists of a character, a figure, or a symbol on the back surface of the said large-sized board | substrate before or after the said internal electrode formation. 前記内部電極は所定方向において隣接する区画とは離間するパターンで形成され、
前記第2内部電極は所定方向において隣接する区画に渡る帯状のパターンで形成される、請求項1に記載の基板内蔵用チップ抵抗器の製造方法。
The internal electrodes are formed in a pattern that is separated from adjacent sections in a predetermined direction;
2. The method of manufacturing a chip resistor for a substrate according to claim 1, wherein the second internal electrode is formed in a strip-like pattern extending over adjacent sections in a predetermined direction.
前記第2内部電極は導電性樹脂のペーストをスクリーン印刷で塗布し、加温硬化することにより形成する、請求項1に記載の基板内蔵用チップ抵抗器の製造方法。   2. The method of manufacturing a chip resistor with a built-in substrate according to claim 1, wherein the second internal electrode is formed by applying a conductive resin paste by screen printing and heating and curing. 3.
JP2013241415A 2013-11-22 2013-11-22 Substrate built-in chip resistor and manufacturing method therefor Pending JP2014060435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013241415A JP2014060435A (en) 2013-11-22 2013-11-22 Substrate built-in chip resistor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013241415A JP2014060435A (en) 2013-11-22 2013-11-22 Substrate built-in chip resistor and manufacturing method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009242203A Division JP5481675B2 (en) 2009-10-21 2009-10-21 Chip resistor for built-in substrate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2014060435A true JP2014060435A (en) 2014-04-03

Family

ID=50616581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013241415A Pending JP2014060435A (en) 2013-11-22 2013-11-22 Substrate built-in chip resistor and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2014060435A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837104A (en) * 1994-07-21 1996-02-06 Kamaya Denki Kk Manufacture of chip resistor
JPH10189302A (en) * 1996-12-20 1998-07-21 Rohm Co Ltd Structure of chip-type resistor, and its manufacture
JP2003124010A (en) * 2001-10-18 2003-04-25 Rohm Co Ltd Chip electronic component and method of manufacturing the same
JP2003264101A (en) * 2002-03-08 2003-09-19 Koa Corp Bifacial mountable resistor
JP2004253467A (en) * 2003-02-18 2004-09-09 Rohm Co Ltd Chip resistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837104A (en) * 1994-07-21 1996-02-06 Kamaya Denki Kk Manufacture of chip resistor
JPH10189302A (en) * 1996-12-20 1998-07-21 Rohm Co Ltd Structure of chip-type resistor, and its manufacture
JP2003124010A (en) * 2001-10-18 2003-04-25 Rohm Co Ltd Chip electronic component and method of manufacturing the same
JP2003264101A (en) * 2002-03-08 2003-09-19 Koa Corp Bifacial mountable resistor
JP2004253467A (en) * 2003-02-18 2004-09-09 Rohm Co Ltd Chip resistor

Similar Documents

Publication Publication Date Title
JP6044153B2 (en) Electronic components
JP5481675B2 (en) Chip resistor for built-in substrate and manufacturing method thereof
JP7063820B2 (en) Chip resistors and their manufacturing methods
JP2009260106A (en) Electronic component
CN104919907A (en) Printed circuit board
JP5663804B2 (en) Chip resistor for built-in substrate and manufacturing method thereof
US8111126B2 (en) Over-current protection device and manufacturing method thereof
CN102623115A (en) Chip resistor and its manufacturing method
US8854175B2 (en) Chip resistor device and method for fabricating the same
US20130220683A1 (en) Printed circuit board and method for manufacturing printed circuit board
JP2011222757A (en) Chip resistor and method for manufacturing the same
WO2017033793A1 (en) Chip resistor and method for manufacturing chip resistor
JP2014060435A (en) Substrate built-in chip resistor and manufacturing method therefor
WO2017057248A1 (en) Chip resistor
WO2018079477A1 (en) Multilayer substrate and method for manufacturing same
JP6577315B2 (en) Manufacturing method of chip resistor
JP6674833B2 (en) Chip resistor and component built-in circuit board
KR20130046716A (en) The printed circuit board and the method for manufacturing the same
CN107509315A (en) A kind of oily wire jumper preparation method of PCB silver
JP2011009288A (en) Substrate built-in chip resistor and method of manufacturing the same
JP2014204094A (en) Resistor and method of manufacturing resistor
JP6695415B2 (en) Chip resistor
JP2018078150A (en) Substrate-inner layer chip resistor and component built-in type circuit substrate
JP2007165358A (en) Chip-type capacitor
JP2002237402A (en) Chip resistor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106